1
|
Karunasagara S, Bayarkhangai B, Shim HW, Bae HJ, Lee H, Taghizadeh A, Ji Y, Mandakhbayar N, Kim HS, Hyun J, Kim TJ, Lee JH, Kim HW. Electrically-stimulated cellular and tissue events are coordinated through ion channel-mediated calcium influx and chromatin modifications across the cytosol-nucleus space. Biomaterials 2025; 314:122854. [PMID: 39405824 DOI: 10.1016/j.biomaterials.2024.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/10/2024]
Abstract
Electrical stimulation (ES) through biomaterials and devices has been implicated in activating diverse cell behaviors while facilitating tissue healing process. Despite its significance in modulating biological events, the mechanisms governing ES-activated cellular phenomena remain largely elusive. Here, we demonstrated that millisecond-pulsed temporal ES profoundly impacted a spectrum of cellular events across the membrane-cytosol-nuclear space. These include activated ion channels, intracellular calcium influx, actomyosin contractility, cell migration and proliferation, and secretome release. Such events were coordinated mainly through ES-activated ion channels and calcium oscillation dynamics. Notably, ES increased the chromatin accessibility of genes, particularly those associated with the ES-activated cellular events, underscoring the significance of epigenetic changes in ES-induced behavioral outcomes. We identified histone acetylation (mediated by histone acetyltransferases), among other chromatin modifications, is key in reshaping the chromatin landscape upon ES. These observations were further validated through experiments involving ex vivo skin tissue samples, including activated ion channels and calcium influx, increased cell proliferation and actomyosin contractility, elevated secretome profile, and more accessible chromatin structure following ES. This work provides novel insights into the mechanisms underlying ES-activated cell and tissue events, ultimately guiding design principles for the development of electrical devices and materials effective for tissue repair and wound healing.
Collapse
Affiliation(s)
- Shanika Karunasagara
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Buuvee Bayarkhangai
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye-Won Shim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Han-Jin Bae
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hwalim Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yunseong Ji
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University Pusan, 46241, Republic of Korea; Department of Biological Sciences, Pusan National University Pusan, 46241, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
2
|
Zhou W, Lin J, Wang Q, Wang X, Yao X, Yan Y, Sun W, Zhu Q, Zhang X, Wang X, Ji B, Ouyang H. Chromatin-site-specific accessibility: A microtopography-regulated door into the stem cell fate. Cell Rep 2024; 44:115106. [PMID: 39723890 DOI: 10.1016/j.celrep.2024.115106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Biomaterials that mimic extracellular matrix topography are crucial in tissue engineering. Previous research indicates that certain biomimetic topography can guide stem cells toward multiple specific lineages. However, the mechanisms by which topographic cues direct stem cell differentiation remain unclear. Here, we demonstrate that microtopography influences nuclear tension in mesenchymal stem cells (MSCs), shaping chromatin accessibility and determining lineage commitment. On aligned substrates, MSCs exhibit high cytoskeletal tension along the fiber direction, creating anisotropic nuclear stress that opens chromatin sites for neurogenic, myogenic, and tenogenic genes via transcription factors like Nuclear receptor TLX (TLX). In contrast, random substrates induce isotropic nuclear stress, promoting chromatin accessibility for osteogenic and chondrogenic genes through Runt-related transcription factors (RUNX). Our findings reveal that aligned and random microtopographies direct site-specific chromatin stretch and lineage-specific gene expression, priming MSCs for distinct lineages. This study introduces a novel framework for understanding how topographic cues govern cell fate in tissue repair and regeneration.
Collapse
Affiliation(s)
- Wenyan Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; School of Medicine, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Junxin Lin
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; School of Medicine, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Qianchun Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325000, China
| | - Xianliu Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 200051, China
| | - Xudong Yao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province 322000, China
| | - Yiyang Yan
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China
| | - Wei Sun
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China
| | - Qiuwen Zhu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiaoan Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiaozhao Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, Zhejiang Province 310027, China; Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
3
|
Hernández-Vega AM, García-Villegas R, Rosenbaum T. Roles for TRPV4 in disease: A discussion of possible mechanisms. Cell Calcium 2024; 124:102972. [PMID: 39609180 DOI: 10.1016/j.ceca.2024.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel is a ubiquitously expressed Ca2+-permeable ion channel that controls intracellular calcium ([Ca2+]i) homeostasis in various types of cells. The physiological roles for TRPV4 are tissue specific and the mechanisms behind this specificity remain mostly unclarified. It is noteworthy that mutations in the TRPV4 channel have been associated to a broad spectrum of congenital diseases, with most of these mutations mainly resulting in gain-of-function. Mutations have been identified in human patients showing a variety of phenotypes and symptoms, mostly related to skeletal and neuromuscular disorders. Since TRPV4 is so widely expressed throughout the body, it comes as no surprise that the literature is growing in evidence linking this protein to malfunction in systems other than the skeletal and neuromuscular. In this review, we summarize the expression patterns of TRPV4 in several tissues and highlight findings of recent studies that address critical structural and functional features of this channel, particularly focusing on its interactions and signaling pathways related to Ca2+ entry. Moreover, we discuss the roles of TRPV4 mutations in some diseases and pinpoint some of the mechanisms underlying pathological states where TRPV4's malfunction is prominent.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07360, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
4
|
Cui C, Lu C, Cai Y, Xiong Y, Duan Y, Lan K, Fan Y, Zhou X, Wei X. PTH1R Suppressed Apoptosis of Mesenchymal Progenitors in Mandibular Growth. Int J Mol Sci 2024; 25:12607. [PMID: 39684319 DOI: 10.3390/ijms252312607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Genetic abnormalities of the parathyroid hormone 1 receptor (PTH1R) lead to profound craniomaxillofacial bone and dentition defects on account of inappropriate tissue metabolism and cellular differentiation. The coordinated activity of differentiation and viability in bone cells is indispensable for bone metabolism. Recent research demonstrates mesenchymal progenitors are responsive to PTH1R signaling for osteogenic differentiation, whereas the effect of PTH1R on cellular survival remains incompletely understood. Here, we report that mice with deletion of PTH1R in Prx1-positive mesenchymal cells (Prx1Cre;PTH1Rfl/fl) exhibit decreased alveolar bone mass due in part to apoptotic response activation. The exploration of oral bone-derived mesenchymal stem cells (OMSCs) with PTH1R deficiency suggests PTH1R signaling modulates OMSCs' apoptosis by interfering mitochondrial function and morphology. The underlying molecular mechanisms are studied by transcriptome sequencing analysis, finding that inositol trisphosphate receptor-3 (IP3R-3), an endoplasmic reticulum calcium channel protein, serves as a modulator of pro-apoptosis in OMSCs. Furthermore, we find PTH1R and its downstream protein kinase A (PKA) pathway dampen IP3R-3's expression. Of note, OMSCs with IP3R-3 overexpression recapitulate the PTH1R-deletion phenotypes, while IP3R-3 silence rescues mitochondrial dysfunction. Altogether, our study uncovers the anti-apoptotic function of PTH1R signaling in OMSCs and proves that excess apoptosis partly contributes to a weakening potential of osteogenic differentiation and aberrant mandibular development.
Collapse
Affiliation(s)
- Chen Cui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Chuang Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yanling Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yuhua Xiong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yihong Duan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Kaiwen Lan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
5
|
Zhou R, Fu W, Vasylyev D, Waxman SG, Liu CJ. Ion channels in osteoarthritis: emerging roles and potential targets. Nat Rev Rheumatol 2024; 20:545-564. [PMID: 39122910 DOI: 10.1038/s41584-024-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that causes substantial disability, yet effective approaches to disease prevention or to the delay of OA progression are lacking. Emerging evidence has pinpointed ion channels as pivotal mediators in OA pathogenesis and as promising targets for disease-modifying treatments. Preclinical studies have assessed the potential of a variety of ion channel modulators to modify disease pathways involved in cartilage degeneration, synovial inflammation, bone hyperplasia and pain, and to provide symptomatic relief in models of OA. Some of these modulators are currently being evaluated in clinical trials. This review explores the structures and functions of ion channels, including transient receptor potential channels, Piezo channels, voltage-gated sodium channels, voltage-dependent calcium channels, potassium channels, acid-sensing ion channels, chloride channels and the ATP-dependent P2XR channels in the osteoarthritic joint. The discussion spans channel-targeting drug discovery and potential clinical applications, emphasizing opportunities for further research, and underscoring the growing clinical impact of ion channel biology in OA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Wenyu Fu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Dmytro Vasylyev
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Nakamichi R, Asahara H. The role of mechanotransduction in tendon. J Bone Miner Res 2024; 39:814-820. [PMID: 38795012 PMCID: PMC11301520 DOI: 10.1093/jbmr/zjae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 05/24/2024] [Indexed: 05/27/2024]
Abstract
Tendons play an important role in the maintenance of motor function by connecting muscles and bones and transmitting forces. Particularly, the role of mechanical stress has primarily focused on the key mechanism of tendon homeostasis, with much research on this topic. With the recent development of molecular biological techniques, the mechanisms of mechanical stress sensing and signal transduction have been gradually elucidated with the identification of mechanosensor in tendon cells and the master regulator in tendon development. This review provides a comprehensive overview of the structure and function of tendon tissue, including the role for physical performance and the detailed mechanism of mechanotransduction in its regulation. An important lesson is that the role of mechanotransduction in tendon tissue is only partially clarified, indicating the complexity of the mechanisms of motor function and fueling increasing interest in uncovering these mechanisms.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular and Cellular Biology, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, United States
- Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
- Department of Orthopaedic Surgery, Okayama University hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
| | - Hiroshi Asahara
- Department of Molecular and Cellular Biology, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, United States
- Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| |
Collapse
|
7
|
Redmon SN, Lakk M, Tseng YT, Rudzitis CN, Searle JE, Ahmed F, Unser A, Borrás T, Torrejon K, Krizaj D. TRPV4 subserves physiological and pathological elevations in intraocular pressure. RESEARCH SQUARE 2024:rs.3.rs-4714050. [PMID: 39041037 PMCID: PMC11261973 DOI: 10.21203/rs.3.rs-4714050/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Ocular hypertension (OHT) caused by mechanical stress and chronic glucocorticoid exposure reduces the hydraulic permeability of the conventional outflow pathway. It increases the risk for irreversible vision loss, yet healthy individuals experience nightly intraocular pressure (IOP) elevations without adverse lifetime effects. It is not known which pressure sensors regulate physiological vs. pathological OHT nor how they impact the permeability of the principal drainage pathway through the trabecular meshwork (TM). We report that OHT induced by the circadian rhythm, occlusion of the iridocorneal angle and glucocorticoids requires activation of TRPV4, a stretch-activated cation channel. Wild-type mice responded to nocturnal topical administration of the agonist GSK1016790A with IOP lowering, while intracameral injection of the agonist elevated diurnal IOP. Microinjection of TRPV4 antagonists HC067047 and GSK2193874 lowered IOP during the nocturnal OHT phase and in hypertensive eyes treated with steroids or injection of polystyrene microbeads. Conventional outflow-specific Trpv4 knockdown induced partial IOP lowering in mice with occluded iridocorneal angle and protected retinal neurons from pressure injury. Indicating a central role for TRPV4-dependent mechanosensing in trabecular outflow, HC067047 doubled the outflow facility in TM-populated steroid-treated 3D nanoscaffolds. Tonic TRPV4 signaling thus represents a fundamental property of TM biology as a driver of increased in vitro and in vivo outflow resistance. The TRPV4-dependence of OHT under conditions that mimic primary and secondary glaucomas could be explored as a novel target for glaucoma treatments.
Collapse
|
8
|
Wang Q, Ji C, Ali A, Ding I, Wang Y, McCulloch CA. TRPV4 mediates IL-1-induced Ca 2+ signaling, ERK activation and MMP expression. FASEB J 2024; 38:e23731. [PMID: 38855909 DOI: 10.1096/fj.202400031r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/14/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Ca2+ permeation through TRPV4 in fibroblasts is associated with pathological matrix degradation. In human gingival fibroblasts, IL-1β binding to its signaling receptor (IL-1R1) induces activation of extracellular regulated kinase (ERK) and MMP1 expression, processes that require Ca2+ flux across the plasma membrane. It is not known how IL-1R1, which does not conduct Ca2+, generates Ca2+ signals in response to IL-1. We examined whether TRPV4 mediates the Ca2+ fluxes required for ERK signaling in IL-1 stimulated gingival fibroblasts. TRPV4 was immunostained in fibroblasts of human gingival connective tissue and in focal adhesions of cultured mouse gingival fibroblasts. Human gingival fibroblasts treated with IL-1β showed no change of TRPV4 expression but there was increased MMP1 expression. In mouse, gingival fibroblasts expressing TRPV4, IL-1 strongly increased [Ca2+]i. Pre-incubation of cells with IL-1 Receptor Antagonist blocked Ca2+ entry induced by IL-1 or the TRPV4 agonist GSK101. Knockout of TRPV4 or expression of a non-Ca2+-conducting TRPV4 pore-mutant or pre-incubation with the TRPV4 inhibitor RN1734, blocked IL-1-induced Ca2+ transients and expression of the mouse interstitial collagenase, MMP13. Treatment of mouse gingival fibroblasts with GSK101 phenocopied Ca2+ and ERK responses induced by IL-1; these responses were absent in TRPV4-null cells or cells expressing a non-conducting TRPV4 pore-mutant. Immunostained IL-1R1 localized with TRPV4 in adhesions within cell extensions. While TRPV4 immunoprecipitates analyzed by mass spectrometry showed no association with IL-1R1, TRPV4 associated with Src-related proteins and Src co-immunoprecipitated with TRPV4. Src inhibition reduced IL-1-induced Ca2+ responses. The functional linkage of TRPV4 with IL-1R1 expands its repertoire of innate immune signaling processes by mediating IL-1-driven Ca2+ responses that drive matrix remodeling in fibroblasts. Thus, inhibiting TRPV4 activity may provide a new pharmacological approach for blunting matrix degradation in inflammatory diseases.
Collapse
Affiliation(s)
- Qin Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Chenfan Ji
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Aiman Ali
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Isabel Ding
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
9
|
Cibelli A, Mola MG, Saracino E, Barile B, Abbrescia P, Mogni G, Spray DC, Scemes E, Rossi A, Spennato D, Svelto M, Frigeri A, Benfenati V, Nicchia GP. Aquaporin-4 and transient receptor potential vanilloid 4 balance in early postnatal neurodevelopment. Glia 2024; 72:938-959. [PMID: 38362923 DOI: 10.1002/glia.24512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
In the adult brain, the water channel aquaporin-4 (AQP4) is expressed in astrocyte endfoot, in supramolecular assemblies, called "Orthogonal Arrays of Particles" (OAPs) together with the transient receptor potential vanilloid 4 (TRPV4), finely regulating the cell volume. The present study aimed at investigating the contribution of AQP4 and TRPV4 to CNS early postnatal development using WT and AQP4 KO brain and retina and neuronal stem cells (NSCs), as an in vitro model of astrocyte differentiation. Western blot analysis showed that, differently from AQP4 and the glial cell markers, TRPV4 was downregulated during CNS development and NSC differentiation. Blue native/SDS-PAGE revealed that AQP4 progressively organized into OAPs throughout the entire differentiation process. Fluorescence quenching assay indicated that the speed of cell volume changes was time-related to NSC differentiation and functional to their migratory ability. Calcium imaging showed that the amplitude of TRPV4 Ca2+ transient is lower, and the dynamics are changed during differentiation and suppressed in AQP4 KO NSCs. Overall, these findings suggest that early postnatal neurodevelopment is subjected to temporally modulated water and Ca2+ dynamics likely to be those sustaining the biochemical and physiological mechanisms responsible for astrocyte differentiation during brain and retinal development.
Collapse
Affiliation(s)
- Antonio Cibelli
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Pasqua Abbrescia
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro-Medical School, Bari, Italy
| | - Guido Mogni
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eliana Scemes
- Department of Cell Biology and Anatomy, NY Medical College, Valhalla, New York, USA
| | - Andrea Rossi
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Diletta Spennato
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro-Medical School, Bari, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
10
|
Wang Q, Ji C, Smith P, McCulloch CA. Impact of TRP Channels on Extracellular Matrix Remodeling: Focus on TRPV4 and Collagen. Int J Mol Sci 2024; 25:3566. [PMID: 38612378 PMCID: PMC11012046 DOI: 10.3390/ijms25073566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Disturbed remodeling of the extracellular matrix (ECM) is frequently observed in several high-prevalence pathologies that include fibrotic diseases of organs such as the heart, lung, periodontium, liver, and the stiffening of the ECM surrounding invasive cancers. In many of these lesions, matrix remodeling mediated by fibroblasts is dysregulated, in part by alterations to the regulatory and effector systems that synthesize and degrade collagen, and by alterations to the functions of the integrin-based adhesions that normally mediate mechanical remodeling of collagen fibrils. Cell-matrix adhesions containing collagen-binding integrins are enriched with regulatory and effector systems that initiate localized remodeling of pericellular collagen fibrils to maintain ECM homeostasis. A large cadre of regulatory molecules is enriched in cell-matrix adhesions that affect ECM remodeling through synthesis, degradation, and contraction of collagen fibrils. One of these regulatory molecules is Transient Receptor Potential Vanilloid-type 4 (TRPV4), a mechanically sensitive, Ca2+-permeable plasma membrane channel that regulates collagen remodeling. The gating of Ca2+ across the plasma membrane by TRPV4 and the consequent generation of intracellular Ca2+ signals affect several processes that determine the structural and mechanical properties of collagen-rich ECM. These processes include the synthesis of new collagen fibrils, tractional remodeling by contractile forces, and collagenolysis. While the specific mechanisms by which TRPV4 contributes to matrix remodeling are not well-defined, it is known that TRPV4 is activated by mechanical forces transmitted through collagen adhesion receptors. Here, we consider how TRPV4 expression and function contribute to physiological and pathological collagen remodeling and are associated with collagen adhesions. Over the long-term, an improved understanding of how TRPV4 regulates collagen remodeling could pave the way for new approaches to manage fibrotic lesions.
Collapse
Affiliation(s)
- Qin Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
| | - Chenfan Ji
- Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Patricio Smith
- Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8320165, Chile;
| | | |
Collapse
|
11
|
Jiang D, Guo R, Dai R, Knoedler S, Tao J, Machens HG, Rinkevich Y. The Multifaceted Functions of TRPV4 and Calcium Oscillations in Tissue Repair. Int J Mol Sci 2024; 25:1179. [PMID: 38256251 PMCID: PMC10816018 DOI: 10.3390/ijms25021179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) specifically functions as a mechanosensitive ion channel and is responsible for conveying changes in physical stimuli such as mechanical stress, osmotic pressure, and temperature. TRPV4 enables the entry of cation ions, particularly calcium ions, into the cell. Activation of TRPV4 channels initiates calcium oscillations, which trigger intracellular signaling pathways involved in a plethora of cellular processes, including tissue repair. Widely expressed throughout the body, TRPV4 can be activated by a wide array of physicochemical stimuli, thus contributing to sensory and physiological functions in multiple organs. This review focuses on how TRPV4 senses environmental cues and thereby initiates and maintains calcium oscillations, critical for responses to organ injury, tissue repair, and fibrosis. We provide a summary of TRPV4-induced calcium oscillations in distinct organ systems, along with the upstream and downstream signaling pathways involved. In addition, we delineate current animal and disease models supporting TRPV4 research and shed light on potential therapeutic targets for modulating TRPV4-induced calcium oscillation to promote tissue repair while reducing tissue fibrosis.
Collapse
Affiliation(s)
- Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| | - Ruiji Guo
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02152, USA
| | - Jin Tao
- Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China;
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| |
Collapse
|
12
|
Novoseletskaya ES, Evdokimov PV, Efimenko AY. Extracellular matrix-induced signaling pathways in mesenchymal stem/stromal cells. Cell Commun Signal 2023; 21:244. [PMID: 37726815 PMCID: PMC10507829 DOI: 10.1186/s12964-023-01252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
The extracellular matrix (ECM) is a crucial component of the stem cell microenvironment, or stem-cell niches, and contributes to the regulation of cell behavior and fate. Accumulating evidence indicates that different types of stem cells possess a large variety of molecules responsible for interactions with the ECM, mediating specific epigenetic rearrangements and corresponding changes in transcriptome profile. Signals from the ECM are crucial at all stages of ontogenesis, including embryonic and postnatal development, as well as tissue renewal and repair. The ECM could regulate stem cell transition from a quiescent state to readiness to perceive the signals of differentiation induction (competence) and the transition between different stages of differentiation (commitment). Currently, to unveil the complex networks of cellular signaling from the ECM, multiple approaches including screening methods, the analysis of the cell matrixome, and the creation of predictive networks of protein-protein interactions based on experimental data are used. In this review, we consider the existing evidence regarded the contribution of ECM-induced intracellular signaling pathways into the regulation of stem cell differentiation focusing on mesenchymal stem/stromal cells (MSCs) as well-studied type of postnatal stem cells totally depended on signals from ECM. Furthermore, we propose a system biology-based approach for the prediction of ECM-mediated signal transduction pathways in target cells. Video Abstract.
Collapse
Affiliation(s)
- Ekaterina Sergeevna Novoseletskaya
- Faculty of Biology, Dayun New Town, Shenzhen MSU-BIT University, 1 International University Park Road, Dayun New Town, Longgang District, Shenzhen, Guangdong Province, P. R. China.
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosov Ave., 27/10, 119991, Moscow, Russia.
| | - Pavel Vladimirovich Evdokimov
- Materials Science Department, Lomonosov Moscow State University, Leninskie Gory, 1, Building 73, 119991, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, 1-3, Moscow, Russia
| | - Anastasia Yurievna Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosov Ave., 27/10, 119991, Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosov Ave., 27/1, 119991, Moscow, Russia
| |
Collapse
|
13
|
Huang Z, Huang Y, Ning X, Li H, Li Q, Wu J. The functional effects of Piezo channels in mesenchymal stem cells. Stem Cell Res Ther 2023; 14:222. [PMID: 37633928 PMCID: PMC10464418 DOI: 10.1186/s13287-023-03452-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely used in cell therapy, tissue engineering, and regenerative medicine because of their self-renewal, pluripotency, and immunomodulatory properties. The microenvironment in which MSCs are located significantly affects their physiological functions. The microenvironment directly or indirectly affects cell behavior through biophysical, biochemical, or other means. Among them, the mechanical signals provided to MSCs by the microenvironment have a particularly pronounced effect on their physiological functions and can affect osteogenic differentiation, chondrogenic differentiation, and senescence in MSCs. Mechanosensitive ion channels such as Piezo1 and Piezo2 are important in transducing mechanical signals, and these channels are widely distributed in sites such as skin, bladder, kidney, lung, sensory neurons, and dorsal root ganglia. Although there have been numerous studies on Piezo channels in MSCs in recent years, the function of Piezo channels in MSCs is still not well understood, and there has been no summary of their relationship to illustrate which physiological functions of MSCs are affected by Piezo channels and the possible underlying mechanisms. Therefore, based on the members, structures, and functions of Piezo ion channels and the fundamental information of MSCs, this paper focused on summarizing the advances in Piezo channels in MSCs from various tissue sources to provide new ideas for future research and practical applications of Piezo channels and MSCs.
Collapse
Affiliation(s)
- Zhilong Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yingying Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiner Ning
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Haodi Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qiqi Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Junjie Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
14
|
Khatib NS, Monsen J, Ahmed S, Huang Y, Hoey DA, Nowlan NC. Mechanoregulatory role of TRPV4 in prenatal skeletal development. SCIENCE ADVANCES 2023; 9:eade2155. [PMID: 36696489 PMCID: PMC9876556 DOI: 10.1126/sciadv.ade2155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Biophysical cues are essential for guiding skeletal development, but the mechanisms underlying the mechanical regulation of cartilage and bone formation are unknown. TRPV4 is a mechanically sensitive ion channel involved in cartilage and bone cell mechanosensing, mutations of which lead to skeletal developmental pathologies. We tested the hypothesis that loading-driven prenatal skeletal development is dependent on TRPV4 activity. We first establish that mechanically stimulating mouse embryo hindlimbs cultured ex vivo stimulates knee cartilage growth, morphogenesis, and expression of TRPV4, which localizes to areas of high biophysical stimuli. We then demonstrate that loading-driven joint cartilage growth and shape are dependent on TRPV4 activity, mediated via control of cell proliferation and matrix biosynthesis, indicating a mechanism by which mechanical loading could direct growth and morphogenesis during joint formation. We conclude that mechanoregulatory pathways initiated by TRPV4 guide skeletal development; therefore, TRPV4 is a valuable target for the development of skeletal regenerative and repair strategies.
Collapse
Affiliation(s)
- Nidal S. Khatib
- Department of Bioengineering, Imperial College London, London, UK
| | - James Monsen
- Department of Bioengineering, Imperial College London, London, UK
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | - Yuming Huang
- Department of Bioengineering, Imperial College London, London, UK
| | - David A. Hoey
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, UK
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Yao M, Tijore A, Cheng D, Li JV, Hariharan A, Martinac B, Tran Van Nhieu G, Cox CD, Sheetz M. Force- and cell state-dependent recruitment of Piezo1 drives focal adhesion dynamics and calcium entry. SCIENCE ADVANCES 2022; 8:eabo1461. [PMID: 36351022 PMCID: PMC9645726 DOI: 10.1126/sciadv.abo1461] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
Mechanosensing is an integral part of many physiological processes including stem cell differentiation, fibrosis, and cancer progression. Two major mechanosensing systems-focal adhesions and mechanosensitive ion channels-can convert mechanical features of the microenvironment into biochemical signals. We report here unexpectedly that the mechanosensitive calcium-permeable channel Piezo1, previously perceived to be diffusive on plasma membranes, binds to matrix adhesions in a force-dependent manner, promoting cell spreading, adhesion dynamics, and calcium entry in normal but not in most cancer cells tested except some glioblastoma lines. A linker domain in Piezo1 is needed for binding to adhesions, and overexpression of the domain blocks Piezo1 binding to adhesions, decreasing adhesion size and cell spread area. Thus, we suggest that Piezo1 is a previously unidentified component of focal adhesions in nontransformed cells that catalyzes adhesion maturation and growth through force-dependent calcium signaling, but this function is absent in most cancer cells.
Collapse
Affiliation(s)
- Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Corresponding author. (M.Y); (C.C.); (M.S.)
| | - Ajay Tijore
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Delfine Cheng
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
| | - Jinyuan Vero Li
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
| | - Anushya Hariharan
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
| | - Guy Tran Van Nhieu
- Ecole Normale Supérieure Paris-Saclay Gif-sur-Yvette, France
- Team Ca Signaling and Microbial Infections, Institute for Integrative Biology of the Cell–CNRS UMR9198–Inserm U1280, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Charles D. Cox
- Victor Chang Cardiac Research Institute, Sydney NSW 2010, Australia
- Corresponding author. (M.Y); (C.C.); (M.S.)
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Department of Biological Sciences, National University of Singapore, Singapore 117558
- Molecular MechanoMedicine Program, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Corresponding author. (M.Y); (C.C.); (M.S.)
| |
Collapse
|
16
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|
17
|
New Insights into TRP Ion Channels in Stem Cells. Int J Mol Sci 2022; 23:ijms23147766. [PMID: 35887116 PMCID: PMC9318110 DOI: 10.3390/ijms23147766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Transient receptor potential (TRP) ion channels are cationic permeable proteins located on the plasma membrane. TRPs are cellular sensors for perceiving diverse physical and/or chemical stimuli; thus, serving various critical physiological functions, including chemo-sensation, hearing, homeostasis, mechano-sensation, pain, taste, thermoregulation, vision, and even carcinogenesis. Dysregulated TRPs are found to be linked to many human hereditary diseases. Recent studies indicate that TRP ion channels are not only involved in sensory functions but are also implicated in regulating the biological characteristics of stem cells. In the present review, we summarize the expressions and functions of TRP ion channels in stem cells, including cancer stem cells. It offers an overview of the current understanding of TRP ion channels in stem cells.
Collapse
|
18
|
Batan D, Peters DK, Schroeder ME, Aguado BA, Young MW, Weiss RM, Anseth KS. Hydrogel cultures reveal Transient Receptor Potential Vanilloid 4 regulation of myofibroblast activation and proliferation in valvular interstitial cells. FASEB J 2022; 36:e22306. [PMID: 35385164 PMCID: PMC9009405 DOI: 10.1096/fj.202101863r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022]
Abstract
As aortic valve stenosis develops, valve tissue becomes stiffer. In response to this change in environmental mechanical stiffness, valvular interstitial cells (VICs) activate into myofibroblasts. We aimed to investigate the role of mechanosensitive calcium channel Transient Receptor Potential Vanilloid type 4 (TRPV4) in stiffness induced myofibroblast activation. We verified TRPV4 functionality in VICs using live calcium imaging during application of small molecule modulators of TRPV4 activity. We designed hydrogel biomaterials that mimic mechanical features of healthy or diseased valve tissue microenvironments, respectively, to investigate the role of TRPV4 in myofibroblast activation and proliferation. Our results show that TRPV4 regulates VIC proliferation in a microenvironment stiffness-independent manner. While there was a trend toward inhibiting myofibroblast activation on soft microenvironments during TRPV4 inhibition, we observed near complete deactivation of myofibroblasts on stiff microenvironments. We further identified Yes-activated protein (YAP) as a downstream target for TRPV4 activity on stiff microenvironments. Mechanosensitive TRPV4 channels regulate VIC myofibroblast activation, whereas proliferation regulation is independent of the microenvironmental stiffness. Collectively, the data suggests differential regulation of stiffness-induced proliferation and myofibroblast activation. Our data further suggest a regulatory role for TRPV4 regarding YAP nuclear localization. TRPV4 is an important regulator for VIC myofibroblast activation, which is linked to the initiation of valve fibrosis. Although more validation studies are necessary, we suggest TRPV4 as a promising pharmaceutical target to slow aortic valve stenosis progression.
Collapse
Affiliation(s)
- Dilara Batan
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303 USA
| | - Douglas K. Peters
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Megan E. Schroeder
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Brian A. Aguado
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Mark W. Young
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Robert M. Weiss
- Division of Cardiovascular Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kristi S. Anseth
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
19
|
Yarishkin O, Phuong TTT, Vazquez-Chona F, Bertrand J, van Battenburg-Sherwood J, Redmon SN, Rudzitis CN, Lakk M, Baumann JM, Freichel M, Hwang EM, Overby D, Križaj D. Emergent Temporal Signaling in Human Trabecular Meshwork Cells: Role of TRPV4-TRPM4 Interactions. Front Immunol 2022; 13:805076. [PMID: 35432302 PMCID: PMC9008486 DOI: 10.3389/fimmu.2022.805076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Trabecular meshwork (TM) cells are phagocytic cells that employ mechanotransduction to actively regulate intraocular pressure. Similar to macrophages, they express scavenger receptors and participate in antigen presentation within the immunosuppressive milieu of the anterior eye. Changes in pressure deform and compress the TM, altering their control of aqueous humor outflow but it is not known whether transducer activation shapes temporal signaling. The present study combines electrophysiology, histochemistry and functional imaging with gene silencing and heterologous expression to gain insight into Ca2+ signaling downstream from TRPV4 (Transient Receptor Potential Vanilloid 4), a stretch-activated polymodal cation channel. Human TM cells respond to the TRPV4 agonist GSK1016790A with fluctuations in intracellular Ca2+ concentration ([Ca2+]i) and an increase in [Na+]i. [Ca2+]i oscillations coincided with monovalent cation current that was suppressed by BAPTA, Ruthenium Red and the TRPM4 (Transient Receptor Potential Melastatin 4) channel inhibitor 9-phenanthrol. TM cells expressed TRPM4 mRNA, protein at the expected 130-150 kDa and showed punctate TRPM4 immunoreactivity at the membrane surface. Genetic silencing of TRPM4 antagonized TRPV4-evoked oscillatory signaling whereas TRPV4 and TRPM4 co-expression in HEK-293 cells reconstituted the oscillations. Membrane potential recordings suggested that TRPM4-dependent oscillations require release of Ca2+ from internal stores. 9-phenanthrol did not affect the outflow facility in mouse eyes and eyes from animals lacking TRPM4 had normal intraocular pressure. Collectively, our results show that TRPV4 activity initiates dynamic calcium signaling in TM cells by stimulating TRPM4 channels and intracellular Ca2+ release. It is possible that TRPV4-TRPM4 interactions downstream from the tensile and compressive impact of intraocular pressure contribute to homeostatic regulation and pathological remodeling within the conventional outflow pathway.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Tam T T Phuong
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Felix Vazquez-Chona
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Jacques Bertrand
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Sarah N Redmon
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Christopher N Rudzitis
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, United States
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Jackson M Baumann
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States.,Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Eun-Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Darryl Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, United States.,Department of Bioengineering, University of Utah, Salt Lake City, United States.,Department of Neurobiology, University of Utah, Salt Lake City, United States
| |
Collapse
|
20
|
Li M, Zheng J, Wu T, He Y, Guo J, Xu J, Gao C, Qu S, Zhang Q, Zhao J, Cheng W. Activation of TRPV4 Induces Exocytosis and Ferroptosis in Human Melanoma Cells. Int J Mol Sci 2022; 23:ijms23084146. [PMID: 35456964 PMCID: PMC9030060 DOI: 10.3390/ijms23084146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
TRPV4 (transient receptor potential vanilloid 4), a calcium permeable TRP ion channel, is known to play a key role in endocytosis. However, whether it contributes to exocytosis remains unclear. Here, we report that activation of TRPV4 induced massive exocytosis in both melanoma A375 cell and heterologous expression systems. We show here that, upon application of TRPV4-specific agonists, prominent vesicle priming from endoplasmic reticulum (ER) was observed, followed by morphological changes of mitochondrial crista may lead to cell ferroptosis. We further identified interactions between TRPV4 and folding/vesicle trafficking proteins, which were triggered by calcium entry through activated TRPV4. This interplay, in turn, enhanced TRPV4-mediated activation of folding and vesicle trafficking proteins to promote exocytosis. Our study revealed a signaling mechanism underlying stimulus-triggered exocytosis in melanoma and highlighted the role of cellular sensor TRPV4 ion channel in mediating ferroptosis.
Collapse
|
21
|
López-Jiménez C, Chiu LL, Waldman SD, Guilak F, Koch TG. TRPV4 activation enhances compressive properties and glycosaminoglycan deposition of equine neocartilage sheets. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100263. [DOI: 10.1016/j.ocarto.2022.100263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
|
22
|
Faris P, Casali C, Negri S, Iengo L, Biggiogera M, Maione AS, Moccia F. Nicotinic Acid Adenine Dinucleotide Phosphate Induces Intracellular Ca2+ Signalling and Stimulates Proliferation in Human Cardiac Mesenchymal Stromal Cells. Front Cell Dev Biol 2022; 10:874043. [PMID: 35392169 PMCID: PMC8980055 DOI: 10.3389/fcell.2022.874043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a newly discovered second messenger that gates two pore channels 1 (TPC1) and 2 (TPC2) to elicit endo-lysosomal (EL) Ca2+ release. NAADP-induced lysosomal Ca2+ release may be amplified by the endoplasmic reticulum (ER) through the Ca2+-induced Ca2+ release (CICR) mechanism. NAADP-induced intracellular Ca2+ signals were shown to modulate a growing number of functions in the cardiovascular system, but their occurrence and role in cardiac mesenchymal stromal cells (C-MSCs) is still unknown. Herein, we found that exogenous delivery of NAADP-AM induced a robust Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store with Gly-Phe β-naphthylamide, nigericin, and bafilomycin A1, and blocking TPC1 and TPC2, that are both expressed at protein level in C-MSCs. Furthermore, NAADP-induced EL Ca2+ release resulted in the Ca2+-dependent recruitment of ER-embedded InsP3Rs and SOCE activation. Transmission electron microscopy revealed clearly visible membrane contact sites between lysosome and ER membranes, which are predicted to provide the sub-cellular framework for lysosomal Ca2+ to recruit ER-embedded InsP3Rs through CICR. NAADP-induced EL Ca2+ mobilization via EL TPC was found to trigger the intracellular Ca2+ signals whereby Fetal Bovine Serum (FBS) induces C-MSC proliferation. Furthermore, NAADP-evoked Ca2+ release was required to mediate FBS-induced extracellular signal-regulated kinase (ERK), but not Akt, phosphorylation in C-MSCs. These finding support the notion that NAADP-induced TPC activation could be targeted to boost proliferation in C-MSCs and pave the way for future studies assessing whether aberrant NAADP signaling in C-MSCs could be involved in cardiac disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lara Iengo
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- *Correspondence: Angela Serena Maione, ; Francesco Moccia,
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Angela Serena Maione, ; Francesco Moccia,
| |
Collapse
|
23
|
Kawaguchi M, Kawao N, Muratani M, Takafuji Y, Ishida M, Kinoshita Y, Takada Y, Mizukami Y, Ohira T, Kaji H. Role of peripheral myelin protein 22 in chronic exercise-induced interactions of muscle and bone in mice. J Cell Physiol 2022; 237:2492-2502. [PMID: 35194789 DOI: 10.1002/jcp.30706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/14/2022] [Accepted: 02/10/2022] [Indexed: 11/07/2022]
Abstract
Exercise is important for the prevention and treatment of sarcopenia and osteoporosis. Although the interactions between skeletal muscles and bone have recently been reported, the myokines linking muscle to bone during exercise remain unknown. We previously revealed that chronic exercise using treadmill running blunts ovariectomy-induced osteopenia in mice. We herein performed an RNA sequence analysis of the gastrocnemius and soleus muscles of male mice with or without chronic exercise to identify the myokines responsible for the effects of chronic exercise on the muscle/bone relationship. We extracted peripheral myelin protein 22 (PMP22) as a humoral factor that was putatively induced by chronic exercise in the soleus and gastrocnemius muscles of mice from the RNA sequence analysis. Chronic exercise significantly enhanced the expression of PMP22 in the gastrocnemius and soleus muscles of female mice. PMP22 suppressed macrophage-colony stimulating factor and receptor activator factor κB ligand-induced increases in the expression of osteoclast-related genes and osteoclast formation from mouse bone marrow cells. Moreover, PMP22 significantly inhibited osteoblast differentiation, alkaline phosphatase activity, and mineralization in mouse osteoblast cultures; however, the overexpression of PMP22 did not affect muscle phenotypes in mouse muscle C2C12 cells. A simple regression analysis revealed that PMP22 mRNA levels in the gastrocnemius and soleus muscles were positively related to cortical bone mineral density at the femurs of mice with or without chronic exercise. In conclusion, we identified PMP22 as a novel myokine induced by chronic exercise in mice. We first showed that PMP22 suppresses osteoclast formation and the osteoblast phenotype in vitro.
Collapse
Affiliation(s)
- Miku Kawaguchi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | | | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Yuko Kinoshita
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Yuto Takada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Takashi Ohira
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| |
Collapse
|
24
|
Mechanical regulation of bone remodeling. Bone Res 2022; 10:16. [PMID: 35181672 PMCID: PMC8857305 DOI: 10.1038/s41413-022-00190-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Bone remodeling is a lifelong process that gives rise to a mature, dynamic bone structure via a balance between bone formation by osteoblasts and resorption by osteoclasts. These opposite processes allow the accommodation of bones to dynamic mechanical forces, altering bone mass in response to changing conditions. Mechanical forces are indispensable for bone homeostasis; skeletal formation, resorption, and adaptation are dependent on mechanical signals, and loss of mechanical stimulation can therefore significantly weaken the bone structure, causing disuse osteoporosis and increasing the risk of fracture. The exact mechanisms by which the body senses and transduces mechanical forces to regulate bone remodeling have long been an active area of study among researchers and clinicians. Such research will lead to a deeper understanding of bone disorders and identify new strategies for skeletal rejuvenation. Here, we will discuss the mechanical properties, mechanosensitive cell populations, and mechanotransducive signaling pathways of the skeletal system.
Collapse
|
25
|
Dhawan U, Jaffery H, Salmeron-Sanchez M, Dalby MJ. An ossifying landscape: materials and growth factor strategies for osteogenic signalling and bone regeneration. Curr Opin Biotechnol 2021; 73:355-363. [PMID: 34735985 DOI: 10.1016/j.copbio.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022]
Abstract
Breakthroughs in our understanding of the complex interplay between cellular nanoenvironment and biomolecular signalling pathways are facilitating development of targeted osteogenic platforms. As critical biomolecules for osteogenesis, growth factors stimulate osteogenesis by activating key genes and transcription factors. The first half of this review presents emerging interconnectedness and recent discoveries of osteogenic signalling pathways initiating from growth factors for example, bone morphogenetic protein 2 (BMP-2). To complement this, the second half of review proposes a number of strategies to induce osteogenesis which include metallic, organic implants, nanotopological environments as well as growth factor immobilization techniques. The drawbacks of traditional osteogenic implants and how these have been overcome by biomedical engineers in the recent years without producing side-effects have also been summarized.
Collapse
Affiliation(s)
- Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Hussain Jaffery
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
26
|
McDonough RC, Price C. Targeted Activation of GPCR-Mediated Ca 2+ Signaling Drives Enhanced Cartilage-Like Matrix Formation. Tissue Eng Part A 2021; 28:405-419. [PMID: 34693731 PMCID: PMC9271335 DOI: 10.1089/ten.tea.2021.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular calcium ([Ca2+]i) signaling is a critical regulator of chondrogenesis, chondrocyte differentiation, and cartilage development. Calcium (Ca2+) signaling is known to direct processes that govern chondrocyte gene expression, protein synthesis, cytoskeletal remodeling, and cell fate. Control of chondrocyte/chondroprogenitor Ca2+ signaling has been attempted through mechanical and/or pharmacological activation of endogenous Ca2+ signaling transducers; however, such approaches can lack specificity and/or precision regarding Ca2+ activation mechanisms. Synthetic signaling platforms permitting precise and selective Ca2+ signal transduction can improve dissection of the roles that [Ca2+]i signaling play in chondrocyte behavior. One such platform is the chemogenetic hM3Dq DREADD (designer receptor exclusively activated by designer drugs) that activates [Ca2+]i signaling via the Gαq-PLCβ-IP3-ER pathway upon clozapine N-oxide (CNO) administration. We previously demonstrated hM3Dq's ability to precisely and synthetically initiate robust [Ca2+]i transients and oscillatory [Ca2+]i signaling in chondrocyte-like ATDC5 cells. Here, we investigate the effects that long-term CNO stimulatory culture have on hM3Dq [Ca2+]i signaling dynamics, proliferation, and protein deposition in 2D ATDC5 cultures. Long-term culturing under repeated CNO stimulation modified the temporal dynamics of hM3Dq [Ca2+]i signaling, increased cell proliferation, and enhanced matrix production in a CNO dose- and frequency-dependent manner, and triggered the formation of cell condensations that developed aligned, anisotropic neotissue structures rich in cartilaginous proteoglycans and collagens, all in the absence of differentiation inducers. This study demonstrated Gαq-GPCR-mediated [Ca2+]i signaling involvement in chondroprogenitor proliferation and cartilage-like matrix production, and established hM3Dq as a powerful tool for elucidating the role of GPCR-mediated Ca2+ signaling in chondrogenesis and chondrocyte differentiation.
Collapse
Affiliation(s)
- Ryan C McDonough
- University of Delaware, 5972, Biomedical Engineering, 161 Colburn Lab, Newark, Delaware, United States, 19716-5600;
| | - Christopher Price
- University of Delaware, 5972, Biomedical Engineering, Newark, Delaware, United States;
| |
Collapse
|
27
|
Liang W, Wu X, Dong Y, Chen X, Zhou P, Xu F. Mechanical stimuli-mediated modulation of bone cell function-implications for bone remodeling and angiogenesis. Cell Tissue Res 2021; 386:445-454. [PMID: 34665321 DOI: 10.1007/s00441-021-03532-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Bone remodeling, expressed as bone formation and turnover, is a complex and dynamic process closely related to its form and function. Different events, such as development, aging, and function, play a critical role in bone remodeling and metabolism. The ability of the bone to adapt to new loads and forces has been well known and has proven useful in orthopedics and insightful for research in bone and cell biology. Mechanical stimulation is one of the most important drivers of bone metabolism. Interestingly, different types of forces will have specific consequences in bone remodeling, and their beneficial effects can be traced using different biomarkers. In this narrative review, we summarize the major mediators and events in bone remodeling, focusing on the effects of mechanical stimulation on bone metabolism, cell populations, and ultimately, bone health.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China.
| | - Xudong Wu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing, 312500, Zhejiang Province, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
28
|
Han L, Guo Y, Jia L, Zhang Q, Sun L, Yang Z, Dai Y, Lou Z, Xia Y. 3D magnetic nanocomposite scaffolds enhanced the osteogenic capacities of rat bone mesenchymal stem cells in vitro and in a rat calvarial bone defect model by promoting cell adhesion. J Biomed Mater Res A 2021; 109:1670-1680. [PMID: 33876884 DOI: 10.1002/jbm.a.37162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Magnetic scaffolds incorporated with iron oxide nanoparticles (IONPs) are biocompatible and present excellent osteogenic properties. However, the underlying mechanism is unclear. In this study, 3D-printed poly(lactic-co-glycolic acid) scaffolds were coated with IONPs using layer-by-layer assembly (Fe-scaffold) to prepare magnetic scaffolds. The effects of this modification on osteogenesis were investigated by comparison with untreated scaffolds (Uncoated-scaffold). The results showed that the proliferation of rat bone mesenchymal stem cells (rBMSCs) on the Fe-scaffold was enhanced compared with those on the Uncoated-scaffold (p < 0.05). The alkaline phosphatase activity and expression levels of osteogenic-related genes of cells on the Fe-scaffold were higher than those on the Uncoated-scaffold (p < 0.05). Fe-scaffold was found to promote the cell adhesion compared with Uncoated-scaffold, including increasing the adhered cell number, promoting cell spreading and upregulating the expression levels of adhesion-related genes integrin α1 and β1 and their downstream signaling molecules FAK and ERK1/2 (p < 0.05). Moreover, the amount of new bone formed in rat calvarial defects at 8 weeks decreased in the order: Fe-scaffold > Uncoated-scaffold > Blank-control (samples whose defects were left empty) (p < 0.05). Therefore, 3D magnetic nanocomposite scaffolds enhanced the osteogenic capacities of rBMSCs in vitro and in a rat calvarial bone defect model by promoting cell adhesion. The mechanisms were attributed to the alteration in its hydrophilicity, surface roughness, and chemical composition.
Collapse
Affiliation(s)
- Liping Han
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Jia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liuxu Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zukun Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Dai
- Department of Corona laboratory, Nanjing Suman Plasma Technology Co. Ltd., Nanjing, Jiangsu, China
| | - Zhichao Lou
- College of materials science and engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Shah V, Patel S, Shah J. Emerging Role of Piezo Ion Channels in Cardiovascular Development. Dev Dyn 2021; 251:276-286. [PMID: 34255896 DOI: 10.1002/dvdy.401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/12/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Mechanical cues are crucial for vascular development and the proper differentiation of various cell types. Piezo1 and Piezo2 are mechanically activated cationic channels expressed in various cell types, especially in vascular smooth muscle and endothelial cells. It is present as a transmembrane homotrimeric complex, regulating calcium influx. Local blood flow associated shear stress, in addition to blood pressure associated cell membrane stretching are key Piezo channel activators. There is rising proof, showcasing Piezo channels significance in myocytes, cardiac fibroblast, vascular tone maintenance, atherosclerosis, hypertension, NO generation, and baroreceptor reflex. Here, we review the role of Piezo channels in cardiovascular development and its associated clinical disorders. Also, emphasizing on Piezo channel modulators which might lead to novel therapies for cardiovascular diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vandit Shah
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
30
|
Kärki T, Tojkander S. TRPV Protein Family-From Mechanosensing to Cancer Invasion. Biomolecules 2021; 11:1019. [PMID: 34356643 PMCID: PMC8301805 DOI: 10.3390/biom11071019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Biophysical cues from the cellular microenvironment are detected by mechanosensitive machineries that translate physical signals into biochemical signaling cascades. At the crossroads of extracellular space and cell interior are located several ion channel families, including TRP family proteins, that are triggered by mechanical stimuli and drive intracellular signaling pathways through spatio-temporally controlled Ca2+-influx. Mechanosensitive Ca2+-channels, therefore, act as critical components in the rapid transmission of physical signals into biologically compatible information to impact crucial processes during development, morphogenesis and regeneration. Given the mechanosensitive nature of many of the TRP family channels, they must also respond to the biophysical changes along the development of several pathophysiological conditions and have also been linked to cancer progression. In this review, we will focus on the TRPV, vanilloid family of TRP proteins, and their connection to cancer progression through their mechanosensitive nature.
Collapse
Affiliation(s)
- Tytti Kärki
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| | - Sari Tojkander
- Department of Veterinary Biosciences, Section of Pathology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
31
|
Kawao N, Iemura S, Kawaguchi M, Mizukami Y, Takafuji Y, Kaji H. Role of irisin in effects of chronic exercise on muscle and bone in ovariectomized mice. J Bone Miner Metab 2021; 39:547-557. [PMID: 33566209 DOI: 10.1007/s00774-020-01201-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Exercise is beneficial for the prevention and treatment of osteoporosis. Skeletal muscle affects other tissues via myokines, the release of which is regulated by acute exercise. However, the effects of chronic exercise on myokines linking muscle to bone have not been fully elucidated. Therefore, we investigated the effects of chronic exercise on bone and myokines using ovariectomized (OVX) mice. MATERIALS AND METHODS Treadmill exercise with moderate intensity was performed for 8 weeks after OVX or sham surgery. We measured bone mineral density (BMD) at the femurs and tibias of mice by quantitative computed tomography and myokine mRNA levels in the gastrocnemius and soleus muscles. RESULTS Treadmill exercise ameliorated decreases in trabecular and cortical BMD in the femurs of OVX mice. Irisin is a proteolytic product of fibronectin type III domain-containing 5 (Fndc5). Among the myokines examined, treadmill exercise increased irisin protein and Fndc5 mRNA levels in the gastrocnemius and soleus muscles of sham and OVX mice. Treadmill exercise increased peroxisome proliferator-activated receptor γ coactivator-1α mRNA levels in the gastrocnemius muscles of mice. Fndc5 mRNA levels in the gastrocnemius muscles positively correlated with trabecular BMD, but not with cortical BMD, at the femurs and tibias of mice in simple regression analyses. CONCLUSIONS We demonstrated that chronic exercise elevated irisin expression in the gastrocnemius and soleus muscles of estrogen-deficient mice. Irisin might be related to increases in trabecular BMD in mice; however, further studies are needed to clarify the involvement of irisin in the effects of chronic exercise on muscle/bone interactions.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Shunki Iemura
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Miku Kawaguchi
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| |
Collapse
|
32
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
33
|
Lakk M, Križaj D. TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells. Am J Physiol Cell Physiol 2021; 320:C1013-C1030. [PMID: 33788628 PMCID: PMC8285634 DOI: 10.1152/ajpcell.00599.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Neurobiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
34
|
Leek CC, Soulas JM, Sullivan AL, Killian ML. Using tools in mechanobiology to repair tendons. ACTA ACUST UNITED AC 2021; 1:31-40. [PMID: 33585822 DOI: 10.1007/s43152-020-00005-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose of review The purpose of this review is to describe the mechanobiological mechanisms of tendon repair as well as outline current and emerging tools in mechanobiology that might be useful for improving tendon healing and regeneration. Over 30 million musculoskeletal injuries are reported in the US per year and nearly 50% involve soft tissue injuries to tendons and ligaments. Yet current therapeutic strategies for treating tendon injuries are not always successful in regenerating and returning function of the healing tendon. Recent findings The use of rehabilitative strategies to control the motion and transmission of mechanical loads to repairing tendons following surgical reattachment is beneficial for some, but not all, tendon repairs. Scaffolds that are designed to recapitulate properties of developing tissues show potential to guide the mechanical and biological healing of tendon following rupture. The incorporation of biomaterials to control alignment and reintegration, as well as promote scar-less healing, are also promising. Improving our understanding of damage thresholds for resident cells and how these cells respond to bioelectrical cues may offer promising steps forward in the field of tendon regeneration. Summary The field of orthopaedics continues to advance and improve with the development of regenerative approaches for musculoskeletal injuries, especially for tendon, and deeper exploration in this area will lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Connor C Leek
- College of Engineering, Department of Biomedical Engineering, 5 Innovation Way, Suite 200, University of Delaware, Newark, Delaware 19716
| | - Jaclyn M Soulas
- College of Engineering, Department of Biomedical Engineering, 5 Innovation Way, Suite 200, University of Delaware, Newark, Delaware 19716.,College of Agriculture and Natural Resources, Department of Animal Biosciences, 531 South College Avenue, University of Delaware, Newark, Delaware 19716
| | - Anna Lia Sullivan
- College of Engineering, Department of Biomedical Engineering, 5 Innovation Way, Suite 200, University of Delaware, Newark, Delaware 19716.,College of Agriculture and Natural Resources, Department of Animal Biosciences, 531 South College Avenue, University of Delaware, Newark, Delaware 19716
| | - Megan L Killian
- College of Engineering, Department of Biomedical Engineering, 5 Innovation Way, Suite 200, University of Delaware, Newark, Delaware 19716.,College of Medicine, Department of Orthopaedic Surgery, 109 Zina Pitcher Place, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
35
|
Ren Y, Zhang H, Wang Y, Du B, Yang J, Liu L, Zhang Q. Hyaluronic Acid Hydrogel with Adjustable Stiffness for Mesenchymal Stem Cell 3D Culture via Related Molecular Mechanisms to Maintain Stemness and Induce Cartilage Differentiation. ACS APPLIED BIO MATERIALS 2021; 4:2601-2613. [PMID: 35014377 DOI: 10.1021/acsabm.0c01591] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The stemness and differentiation characteristics of bone marrow mesenchymal stem cells (BMSCs) in three-dimensional (3D) culture are of great significance for stem cell therapy and cartilage tissue engineering repair. Moreover, due to their mechanical sensitivity, scaffold materials play important roles in various cell behaviors in 3D culture. In this study, the mechanical strength of hydrogel scaffolds was adjusted by changing the molecular weight of hyaluronic acid (HA). It was proven that BMSCs in a low-strength hydrogel could maintain stemness properties by activating the Wnt/β-catenin pathway for 1 week, while the high-molecular-weight hydrogel with a higher mechanical strength had the potential to promote the direction of cartilage differentiation of BMSCs by opening transient receptor potential vanilloid 4 (TRPV4)/Ca2+ molecular channels, also increasing the expression of type II collagen and SOX9 in BMSCs. This research has a certain reference value for the design of biomaterials for BMSCs' delivery in vivo, as well as the formulation of cartilage repair drug delivery programs based on molecular mechanisms.
Collapse
Affiliation(s)
- Ying Ren
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Han Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Yunping Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Bo Du
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jing Yang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Lingrong Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Qiqing Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.,Fujian Bote Biotechnology Co. Ltd., Fuzhou, Fujian 350013, P. R. China
| |
Collapse
|
36
|
Guilak F, Hayes AJ, Melrose J. Perlecan in Pericellular Mechanosensory Cell-Matrix Communication, Extracellular Matrix Stabilisation and Mechanoregulation of Load-Bearing Connective Tissues. Int J Mol Sci 2021; 22:2716. [PMID: 33800241 PMCID: PMC7962540 DOI: 10.3390/ijms22052716] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we review mechanoregulatory roles for perlecan in load-bearing connective tissues. Perlecan facilitates the co-acervation of tropoelastin and assembly of elastic microfibrils in translamellar cross-bridges which, together with fibrillin and elastin stabilise the extracellular matrix of the intervertebral disc annulus fibrosus. Pericellular perlecan interacts with collagen VI and XI to define and stabilize this matrix compartment which has a strategic position facilitating two-way cell-matrix communication between the cell and its wider extracellular matrix. Cues from the extracellular matrix are fed through this pericellular matrix back to the chondrocyte, allowing it to perceive and respond to subtle microenvironmental changes to regulate tissue homeostasis. Thus perlecan plays a key regulatory role in chondrocyte metabolism, and in chondrocyte differentiation. Perlecan acts as a transport proteoglycan carrying poorly soluble, lipid-modified proteins such as the Wnt or Hedgehog families facilitating the establishment of morphogen gradients that drive tissue morphogenesis. Cell surface perlecan on endothelial cells or osteocytes acts as a flow sensor in blood and the lacunar canalicular fluid providing feedback cues to smooth muscle cells regulating vascular tone and blood pressure, and the regulation of bone metabolism by osteocytes highlighting perlecan's multifaceted roles in load-bearing connective tissues.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA;
- Shriners Hospitals for Children—St. Louis, St. Louis, MO 63110, USA
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
37
|
McDonough RC, Gilbert RM, Gleghorn JP, Price C. Targeted Gq-GPCR activation drives ER-dependent calcium oscillations in chondrocytes. Cell Calcium 2021; 94:102363. [PMID: 33550208 DOI: 10.1016/j.ceca.2021.102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022]
Abstract
The temporal dynamics of calcium signaling are critical regulators of chondrocyte homeostasis and chondrogenesis. Calcium oscillations regulate differentiation and anabolic processes in chondrocytes and their precursors. Attempts to control chondrocyte calcium signaling have been achieved through mechanical perturbations and synthetic ion channel modulators. However, such stimuli can lack both local and global specificity and precision when evoking calcium signals. Synthetic signaling platforms can more precisely and selectively activate calcium signaling, enabling improved dissection of the roles of intracellular calcium ([Ca2+]i) in chondrocyte behavior. One such platform is hM3Dq, a chemogenetic DREADD (Designer Receptors Exclusively Activated by Designer Drugs) that activates calcium signaling via the Gαq-PLCβ-IP3-ER pathway upon administration of clozapine N-oxide (CNO). We previously described the first-use of hM3Dq to precisely mediate targeted, synthetic calcium signals in chondrocyte-like ATDC5 cells. Here, we generated stably expressing hM3Dq-ATDC5 cells to investigate the dynamics of Gαq-GPCR calcium signaling in depth. CNO drove robust calcium responses in a temperature- and concentration-dependent (1 pM-100 μM) manner and elicited elevated levels of oscillatory calcium signaling above 10 nM. hM3Dq-mediated calcium oscillations in ATDC5 cells were reliant on ER calcium stores for both initiation and sustenance, and the downregulation and recovery dynamics of hM3Dq after CNO stimulation align with traditionally reported GPCR recycling kinetics. This study successfully generated a stable hM3Dq cell line to precisely drive Gαq-GPCR-mediated and ER-dependent oscillatory calcium signaling in ATDC5 cells and established a novel tool to elucidate the role that GPCR-mediated calcium signaling plays in chondrocyte biology, cartilage pathology, and cartilage tissue engineering.
Collapse
Affiliation(s)
- Ryan C McDonough
- Department of Biomedical Engineering, University of Delaware, United States.
| | - Rachel M Gilbert
- Department of Biomedical Engineering, University of Delaware, United States.
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, United States.
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, United States.
| |
Collapse
|
38
|
Vellino S, Oddou C, Rivier P, Boyault C, Hiriart-Bryant E, Kraut A, Martin R, Coute Y, Knölker HJ, Valverde MA, Albigès-Rizo C, Destaing O. Cross-talk between the calcium channel TRPV4 and reactive oxygen species interlocks adhesive and degradative functions of invadosomes. J Cell Biol 2021; 220:211651. [PMID: 33399853 PMCID: PMC7788461 DOI: 10.1083/jcb.201910079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 07/23/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Invadosomes support cell invasion by coupling both acto-adhesive and extracellular matrix degradative functions, which are apparently antagonistic. β1-integrin dynamics regulate this coupling, but the actual sensing mechanism and effectors involved have not yet been elucidated. Using genetic and reverse genetic approaches combined with biochemical and imaging techniques, we now show that the calcium channel TRPV4 colocalizes with β1-integrins at the invadosome periphery and regulates its activation and the coupling of acto-adhesive and degradative functions. TRPV4-mediated regulation of podosome function depends on its ability to sense reactive oxygen species (ROS) in invadosomes' microenvironment and involves activation of the ROS/calcium-sensitive kinase Ask1 and binding of the motor MYO1C. Furthermore, disease-associated TRPV4 gain-of-function mutations that modulate ECM degradation are also implicated in the ROS response, which provides new perspectives in our understanding of the pathophysiology of TRPV4 channelopathies.
Collapse
Affiliation(s)
- Sanela Vellino
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Christiane Oddou
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Paul Rivier
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Cyril Boyault
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Edwige Hiriart-Bryant
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Alexandra Kraut
- Laboratoire EDyP, Institute of Biosciences and Biotechnologies of Grenoble-Biologie à Grande Echelle, Commissariat à l'Énergie Atomique Grenoble, Grenoble, France
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Yohann Coute
- Laboratoire EDyP, Institute of Biosciences and Biotechnologies of Grenoble-Biologie à Grande Echelle, Commissariat à l'Énergie Atomique Grenoble, Grenoble, France
| | | | - Miguel A. Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Corinne Albigès-Rizo
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Olivier Destaing
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France,Correspondence to Olivier Destaing:
| |
Collapse
|
39
|
Yarishkin O, Phuong TTT, Baumann JM, De Ieso ML, Vazquez-Chona F, Rudzitis CN, Sundberg C, Lakk M, Stamer WD, Križaj D. Piezo1 channels mediate trabecular meshwork mechanotransduction and promote aqueous fluid outflow. J Physiol 2021; 599:571-592. [PMID: 33226641 PMCID: PMC7849624 DOI: 10.1113/jp281011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Trabecular meshwork (TM) is a highly mechanosensitive tissue in the eye that regulates intraocular pressure through the control of aqueous humour drainage. Its dysfunction underlies the progression of glaucoma but neither the mechanisms through which TM cells sense pressure nor their role in aqueous humour outflow are understood at the molecular level. We identified the Piezo1 channel as a key TM transducer of tensile stretch, shear flow and pressure. Its activation resulted in intracellular signals that altered organization of the cytoskeleton and cell-extracellular matrix contacts and modulated the trabecular component of aqueous outflow whereas another channel, TRPV4, mediated a delayed mechanoresponse. This study helps elucidate basic mechanotransduction properties that may contribute to intraocular pressure regulation in the vertebrate eye. ABSTRACT Chronic elevations in intraocular pressure (IOP) can cause blindness by compromising the function of trabecular meshwork (TM) cells in the anterior eye, but how these cells sense and transduce pressure stimuli is poorly understood. Here, we demonstrate functional expression of two mechanically activated channels in human TM cells. Pressure-induced cell stretch evoked a rapid increase in transmembrane current that was inhibited by antagonists of the mechanogated channel Piezo1, Ruthenium Red and GsMTx4, and attenuated in Piezo1-deficient cells. The majority of TM cells exhibited a delayed stretch-activated current that was mediated independently of Piezo1 by TRPV4 (transient receptor potential cation channel, subfamily V, member 4) channels. Piezo1 functions as the principal TM transducer of physiological levels of shear stress, with both shear and the Piezo1 agonist Yoda1 increasing the number of focal cell-matrix contacts. Analysis of TM-dependent fluid drainage from the anterior eye showed significant inhibition by GsMTx4. Collectively, these results suggest that TM mechanosensitivity utilizes kinetically, regulatory and functionally distinct pressure transducers to inform the cells about force-sensing contexts. Piezo1-dependent control of shear flow sensing, calcium homeostasis, cytoskeletal dynamics and pressure-dependent outflow suggests potential for a novel therapeutic target in treating glaucoma.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tam T T Phuong
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Jackson M Baumann
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Michael L De Ieso
- Duke Eye Center, Duke University School of Medicine, Durham, NC, USA
| | - Felix Vazquez-Chona
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Christopher N Rudzitis
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Chad Sundberg
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - W Daniel Stamer
- Duke Eye Center, Duke University School of Medicine, Durham, NC, USA
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
40
|
Lee HP, Alisafaei F, Adebawale K, Chang J, Shenoy VB, Chaudhuri O. The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. SCIENCE ADVANCES 2021; 7:7/2/eabd4058. [PMID: 33523987 PMCID: PMC7793582 DOI: 10.1126/sciadv.abd4058] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/18/2020] [Indexed: 05/24/2023]
Abstract
Cell migration in confining microenvironments is limited by the ability of the stiff nucleus to deform through pores when migration paths are preexisting and elastic, but how cells generate these paths remains unclear. Here, we reveal a mechanism by which the nucleus mechanically generates migration paths for mesenchymal stem cells (MSCs) in confining microenvironments. MSCs migrate robustly in nanoporous, confining hydrogels that are viscoelastic and plastic but not in hydrogels that are more elastic. To migrate, MSCs first extend thin protrusions that widen over time because of a nuclear piston, thus opening up a migration path in a confining matrix. Theoretical modeling and experiments indicate that the nucleus pushing into the protrusion activates mechanosensitive ion channels, leading to an influx of ions that increases osmotic pressure, which outcompetes hydrostatic pressure to drive protrusion expansion. Thus, instead of limiting migration, the nucleus powers migration by generating migration paths.
Collapse
Affiliation(s)
- Hong-Pyo Lee
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Farid Alisafaei
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kolade Adebawale
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Julie Chang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Vivek B Shenoy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
41
|
Fu S, Meng H, Inamdar S, Das B, Gupta H, Wang W, Thompson CL, Knight MM. Activation of TRPV4 by mechanical, osmotic or pharmaceutical stimulation is anti-inflammatory blocking IL-1β mediated articular cartilage matrix destruction. Osteoarthritis Cartilage 2021; 29:89-99. [PMID: 33395574 PMCID: PMC7799379 DOI: 10.1016/j.joca.2020.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage health is maintained in response to a range of mechanical stimuli including compressive, shear and tensile strains and associated alterations in osmolality. The osmotic-sensitive ion channel Transient Receptor Potential Vanilloid 4 (TRPV4) is required for mechanotransduction. Mechanical stimuli inhibit interleukin-1β (IL-1β) mediated inflammatory signalling, however the mechanism is unclear. This study aims to clarify the role of TRPV4 in this response. DESIGN TRPV4 activity was modulated glycogen synthase kinase (GSK205 antagonist or GSK1016790 A (GSK101) agonist) in articular chondrocytes and cartilage explants in the presence or absence of IL-1β, mechanical (10% cyclic tensile strain (CTS), 0.33 Hz, 24hrs) or osmotic loading (200mOsm, 24hrs). Nitric oxide (NO), prostaglandin E2 (PGE2) and sulphated glycosaminoglycan (sGAG) release and cartilage biomechanics were analysed. Alterations in post-translational tubulin modifications and primary cilia length regulation were examined. RESULTS In isolated chondrocytes, mechanical loading inhibited IL-1β mediated NO and PGE2 release. This response was inhibited by GSK205. Similarly, osmotic loading was anti-inflammatory in cells and explants, this response was abrogated by TRPV4 inhibition. In explants, GSK101 inhibited IL-1β mediated NO release and prevented cartilage degradation and loss of mechanical properties. Upon activation, TRPV4 cilia localisation was increased resulting in histone deacetylase 6 (HDAC6)-dependent modulation of soluble tubulin and altered cilia length regulation. CONCLUSION Mechanical, osmotic or pharmaceutical activation of TRPV4 regulates HDAC6-dependent modulation of ciliary tubulin and is anti-inflammatory. This study reveals for the first time, the potential of TRPV4 manipulation as a novel therapeutic mechanism to supress pro-inflammatory signalling and cartilage degradation.
Collapse
Affiliation(s)
- S Fu
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - H Meng
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - S Inamdar
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - B Das
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK
| | - H Gupta
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - W Wang
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - C L Thompson
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - M M Knight
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| |
Collapse
|
42
|
Naqvi SM, McNamara LM. Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:597661. [PMID: 33381498 PMCID: PMC7767888 DOI: 10.3389/fbioe.2020.597661] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanobiology has underpinned many scientific advances in understanding how biophysical and biomechanical cues regulate cell behavior by identifying mechanosensitive proteins and specific signaling pathways within the cell that govern the production of proteins necessary for cell-based tissue regeneration. It is now evident that biophysical and biomechanical stimuli are as crucial for regulating stem cell behavior as biochemical stimuli. Despite this, the influence of the biophysical and biomechanical environment presented by biomaterials is less widely accounted for in stem cell-based tissue regeneration studies. This Review focuses on key studies in the field of stem cell mechanobiology, which have uncovered how matrix properties of biomaterial substrates and 3D scaffolds regulate stem cell migration, self-renewal, proliferation and differentiation, and activation of specific biological responses. First, we provide a primer of stem cell biology and mechanobiology in isolation. This is followed by a critical review of key experimental and computational studies, which have unveiled critical information regarding the importance of the biophysical and biomechanical cues for stem cell biology. This review aims to provide an informed understanding of the intrinsic role that physical and mechanical stimulation play in regulating stem cell behavior so that researchers may design strategies that recapitulate the critical cues and develop effective regenerative medicine approaches.
Collapse
Affiliation(s)
- S M Naqvi
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - L M McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
43
|
Ji C, McCulloch CA. TRPV4 integrates matrix mechanosensing with Ca 2+ signaling to regulate extracellular matrix remodeling. FEBS J 2020; 288:5867-5887. [PMID: 33300268 DOI: 10.1111/febs.15665] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
In healthy connective tissues, mechanosensors trigger the generation of Ca2+ signals, which enable cells to maintain the structure of the fibrillar collagen matrix through actomyosin contractile forces. Transient receptor potential vanilloid type 4 (TRPV4) is a mechanosensitive Ca2+ -permeable channel that, when expressed in cell-matrix adhesions of the plasma membrane, regulates extracellular matrix (ECM) remodeling. In high prevalence disorders such as fibrosis and tumor metastasis, dysregulated matrix remodeling is associated with disruptions of Ca2+ homeostasis and TRPV4 function. Here, we consider that ECM polymers transmit cell-activating mechanical signals to TRPV4 in cell adhesions. When activated, TRPV4 regulates fibrillar collagen remodeling, thereby altering the mechanical properties of the ECM. In this review, we integrate functionally connected processes of matrix remodeling to highlight how TRPV4 in cell adhesions and matrix mechanics are reciprocally regulated through Ca2+ signaling.
Collapse
Affiliation(s)
- Chenfan Ji
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, ON, Canada
| | | |
Collapse
|
44
|
Ma H, Macdougall LJ, GonzalezRodriguez A, Schroeder ME, Batan D, Weiss RM, Anseth KS. Calcium Signaling Regulates Valvular Interstitial Cell Alignment and Myofibroblast Activation in Fast-Relaxing Boronate Hydrogels. Macromol Biosci 2020; 20:e2000268. [PMID: 32924320 PMCID: PMC7773027 DOI: 10.1002/mabi.202000268] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/28/2022]
Abstract
The role viscoelasticity in fibrotic disease progression is an emerging area of interest. Here, a fast-relaxing hydrogel system is exploited to investigate potential crosstalk between calcium signaling and mechanotransduction. Poly(ethylene glycol) (PEG) hydrogels containing boronate and triazole crosslinkers are synthesized, with varying ratios of boronate to triazole crosslinks to systematically vary the extent of stress relaxation. Valvular interstitial cells (VICs) encapsulated in hydrogels with the highest levels of stress relaxation (90%) exhibit a spread morphology by day 1 and are highly aligned (80 ± 2%) by day 5. Key myofibroblast markers, including α-smooth muscle actin (αSMA) and collagen 1a1 (COL1A1), are significantly elevated. VIC myofibroblast activation decreases by 42 ± 18% through inhibition of mechanotransduction, independently of VIC morphology and alignment. Calcium signaling through a transient receptor potential vanilloid 4 (TRPV4) is found to regulate VIC spreading, alignment, and activation in a time dependent manner. Inhibition of calcium signaling at early time points results in disturbed cell alignment, decreased mechanotransduction, and diminished activation, while inhibition at later time points only causes partially reduced myofibroblast activation. These results suggest a potential crosstalk mechanism, where calcium signaling acts upstream of mechanosensing and can regulate VIC myofibroblast activation independently of mechanotransduction.
Collapse
Affiliation(s)
- Hao Ma
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Andrea GonzalezRodriguez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Megan E Schroeder
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Dilara Batan
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Robert M Weiss
- Division of Cardiovascular Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
45
|
Pei D, Wang M, Li W, Li M, Liu Q, Ding R, Zhao J, Li A, Li J, Xu F, Jin G. Remodeling of aligned fibrous extracellular matrix by encapsulated cells under mechanical stretching. Acta Biomater 2020; 112:202-212. [PMID: 32470526 DOI: 10.1016/j.actbio.2020.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
Extracellular matrix (ECM) remodeling is essential for the development and functions of connective tissues (e.g., heart, muscle and the periodontal ligament), and entails the highly anisotropic response of cells and their organized ECM molecules to mechanical stimulation. However, the nature of how cells remodel their surrounding ECM under mechanical stimulation remains elusive. Here, we encapsulated human periodontal ligament stem cells (hPDLSCs) within an aligned rat collagen scaffold labeled with fluorescein isothiocyanate (FITC) and applied mechanical stimulation on the scaffold using magnetic stretching. Through tracking the FITC-labeled rat collagen scaffold and the newly secreted human type I collagen, we studied the effect of magnetic stretching on the mechanism of aligned ECM remodeling by the encapsulated cells. We found that the aligned topography combined with magnetic stretching could significantly promote initial ECM degradation and new ECM secretion: expression of matrix metalloproteinases 1 and 9 is increased markedly, and the elastic modulus of the stretched scaffold (75 kPa) is significantly higher than that of the random scaffold (50 kPa). The data support a model whereby the cells remodel their surrounding ECM under continuous stretching through degradation and then secretion of new ECM to integrate with the aligned ECM and maintain tissue function. Our study offers a valuable basis for future optimized design of biomaterial scaffolds for clinical translation. STATEMENT OF SIGNIFICANCE: Extracellular matrix (ECM) remodeling is essential for the development and functions of connective tissues. However, the nature of how cells remodel their surrounding aligned ECM under mechanical stimulation remains elusive. Herein, we developed a method to reveal the remodeling of aligned rat collagen scaffold by the encapsulated human periodontal ligament stem cells (hPDLSCs) using fluorescence imaging. We found that the aligned topography combined with magnetic stretching could significantly promote initial ECM degradation and new ECM secretion: the expression of matrix metalloproteinase 1 and 9 are significantly higher, and the elastic modulus increases from 50 kPa to 75 kPa as compared to the random collagen scaffold encapsulating hPDLSCs. Our study holds great potential in optimization of bio-scaffold design for clinical translation.
Collapse
|
46
|
Liu A, Wu K, Chen S, Wu C, Gao D, Chen L, Wei D, Luo H, Sun J, Fan H. Tunable Fast Relaxation in Imine-Based Nanofibrillar Hydrogels Stimulates Cell Response through TRPV4 Activation. Biomacromolecules 2020; 21:3745-3755. [DOI: 10.1021/acs.biomac.0c00850] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amin Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Kai Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Suping Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Dong Gao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Lu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
47
|
Leverrier-Penna S, Destaing O, Penna A. Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium 2020; 90:102251. [PMID: 32683175 DOI: 10.1016/j.ceca.2020.102251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Development of metastasis causes the most serious clinical consequences of cancer and is responsible for over 90 % of cancer-related deaths. Hence, a better understanding of the mechanisms that drive metastasis formation appears critical for drug development designed to prevent the spread of cancer and related mortality. Metastasis dissemination is a multistep process supported by the increased motility and invasiveness capacities of tumor cells. To succeed in overcoming the mechanical constraints imposed by the basement membrane and surrounding tissues, cancer cells reorganize their focal adhesions or extend acto-adhesive cellular protrusions, called invadosomes, that can both contact the extracellular matrix and tune its degradation through metalloprotease activity. Over the last decade, accumulating evidence has demonstrated that altered Ca2+ channel activities and/or expression promote tumor cell-specific phenotypic changes, such as exacerbated migration and invasion capacities, leading to metastasis formation. While several studies have addressed the molecular basis of Ca2+ channel-dependent cancer cell migration, we are still far from having a comprehensive vision of the Ca2+ channel-regulated mechanisms of migration/invasion. This is especially true regarding the specific context of invadosome-driven invasion. This review aims to provide an overview of the current evidence supporting a central role for Ca2+ channel-dependent signaling in the regulation of these dynamic degradative structures. It will present available data on the few Ca2+ channels that have been studied in that specific context and discuss some potential interesting actors that have not been fully explored yet.
Collapse
Affiliation(s)
| | - Olivier Destaing
- Institute for Advanced BioSciences, CNRS UMR 5309, INSERM U1209, Institut Albert Bonniot, University Grenoble Alpes, 38700 Grenoble, France.
| | - Aubin Penna
- STIM, CNRS ERL7003, University of Poitiers, 86000 Poitiers, France.
| |
Collapse
|
48
|
The role of Piezo proteins and cellular mechanosensing in tuning the fate of transplanted stem cells. Cell Tissue Res 2020; 381:1-12. [DOI: 10.1007/s00441-020-03191-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
|
49
|
Michalick L, Kuebler WM. TRPV4-A Missing Link Between Mechanosensation and Immunity. Front Immunol 2020; 11:413. [PMID: 32210976 PMCID: PMC7076180 DOI: 10.3389/fimmu.2020.00413] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential vanilloid-type 4 (TRPV4) cation channel is widely expressed in all tissues as well as in immune cells and its function as mechanosensitive Ca2+ channel seems to be conserved throughout all mammalian species. Of late, emerging evidence has implicated TRPV4 in the activation and differentiation of innate immune cells, especially in neutrophils, monocytes, and macrophages. As such, TRPV4 has been shown to mediate neutrophil adhesion and chemotaxis, as well as production of reactive oxygen species in response to pro-inflammatory stimuli. In macrophages, TRPV4 mediates formation of both reactive oxygen and nitrogen species, and regulates phagocytosis, thus facilitating bacterial clearance and resolution of infection. Importantly, TRPV4 may present a missing link between mechanical forces and immune responses. This connection has been exemplary highlighted by the demonstrated role of TRPV4 in macrophage activation and subsequent induction of lung injury following mechanical overventilation. Mechanosensation via TRPV4 is also expected to activate innate immune cells and establish a pro-inflammatory loop in fibrotic diseases with increased deposition of extracellular matrix (ECM) and substrate stiffness. Likewise, TRPV4 may be activated by cell migration through the endothelium or the extracellular matrix, or even by circulating immune cells squeezing through the narrow passages of the pulmonary or systemic capillary bed, a process that has recently been linked to neutrophil priming and depriming. Here, we provide an overview over the emerging role of TRPV4 in innate immune responses and highlight two distinct modes for the activation of TRPV4 by either mechanical forces ("mechanoTRPV4") or by pathogens ("immunoTRPV4").
Collapse
Affiliation(s)
- Laura Michalick
- Institute of Physiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
50
|
Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat Rev Rheumatol 2020; 16:193-207. [PMID: 32080619 DOI: 10.1038/s41584-019-0364-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Mechanical loading is an important factor in musculoskeletal health and disease. Tendons and ligaments require physiological levels of mechanical loading to develop and maintain their tissue architecture, a process that is achieved at the cellular level through mechanotransduction-mediated fine tuning of the extracellular matrix by tendon and ligament stromal cells. Pathological levels of force represent a biological (mechanical) stress that elicits an immune system-mediated tissue repair pathway in tendons and ligaments. The biomechanics and mechanobiology of tendons and ligaments form the basis for understanding how such tissues sense and respond to mechanical force, and the anatomical extent of several mechanical stress-related disorders in tendons and ligaments overlaps with that of chronic inflammatory arthritis in joints. The role of mechanical stress in 'overuse' injuries, such as tendinopathy, has long been known, but mechanical stress is now also emerging as a possible trigger for some forms of chronic inflammatory arthritis, including spondyloarthritis and rheumatoid arthritis. Thus, seemingly diverse diseases of the musculoskeletal system might have similar mechanisms of immunopathogenesis owing to conserved responses to mechanical stress.
Collapse
|