1
|
Zhang C, Miao Y, Xiang Y, Zhang A. Brassinosteroid-signaling kinase ZmBSK7 enhances salt stress tolerance in maize. Biochem Biophys Res Commun 2024; 723:150222. [PMID: 38850813 DOI: 10.1016/j.bbrc.2024.150222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Salinity has become a crucial environmental factor that restricts plant growth, development, and productivity. Nevertheless, the mechanisms by which plants react to salt stress remain inadequately comprehended. In this study, we identified maize brassinosteroid-signaling kinase gene ZmBSK7 which is homologous to AtBSK1. Our results showed that ZmBSK7 is induced by salt stress and ZmBSK7 localizes in the plasma membrane. ZmBSK7 overexpression increases salt tolerance, while its knockdown decreases salt tolerance in maize. ZmBSK7 reduces the malondialdehyde (MDA) content and the percentage of electrolyte leakage, and also elevates the activities of antioxidant enzymes. Furthermore, ZmBSK7 promotes K+ content accumulation and reduces Na+/K+ ratio. Further found that ZmBSK7 physically interacts with K+ efflux antiporter 2 (ZmKEA2) in vivo and in vitro. Salt stress also increased the expression of ZmKEA2. Thus, ZmBSK7 improves salt tolerance in maize by affecting ZmKEA2 expression to promote K+ content accumulation and reduce Na+/K+ ratio. This study enhances the comprehension of BSK proteins and establishes a theoretical foundation for investigating salt stress tolerance in plants.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yadan Miao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Herrmann A, Sepuru KM, Endo H, Nakagawa A, Kusano S, Bai P, Ziadi A, Kato H, Sato A, Liu J, Shan L, Kimura S, Itami K, Uchida N, Hagihara S, Torii KU. Chemical genetics reveals cross-activation of plant developmental signaling by the immune peptide-receptor pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605519. [PMID: 39131359 PMCID: PMC11312451 DOI: 10.1101/2024.07.29.605519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cells sense and integrate multiple signals to coordinate development and defence. A receptor-kinase signaling pathway for plant stomatal development shares components with the immunity pathway. The mechanism ensuring their signal specificities remains unclear. Using chemical genetics, here we report the identification of a small molecule, kC9, that triggers excessive stomatal differentiation by inhibiting the canonical ERECTA receptor-kinase pathway. kC9 binds to and inhibits the downstream MAP kinase MPK6, perturbing its substrate interaction. Strikingly, activation of immune signaling by a bacterial flagellin peptide nullified kC9's effects on stomatal development. This cross-activation of stomatal development by immune signaling depends on the immune receptor FLS2 and occurs even in the absence of kC9 if the ERECTA-family receptor population becomes suboptimal. Furthermore, proliferating stomatal-lineage cells are vulnerable to the immune signal penetration. Our findings suggest that the signal specificity between development and immunity can be ensured by MAP Kinase homeostasis reflecting the availability of upstream receptors, thereby providing a novel view on signal specificity.
Collapse
Affiliation(s)
- Arvid Herrmann
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayami Nakagawa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shuhei Kusano
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Pengfei Bai
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Asraa Ziadi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroe Kato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Seisuke Kimura
- Faculty of Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603–8555, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Keiko U. Torii
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
3
|
Galindo-Trigo S, Khandare V, Roosjen M, Adams J, Wangler AM, Bayer M, Borst JW, Smakowska-Luzan E, Butenko MA. A multifaceted kinase axis regulates plant organ abscission through conserved signaling mechanisms. Curr Biol 2024; 34:3020-3030.e7. [PMID: 38917797 DOI: 10.1016/j.cub.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Plants have evolved mechanisms to abscise organs as they develop or when exposed to unfavorable conditions.1 Uncontrolled abscission of petals, fruits, or leaves can impair agricultural productivity.2,3,4,5 Despite its importance for abscission progression, our understanding of the IDA signaling pathway and its regulation remains incomplete. IDA is secreted to the apoplast, where it is perceived by the receptors HAESA (HAE) and HAESA-LIKE2 (HSL2) and somatic embryogenesis receptor kinase (SERK) co-receptors.6,7,8,9 These plasma membrane receptors activate an intracellular cascade of mitogen-activated protein kinases (MAPKs) by an unknown mechanism.10,11,12 Here, we characterize brassinosteroid signaling kinases (BSKs) as regulators of floral organ abscission in Arabidopsis. BSK1 localizes to the plasma membrane of abscission zone cells, where it interacts with HAESA receptors to regulate abscission. Furthermore, we demonstrate that YODA (YDA) has a leading role among other MAPKKKs in controlling abscission downstream of the HAESA/BSK complex. This kinase axis, comprising a leucine-rich repeat receptor kinase, a BSK, and an MAPKKK, is known to regulate stomatal patterning, early embryo development, and immunity.10,13,14,15,16 How specific cellular responses are obtained despite signaling through common effectors is not well understood. We show that the identified abscission-promoting allele of BSK1 also enhances receptor signaling in other BSK-mediated pathways, suggesting conservation of signaling mechanisms. Furthermore, we provide genetic evidence supporting independence of BSK1 function from its kinase activity in several developmental processes. Together, our findings suggest that BSK1 facilitates signaling between plasma membrane receptor kinases and MAPKKKs via conserved mechanisms across multiple facets of plant development.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Virendrasinh Khandare
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Mark Roosjen
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Julian Adams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Alexa-Maria Wangler
- University of Tuebingen, Centre for Plant Molecular Biology, 72076 Tuebingen, Germany
| | - Martin Bayer
- University of Tuebingen, Centre for Plant Molecular Biology, 72076 Tuebingen, Germany
| | - Jan Willem Borst
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Elwira Smakowska-Luzan
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
4
|
Ando E, Taki K, Suzuki T, Kinoshita T. A novel semi-dominant mutation in brassinosteroid signaling kinase1 increases stomatal density. FRONTIERS IN PLANT SCIENCE 2024; 15:1377352. [PMID: 38628368 PMCID: PMC11019013 DOI: 10.3389/fpls.2024.1377352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Stomata play a pivotal role in balancing CO2 uptake for photosynthesis and water loss via transpiration. Thus, appropriate regulation of stomatal movement and its formation are crucial for plant growth and survival. Red and blue light induce phosphorylation of the C-terminal residue of the plasma membrane (PM) H+-ATPase, threonine, in guard cells, generating the driving force for stomatal opening. While significant progress has been made in understanding the regulatory mechanism of PM H+-ATPase in guard cells, the regulatory components for the phosphorylation of PM H+-ATPase have not been fully elucidated. Recently, we established a new immunohistochemical technique for detecting guard-cell PM H+-ATPase phosphorylation using leaves, which was expected to facilitate investigations with a single leaf. In this study, we applied the technique to genetic screening experiment to explore novel regulators for the phosphorylation of PM H+-ATPase in guard cells, as well as stomatal development. We successfully performed phenotyping using a single leaf. During the experiment, we identified a mutant exhibiting high stomatal density, jozetsu (jzt), named after a Japanese word meaning 'talkative'. We found that a novel semi-dominant mutation in BRASSINOSTEROID SIGNALING KINASE1 (BSK1) is responsible for the phenotype in jzt mutant. The present results demonstrate that the new immunohistochemical technique has a wide range of applications, and the novel mutation would provide genetic tool to expand our understanding of plant development mediated by brassinosteroid signaling.
Collapse
Affiliation(s)
- Eigo Ando
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Kyomi Taki
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Tong J, Zhao W, Wang K, Deng D, Xiao L. Organ-level distribution tandem mass spectrometry analysis of three structural types of brassinosteroids in rapeseed. FRONTIERS IN PLANT SCIENCE 2024; 15:1308781. [PMID: 38516662 PMCID: PMC10956354 DOI: 10.3389/fpls.2024.1308781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Background Brassinosteroids (BRs) are a class of naturally occurring steroidal phytohormones mediating a wide range of pivotal developmental and physiological functions throughout the plant's life cycle. Therefore, it is of great significance to determine the content and the distribution of BRs in plants.Regretfully, although a large number of quantitative methods for BRs by liquid chromatography-tandem mass spectrometry (LC-MS/MS) have been reported, the in planta distribution of BRs is still unclear because of their lower contents in plant tissues and the lack of effective ionizable groups in their chemical structures. Methods We stablished a novel analytical method of BRs based on C18 cartridge solid-phase extraction (SPE) purification, 4-(dimethylamino)-phenylboronic acid (DMAPBA) derivatization, and online valve-switching system coupled with ultra-high performance liquid chromatography-electro spray ionization-triple quadrupole mass spectrometry (UHPLC-ESI-MS/MS). This method has been used to quantify three structural types of BRs (epibrassinolide, epicastasterone, and 6-deoxo-24-epicastaster one) in different organs of Brassica napus L. (rapeseed). Results We obtained the contents of three structural types of BRs in various organ tissues of rapeseed. The contents of three BRs in rapeseed flowers were the highest, followed by tender pods. The levels of three BRs all decreased during the maturation of the organs. We outlined the spatial distribution maps of three BRs in rapeseed based on these results, so as to understand the spatial distribution of BRs at the visual level. Conclusions Our results provided useful information for the precise in situ localization of BRs in plants and the metabolomic research of BRs in future work. The in planta spatial distribution of BRs at the visual level has been studied for the first time.
Collapse
Affiliation(s)
- Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Laboratory of Yuelu Mountain, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wenkui Zhao
- College of Chemistry and Materials, Hunan Agricultural University, Changsha, China
| | - Keming Wang
- Assets and Laboratory Management Department, Hunan Agricultural University, Changsha, China
| | - Danyi Deng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Laboratory of Yuelu Mountain, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Laboratory of Yuelu Mountain, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Matsumoto H, Ueda M. Polarity establishment in the plant zygote at a glance. J Cell Sci 2024; 137:jcs261809. [PMID: 38436556 DOI: 10.1242/jcs.261809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
The complex structures of multicellular organisms originate from a unicellular zygote. In most angiosperms, including Arabidopsis thaliana, the zygote is distinctly polar and divides asymmetrically to produce an apical cell, which generates the aboveground part of the plant body, and a basal cell, which generates the root tip and extraembryonic suspensor. Thus, zygote polarity is pivotal for establishing the apical-basal axis running from the shoot apex to the root tip of the plant body. The molecular mechanisms and spatiotemporal dynamics behind zygote polarization remain elusive. However, advances in live-cell imaging of plant zygotes have recently made significant insights possible. In this Cell Science at a Glance article and the accompanying poster, we summarize our understanding of the early steps in apical-basal axis formation in Arabidopsis, with a focus on de novo transcriptional activation after fertilization and the intracellular dynamics leading to the first asymmetric division of the zygote.
Collapse
Affiliation(s)
- Hikari Matsumoto
- Graduate School of Life Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, Sendai, 980-8578, Japan
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, Sendai, 980-8578, Japan
| |
Collapse
|
7
|
Ohnishi Y, Kawashima T. Evidence of a novel silencing effect on transgenes in the Arabidopsis thaliana sperm cell. THE PLANT CELL 2023; 35:3926-3936. [PMID: 37602710 PMCID: PMC10615207 DOI: 10.1093/plcell/koad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
We encountered unexpected transgene silencing in Arabidopsis thaliana sperm cells; transgenes encoding proteins with no specific intracellular localization (cytoplasmic proteins) were silenced transcriptionally or posttranscriptionally. The mRNA of cytoplasmic protein transgenes tagged with a fluorescent protein gene was significantly reduced, resulting in undetectable fluorescent protein signals in the sperm cell. Silencing of the cytoplasmic protein transgenes in the sperm cell did not affect the expression of either its endogenous homologous genes or cotransformed transgenes encoding a protein with targeted intracellular localization. This transgene silencing in the sperm cell persisted in mutants of the major gene silencing machinery including DNA methylation. The incomprehensible, yet real, transgene silencing phenotypes occurring in the sperm cell could mislead the interpretation of experimental results in plant reproduction, and this Commentary calls attention to that risk and highlights details of this novel cytoplasmic protein transgene silencing.
Collapse
Affiliation(s)
- Yukinosuke Ohnishi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40503,USA
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40503,USA
| |
Collapse
|
8
|
Chen L, Torii KU. Signaling in plant development and immunity through the lens of the stomata. Curr Biol 2023; 33:R733-R742. [PMID: 37433278 DOI: 10.1016/j.cub.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The proper development and function of stomata - turgor-driven valves for efficient gas-exchange and water control - impact plant survival and productivity. It has become apparent that various receptor kinases regulate stomatal development and immunity. Although stomatal development and immunity occur over different cellular time scales, their signaling components and regulatory modules are strikingly similar, and often shared. In this review, we survey the current knowledge of stomatal development and immunity signaling components, and provide a synthesis and perspectives on the key concepts to further understand the conservation and specificity of these two signaling pathways.
Collapse
Affiliation(s)
- Liangliang Chen
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Liu X, Chen Z, Huang L, Ouyang Y, Wang Z, Wu S, Ye W, Yu B, Zhang Y, Yang C, Lai J. Salicylic acid attenuates brassinosteroid signaling via protein de-S-acylation. EMBO J 2023; 42:e112998. [PMID: 37211868 PMCID: PMC10308364 DOI: 10.15252/embj.2022112998] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
Brassinosteroids (BRs) are important plant hormones involved in many aspects of development. Here, we show that BRASSINOSTEROID SIGNALING KINASEs (BSKs), key components of the BR pathway, are precisely controlled via de-S-acylation mediated by the defense hormone salicylic acid (SA). Most Arabidopsis BSK members are substrates of S-acylation, a reversible protein lipidation that is essential for their membrane localization and physiological function. We establish that SA interferes with the plasma membrane localization and function of BSKs by decreasing their S-acylation levels, identifying ABAPT11 (ALPHA/BETA HYDROLASE DOMAIN-CONTAINING PROTEIN 17-LIKE ACYL PROTEIN THIOESTERASE 11) as an enzyme whose expression is quickly induced by SA. ABAPT11 de-S-acylates most BSK family members, thus integrating BR and SA signaling for the control of plant development. In summary, we show that BSK-mediated BR signaling is regulated by SA-induced protein de-S-acylation, which improves our understanding of the function of protein modifications in plant hormone cross talk.
Collapse
Affiliation(s)
- Xiaoshi Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Zian Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Liting Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Youwei Ouyang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Zhiying Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Shuang Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Weixian Ye
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Boya Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Yihang Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
10
|
Bender KW, Zipfel C. Paradigms of receptor kinase signaling in plants. Biochem J 2023; 480:835-854. [PMID: 37326386 PMCID: PMC10317173 DOI: 10.1042/bcj20220372] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Plant receptor kinases (RKs) function as key plasma-membrane localized receptors in the perception of molecular ligands regulating development and environmental response. Through the perception of diverse ligands, RKs regulate various aspects throughout the plant life cycle from fertilization to seed set. Thirty years of research on plant RKs has generated a wealth of knowledge on how RKs perceive ligands and activate downstream signaling. In the present review, we synthesize this body of knowledge into five central paradigms of plant RK signaling: (1) RKs are encoded by expanded gene families, largely conserved throughout land plant evolution; (2) RKs perceive many different kinds of ligands through a range of ectodomain architectures; (3) RK complexes are typically activated by co-receptor recruitment; (4) post-translational modifications fulfill central roles in both the activation and attenuation of RK-mediated signaling; and, (5) RKs activate a common set of downstream signaling processes through receptor-like cytoplasmic kinases (RLCKs). For each of these paradigms, we discuss key illustrative examples and also highlight known exceptions. We conclude by presenting five critical gaps in our understanding of RK function.
Collapse
Affiliation(s)
- Kyle W. Bender
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
11
|
Zhang Y, Xu T, Dong J. Asymmetric cell division in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:343-370. [PMID: 36610013 PMCID: PMC9975081 DOI: 10.1111/jipb.13446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 05/03/2023]
Abstract
Asymmetric cell division (ACD) is a fundamental process that generates new cell types during development in eukaryotic species. In plant development, post-embryonic organogenesis driven by ACD is universal and more important than in animals, in which organ pattern is preset during embryogenesis. Thus, plant development provides a powerful system to study molecular mechanisms underlying ACD. During the past decade, tremendous progress has been made in our understanding of the key components and mechanisms involved in this important process in plants. Here, we present an overview of how ACD is determined and regulated in multiple biological processes in plant development and compare their conservation and specificity among different model cell systems. We also summarize the molecular roles and mechanisms of the phytohormones in the regulation of plant ACD. Finally, we conclude with the overarching paradigms and principles that govern plant ACD and consider how new technologies can be exploited to fill the knowledge gaps and make new advances in the field.
Collapse
Affiliation(s)
- Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08891, USA
| |
Collapse
|
12
|
Chen L, Cochran AM, Waite JM, Shirasu K, Bemis SM, Torii KU. Direct attenuation of Arabidopsis ERECTA signalling by a pair of U-box E3 ligases. NATURE PLANTS 2023; 9:112-127. [PMID: 36539597 PMCID: PMC9873567 DOI: 10.1038/s41477-022-01303-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Plants sense a myriad of signals through cell-surface receptors to coordinate their development and environmental response. The Arabidopsis ERECTA receptor kinase regulates diverse developmental processes via perceiving multiple EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE peptide ligands. How the activated ERECTA protein is turned over is unknown. Here we identify two closely related plant U-box ubiquitin E3 ligases, PUB30 and PUB31, as key attenuators of ERECTA signalling for two developmental processes: inflorescence/pedicel growth and stomatal development. Loss-of-function pub30 pub31 mutant plants exhibit extreme inflorescence/pedicel elongation and reduced stomatal numbers owing to excessive ERECTA protein accumulation. Ligand activation of ERECTA leads to phosphorylation of PUB30/31 via BRI1-ASSOCIATED KINASE1 (BAK1), which acts as a coreceptor kinase and a scaffold to promote PUB30/31 to associate with and ubiquitinate ERECTA for eventual degradation. Our work highlights PUB30 and PUB31 as integral components of the ERECTA regulatory circuit that ensure optimal signalling outputs, thereby defining the role for PUB proteins in developmental signalling.
Collapse
Affiliation(s)
- Liangliang Chen
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Alicia M Cochran
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jessica M Waite
- Department of Biology, University of Washington, Seattle, WA, USA
- USDA-ARS Tree Fruit Research Laboratory, Wenatchee, WA, USA
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shannon M Bemis
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Biology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Zhang S, Hu X, Dong J, Du M, Song J, Xu S, Zhao C. Identification, evolution, and expression analysis of OsBSK gene family in Oryza sativa Japonica. BMC PLANT BIOLOGY 2022; 22:565. [PMID: 36464674 PMCID: PMC9720961 DOI: 10.1186/s12870-022-03905-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND As an essential component of the BR (brassinosteroid) signaling pathway, BSK (BR-signalling kinases) plays a vital role in plant growth, development, and stress regulation. There have been sporadic reports on the functions of members of this family in monocotyledonous model plant rice, but few reports have been reported on the phylogenetic analysis and gene expression profiling of the family genes. RESULTS In this study, a total of 6 OsBSK members were identified at the genomic level by bioinformatics methods, distributed on four rice chromosomes. Through the evolution analysis of 74 BSK proteins from 22 species, it was found that BSKs originated from higher plants, were highly conserved, and could be divided into six subgroups. Among them, OsBSKs belonged to four subgroups or two significant groups. OsBSK family gene promoters contained a large number of light, abscisic acid (ABA), and methyl jasmonate (MeJA) response-related elements. At the same time, the qRT-PCR test also showed that the genes of this family were involved in response to a variety of hormones, biotic and abiotic stress treatments, and expression patterns of the family gene can be roughly divided into two categories, which were similar to the tissue expression patterns of genes in different growth stages. OsBSK1-1, OsBSK1-2, and OsBSK3 were mostly up-regulated. OsBSK2, OsBSK4, and OsBSK5 were mostly down-regulated or had little change in expression. CONCLUSIONS This study revealed the origin and evolution of the BSK family and the farm-out of BSKs in rice growth, development, and stress response. It provides the theoretical reference for in-depth analysis of BR hormone, signal transduction, and molecular breeding design for resistance.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
| | - Xuewei Hu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
| | - Jiejing Dong
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
| | - Mengxiang Du
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
| | - Juqi Song
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
| | - Shangyuan Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
| | - Changjiang Zhao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, 163319 Heilongjiang China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, 163319 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, 163319 Heilongjiang China
| |
Collapse
|
14
|
Yuan H, Xu Z, Chen W, Deng C, Liu Y, Yuan M, Gao P, Shi H, Tu B, Li T, Kang L, Ma B, Wang Y, Wang J, Chen X, Li S, Qin P. OsBSK2, a putative brassinosteroid-signalling kinase, positively controls grain size in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5529-5542. [PMID: 35595300 DOI: 10.1093/jxb/erac222] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Grain size is an important trait that directly affects grain yield in rice; however, the genetic and molecular mechanisms regulating grain size remain unclear. In this study, we identified a mutant, grain length and grain weight 10 (glw10), which exhibited significantly reduced grain length and grain weight. Histological analysis demonstrated that GLW10 affects cell expansion, which regulates grain size. MutMap-based gene mapping and transgenic experiments demonstrated that GLW10 encodes a putative brassinosteroid (BR) signalling kinase, OsBSK2. OsBSK2 is a plasma membrane protein, and an N-myristoylation site is needed for both membrane localization and function. OsBSK2 directly interacts with the BR receptor kinase OsBRI1; however, genetic experiments have demonstrated that OsBSK2 may regulate grain size independent of the BR signalling pathway. OsBSK2 can form a homodimer or heterodimer with OsBSK3 and OsBSK4, and silencing OsBSK2, OsBSK3, and OsBSK4 reduce grain size. This indicates that OsBSKs seem to function as homodimers or heterodimers to positively regulate grain size in rice. OsBSK2/3/4 are all highly expressed in young panicles and spikelet hulls, suggesting that they control grain size. In summary, our results provide novel insights into the function of BSKs in rice, and identify novel targets for improving grain size during crop breeding.
Collapse
Affiliation(s)
- Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Zhengyan Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weilan Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chaoyang Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Peng Gao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hui Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Bin Tu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Liangzhu Kang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bingtian Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuping Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Lardon R, Trinh HK, Xu X, Vu LD, Van De Cotte B, Pernisová M, Vanneste S, De Smet I, Geelen D. Histidine kinase inhibitors impair shoot regeneration in Arabidopsis thaliana via cytokinin signaling and SAM patterning determinants. FRONTIERS IN PLANT SCIENCE 2022; 13:894208. [PMID: 36684719 PMCID: PMC9847488 DOI: 10.3389/fpls.2022.894208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/27/2022] [Indexed: 06/17/2023]
Abstract
Reversible protein phosphorylation is a post-translational modification involved in virtually all plant processes, as it mediates protein activity and signal transduction. Here, we probe dynamic protein phosphorylation during de novo shoot organogenesis in Arabidopsis thaliana. We find that application of three kinase inhibitors in various time intervals has different effects on root explants. Short exposures to the putative histidine (His) kinase inhibitor TCSA during the initial days on shoot induction medium (SIM) are detrimental for regeneration in seven natural accessions. Investigation of cytokinin signaling mutants, as well as reporter lines for hormone responses and shoot markers, suggests that TCSA impedes cytokinin signal transduction via AHK3, AHK4, AHP3, and AHP5. A mass spectrometry-based phosphoproteome analysis further reveals profound deregulation of Ser/Thr/Tyr phosphoproteins regulating protein modification, transcription, vesicle trafficking, organ morphogenesis, and cation transport. Among TCSA-responsive factors are prior candidates with a role in shoot apical meristem patterning, such as AGO1, BAM1, PLL5, FIP37, TOP1ALPHA, and RBR1, as well as proteins involved in polar auxin transport (e.g., PIN1) and brassinosteroid signaling (e.g., BIN2). Putative novel regeneration determinants regulated by TCSA include RD2, AT1G52780, PVA11, and AVT1C, while NAIP2, OPS, ARR1, QKY, and aquaporins exhibit differential phospholevels on control SIM. LC-MS/MS data are available via ProteomeXchange with identifier PXD030754.
Collapse
Affiliation(s)
- Robin Lardon
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Hoang Khai Trinh
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Biotechnology Research and Development Institute, Can Tho University, Can Tho, Vietnam
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Markéta Pernisová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Steffen Vanneste
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon, South Korea
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Wang Y, Wu Y, Zhang H, Wang P, Xia Y. Arabidopsis MAPKK kinases YODA, MAPKKK3, and MAPKKK5 are functionally redundant in development and immunity. PLANT PHYSIOLOGY 2022; 190:206-210. [PMID: 35670747 PMCID: PMC9434298 DOI: 10.1093/plphys/kiac270] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 06/01/2023]
Abstract
Three MAPK cascade components in Arabidopsis, YDA (MAPKKK4) and MAPKKK3/5, function redundantly in multiple developmental processes and immunity and regulate floral organ abscission.
Collapse
Affiliation(s)
| | | | - Hailei Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Pengxi Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yiji Xia
- Authors for correspondence: (Y.W); (Y.X.)
| |
Collapse
|
17
|
Li Y, Zhang H, Zhang Y, Liu Y, Li Y, Tian H, Guo S, Sun M, Qin Z, Dai S. Genome-wide identification and expression analysis reveals spinach brassinosteroid-signaling kinase (BSK) gene family functions in temperature stress response. BMC Genomics 2022; 23:453. [PMID: 35725364 PMCID: PMC9208177 DOI: 10.1186/s12864-022-08684-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/10/2022] [Indexed: 11/14/2022] Open
Abstract
Background Brassinosteroid (BR)- signaling kinase (BSK) is a critical family of receptor-like cytoplasmic kinase for BR signal transduction, which plays important roles in plant development, immunity, and abiotic stress responses. Spinach (Spinacia oleracea) is cold- tolerant but heat- sensitive green leafy vegetable. A study on BSK family members and BSKs- mediated metabolic processes in spinach has not been performed. Results We identified and cloned seven SoBSKs in spinach. Phylogenetic and collinearity analyses suggested that SoBSKs had close relationship with dicotyledonous sugar beet (Beta vulgaris) rather than monocotyledons. The analyses of gene structure and conserved protein domain/ motif indicated that most SoBSKs were relative conserved, while SoBSK6 could be a truncated member. The prediction of post-translation modification (PTM) sites in SoBSKs implied their possible roles in signal transduction, redox regulation, and protein turnover of SoBSKs, especially the N-terminal myristoylation site was critical for BSK localization to cell periphery. Cis-acting elements for their responses to light, drought, temperature (heat and cold), and hormone distributed widely in the promoters of SoBSKs, implying the pivotal roles of SoBSKs in response to diverse abiotic stresses and phytohormone stimuli. Most SoBSKs were highly expressed in leaves, except for SoBSK7 in roots. Many SoBSKs were differentially regulated in spinach heat- sensitive variety Sp73 and heat- tolerant variety Sp75 under the treatments of heat, cold, as well as exogenous brassinolide (BL) and abscisic acid (ABA). The bsk134678 mutant Arabidopsis seedlings exhibited more heat tolerance than wild- type and SoBSK1- overexpressed seedlings. Conclusions A comprehensive genome- wide analysis of the BSK gene family in spinach presented a global identification and functional prediction of SoBSKs. Seven SoBSKs had relatively- conserved gene structure and protein function domains. Except for SoBSK6, all the other SoBSKs had similar motifs and conserved PTM sites. Most SoBSKs participated in the responses to heat, cold, BR, and ABA. These findings paved the way for further functional analysis on BSK- mediated regulatory mechanisms in spinach development and stress response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08684-5.
Collapse
Affiliation(s)
- Yang Li
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Yongxue Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yanshuang Liu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Yueyue Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Haodong Tian
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
18
|
Guo X, Ding X, Dong J. Dichotomy of the BSL phosphatase signaling spatially regulates MAPK components in stomatal fate determination. Nat Commun 2022; 13:2438. [PMID: 35508457 PMCID: PMC9068801 DOI: 10.1038/s41467-022-30254-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
MAPK signaling modules play crucial roles in regulating numerous biological processes in all eukaryotic cells. How MAPK signaling specificity and strength are tightly controlled remains a major challenging question. In Arabidopsis stomatal development, the MAPKK Kinase YODA (YDA) functions at the cell periphery to inhibit stomatal production by activating MAPK 3 and 6 (MPK3/6) that directly phosphorylate stomatal fate-determining transcription factors for degradation in the nucleus. Recently, we demonstrated that BSL1, one of the four BSL protein phosphatases, localizes to the cell cortex to activate YDA, elevating MPK3/6 activity to suppress stomatal formation. Here, we showed that at the plasma membrane, all four members of BSL proteins contribute to the YDA activation. However, in the nucleus, specific BSL members (BSL2, BSL3, and BSU1) directly deactivate MPK6 to counteract the linear MAPK pathway, thereby promoting stomatal formation. Thus, the pivotal MAPK signaling in stomatal fate determination is spatially modulated by a signaling dichotomy of the BSL protein phosphatases in Arabidopsis, providing a prominent example of how MAPK activities are integrated and specified by signaling compartmentalization at the subcellular level.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xue Ding
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
19
|
Cui Y, Lu X, Gou X. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. PLANT COMMUNICATIONS 2022; 3:100273. [PMID: 35059634 PMCID: PMC8760141 DOI: 10.1016/j.xplc.2021.100273] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 05/30/2023]
Abstract
Reproduction is a crucial process in the life span of flowering plants, and directly affects human basic requirements in agriculture, such as grain yield and quality. Typical receptor-like protein kinases (RLKs) are a large family of membrane proteins sensing extracellular signals to regulate plant growth, development, and stress responses. In Arabidopsis thaliana and other plant species, RLK-mediated signaling pathways play essential roles in regulating the reproductive process by sensing different ligand signals. Molecular understanding of the reproductive process is vital from the perspective of controlling male and female fertility. Here, we summarize the roles of RLKs during plant reproduction at the genetic and molecular levels, including RLK-mediated floral organ development, ovule and anther development, and embryogenesis. In addition, the possible molecular regulatory patterns of those RLKs with unrevealed mechanisms during reproductive development are discussed. We also point out the thought-provoking questions raised by the research on these plant RLKs during reproduction for future investigation.
Collapse
|
20
|
Plant development: Suspensors as a battlefield for parental tug-of-war? Curr Biol 2021; 31:R1424-R1426. [PMID: 34752766 DOI: 10.1016/j.cub.2021.09.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parental contributions to zygotes can influence early embryogenesis and may regulate the distribution of maternal resources to progeny. A new study in Arabidopsis thaliana has demonstrated that signaling components from maternal sporophytic tissues and paternal gametes converge in zygotes to promote elongation of the extraembryonic suspensor, which supports the developing embryo proper.
Collapse
|
21
|
Independent parental contributions initiate zygote polarization in Arabidopsis thaliana. Curr Biol 2021; 31:4810-4816.e5. [PMID: 34496220 DOI: 10.1016/j.cub.2021.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/09/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022]
Abstract
Embryogenesis of flowering plants is initiated by polarization of the zygote, a prerequisite for correct axis formation in the embryo. The daughter cells of the asymmetric zygote division form the pro-embryo and the mostly extra-embryonic suspensor.1 The suspensor plays a pivotal role in nutrient and hormone transport and rapid growth of the embryo.2,3 Zygote polarization is controlled by a MITOGEN-ACTIVATING PROTEIN (MAP) kinase signaling pathway including the MAPKK kinase (MAP3K) YODA (YDA)4 and the upstream membrane-associated proteins BRASINOSTEROID SIGNALING KINASE 1 (BSK1) and BSK2.5,6 Furthermore, suspensor development is controlled by cysteine-rich peptides of the EMBRYO SURROUNDING FACTOR 1 (ESF1) family.7 While they act genetically upstream of YDA, the corresponding receptor to perceive these potential ligands is unknown. In other developmental processes, such as stomata development, YDA activity is controlled by receptor kinases of the ERECTA family (ERf).8-12 While the receptor kinases upstream of BSK1/2 in the embryo have so far not been identified,1 YDA is in part activated by the sperm cell-derived BSK family member SHORT SUSPENSOR (SSP) that represents a naturally occurring, constitutively active variant of BSK1.5,13 It has been speculated that SSP might be a paternal component of a parental tug-of-war controlling resource allocation toward the embryo.2,13 Here, we show that in addition to SSP, the receptor kinase ERECTA plays a crucial role in zygote polarization as a maternally contributed part of the embryonic YDA pathway. We conclude that two independent parental contributions initiate zygote polarization and control embryo development.
Collapse
|
22
|
Kim Y, Kim SH, Shin DM, Kim SH. ATBS1-INTERACTING FACTOR 2 Negatively Modulates Pollen Production and Seed Formation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:704958. [PMID: 34386030 PMCID: PMC8353282 DOI: 10.3389/fpls.2021.704958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
ATBS1-INTERACTING FACTOR 2 (AIF2) is a non-DNA-binding basic-helix-loop-helix (bHLH) transcription factor. Here, we demonstrate that AIF2 negatively modulates brassinosteroid (BR)-induced, BRASSINAZOLE RESISTANT 1 (BZR1)-mediated pollen and seed formation. AIF2-overexpressing Arabidopsis plants (AIF2ox) showed defective pollen grains and seed production while two AIF2 knockout mutants, aif2-1 and aif2-1/aif4-1, displayed opposite phenotypes. Genes encoding BZR1-regulated positive factors of seed size determination (SHB1, IKU1, MINI3) were suppressed in AIF2ox and genes for negative factors (AP2 and ARF2) were enhanced. Surprisingly, BZR1-regulated pollen genes such as SPL, MS1, and TDF1 were aberrantly up-regulated in AIF2ox plants. This stage-independent abnormal expression may lead to a retarded and defective progression of microsporogenesis, producing abnormal tetrad microspores and pollen grains with less-effective pollen tube germination. Auxin plays important roles in proper development of flower and seeds: genes for auxin biosynthesis such as TCPs and YUCCAs as well as for positive auxin signalling such as ARFs were suppressed in AIF2ox flowers. Moreover, lipid biosynthesis- and sucrose transport-related genes were repressed, resulting in impaired starch accumulation. Contrarily, sucrose and BR repressed ectopic accumulation of AIF2, thereby increasing silique length and the number of seeds. Taken together, we propose that AIF2 is negatively involved in pollen development and seed formation, and that sucrose- and BR-induced repression of AIF2 positively promotes pollen production and seed formation in Arabidopsis.
Collapse
|
23
|
Samakovli D, Tichá T, Vavrdová T, Závorková N, Pecinka A, Ovečka M, Šamaj J. HEAT SHOCK PROTEIN 90 proteins and YODA regulate main body axis formation during early embryogenesis. PLANT PHYSIOLOGY 2021; 186:1526-1544. [PMID: 33856486 PMCID: PMC8260137 DOI: 10.1093/plphys/kiab171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/01/2021] [Indexed: 05/23/2023]
Abstract
The YODA (YDA) kinase pathway is intimately associated with the control of Arabidopsis (Arabidopsis thaliana) embryo development, but little is known regarding its regulators. Using genetic analysis, HEAT SHOCK PROTEIN 90 (HSP90) proteins emerge as potent regulators of YDA in the process of embryo development and patterning. This study is focused on the characterization and quantification of early embryonal traits of single and double hsp90 and yda mutants. HSP90s genetic interactions with YDA affected the downstream signaling pathway to control the development of both basal and apical cell lineage of embryo. Our results demonstrate that the spatiotemporal expression of WUSCHEL-RELATED HOMEOBOX 8 (WOX8) and WOX2 is changed when function of HSP90s or YDA is impaired, suggesting their essential role in the cell fate determination and possible link to auxin signaling during early embryo development. Hence, HSP90s together with YDA signaling cascade affect transcriptional networks shaping the early embryo development.
Collapse
Affiliation(s)
- Despina Samakovli
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Tereza Tichá
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Tereza Vavrdová
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Natálie Závorková
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Ales Pecinka
- Institute of Experimental Botany (IEB), Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc 779 00, Czech Republic
| | - Miroslav Ovečka
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Jozef Šamaj
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| |
Collapse
|
24
|
Liu L, Xiang Y, Yan J, Di P, Li J, Sun X, Han G, Ni L, Jiang M, Yuan J, Zhang A. BRASSINOSTEROID-SIGNALING KINASE 1 phosphorylating CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE functions in drought tolerance in maize. THE NEW PHYTOLOGIST 2021; 231:695-712. [PMID: 33864702 DOI: 10.1111/nph.17403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/06/2021] [Indexed: 05/08/2023]
Abstract
Drought stress seriously limits crop productivity. Although studies have been carried out, it is still largely unknown how plants respond to drought stress. Here we find that drought treatment can enhance the phosphorylation activity of brassinosteroid-signaling kinase 1 (ZmBSK1) in maize (Zea mays). Our genetic studies reveal that ZmBSK1 positively affects drought tolerance in maize plants. ZmBSK1 localizes in plasma membrane, interacts with calcium/calmodulin (Ca2+ /CaM)-dependent protein kinase (ZmCCaMK), and phosphorylates ZmCCaMK. Ser-67 is a crucial phosphorylation site of ZmCCaMK by ZmBSK1. Drought stress enhances not only the interaction between ZmBSK1 and ZmCCaMK but also the phosphorylation of Ser-67 in ZmCCaMK by ZmBSK1. Furthermore, Ser-67 phosphorylation in ZmCCaMK regulates its Ca2+ /CaM binding, autophosphorylation and transphosphorylation activity, and positively affects its function in drought tolerance in maize. Our results reveal an important role for ZmBSK1 in drought tolerance and suggest a direct regulatory mode of ZmBSK1 phosphorylating ZmCCaMK.
Collapse
Affiliation(s)
- Lei Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Di
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiujuan Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gaoqiang Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lan Ni
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianhua Yuan
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
25
|
Dresselhaus T, Jürgens G. Comparative Embryogenesis in Angiosperms: Activation and Patterning of Embryonic Cell Lineages. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:641-676. [PMID: 33606951 DOI: 10.1146/annurev-arplant-082520-094112] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Following fertilization in flowering plants (angiosperms), egg and sperm cells unite to form the zygote, which generates an entire new organism through a process called embryogenesis. In this review, we provide a comparative perspective on early zygotic embryogenesis in flowering plants by using the Poaceae maize and rice as monocot grass and crop models as well as Arabidopsis as a eudicot model of the Brassicaceae family. Beginning with the activation of the egg cell, we summarize and discuss the process of maternal-to-zygotic transition in plants, also taking recent work on parthenogenesis and haploid induction into consideration. Aspects like imprinting, which is mainly associated with endosperm development and somatic embryogenesis, are not considered. Controversial findings about the timing of zygotic genome activation as well as maternal versus paternal contribution to zygote and early embryo development are highlighted. The establishment of zygotic polarity, asymmetric division, and apical and basal cell lineages represents another chapter in which we also examine and compare the role of major signaling pathways, cell fate genes, and hormones in early embryogenesis. Except for the model Arabidopsis, little is known about embryopatterning and the establishment of the basic body plan in angiosperms. Using available in situ hybridization, RNA-sequencing, and marker data, we try to compare how and when stem cell niches are established. Finally, evolutionary aspects of plant embryo development are discussed.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany;
| | - Gerd Jürgens
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany;
| |
Collapse
|
26
|
Herrmann A, Torii KU. Shouting out loud: signaling modules in the regulation of stomatal development. PLANT PHYSIOLOGY 2021; 185:765-780. [PMID: 33793896 PMCID: PMC8133662 DOI: 10.1093/plphys/kiaa061] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/31/2020] [Indexed: 05/18/2023]
Abstract
Stomata are small pores on the surface of land plants that facilitate gas exchange for photosynthesis while minimizing water loss. The function of stomata is pivotal for plant growth and survival. Intensive research on the model plant Arabidopsis (Arabidopsis thaliana) has discovered key peptide signaling pathways, transcription factors, and polarity components that together drive proper stomatal development and patterning. In this review, we focus on recent findings that have revealed co-option of peptide-receptor kinase signaling modules-utilized for diverse developmental processes and immune response. We further discuss an emerging connection between extrinsic signaling and intrinsic polarity modules. These findings have further enlightened our understanding of this fascinating developmental process.
Collapse
Affiliation(s)
- Arvid Herrmann
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
27
|
Chen H, Miao Y, Wang K, Bayer M. Zygotic Embryogenesis in Flowering Plants. Methods Mol Biol 2021; 2288:73-88. [PMID: 34270005 DOI: 10.1007/978-1-0716-1335-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
In the context of plant regeneration, in vitro systems to produce embryos are frequently used. In many of these protocols, nonzygotic embryos are initiated that will produce shoot-like structures but may lack a primary root. By increasing the auxin-to-cytokinin ratio in the growth medium, roots are then regenerated in a second step. Therefore, in vitro systems might not or only partially execute a similar developmental program as employed during zygotic embryogenesis. There are, however, in vitro systems that can remarkably mimic zygotic embryogenesis such as Brassica microspore-derived embryos. In this case, the patterning process of these haploid embryos closely follows zygotic embryogenesis and all fundamental tissue types are generated in a rather similar manner. In this review, we discuss the most fundamental molecular events during early zygotic embryogenesis and hope that this brief summary can serve as a reference for studying and developing in vitro embryogenesis systems in the context of doubled haploid production.
Collapse
Affiliation(s)
- Houming Chen
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Yingjing Miao
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Kai Wang
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Martin Bayer
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany.
| |
Collapse
|
28
|
Tian R, Paul P, Joshi S, Perry SE. Genetic activity during early plant embryogenesis. Biochem J 2020; 477:3743-3767. [PMID: 33045058 PMCID: PMC7557148 DOI: 10.1042/bcj20190161] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Seeds are essential for human civilization, so understanding the molecular events underpinning seed development and the zygotic embryo it contains is important. In addition, the approach of somatic embryogenesis is a critical propagation and regeneration strategy to increase desirable genotypes, to develop new genetically modified plants to meet agricultural challenges, and at a basic science level, to test gene function. We briefly review some of the transcription factors (TFs) involved in establishing primary and apical meristems during zygotic embryogenesis, as well as TFs necessary and/or sufficient to drive somatic embryo programs. We focus on the model plant Arabidopsis for which many tools are available, and review as well as speculate about comparisons and contrasts between zygotic and somatic embryo processes.
Collapse
Affiliation(s)
- Ran Tian
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Priyanka Paul
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| |
Collapse
|
29
|
Ohnishi Y, Kawashima T. Plasmogamic Paternal Contributions to Early Zygotic Development in Flowering Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:871. [PMID: 32636867 PMCID: PMC7317025 DOI: 10.3389/fpls.2020.00871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/28/2020] [Indexed: 06/01/2023]
Abstract
Flowering plant zygotes possess complete developmental potency, and the mixture of male and female genetic and cytosolic materials in the zygote is a trigger to initiate embryo development. Plasmogamy, the fusion of the gamete cytoplasms, facilitates the cellular dynamics of the zygote. In the last decade, mutant analyses, live cell imaging-based observations, and direct observations of fertilized egg cells by in vitro fusion of isolated gametes have accelerated our understanding of the post-plasmogamic events in flowering plants including cell wall formation, gamete nuclear migration and fusion, and zygotic cell elongation and asymmetric division. Especially, it has become more evident that paternal parent-of-origin effects, via sperm cytoplasm contents, not only control canonical early zygotic development, but also activate a biparental signaling pathway critical for cell fate determination after the first cell division. Here, we summarize the plasmogamic paternal contributions via the entry of sperm contents during/after fertilization in flowering plants.
Collapse
Affiliation(s)
- Yukinosuke Ohnishi
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
30
|
Kimata Y, Ueda M. Intracellular dynamics and transcriptional regulations in plant zygotes: a case study of Arabidopsis. PLANT REPRODUCTION 2020; 33:89-96. [PMID: 32322957 DOI: 10.1007/s00497-020-00389-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Recent understandings ofArabidopsiszygote. Body axis formation is essential for the proper development of multicellular organisms. The apical-basal axis in Arabidopsis thaliana is determined by the asymmetric division of the zygote, following its cellular polarization. However, the regulatory mechanism of zygote polarization is unclear due to technical issues. The zygote is located deep in the seed (ovule) in flowers, which prevents the living dynamics of zygotes from being observed. In addition, elucidation of molecular pathways by conventional forward genetic screens was not enough because of high gene redundancy in early development. Here, we present a review introducing two new methods, which have been developed to overcome these problems. Method 1: the two-photon live-cell imaging method provides a new system to visualize the dynamics of intracellular structures in Arabidopsis zygotes, such as cytoskeletons and vacuoles. Microtubules form transverse rings and control zygote elongation, while vacuoles dynamically change their shapes along longitudinal actin filaments and support polar nuclear migration. Method 2: the transcriptome method uses isolated Arabidopsis zygotes and egg cells to reveal the gene expression profiles before and after fertilization. This approach revealed that de novo transcription occurs extensively and immediately after fertilization. Moreover, inhibition of the de novo transcription was shown to sufficiently block the zygotic division, thus indicating a strong possibility that yet unidentified zygote regulators can be found using this transcriptome approach. These new strategies in Arabidopsis will help to further our understanding of the fundamental principles regarding the proper formation of plant bodies from unicellular zygotes.
Collapse
Affiliation(s)
- Yusuke Kimata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
31
|
Jacob D, Brian J. The short and intricate life of the suspensor. PHYSIOLOGIA PLANTARUM 2020; 169:110-121. [PMID: 31808953 DOI: 10.1111/ppl.13057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/04/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The suspensor is a short-lived tissue critical for proper embryonic development in many higher plants. While the tissue was initially thought to simply suspend the embryo in the endosperm, it has been found through decades of research that it serves multiple important purposes. The suspensor has been found to be vital for proper embryo patterning and numerous studies have been undertaken into the complex transcriptional cross-talk between the suspensor and the embryo proper. Indeed, many suspensor mutants also display abnormalities in the embryo. The suspensor's role as a nutrient conduit has been shown using ultrastructural and histochemical techniques. Biochemical approaches have found that the suspensor is a centre of early embryonic hormone production in several species. The suspensor has also been frequently used as a model for programmed cell death as it shows signs of termination almost immediately upon developing. This review covers the essential functions of the suspensor throughout its short existence from multiple disciplines including structural, genetic and biochemical perspectives.
Collapse
Affiliation(s)
- Downs Jacob
- Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jones Brian
- Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
32
|
Samakovli D, Tichá T, Vavrdová T, Ovečka M, Luptovčiak I, Zapletalová V, Kuchařová A, Křenek P, Krasylenko Y, Margaritopoulou T, Roka L, Milioni D, Komis G, Hatzopoulos P, Šamaj J. YODA-HSP90 Module Regulates Phosphorylation-Dependent Inactivation of SPEECHLESS to Control Stomatal Development under Acute Heat Stress in Arabidopsis. MOLECULAR PLANT 2020; 13:612-633. [PMID: 31935463 DOI: 10.1016/j.molp.2020.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
Stomatal ontogenesis, patterning, and function are hallmarks of environmental plant adaptation, especially to conditions limiting plant growth, such as elevated temperatures and reduced water availability. The specification and distribution of a stomatal cell lineage and its terminal differentiation into guard cells require a master regulatory protein phosphorylation cascade involving the YODA mitogen-activated protein kinase kinase kinase. YODA signaling results in the activation of MITOGEN-ACTIVATED PROTEIN KINASEs (MPK3 and MPK6), which regulate transcription factors, including SPEECHLESS (SPCH). Here, we report that acute heat stress affects the phosphorylation and deactivation of SPCH and modulates stomatal density. By using complementary molecular, genetic, biochemical, and cell biology approaches, we provide solid evidence that HEAT SHOCK PROTEINS 90 (HSP90s) play a crucial role in transducing heat-stress response through the YODA cascade. Genetic studies revealed that YODA and HSP90.1 are epistatic, and they likely function linearly in the same developmental pathway regulating stomata formation. HSP90s interact with YODA, affect its cellular polarization, and modulate the phosphorylation of downstream targets, such as MPK6 and SPCH, under both normal and heat-stress conditions. Thus, HSP90-mediated specification and differentiation of the stomatal cell lineage couples stomatal development to environmental cues, providing an adaptive heat stress response mechanism in plants.
Collapse
Affiliation(s)
- Despina Samakovli
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic.
| | - Tereza Tichá
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Tereza Vavrdová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Ivan Luptovčiak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Veronika Zapletalová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Anna Kuchařová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Pavel Křenek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Yuliya Krasylenko
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Theoni Margaritopoulou
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece
| | - Loukia Roka
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece
| | - Dimitra Milioni
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Polydefkis Hatzopoulos
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
33
|
Wang K, Chen H, Miao Y, Bayer M. Square one: zygote polarity and early embryogenesis in flowering plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:128-133. [PMID: 31727540 DOI: 10.1016/j.pbi.2019.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
In the last two decades, work on auxin signaling has helped to understand many aspects of the fundamental process underlying the specification of tissue types in the plant embryo. However, the immediate steps after fertilization including the polarization of the zygote and the initial body axis formation remained poorly understood. Valuable insight into these enigmatic processes has been gained by studying fertilization in grasses. Recent technical advances in transcriptomics of developing embryos with high spatial and temporal resolution give an emerging picture of the rapid changes of the zygotic developmental program. Together with the use of live imaging of novel fluorescent marker lines, these data are now the basis of unraveling the very first steps of the embryonic patterning process.
Collapse
Affiliation(s)
- Kai Wang
- Max Planck Institute for Developmental Biology, Department of Cell Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Houming Chen
- Max Planck Institute for Developmental Biology, Department of Cell Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Yingjing Miao
- Max Planck Institute for Developmental Biology, Department of Cell Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Martin Bayer
- Max Planck Institute for Developmental Biology, Department of Cell Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| |
Collapse
|
34
|
Chen S, Liu J, Liu Y, Chen L, Sun T, Yao N, Wang HB, Liu B. BIK1 and ERECTA Play Opposing Roles in Both Leaf and Inflorescence Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1480. [PMID: 31803215 PMCID: PMC6872632 DOI: 10.3389/fpls.2019.01480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/25/2019] [Indexed: 05/29/2023]
Abstract
Plants employ cell-surface receptor-like kinases to detect extrinsic and intrinsic signals, thus make a trade-off between growth and immunity. The receptor-like cytoplasmic kinases on the cytoplasmic side act as downstream components involved in the activation, transmission, and integration of intracellular signals. In Arabidopsis thaliana, the RLCK BOTRYTIS-INDUCED KINASE1 (BIK1) associates with multiple RLKs to regulate pathogen defense responses and brassinosteroid (BR) signaling. However, little is known about the biological functions of BIK1 in developmental processes in Arabidopsis. In this study, we established that mutation of ERECTA (ER), an important RLK, counteracts the developmental effects of loss of BIK1 function. BIK1 and ER play opposing roles in leaf morphogenesis and inflorescence architecture. Moreover, we confirmed that BIK1 is required to maintain appropriate auxin response during leaf margin morphogenesis. Finally, we found that BIK1 interacts with ER-family proteins and directly phosphorylates ER. Our findings might provide novel insight into the function of BIK1 in leaf and inflorescence development.
Collapse
|
35
|
Roberts R, Hind SR, Pedley KF, Diner BA, Szarzanowicz MJ, Luciano-Rosario D, Majhi BB, Popov G, Sessa G, Oh CS, Martin GB. Mai1 Protein Acts Between Host Recognition of Pathogen Effectors and Mitogen-Activated Protein Kinase Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1496-1507. [PMID: 31251114 DOI: 10.1094/mpmi-05-19-0121-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The molecular mechanisms acting between host recognition of pathogen effectors by nucleotide-binding leucine-rich repeat receptor (NLR) proteins and mitogen-activated protein kinase (MAPK) signaling cascades are unknown. MAPKKKα (M3Kα) activates MAPK signaling leading to programmed cell death (PCD) associated with NLR-triggered immunity. We identified a tomato M3Kα-interacting protein, SlMai1, that has 80% amino acid identity with Arabidopsis brassinosteroid kinase 1 (AtBsk1). SlMai1 has a protein kinase domain and a C-terminal tetratricopeptide repeat domain that interacts with the kinase domain of M3Kα. Virus-induced gene silencing of Mai1 homologs in Nicotiana benthamiana increased susceptibility to Pseudomonas syringae and compromised PCD induced by four NLR proteins. PCD was restored by expression of a synthetic SlMai1 gene that resists silencing. Expression of AtBsk1 did not restore PCD in Mai1-silenced plants, suggesting SlMai1 is functionally divergent from AtBsk1. PCD caused by overexpression of M3Kα or MKK2 was unaffected by Mai1 silencing, suggesting Mai1 acts upstream of these proteins. Coexpression of Mai1 with M3Kα in leaves enhanced MAPK phosphorylation and accelerated PCD. These findings suggest Mai1 is a molecular link acting between host recognition of pathogens and MAPK signaling.
Collapse
Affiliation(s)
- Robyn Roberts
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Sarah R Hind
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Kerry F Pedley
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Benjamin A Diner
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | | | | | - Bharat B Majhi
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Georgy Popov
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Guido Sessa
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Chang-Sik Oh
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
36
|
Evolution, Initiation, and Diversity in Early Plant Embryogenesis. Dev Cell 2019; 50:533-543. [DOI: 10.1016/j.devcel.2019.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022]
|