1
|
Huang Y, Wang Y, Huang X, Yu X. Unveiling the overlooked fungi: the vital of gut fungi in inflammatory bowel disease and colorectal cancer. Gut Pathog 2024; 16:59. [PMID: 39407244 PMCID: PMC11481806 DOI: 10.1186/s13099-024-00651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The fungi of the human microbiota play important roles in the nutritional metabolism and immunological balance of the host. Recently, research has increasingly emphasised the role of fungi in modulating inflammation in intestinal diseases and maintaining health in this environment. It is therefore necessary to understand more clearly the interactions and mechanisms of the microbiota/pathogen/host relationship and the resulting inflammatory processes, as well as to offer new insights into the prevention, diagnosis and treatment of inflammatory bowel disease (IBD), colorectal cancer (CRC) and other intestinal pathologies. In this review, we comprehensively elucidate the fungal-associated pathogenic mechanisms of intestinal inflammation in IBD and related CRC, with an emphasis on three main aspects: the direct effects of fungi and their metabolites on the host, the indirect effects mediated by interactions with other intestinal microorganisms and the immune regulation of the host. Understanding these mechanisms will enable the development of innovative approaches based on the use of fungi from the resident human microbiota such as dietary interventions, fungal probiotics and faecal microbiota transplantation in the prevention, diagnosis and treatment of intestinal diseases.
Collapse
Affiliation(s)
- Yilin Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yang Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaotian Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Xiaomin Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Dallavilla T, Galiè S, Sambruni G, Borin S, Fazio N, Fumagalli-Romario U, Manzo T, Nezi L, Schaefer MH. Differences in the molecular organisation of tumours along the colon are linked to interactions within the tumour ecosystem. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167311. [PMID: 38909851 DOI: 10.1016/j.bbadis.2024.167311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Tumours exhibit significant heterogeneity in their molecular profiles across patients, largely influenced by the tissue of origin, where certain driver gene mutations are predominantly associated with specific cancer types. Here, we unveil an additional layer of complexity: some cancer types display anatomic location-specific mutation profiles akin to tissue-specificity. To better understand this phenomenon, we concentrate on colon cancer. While prior studies have noted changes of the frequency of molecular alterations along the colon, the underlying reasons and whether those changes occur rather gradual or are distinct between the left and right colon, remain unclear. Developing and leveraging stringent statistical models on molecular data from 522 colorectal tumours from The Cancer Genome Atlas, we reveal disparities in molecular properties between the left and right colon affecting many genes. Interestingly, alterations in genes responsive to environmental cues and properties of the tumour ecosystem, including metabolites which we quantify in a cohort of 27 colorectal cancer patients, exhibit continuous trends along the colon. Employing network methodologies, we uncover close interactions between metabolites and genes, including drivers of colon cancer, showing continuous abundance or alteration profiles. This underscores how anatomic biases in the composition and interactions within the tumour ecosystem help explaining gradients of carcinogenesis along the colon.
Collapse
Affiliation(s)
- Tiziano Dallavilla
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Serena Galiè
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Gaia Sambruni
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Simona Borin
- Digestive Surgery, European Institute of Oncology-IRCCS, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | | | - Teresa Manzo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Martin H Schaefer
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| |
Collapse
|
4
|
Zrelli M, Ferjani A, Nouira M, Hammami S, Ghithia N, Mouelhi L, Debbeche R, Raoult D, Boutiba Ben Boubaker I. Diversity in gut microbiota among colorectal cancer patients: findings from a case-control study conducted at a Tunisian University Hospital. Discov Oncol 2024; 15:402. [PMID: 39225843 PMCID: PMC11372012 DOI: 10.1007/s12672-024-01232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE Globally, colorectal cancer (CRC) is among the most prevalent cancers. One distinctive feature of colorectal cancer is its close relationship to the gut microbiota, which is a crucial component of the tumor microenvironment. Over the last ten years, research has demonstrated that colorectal cancer is accompanied with dysbiosis of gut bacteria, fungi, viruses, and Archaea, and that these alterations may be causal. OBJECTIVES This study aimed to evaluate the disruption of the microorganism composition in the intestine, especially bacteria and to determine their relationship with colorectal cancer. METHODS An evaluation system for determining colorectal cancer (CRC) risk and prognosis can be established more easily with the help of accurate gut microbiota profiling. Stool samples from 14 CRC patients and 13 controls were collected and the flora relative abundance was measured using targeted quantitative PCR (qPCR) assays to evaluate diagnostic potential of selected biomarkers: Streptococcus gallolyticus and Enterococcus faecalis. Culture and MALDI-TOF mass spectrometry were coupled to identify the gut microbiota in both colorectal cancer and control groups. RESULTS Compared with controls, the gut microbiota of CRC patients showed an increase in the abundance of Enterococcus, Fusobacterium and Streptococcus. At the species level, the CRC enriched bacterium including Escherichia coli, Enterococcus faecalis, Fusobacterium nucleatum, Streptococcus gallolyticus, Flavoni fractorplautii and Eggerthella lenta acted as promising biomarkers for early detection of CRC. CONCLUSION This study highlights the potential of gut microbiota biomarkers as a promising non-invasive tool for the accurate detection and distinction of individuals with CRC.
Collapse
Affiliation(s)
- Mariem Zrelli
- Faculty of Medicine of Tunis, Research Laboratory ''Antimicrobial Resistance'' LR99ES09, University of Tunis El Manar, 1007, Tunis, Tunisia.
- Laboratory of Microbiology, Charles Nicolle Hospital, 1006, Tunis, Tunisia.
| | - Asma Ferjani
- Faculty of Medicine of Tunis, Research Laboratory ''Antimicrobial Resistance'' LR99ES09, University of Tunis El Manar, 1007, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, 1006, Tunis, Tunisia
| | - Mariem Nouira
- Epidemiology Department, Charles Nicolle Hospital, Faculty of Medicine of Tunis, University of Tunis El Manar, 1006, Tunis, Tunisia
| | - Sirine Hammami
- Department of Gastroenterology, Charles Nicolle Hospital, 1006, Tunis, Tunisia
| | - Nadine Ghithia
- Department of Gastroenterology, Charles Nicolle Hospital, 1006, Tunis, Tunisia
| | - Leila Mouelhi
- Department of Gastroenterology, Charles Nicolle Hospital, 1006, Tunis, Tunisia
| | - Radhouane Debbeche
- Department of Gastroenterology, Charles Nicolle Hospital, 1006, Tunis, Tunisia
| | - Didier Raoult
- IRD, APHM, MEPHI, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| | - Ilhem Boutiba Ben Boubaker
- Faculty of Medicine of Tunis, Research Laboratory ''Antimicrobial Resistance'' LR99ES09, University of Tunis El Manar, 1007, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, 1006, Tunis, Tunisia
| |
Collapse
|
5
|
Guo Y, Ren C, He Y, Wu Y, Yang X. Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review). Mol Med Rep 2024; 30:157. [PMID: 38994768 PMCID: PMC11258600 DOI: 10.3892/mmr.2024.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/19/2024] [Indexed: 07/13/2024] Open
Abstract
The intestines are the largest barrier organ in the human body. The intestinal barrier plays a crucial role in maintaining the balance of the intestinal environment and protecting the intestines from harmful bacterial invasion. Single‑cell RNA sequencing technology allows the detection of the different cell types in the intestine in two dimensions and the exploration of cell types that have not been fully characterized. The intestinal mucosa is highly complex in structure, and its proper functioning is linked to multiple structures in the proximal‑distal intestinal and luminal‑mucosal axes. Spatial localization is at the core of the efforts to explore the interactions between the complex structures. Spatial transcriptomics (ST) is a method that allows for comprehensive tissue analysis and the acquisition of spatially separated genetic information from individual cells, while preserving their spatial location and interactions. This approach also prevents the loss of fragile cells during tissue disaggregation. The emergence of ST technology allows us to spatially dissect enzymatic processes and interactions between multiple cells, genes, proteins and signals in the intestine. This includes the exchange of oxygen and nutrients in the intestine, different gradients of microbial populations and the role of extracellular matrix proteins. This regionally precise approach to tissue studies is gaining more acceptance and is increasingly applied in the investigation of disease mechanisms related to the gastrointestinal tract. Therefore, this review summarized the application of ST in gastrointestinal diseases.
Collapse
Affiliation(s)
- Yajing Guo
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Chao Ren
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yuxi He
- Department of Digestive Medicine, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| | - Yue Wu
- Department of Digestive Medicine, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| | - Xiaojun Yang
- Department of Digestive Medicine, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| |
Collapse
|
6
|
Xiong Y, Zhang X, Niu X, Zhang L, Sheng Y, Xu A. Causal relationship between gut microbiota and gynecological tumor: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1417904. [PMID: 39176273 PMCID: PMC11339882 DOI: 10.3389/fmicb.2024.1417904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Previous research has established associations between alterations in gut microbiota composition and various gynecologic tumors. However, establishing a causal relationship between gut microbiota and these tumors remains necessary. This study employs a two-sample Mendelian randomization (MR) approach to investigate causality, aiming to identify pathogenic bacterial communities potentially involved in gynecologic tumor development. Methods Data from the MiBioGen consortium's Genome-Wide Association Study (GWAS) on gut microbiota were used as the exposure variable. Four common gynecologic neoplasms, including uterine fibroids (UF), endometrial cancer (EC), ovarian cancer (OC), and cervical cancer (CC), were selected as outcome variables. Single-nucleotide polymorphisms (SNPs) significantly associated with gut microbiota were chosen as instrumental variables (IVs). The inverse variance-weighted (IVW) method was used as the primary MR analysis to assess the causal relationship. External validation An was conducted using an independent. Sensitivity analyses were performed to ensure robustness. Reverse MR analysis was also conducted to assess potential reverse causation. Results Combining discovery and validation cohorts, we found that higher relative abundance of Lachnospiraceae is associated with lower UF risk (OR: 0.882, 95% CI: 0.793-0.982, P = 0.022). Conversely, higher OC incidence is associated with increased relative abundance of Lachnospiraceae (OR: 1.329, 95% CI: 1.019-1.732, P = 0.036). Sensitivity analyses confirmed these findings' reliability. Reverse MR analysis showed no evidence of reverse causation between UF, OC, and Lachnospiraceae. Discussion This study establishes a causal relationship between Lachnospiraceae relative abundance and both UF and OC. These findings provide new insights into the potential role of gut microbiota in mechanisms underlying gynecological tumors development.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiguo Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
8
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
9
|
Intarajak T, Udomchaiprasertkul W, Khoiri AN, Sutheeworapong S, Kusonmano K, Kittichotirat W, Thammarongtham C, Cheevadhanarak S. Distinct gut microbiomes in Thai patients with colorectal polyps. World J Gastroenterol 2024; 30:3336-3355. [PMID: 39086748 PMCID: PMC11287419 DOI: 10.3748/wjg.v30.i27.3336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Colorectal polyps that develop via the conventional adenoma-carcinoma sequence [e.g., tubular adenoma (TA)] often progress to malignancy and are closely associated with changes in the composition of the gut microbiome. There is limited research concerning the microbial functions and gut microbiomes associated with colorectal polyps that arise through the serrated polyp pathway, such as hyperplastic polyps (HP). Exploration of microbiome alterations associated with HP and TA would improve the understanding of mechanisms by which specific microbes and their metabolic pathways contribute to colorectal carcinogenesis. AIM To investigate gut microbiome signatures, microbial associations, and microbial functions in HP and TA patients. METHODS Full-length 16S rRNA sequencing was used to characterize the gut microbiome in stool samples from control participants without polyps [control group (CT), n = 40], patients with HP (n = 52), and patients with TA (n = 60). Significant differences in gut microbiome composition and functional mechanisms were identified between the CT group and patients with HP or TA. Analytical techniques in this study included differential abundance analysis, co-occurrence network analysis, and differential pathway analysis. RESULTS Colorectal cancer (CRC)-associated bacteria, including Streptococcus gallolyticus (S. gallolyticus), Bacteroides fragilis, and Clostridium symbiosum, were identified as characteristic microbial species in TA patients. Mediterraneibacter gnavus, associated with dysbiosis and gastrointestinal diseases, was significantly differentially abundant in the HP and TA groups. Functional pathway analysis revealed that HP patients exhibited enrichment in the sulfur oxidation pathway exclusively, whereas TA patients showed dominance in pathways related to secondary metabolite biosynthesis (e.g., mevalonate); S. gallolyticus was a major contributor. Co-occurrence network and dynamic network analyses revealed co-occurrence of dysbiosis-associated bacteria in HP patients, whereas TA patients exhibited co-occurrence of CRC-associated bacteria. Furthermore, the co-occurrence of SCFA-producing bacteria was lower in TA patients than HP patients. CONCLUSION This study revealed distinct gut microbiome signatures associated with pathways of colorectal polyp development, providing insights concerning the roles of microbial species, functional pathways, and microbial interactions in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Thoranin Intarajak
- Bioinformatics Unit, Chulabhorn Royal Academy, Lak Si 10210, Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | | | - Ahmad Nuruddin Khoiri
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Sawannee Sutheeworapong
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Kanthida Kusonmano
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Weerayuth Kittichotirat
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Chinae Thammarongtham
- National Center for Genetic Engineering and Biotechnology, King Mongkut's University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bank Khun Thian 10150, Bangkok, Thailand
- Fungal Biotechnology Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| |
Collapse
|
10
|
Jayakrishnan TT, Sangwan N, Barot SV, Farha N, Mariam A, Xiang S, Aucejo F, Conces M, Nair KG, Krishnamurthi SS, Schmit SL, Liska D, Rotroff DM, Khorana AA, Kamath SD. Multi-omics machine learning to study host-microbiome interactions in early-onset colorectal cancer. NPJ Precis Oncol 2024; 8:146. [PMID: 39020083 PMCID: PMC11255257 DOI: 10.1038/s41698-024-00647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I-IV CRC (n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella, and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Thejus T Jayakrishnan
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Naseer Sangwan
- Microbial Sequencing & Analytics Resource (MSAAR), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shimoli V Barot
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Farha
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Arshiya Mariam
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH, USA
| | - Shao Xiang
- Department of Surgery, Cleveland Clinic, Cleveland, OH, USA
| | | | - Madison Conces
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Hematology-Oncology, University Hospital Seidman Cancer Center, Cleveland, OH, USA
| | - Kanika G Nair
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - Smitha S Krishnamurthi
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - Stephanie L Schmit
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - David Liska
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
- Department of Colorectal Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH, USA
| | - Alok A Khorana
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - Suneel D Kamath
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
11
|
Ferchiou S, Caza F, Villemur R, Betoulle S, St-Pierre Y. From shells to sequences: A proof-of-concept study for on-site analysis of hemolymphatic circulating cell-free DNA from sentinel mussels using Nanopore technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172969. [PMID: 38754506 DOI: 10.1016/j.scitotenv.2024.172969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Blue mussels are often abundant and widely distributed in polar marine coastal ecosystems. Because of their wide distribution, ecological importance, and relatively stationary lifestyle, bivalves have long been considered suitable indicators of ecosystem health and changes. Monitoring the population dynamics of blue mussels can provide information on the overall biodiversity, species interactions, and ecosystem functioning. In the present work, we combined the concept of liquid biopsy (LB), an emerging concept in medicine based on the sequencing of free circulating DNA, with the Oxford Nanopore Technologies (ONT) platform using a portable laboratory in a remote area. Our results demonstrate that this platform is ideally suited for sequencing hemolymphatic circulating cell-free DNA (ccfDNA) fragments found in blue mussels. The percentage of non-self ccfDNA accounted for >50 % of ccfDNA at certain sampling Sites, allowing the quick, on-site acquisition of a global view of the biodiversity of a coastal marine ecosystem. These ccfDNA fragments originated from viruses, bacteria, plants, arthropods, algae, and multiple Chordata. Aside from non-self ccfDNA, we found DNA fragments from all 14 blue mussel chromosomes, as well as those originating from the mitochondrial genomes. However, the distribution of nuclear and mitochondrial DNA was significantly different between Sites. Similarly, analyses between various sampling Sites showed that the biodiversity varied significantly within microhabitats. Our work shows that the ONT platform is well-suited for LB in sentinel blue mussels in remote and challenging conditions, enabling faster fieldwork for conservation strategies and resource management in diverse settings.
Collapse
Affiliation(s)
- Sophia Ferchiou
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - France Caza
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Richard Villemur
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Stéphane Betoulle
- Université Reims Champagne-Ardenne, UMR-I 02 SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Campus Moulin de la Housse, 51687 Reims, France
| | - Yves St-Pierre
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
12
|
Yang M, Zheng X, Fan J, Cheng W, Yan T, Lai Y, Zhang N, Lu Y, Qi J, Huo Z, Xu Z, Huang J, Jiao Y, Liu B, Pang R, Zhong X, Huang S, Luo G, Lee G, Jobin C, Eren AM, Chang EB, Wei H, Pan T, Wang X. Antibiotic-Induced Gut Microbiota Dysbiosis Modulates Host Transcriptome and m 6A Epitranscriptome via Bile Acid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307981. [PMID: 38713722 PMCID: PMC11267274 DOI: 10.1002/advs.202307981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression.
Collapse
Affiliation(s)
- Meng Yang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Xiaoqi Zheng
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
| | - Jiajun Fan
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Wei Cheng
- College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Tong‐Meng Yan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacau999078China
| | - Yushan Lai
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Nianping Zhang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Yi Lu
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
| | - Jiali Qi
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Zhengyi Huo
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Zihe Xu
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
| | - Jia Huang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Yuting Jiao
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
| | - Biaodi Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and HealthState Key Laboratory of Applied Microbiology Southern ChinaInstitute of MicrobiologyGuangdong Academy of SciencesGuangzhou510070China
| | - Xiang Zhong
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Shi Huang
- Faculty of DentistryThe University of Hong KongHong Kong SARChina
| | - Guan‐Zheng Luo
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Gina Lee
- Department of Microbiology and Molecular GeneticsChao Family Comprehensive Cancer CenterUniversity of California Irvine School of MedicineIrvineCA92697USA
| | - Christian Jobin
- Department of MedicineUniversity of Florida College of MedicineGainesvilleFL32610USA
| | - A. Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity26129OldenburgGermany
- Institute for Chemistry and Biology of the Marine EnvironmentUniversity of Oldenburg26129OldenburgGermany
| | - Eugene B Chang
- Department of MedicineKnapp Center for Biomedical DiscoveryThe University of Chicago Knapp Center for Biomedical DiscoveryChicagoIL60637USA
| | - Hong Wei
- College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Tao Pan
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIL60637USA
| | - Xiaoyun Wang
- School of Life SciencesSouth China Normal UniversityGuangzhou510631China
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
13
|
Liu Z, Zhang Q, Zhang H, Yi Z, Ma H, Wang X, Wang J, Liu Y, Zheng Y, Fang W, Huang P, Liu X. Colorectal cancer microbiome programs DNA methylation of host cells by affecting methyl donor metabolism. Genome Med 2024; 16:77. [PMID: 38840170 PMCID: PMC11151592 DOI: 10.1186/s13073-024-01344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) arises from complex interactions between host and environment, which include the gut and tissue microbiome. It is hypothesized that epigenetic regulation by gut microbiota is a fundamental interface by which commensal microbes dynamically influence intestinal biology. The aim of this study is to explore the interplay between gut and tissue microbiota and host DNA methylation in CRC. METHODS Metagenomic sequencing of fecal samples was performed on matched CRC patients (n = 18) and healthy controls (n = 18). Additionally, tissue microbiome was profiled with 16S rRNA gene sequencing on tumor (n = 24) and tumor-adjacent normal (n = 24) tissues of CRC patients, while host DNA methylation was assessed through whole-genome bisulfite sequencing (WGBS) in a subset of 13 individuals. RESULTS Our analysis revealed substantial alterations in the DNA methylome of CRC tissues compared to adjacent normal tissues. An extensive meta-analysis, incorporating publicly available and in-house data, identified significant shifts in microbial-derived methyl donor-related pathways between tumor and adjacent normal tissues. Of note, we observed a pronounced enrichment of microbial-associated CpGs within the promoter regions of genes in adjacent normal tissues, a phenomenon notably absent in tumor tissues. Furthermore, we established consistent and recurring associations between methylation patterns of tumor-related genes and specific bacterial taxa. CONCLUSIONS This study emphasizes the pivotal role of the gut microbiota and pathogenic bacteria in dynamically shaping DNA methylation patterns, impacting physiological homeostasis, and contributing to CRC tumorigenesis. These findings provide valuable insights into the intricate host-environment interactions in CRC development and offer potential avenues for therapeutic interventions in this disease.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qingqing Zhang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Zhang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhongyuan Yi
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huihui Ma
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyi Wang
- Core Facility Center, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Jingjing Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China
| | - Yang Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Zheng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ping Huang
- Department of Surgery, The Third Affiliated Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China.
| |
Collapse
|
14
|
Guan Y, Wu D, Wang H, Liu N. Microbiome-driven anticancer therapy: A step forward from natural products. MLIFE 2024; 3:219-230. [PMID: 38948147 PMCID: PMC11211674 DOI: 10.1002/mlf2.12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 07/02/2024]
Abstract
Human microbiomes, considered as a new emerging and enabling cancer hallmark, are increasingly recognized as critical effectors in cancer development and progression. Manipulation of microbiome revitalizing anticancer therapy from natural products shows promise toward improving cancer outcomes. Herein, we summarize our current understanding of the human microbiome-driven molecular mechanisms impacting cancer progression and anticancer therapy. We highlight the potential translational and clinical implications of natural products for cancer prevention and treatment by developing targeted therapeutic strategies as adjuvants for chemotherapy and immunotherapy against tumorigenesis. The challenges and opportunities for future investigations using modulation of the microbiome for cancer treatment are further discussed in this review.
Collapse
Affiliation(s)
- Yunxuan Guan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Di Wu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
15
|
Nguyen CB, Vaishampayan UN. Clinical Applications of the Gut Microbiome in Genitourinary Cancers. Am Soc Clin Oncol Educ Book 2024; 44:e100041. [PMID: 38788173 DOI: 10.1200/edbk_100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Recently recognized as one of the hallmarks of cancer, the microbiome consists of symbiotic microorganisms that play pivotal roles in carcinogenesis, the tumor microenvironment, and responses to therapy. With recent advances in microbiome metagenomic sequencing, a growing body of work has demonstrated that changes in gut microbiome composition are associated with differential responses to immune checkpoint inhibitors (ICIs) because of alterations in cytokine signaling and cytotoxic T-cell recruitment. Therefore, strategies to shape the gut microbiome into a more favorable, immunogenic profile may lead to improved responses with ICIs. Immunotherapy is commonly used in genitourinary (GU) cancers such as renal cell carcinoma, urothelial cancer, and to a limited extent, prostate cancer. However, a subset of patients do not derive clinical benefit with ICIs. Gut microbiome-based interventions are of particular interest given the potential to boost responses to ICIs in preclinical and early-phase prospective studies. Novel approaches using probiotic therapy (live bacterial supplementation) and fecal microbiota transplantation in patients with GU cancers are currently under investigation.
Collapse
Affiliation(s)
- Charles B Nguyen
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Ulka N Vaishampayan
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
16
|
Sadeghi M, Mestivier D, Sobhani I. Contribution of pks+ Escherichia coli ( E. coli) to Colon Carcinogenesis. Microorganisms 2024; 12:1111. [PMID: 38930493 PMCID: PMC11205849 DOI: 10.3390/microorganisms12061111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health concern, ranking second in mortality and third in frequency among cancers worldwide. While only a small fraction of CRC cases can be attributed to inherited genetic mutations, the majority arise sporadically due to somatic mutations. Emerging evidence reveals gut microbiota dysbiosis to be a contributing factor, wherein polyketide synthase-positive Escherichia coli (pks+ E. coli) plays a pivotal role in CRC pathogenesis. pks+ bacteria produce colibactin, a genotoxic protein that causes deleterious effects on DNA within host colonocytes. In this review, we examine the role of the gut microbiota in colon carcinogenesis, elucidating how colibactin-producer bacteria induce DNA damage, promote genomic instability, disrupt the gut epithelial barrier, induce mucosal inflammation, modulate host immune responses, and influence cell cycle dynamics. Collectively, these actions foster a microenvironment conducive to tumor initiation and progression. Understanding the mechanisms underlying pks+ bacteria-mediated CRC development may pave the way for mass screening, early detection of tumors, and therapeutic strategies such as microbiota modulation, bacteria-targeted therapy, checkpoint inhibition of colibactin production and immunomodulatory pathways.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Denis Mestivier
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Iradj Sobhani
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Henri Mondor Hospital, 94010 Créteil, France
| |
Collapse
|
17
|
Udayasuryan B, Zhou Z, Ahmad RN, Sobol P, Deng C, Nguyen TTD, Kodikalla S, Morrison R, Goswami I, Slade DJ, Verbridge SS, Lu C. Fusobacterium nucleatum infection modulates the transcriptome and epigenome of HCT116 colorectal cancer cells in an oxygen-dependent manner. Commun Biol 2024; 7:551. [PMID: 38720110 PMCID: PMC11079022 DOI: 10.1038/s42003-024-06201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Fusobacterium nucleatum, a gram-negative oral bacterium, has been consistently validated as a strong contributor to the progression of several types of cancer, including colorectal (CRC) and pancreatic cancer. While previous in vitro studies have shown that intracellular F. nucleatum enhances malignant phenotypes such as cell migration, the dependence of this regulation on features of the tumor microenvironment (TME) such as oxygen levels are wholly uncharacterized. Here we examine the influence of hypoxia in facilitating F. nucleatum invasion and its effects on host responses focusing on changes in the global epigenome and transcriptome. Using a multiomic approach, we analyze epigenomic alterations of H3K27ac and global transcriptomic alterations sustained within a hypoxia and normoxia conditioned CRC cell line HCT116 at 24 h following initial infection with F. nucleatum. Our findings reveal that intracellular F. nucleatum activates signaling pathways and biological processes in host cells similar to those induced upon hypoxia conditioning in the absence of infection. Furthermore, we show that a hypoxic TME favors F. nucleatum invasion and persistence and therefore infection under hypoxia may amplify malignant transformation by exacerbating the effects induced by hypoxia alone. These results motivate future studies to investigate host-microbe interactions in tumor tissue relevant conditions that more accurately define parameters for targeted cancer therapies.
Collapse
Affiliation(s)
- Barath Udayasuryan
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Raffae N Ahmad
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Polina Sobol
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Tam T D Nguyen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Shivanie Kodikalla
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Ryan Morrison
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Ishan Goswami
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Daniel J Slade
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Scott S Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
18
|
Masheghati F, Asgharzadeh MR, Jafari A, Masoudi N, Maleki-Kakelar H. The role of gut microbiota and probiotics in preventing, treating, and boosting the immune system in colorectal cancer. Life Sci 2024; 344:122529. [PMID: 38490297 DOI: 10.1016/j.lfs.2024.122529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
The gut microbiome plays a significant role in developing colorectal cancer (CRC). The gut microbiome usually acts as a protective barrier against harmful pathogens and infections in the intestine, while also regulating inflammation by affecting the human immune system. The gut microbiota and probiotics play a role not only in intestinal inflammation associated with tumor formation but also in regulating anti-cancer immune response. As a result, they associated with tumor progression and the effectiveness of anti-cancer therapies. Research indicates that gut microbiota and probiotics can be used as biomarkers to predict the impact of immunotherapy and enhance its efficacy in treating CRC by regulating it. This review examines the importance of gut microbiota and probiotics in the development and progression of CRC, as well as their synergistic impact on anti-cancer treatments.
Collapse
Affiliation(s)
- Forough Masheghati
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Masoudi
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of General Surgery, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
19
|
Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024; 16:1066. [PMID: 38613099 PMCID: PMC11013902 DOI: 10.3390/nu16071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
20
|
Kemp KM, Orihuela CA, Morrow CD, Judd SE, Evans RR, Mrug S. Associations between dietary habits, socio-demographics and gut microbial composition in adolescents. Br J Nutr 2024; 131:809-820. [PMID: 37850446 PMCID: PMC10864997 DOI: 10.1017/s0007114523002271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
The relationship between dietary habits and microbiota composition during adolescence has not been well examined. This is a crucial knowledge gap to fill considering that diet-microbiota interactions influence neurodevelopment, immune system maturation and metabolic regulation. This study examined the associations between diet and the gut microbiota in a school-based sample of 136 adolescents (Mage = 12·1 years; age range 11-13 years; 48 % female; 47 % Black, 38 % non-Hispanic White, 15 % Hispanic or other minorities) from urban, suburban and rural areas in the Southeast USA. Adolescents completed the Rapid Eating Assessment for Participants and provided stool samples for 16S ribosomal RNA gene sequencing. Parents reported their child and family socio-demographic characteristics. The associations between diet and socio-demographics with gut microbiota diversity and abundance were analysed using multivariable regression models. Child race and ethnicity, sex, socio-economic status and geographic locale contributed to variation within microbiota composition (β-diversity). Greater consumption of processed meat was associated with a lower microbial α-diversity after adjusting for socio-demographic variables. Multi-adjusted models showed that frequent consumption of nutrient-poor, energy-dense foods (e.g. sugar-sweetened beverages, fried foods, sweets) was negatively associated with abundances of genera in the family Lachnospiraceae (Anaerostipes, Fusicatenibacter and Roseburia), which are thought to play a beneficial role in host health through their production of short-chain fatty acids (SCFAs). These results provide new insights into the complex relationships among socio-demographic factors, diet and gut microbiota during adolescence. Adolescence may represent a critical window of opportunity to promote healthy eating practices that shape a homoeostatic gut microbiota with life-long benefits.
Collapse
Affiliation(s)
- Keri M. Kemp
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Catheryn A. Orihuela
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suzanne E. Judd
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Retta R. Evans
- Department of Human Studies, School of Education, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
Nkoh JN, Shang C, Okeke ES, Ejeromedoghene O, Oderinde O, Etafo NO, Mgbechidinma CL, Bakare OC, Meugang EF. Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120312. [PMID: 38340667 DOI: 10.1016/j.jenvman.2024.120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The increased use of antibiotics by humans for various purposes has left the environment polluted. Antibiotic pollution remediation is challenging because antibiotics exist in trace amounts and only highly sensitive detection techniques could be used to quantify them. Nevertheless, their trace quantity is not a hindrance to their transfer along the food chain, causing sensitization and the development of antibiotic resistance. Despite an increase in the literature on antibiotic pollution and the development and transfer of antibiotic-resistant genes (ARGs), little attention has been given to the behavior of antibiotics at the soil-solution interface and how this affects antibiotic adsorption-desorption interactions and subsequent uptake and transformation by plants. Thus, this review critically examines the interactions and possible degradation mechanisms of antibiotics in soil and the link between antibiotic soil-solution chemistry and uptake by plants. Also, different factors influencing antibiotic mobility in soil and the transfer of ARGs from one organism to another were considered. The mechanistic and critical analyses revealed that: (a) the charge characteristics of antibiotics at the soil-root interface determine whether they are adsorbed to soil or taken up by plants; (b) antibiotics that avoid soil colloids and reach soil pore water can be absorbed by plant roots, but their translocation to the stem and leaves depends on the ionic state of the molecule; (c) few studies have explored how plants adapt to antibiotic pollution and the transformation of antibiotics in plants; and (d) the persistence of antibiotics in cropland soils can be influenced by the content of soil organic matter, coexisting ions, and fertilization practices. Future research should focus on the soil/solution-antibiotic-plant interactions to reveal detailed mechanisms of antibiotic transformation by plants and whether plant-transformed antibiotics could be of environmental risk.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China.
| | - Onome Ejeromedoghene
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila Mexico
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Elvira Foka Meugang
- School of Metallurgy & Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| |
Collapse
|
22
|
Cocomazzi G, Del Pup L, Contu V, Maggio G, Parmegiani L, Ciampaglia W, De Ruvo D, Faioli R, Maglione A, Baldini GM, Baldini D, Pazienza V. Gynecological Cancers and Microbiota Dynamics: Insights into Pathogenesis and Therapy. Int J Mol Sci 2024; 25:2237. [PMID: 38396914 PMCID: PMC10889201 DOI: 10.3390/ijms25042237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the relationship between the microbiota and various aspects of health has become a focal point of scientific investigation. Although the most studied microbiota concern the gastrointestinal tract, recently, the interest has also been extended to other body districts. Female genital tract dysbiosis and its possible impact on pathologies such as endometriosis, polycystic ovary syndrome (PCOS), pelvic inflammatory disease (PID), and gynecological cancers have been unveiled. The incursion of pathogenic microbes alters the ecological equilibrium of the vagina, triggering inflammation and compromising immune defense, potentially fostering an environment conducive to cancer development. The most common types of gynecological cancer include cervical, endometrial, and ovarian cancer, which occur in women of any age but especially in postmenopausal women. Several studies highlighted that a low presence of lactobacilli at the vaginal level, and consequently, in related areas (such as the endometrium and ovary), correlates with a higher risk of gynecological pathology and likely contributes to increased incidence and worse prognosis of gynecological cancers. The complex interplay between microbial communities and the development, progression, and treatment of gynecologic malignancies is a burgeoning field not yet fully understood. The intricate crosstalk between the gut microbiota and systemic inflammation introduces a new dimension to our understanding of gynecologic cancers. The objective of this review is to focus attention on the association between vaginal microbiota and gynecological malignancies and provide detailed knowledge for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Cocomazzi
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| | - Lino Del Pup
- Gynecological Endocrinology and Fertility, University Sanitary Agency Friuli Central (ASUFC), Via Pozzuolo, 330, 33100 Udine, FVG, Italy;
| | - Viviana Contu
- Integrative Medicine Unit, Humanitas Gradenigo, Corso Regina Margherita 8/10, 10153 Torino, FC, Italy;
| | - Gabriele Maggio
- Pia Fondazione Cardinale Giovanni Panico, Via S. Pio X, 4, 73039 Tricase, LE, Italy;
| | - Lodovico Parmegiani
- Next Fertility GynePro, NextClinics International Via T. Cremona 8, 40137 Bologna, RE, Italy; (L.P.); (W.C.)
| | - Walter Ciampaglia
- Next Fertility GynePro, NextClinics International Via T. Cremona 8, 40137 Bologna, RE, Italy; (L.P.); (W.C.)
| | - Daniele De Ruvo
- Gynaecology, Obstetrics and Reproductive Medicine Affidea Promea, Via Menabrea 14, 10126 Torino, TO, Italy;
| | - Raffaele Faioli
- Gynecology and Obstetrics, IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, FG, Italy; (R.F.); (A.M.)
| | - Annamaria Maglione
- Gynecology and Obstetrics, IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, FG, Italy; (R.F.); (A.M.)
| | - Giorgio Maria Baldini
- IVF Center, Momò Fertilife, 76011 Bisceglie Via Cala dell’Arciprete, 76011 Bisceglie, BT, Italy; (G.M.B.); (D.B.)
| | - Domenico Baldini
- IVF Center, Momò Fertilife, 76011 Bisceglie Via Cala dell’Arciprete, 76011 Bisceglie, BT, Italy; (G.M.B.); (D.B.)
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| |
Collapse
|
23
|
Sadeghi M, Mestivier D, Carbonnelle E, Benamouzig R, Khazaie K, Sobhani I. Loss of symbiotic and increase of virulent bacteria through microbial networks in Lynch syndrome colon carcinogenesis. Front Oncol 2024; 13:1313735. [PMID: 38375206 PMCID: PMC10876293 DOI: 10.3389/fonc.2023.1313735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/14/2023] [Indexed: 02/21/2024] Open
Abstract
Purpose Through a pilot study, we performed whole gut metagenomic analysis in 17 Lynch syndrome (LS) families, including colorectal cancer (CRC) patients and their healthy first-degree relatives. In a second asymptomatic LS cohort (n=150) undergoing colonoscopy-screening program, individuals with early precancerous lesions were compared to those with a normal colonoscopy. Since bacteria are organized into different networks within the microbiota, we compared related network structures in patients and controls. Experimental design Fecal prokaryote DNA was extracted prior to colonoscopy for whole metagenome (n=34, pilot study) or 16s rRNA sequencing (validation study). We characterized bacteria taxonomy using Diamond/MEGAN6 and DADA2 pipelines and performed differential abundances using Shaman website. We constructed networks using SparCC inference tools and validated the construction's accuracy by performing qPCR on selected bacteria. Results Significant differences in bacterial communities in LS-CRC patients were identified, with an enrichment of virulent bacteria and a depletion of symbionts compared to their first-degree relatives. Bacteria taxa in LS asymptomatic individuals with colonic precancerous lesions (n=79) were significantly different compared to healthy individuals (n=71). The main bacterial network structures, constructed based on bacteria-bacteria correlations in CRC (pilot study) and in asymptomatic precancerous patients (validation-study), showed a different pattern than in controls. It was characterized by virulent/symbiotic co-exclusion in both studies and illustrated (validation study) by a higher Escherichia/Bifidobacterium ratio, as assessed by qPCR. Conclusion Enhanced fecal virulent/symbiotic bacteria ratios influence bacterial network structures. As an early event in colon carcinogenesis, these ratios can be used to identify asymptomatic LS individual with a higher risk of CRC.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- EA7375 –EC2M3: Early detection of Colonic Cancer by using Microbial & Molecular Markers Paris East Créteil University (UPEC), Créteil, France
| | - Denis Mestivier
- EA7375 –EC2M3: Early detection of Colonic Cancer by using Microbial & Molecular Markers Paris East Créteil University (UPEC), Créteil, France
| | - Etienne Carbonnelle
- Bacteriology, Virology, Hygiene Laboratory, Assistance Publique–Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
| | - Robert Benamouzig
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
| | | | - Iradj Sobhani
- EA7375 –EC2M3: Early detection of Colonic Cancer by using Microbial & Molecular Markers Paris East Créteil University (UPEC), Créteil, France
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Henri Mondor Hospital, Créteil, France
| |
Collapse
|
24
|
Ferenc K, Sokal-Dembowska A, Helma K, Motyka E, Jarmakiewicz-Czaja S, Filip R. Modulation of the Gut Microbiota by Nutrition and Its Relationship to Epigenetics. Int J Mol Sci 2024; 25:1228. [PMID: 38279228 PMCID: PMC10816208 DOI: 10.3390/ijms25021228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The intestinal microbiota is a community of microorganisms inhabiting the human intestines, potentially influencing both physiological and pathophysiological processes in the human body. Existing evidence suggests that nutrients can influence the modulation of the gut microbiota. However, there is still limited evidence regarding the effects of vitamin and mineral supplementation on the human gut microbiota through epigenetic modification. It is plausible that maintaining an adequate dietary intake of vitamin D, iron, fibre, zinc and magnesium may have a beneficial effect on alleviating inflammation in the body, reducing oxidative stress, and improving the condition of the intestinal microbiota through various epigenetic mechanisms. Moreover, epigenetics involves alterations in the phenotype of a cell without changing its fundamental DNA sequence. It appears that the modulation of the microbiota by various nutrients may lead to epigenetic regulation. The correlations between microbiota and epigenetics are potentially interdependent. Therefore, the primary objective of this review is to identify the complex relationships between diet, gut microbiota, and epigenetic regulation. These interactions could play a crucial role in systemic health.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Elżbieta Motyka
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
25
|
Hizume T, Sato Y, Iwaki H, Honda K, Okano K. Subtractive modification of bacterial consortium using antisense peptide nucleic acids. Front Microbiol 2024; 14:1321428. [PMID: 38260881 PMCID: PMC10800778 DOI: 10.3389/fmicb.2023.1321428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Microbiome engineering is an emerging research field that aims to design an artificial microbiome and modulate its function. In particular, subtractive modification of the microbiome allows us to create an artificial microbiome without the microorganism of interest and to evaluate its functions and interactions with other constituent bacteria. However, few techniques that can specifically remove only a single species from a large number of microorganisms and can be applied universally to a variety of microorganisms have been developed. Antisense peptide nucleic acid (PNA) is a potent designable antimicrobial agent that can be delivered into microbial cells by conjugating with a cell-penetrating peptide (CPP). Here, we tested the efficacy of the conjugate of CPP and PNA (CPP-PNA) as microbiome modifiers. The addition of CPP-PNA specifically inhibited the growth of Escherichia coli and Pseudomonas putida in an artificial bacterial consortium comprising E. coli, P. putida, Pseudomonas fluorescens, and Lactiplantibacillus plantarum. Moreover, the growth inhibition of P. putida promoted the growth of P. fluorescens and inhibited the growth of L. plantarum. These results indicate that CPP-PNA can be used not only for precise microbiome engineering but also for analyzing the growth relationships among constituent microorganisms in the microbiome.
Collapse
Affiliation(s)
- Tatsuya Hizume
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yu Sato
- Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Hiroaki Iwaki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Kenji Okano
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
- International Center for Biotechnology, Osaka University, Osaka, Japan
| |
Collapse
|
26
|
Park PH, Keith K, Calendo G, Jelinek J, Madzo J, Gharaibeh RZ, Ghosh J, Sapienza C, Jobin C, Issa JPJ. Association between gut microbiota and CpG island methylator phenotype in colorectal cancer. Gut Microbes 2024; 16:2363012. [PMID: 38860458 PMCID: PMC11174071 DOI: 10.1080/19490976.2024.2363012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The intestinal microbiota is an important environmental factor implicated in CRC development. Intriguingly, modulation of DNA methylation by gut microbiota has been reported in preclinical models, although the relationship between tumor-infiltrating bacteria and CIMP status is currently unexplored. In this study, we investigated tumor-associated bacteria in 203 CRC tumor cases and validated the findings using The Cancer Genome Atlas datasets. We assessed the abundance of Bacteroides fragilis, Escherichia coli, Fusobacterium nucleatum, and Klebsiella pneumoniae through qPCR analysis and observed enrichment of all four bacterial species in CRC samples. Notably, except for E. coli, all exhibited significant enrichment in cases of CIMP. This enrichment was primarily driven by a subset of cases distinguished by high levels of these bacteria, which we labeled as "Superhigh". The bacterial Superhigh status showed a significant association with CIMP (odds ratio 3.1, p-value = 0.013) and with MLH1 methylation (odds ratio 4.2, p-value = 0.0025). In TCGA CRC cases (393 tumor and 45 adj. normal), bacterial taxa information was extracted from non-human whole exome sequencing reads, and the bacterial Superhigh status was similarly associated with CIMP (odds ratio 2.9, p < 0.001) and MLH1 methylation (odds ratio 3.5, p < 0.001). Finally, 16S ribosomal RNA gene sequencing revealed high enrichment of Bergeyella spp. C. concisus, and F. canifelinum in CIMP-Positive tumor cases. Our findings highlight that specific bacterial taxa may influence DNA methylation, particularly in CpG islands, and contribute to the development and progression of CIMP in colorectal cancer.
Collapse
Affiliation(s)
- Pyoung Hwa Park
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Research, Coriell Institute for Medical Research, Camden, NJ, USA
| | - Kelsey Keith
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Research, Coriell Institute for Medical Research, Camden, NJ, USA
| | - Gennaro Calendo
- Research, Coriell Institute for Medical Research, Camden, NJ, USA
| | - Jaroslav Jelinek
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Research, Coriell Institute for Medical Research, Camden, NJ, USA
- Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Jozef Madzo
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Research, Coriell Institute for Medical Research, Camden, NJ, USA
- Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Raad Z. Gharaibeh
- Department of Medicine, University of Florida, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Carmen Sapienza
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Jean-Pierre J. Issa
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Research, Coriell Institute for Medical Research, Camden, NJ, USA
- Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
| |
Collapse
|
27
|
de Oliveira Alves N, Dalmasso G, Nikitina D, Vaysse A, Ruez R, Ledoux L, Pedron T, Bergsten E, Boulard O, Autier L, Allam S, Motreff L, Sauvanet P, Letourneur D, Kashyap P, Gagnière J, Pezet D, Godfraind C, Salzet M, Lemichez E, Bonnet M, Najjar I, Malabat C, Monot M, Mestivier D, Barnich N, Yadav P, Fournier I, Kennedy S, Mettouchi A, Bonnet R, Sobhani I, Chamaillard M. The colibactin-producing Escherichia coli alters the tumor microenvironment to immunosuppressive lipid overload facilitating colorectal cancer progression and chemoresistance. Gut Microbes 2024; 16:2320291. [PMID: 38417029 PMCID: PMC10903627 DOI: 10.1080/19490976.2024.2320291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Intratumoral bacteria flexibly contribute to cellular and molecular tumor heterogeneity for supporting cancer recurrence through poorly understood mechanisms. Using spatial metabolomic profiling technologies and 16SrRNA sequencing, we herein report that right-sided colorectal tumors are predominantly populated with Colibactin-producing Escherichia coli (CoPEC) that are locally establishing a high-glycerophospholipid microenvironment with lowered immunogenicity. It coincided with a reduced infiltration of CD8+ T lymphocytes that produce the cytotoxic cytokines IFN-γ where invading bacteria have been geolocated. Mechanistically, the accumulation of lipid droplets in infected cancer cells relied on the production of colibactin as a measure to limit genotoxic stress to some extent. Such heightened phosphatidylcholine remodeling by the enzyme of the Land's cycle supplied CoPEC-infected cancer cells with sufficient energy for sustaining cell survival in response to chemotherapies. This accords with the lowered overall survival of colorectal patients at stage III-IV who were colonized by CoPEC when compared to patients at stage I-II. Accordingly, the sensitivity of CoPEC-infected cancer cells to chemotherapies was restored upon treatment with an acyl-CoA synthetase inhibitor. By contrast, such metabolic dysregulation leading to chemoresistance was not observed in human colon cancer cells that were infected with the mutant strain that did not produce colibactin (11G5∆ClbQ). This work revealed that CoPEC locally supports an energy trade-off lipid overload within tumors for lowering tumor immunogenicity. This may pave the way for improving chemoresistance and subsequently outcome of CRC patients who are colonized by CoPEC.
Collapse
Affiliation(s)
| | - Guillaume Dalmasso
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Darja Nikitina
- CNRS, Institute Pasteur, Paris, France
- Laboratory of Clinical and Molecular Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Amaury Vaysse
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Plate-Forme Technologique Biomics, Paris, France
| | - Richard Ruez
- ONCOLille, INSERM, Phycell, University of Lille, Lille, France
| | - Lea Ledoux
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | | | - Emma Bergsten
- Institut Pasteur, Université Paris Cité, Paris, France
| | - Olivier Boulard
- ONCOLille, INSERM, Phycell, University of Lille, Lille, France
| | - Lora Autier
- ONCOLille, INSERM, Phycell, University of Lille, Lille, France
| | - Sofian Allam
- ONCOLille, INSERM, Phycell, University of Lille, Lille, France
| | - Laurence Motreff
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Plate-Forme Technologique Biomics, Paris, France
| | - Pierre Sauvanet
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Pragya Kashyap
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Johan Gagnière
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Denis Pezet
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Catherine Godfraind
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Michel Salzet
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | | | - Mathilde Bonnet
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Imène Najjar
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Plate-Forme Technologique Biomics, Paris, France
| | - Christophe Malabat
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Plate-Forme Technologique Biomics, Paris, France
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Plate-Forme Technologique Biomics, Paris, France
| | | | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pankaj Yadav
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Isabelle Fournier
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | | | | | - Richard Bonnet
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Iradj Sobhani
- Université Paris Est Créteil, Créteil, France
- Service de Gastroentérologie CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris-APHP, Créteil, France
| | | |
Collapse
|
28
|
Kwao-Zigah G, Bediako-Bowan A, Boateng PA, Aryee GK, Abbang SM, Atampugbire G, Quaye O, Tagoe EA. Microbiome Dysbiosis, Dietary Intake and Lifestyle-Associated Factors Involve in Epigenetic Modulations in Colorectal Cancer: A Narrative Review. Cancer Control 2024; 31:10732748241263650. [PMID: 38889965 PMCID: PMC11186396 DOI: 10.1177/10732748241263650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Background: Colorectal cancer is the second cause of cancer mortality and the third most commonly diagnosed cancer worldwide. Current data available implicate epigenetic modulations in colorectal cancer development. The health of the large bowel is impacted by gut microbiome dysbiosis, which may lead to colon and rectum cancers. The release of microbial metabolites and toxins by these microbiotas has been shown to activate epigenetic processes leading to colorectal cancer development. Increased consumption of a 'Westernized diet' and certain lifestyle factors such as excessive consumption of alcohol have been associated with colorectal cancer.Purpose: In this review, we seek to examine current knowledge on the involvement of gut microbiota, dietary factors, and alcohol consumption in colorectal cancer development through epigenetic modulations.Methods: A review of several published articles focusing on the mechanism of how changes in the gut microbiome, diet, and excessive alcohol consumption contribute to colorectal cancer development and the potential of using these factors as biomarkers for colorectal cancer diagnosis.Conclusions: This review presents scientific findings that provide a hopeful future for manipulating gut microbiome, diet, and alcohol consumption in colorectal cancer patients' management and care.
Collapse
Affiliation(s)
- Genevieve Kwao-Zigah
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Antionette Bediako-Bowan
- Department of Surgery, University of Ghana Medical School, Accra, Ghana
- Department of Surgery, Korle Bu Teaching Hospital, Accra, Ghana
| | - Pius Agyenim Boateng
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gloria Kezia Aryee
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Stacy Magdalene Abbang
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gabriel Atampugbire
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Emmanuel A. Tagoe
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
29
|
Liu J, Tian R, Sun C, Guo Y, Dong L, Li Y, Song X. Microbial metabolites are involved in tumorigenesis and development by regulating immune responses. Front Immunol 2023; 14:1290414. [PMID: 38169949 PMCID: PMC10758836 DOI: 10.3389/fimmu.2023.1290414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The human microbiota is symbiotic with the host and can create a variety of metabolites. Under normal conditions, microbial metabolites can regulate host immune function and eliminate abnormal cells in a timely manner. However, when metabolite production is abnormal, the host immune system might be unable to identify and get rid of tumor cells at the early stage of carcinogenesis, which results in tumor development. The mechanisms by which intestinal microbial metabolites, including short-chain fatty acids (SCFAs), microbial tryptophan catabolites (MTCs), polyamines (PAs), hydrogen sulfide, and secondary bile acids, are involved in tumorigenesis and development by regulating immune responses are summarized in this review. SCFAs and MTCs can prevent cancer by altering the expression of enzymes and epigenetic modifications in both immune cells and intestinal epithelial cells. MTCs can also stimulate immune cell receptors to inhibit the growth and metastasis of the host cancer. SCFAs, MTCs, bacterial hydrogen sulfide and secondary bile acids can control mucosal immunity to influence the occurrence and growth of tumors. Additionally, SCFAs, MTCs, PAs and bacterial hydrogen sulfide can also affect the anti-tumor immune response in tumor therapy by regulating the function of immune cells. Microbial metabolites have a good application prospect in the clinical diagnosis and treatment of tumors, and our review provides a good basis for related research.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ruxian Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Caiyu Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Lei Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
30
|
Gubernatorova EO, Gorshkova EA, Bondareva MA, Podosokorskaya OA, Sheynova AD, Yakovleva AS, Bonch-Osmolovskaya EA, Nedospasov SA, Kruglov AA, Drutskaya MS. Akkermansia muciniphila - friend or foe in colorectal cancer? Front Immunol 2023; 14:1303795. [PMID: 38124735 PMCID: PMC10731290 DOI: 10.3389/fimmu.2023.1303795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Akkermansia muciniphila is a gram-negative anaerobic bacterium, which represents a part of the commensal human microbiota. Decline in the abundance of A. muciniphila among other microbial species in the gut correlates with severe systemic diseases such as diabetes, obesity, intestinal inflammation and colorectal cancer. Due to its mucin-reducing and immunomodulatory properties, the use of probiotics containing Akkermansia sp. appears as a promising approach to the treatment of metabolic and inflammatory diseases. In particular, a number of studies have focused on the role of A. muciniphila in colorectal cancer. Of note, the results of these studies in mice are contradictory: some reported a protective role of A. muciniphila in colorectal cancer, while others demonstrated that administration of A. muciniphila could aggravate the course of the disease resulting in increased tumor burden. More recent studies suggested the immunomodulatory effect of certain unique surface antigens of A. muciniphila on the intestinal immune system. In this Perspective, we attempt to explain how A. muciniphila contributes to protection against colorectal cancer in some models, while being pathogenic in others. We argue that differences in the experimental protocols of administration of A. muciniphila, as well as viability of bacteria, may significantly affect the results. In addition, we hypothesize that antigens presented by pasteurized bacteria or live A. muciniphila may exert distinct effects on the barrier functions of the gut. Finally, A. muciniphila may reduce the mucin barrier and exerts combined effects with other bacterial species in either promoting or inhibiting cancer development.
Collapse
Affiliation(s)
- Ekaterina O. Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University, Moscow, Russia
| | - Marina A. Bondareva
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University, Moscow, Russia
- German Rheumatism Research Center (DRFZ), Leibniz Institute, Berlin, Germany
| | - Olga A. Podosokorskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology Russian Academy of Sciences (RAS), Moscow, Russia
| | - Anna D. Sheynova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia S. Yakovleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elizaveta A. Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology Russian Academy of Sciences (RAS), Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei A. Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University, Moscow, Russia
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| | - Andrey A. Kruglov
- German Rheumatism Research Center (DRFZ), Leibniz Institute, Berlin, Germany
| | - Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| |
Collapse
|
31
|
Zhang X, Irajizad E, Hoffman KL, Fahrmann JF, Li F, Seo YD, Browman GJ, Dennison JB, Vykoukal J, Luna PN, Siu W, Wu R, Murage E, Ajami NJ, McQuade JL, Wargo JA, Long JP, Do KA, Lampe JW, Basen-Engquist KM, Okhuysen PC, Kopetz S, Hanash SM, Petrosino JF, Scheet P, Daniel CR. Modulating a prebiotic food source influences inflammation and immune-regulating gut microbes and metabolites: insights from the BE GONE trial. EBioMedicine 2023; 98:104873. [PMID: 38040541 PMCID: PMC10755114 DOI: 10.1016/j.ebiom.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Accessible prebiotic foods hold strong potential to jointly target gut health and metabolic health in high-risk patients. The BE GONE trial targeted the gut microbiota of obese surveillance patients with a history of colorectal neoplasia through a straightforward bean intervention. METHODS This low-risk, non-invasive dietary intervention trial was conducted at MD Anderson Cancer Center (Houston, TX, USA). Following a 4-week equilibration, patients were randomized to continue their usual diet without beans (control) or to add a daily cup of study beans to their usual diet (intervention) with immediate crossover at 8-weeks. Stool and fasting blood were collected every 4 weeks to assess the primary outcome of intra and inter-individual changes in the gut microbiome and in circulating markers and metabolites within 8 weeks. This study was registered on ClinicalTrials.gov as NCT02843425, recruitment is complete and long-term follow-up continues. FINDINGS Of the 55 patients randomized by intervention sequence, 87% completed the 16-week trial, demonstrating an increase on-intervention in diversity [n = 48; linear mixed effect and 95% CI for inverse Simpson index: 0.16 (0.02, 0.30); p = 0.02] and shifts in multiple bacteria indicative of prebiotic efficacy, including increased Faecalibacterium, Eubacterium and Bifidobacterium (all p < 0.05). The circulating metabolome showed parallel shifts in nutrient and microbiome-derived metabolites, including increased pipecolic acid and decreased indole (all p < 0.002) that regressed upon returning to the usual diet. No significant changes were observed in circulating lipoproteins within 8 weeks; however, proteomic biomarkers of intestinal and systemic inflammatory response, fibroblast-growth factor-19 increased, and interleukin-10 receptor-α decreased (p = 0.01). INTERPRETATION These findings underscore the prebiotic and potential therapeutic role of beans to enhance the gut microbiome and to regulate host markers associated with metabolic obesity and colorectal cancer, while further emphasizing the need for consistent and sustainable dietary adjustments in high-risk patients. FUNDING This study was funded by the American Cancer Society.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Institute for Translational Epidemiology & Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ehsan Irajizad
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Johannes F Fahrmann
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Cancer Prevention and Population Sciences, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fangyu Li
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongwoo David Seo
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gladys J Browman
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer B Dennison
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jody Vykoukal
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela N Luna
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Wesley Siu
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ranran Wu
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eunice Murage
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadim J Ajami
- Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L McQuade
- Division of Cancer Medicine, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James P Long
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Karen M Basen-Engquist
- Division of Cancer Prevention and Population Sciences, Department of Heath Disparities Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, Infection Control, and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Cancer Prevention and Population Sciences, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Paul Scheet
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carrie R Daniel
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
32
|
Sun A, Park P, Cole L, Vaidya H, Maegawa S, Keith K, Calendo G, Madzo J, Jelinek J, Jobin C, Issa JPJ. Non-pathogenic microbiota accelerate age-related CpG Island methylation in colonic mucosa. Epigenetics 2023; 18:2160568. [PMID: 36572998 PMCID: PMC9980687 DOI: 10.1080/15592294.2022.2160568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/11/2022] [Indexed: 12/28/2022] Open
Abstract
DNA methylation is an epigenetic process altered in cancer and ageing. Age-related methylation drift can be used to estimate lifespan and can be influenced by extrinsic factors such as diet. Here, we report that non-pathogenic microbiota accelerate age-related methylation drift in the colon when compared with germ-free mice. DNA methylation analyses showed that microbiota and IL10KO were associated with changes in 5% and 4.1% of CpG sites, while mice with both factors had 18% alterations. Microbiota, IL10KO, and their combination altered 0.4%, 0.4%, and 4% of CpG island methylation, respectively. These are comparable to what is seen in colon cancer. Ageing changes were accelerated in the IL10KO mice with microbiota, and the affected genes were more likely to be altered in colon cancer. Thus, the microbiota affect DNA methylation of the colon in patterns reminiscent of what is observed in ageing and colorectal cancer.
Collapse
Affiliation(s)
- Ang Sun
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
| | - Pyounghwa Park
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Lauren Cole
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
| | - Himani Vaidya
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Shinji Maegawa
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Research Department of Pediatrics, University of Texas, MD Anderson Cancer Center Department of Pediatrics, University of Texas, MD Anderson Cancer CenterHouston, TX, USA
| | - Kelsey Keith
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Gennaro Calendo
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Jozef Madzo
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Jaroslav Jelinek
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jean-Pierre J. Issa
- Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, Philadelphia, PA, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| |
Collapse
|
33
|
Mima K, Hamada T, Inamura K, Baba H, Ugai T, Ogino S. The microbiome and rise of early-onset cancers: knowledge gaps and research opportunities. Gut Microbes 2023; 15:2269623. [PMID: 37902043 PMCID: PMC10730181 DOI: 10.1080/19490976.2023.2269623] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
Accumulating evidence indicates an alarming increase in the incidence of early-onset cancers, which are diagnosed among adults under 50 years of age, in the colorectum, esophagus, extrahepatic bile duct, gallbladder, liver, stomach, pancreas, as well as the bone marrow (multiple myeloma), breast, head and neck, kidney, prostate, thyroid, and uterine corpus (endometrium). While the early-onset cancer studies have encompassed research on the wide variety of organs, this article focuses on research on digestive system cancers. While a minority of early-onset cancers in the digestive system are associated with cancer-predisposing high penetrance germline genetic variants, the majority of those cancers are sporadic and multifactorial. Although potential etiological roles of diets, lifestyle, environment, and the microbiome from early life to adulthood (i.e. in one's life course) have been hypothesized, exact contribution of each of these factors remains uncertain. Diets, lifestyle patterns, and environmental exposures have been shown to alter the oral and intestinal microbiome. To address the rising trend of early-onset cancers, transdisciplinary research approaches including lifecourse epidemiology and molecular pathological epidemiology frameworks, nutritional and environmental sciences, multi-omics technologies, etc. are needed. We review current evidence and discuss emerging research opportunities, which can improve our understanding of their etiologies and help us design better strategies for prevention and treatment to reduce the cancer burden in populations.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
34
|
Bergsten E, Mestivier D, Donnadieu F, Pedron T, Barau C, Meda LT, Mettouchi A, Lemichez E, Gorgette O, Chamaillard M, Vaysse A, Volant S, Doukani A, Sansonetti PJ, Sobhani I, Nigro G. Parvimonas micra, an oral pathobiont associated with colorectal cancer, epigenetically reprograms human colonocytes. Gut Microbes 2023; 15:2265138. [PMID: 37842920 PMCID: PMC10580862 DOI: 10.1080/19490976.2023.2265138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Recently, an intestinal dysbiotic microbiota with enrichment in oral cavity bacteria has been described in colorectal cancer (CRC) patients. Here, we characterize and investigate one of these oral pathobionts, the Gram-positive anaerobic coccus Parvimonas micra. We identified two phylotypes (A and B) exhibiting different phenotypes and adhesion capabilities. We observed a strong association of phylotype A with CRC, with its higher abundance in feces and in tumoral tissue compared with the normal homologous colonic mucosa, which was associated with a distinct methylation status of patients. By developing an in vitro hypoxic co-culture system of human primary colonic cells with anaerobic bacteria, we show that P. micra phylotype A alters the DNA methylation profile promoters of key tumor-suppressor genes, oncogenes, and genes involved in epithelial-mesenchymal transition. In colonic mucosa of CRC patients carrying P. micra phylotype A, we found similar DNA methylation alterations, together with significant enrichment of differentially expressed genes in pathways involved in inflammation, cell adhesion, and regulation of actin cytoskeleton, providing evidence of P. micra's possible role in the carcinogenic process.
Collapse
Affiliation(s)
- Emma Bergsten
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, Paris, France
- Équipe universitaire EC2M3-EA7375, Université Paris- Est (UPEC), Créteil, France
| | - Denis Mestivier
- Équipe universitaire EC2M3-EA7375, Université Paris- Est (UPEC), Créteil, France
- Plateforme de Bio-informatique, Institut Mondor de Recherche Biomédicale (IMRB/INSERM U955), Université Paris-Est, Créteil, France
| | - Francoise Donnadieu
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, Paris, France
| | - Thierry Pedron
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, Paris, France
- Unité Bactériophage, Bactérie, Hôte, Institut Pasteur, Paris, France
| | - Caroline Barau
- Plateforme de Ressources Biologiques, CHU Henri Mondor Assistance Publique Hôpitaux de Paris (APHP), Créteil, France
| | - Landry Tsoumtsa Meda
- Unité des Toxines Bactériennes, Université Paris Cité, CNRS UMR6047, INSERM U1306, Institut Pasteur, Paris, France
| | - Amel Mettouchi
- Unité des Toxines Bactériennes, Université Paris Cité, CNRS UMR6047, INSERM U1306, Institut Pasteur, Paris, France
| | - Emmanuel Lemichez
- Unité des Toxines Bactériennes, Université Paris Cité, CNRS UMR6047, INSERM U1306, Institut Pasteur, Paris, France
| | - Olivier Gorgette
- Plateforme de Bio-Imagerie Ultrastructurale, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mathias Chamaillard
- Laboratory of Cell Physiology, INSERM U1003, University of Lille, Lille, France
| | - Amaury Vaysse
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Abiba Doukani
- Sorbonne Université, Inserm, Unité Mixte de Service Production et Analyse de données en Sciences de la Vie et en Santé, Paris, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Iradj Sobhani
- Équipe universitaire EC2M3-EA7375, Université Paris- Est (UPEC), Créteil, France
- Service de Gastroentérologie, CHU Henri Mondor Assistance Publique Hôpitaux de Paris (APHP), Créteil, France
| | - Giulia Nigro
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, Paris, France
- Microenvironment and Immunity Unit, INSERM U1224, Institut Pasteur, Paris, France
| |
Collapse
|
35
|
Baba Y, Hara Y, Toihata T, Kosumi K, Iwatsuki M, Iwagami S, Miyamoto Y, Yoshida N, Komohara Y, Baba H. Relationship between gut microbiome Fusobacterium nucleatum and LINE-1 methylation level in esophageal cancer. Esophagus 2023; 20:704-712. [PMID: 37173453 DOI: 10.1007/s10388-023-01009-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND We previously demonstrated the relationship of human microbiome Fusobacterium nucleatum with unfavorable clinical outcomes and inferior chemotherapeutic responses in esophageal cancer. Global DNA methylation is associated with the occurrence and development of various cancers. In our previous study, LINE-1 hypomethylation (i.e., global DNA hypomethylation) was associated with a poor prognosis in esophageal cancer. As the gut microbiota may play crucial roles in the DNA methylation of host cells, we hypothesized that F. nucleatum might influence LINE-1 methylation levels in esophageal cancer. METHODS We qualified the F. nucleatum DNA using a quantitative PCR assay and LINE-1 methylation via a pyrosequencing assay using formalin-fixed paraffin-embedded specimens from 306 esophageal cancer patients. RESULTS Intratumoral F. nucleatum DNA was detected in 65 cases (21.2%). The LINE-1 methylation scores ranged from 26.9 to 91.8 (median = 64.8) in tumors. F. nucleatum DNA was related to the LINE-1 hypomethylation of tumor lesions in esophageal cancer (P < 0.0001). The receiver operating characteristic curve analysis showed that the area under the curve was 0.71 for F. nucleatum positivity. Finally, we found that the impact of F. nucleatum on clinical outcomes was not modified by LINE-1 hypomethylation (P for interaction = 0.34). CONCLUSIONS F. nucleatum alters genome-wide methylation levels in cancer cells, which may be one of the mechanisms by which F. nucleatum affects the malignant behavior of esophageal cancer.
Collapse
Affiliation(s)
- Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
- Department of Next-Generation Surgical Therapy Development, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| | - Yoshihiro Hara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Tasuku Toihata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Keisuke Kosumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Next-Generation Surgical Therapy Development, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
36
|
Wang L, Tu Y, Chen L, Zhang Y, Pan X, Yang S, Zhang S, Li S, Yu K, Song S, Xu H, Yin Z, Yue J, Ni Q, Tang T, Zhang J, Guo M, Zhang S, Yao F, Liang X, Chen Z. Male-Biased Gut Microbiome and Metabolites Aggravate Colorectal Cancer Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206238. [PMID: 37400423 PMCID: PMC10477899 DOI: 10.1002/advs.202206238] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/18/2023] [Indexed: 07/05/2023]
Abstract
Men demonstrate higher incidence and mortality rates of colorectal cancer (CRC) than women. This study aims to explain the potential causes of such sexual dimorphism in CRC from the perspective of sex-biased gut microbiota and metabolites. The results show that sexual dimorphism in colorectal tumorigenesis is observed in both ApcMin/ + mice and azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice with male mice have significantly larger and more tumors, accompanied by more impaired gut barrier function. Moreover, pseudo-germ mice receiving fecal samples from male mice or patients show more severe intestinal barrier damage and higher level of inflammation. A significant change in gut microbiota composition is found with increased pathogenic bacteria Akkermansia muciniphila and deplets probiotic Parabacteroides goldsteinii in both male mice and pseudo-germ mice receiving fecal sample from male mice. Sex-biased gut metabolites in pseudo-germ mice receiving fecal sample from CRC patients or CRC mice contribute to sex dimorphism in CRC tumorigenesis through glycerophospholipids metabolism pathway. Sexual dimorphism in tumorigenesis of CRC mouse models. In conclusion, the sex-biased gut microbiome and metabolites contribute to sexual dimorphism in CRC. Modulating sex-biased gut microbiota and metabolites could be a potential sex-targeting therapeutic strategy of CRC.
Collapse
Affiliation(s)
- Ling Wang
- Hubei Hongshan LaboratoryWuhan430070China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| | - Yi‐Xuan Tu
- Hubei Hongshan LaboratoryWuhan430070China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
| | - Lu Chen
- Hubei Hongshan LaboratoryWuhan430070China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
| | - Yuan Zhang
- Hubei Hongshan LaboratoryWuhan430070China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
| | - Xue‐Ling Pan
- Hubei Hongshan LaboratoryWuhan430070China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
| | - Shu‐Qiao Yang
- Hubei Hongshan LaboratoryWuhan430070China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
| | - Shuai‐Jie Zhang
- Hubei Hongshan LaboratoryWuhan430070China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
| | - Sheng‐Hui Li
- Hubei Hongshan LaboratoryWuhan430070China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
| | - Ke‐Chun Yu
- Hubei Hongshan LaboratoryWuhan430070China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
| | - Shuo Song
- Hubei Hongshan LaboratoryWuhan430070China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
| | - Hong‐Li Xu
- Department of Medical OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430079China
| | - Zhu‐Cheng Yin
- Department of Medical OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430079China
| | - Jun‐Qiu Yue
- Department of Medical OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430079China
| | - Qian‐Lin Ni
- Wuhan Metwell Biotechnology Co., Ltd. WuhanWuhan430075China
| | - Tang Tang
- Wuhan Metwell Biotechnology Co., Ltd. WuhanWuhan430075China
| | - Jiu‐Liang Zhang
- College of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Min Guo
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
| | - Shuai Zhang
- Hubei Hongshan LaboratoryWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| | - Fan Yao
- Hubei Hongshan LaboratoryWuhan430070China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| | - Xin‐Jun Liang
- Department of Medical OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430079China
| | - Zhen‐Xia Chen
- Hubei Hongshan LaboratoryWuhan430070China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhen518000China
- College of Biomedicine and HealthHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
37
|
Kolli U, Roy S. The role of the gut microbiome and microbial metabolism in mediating opioid-induced changes in the epigenome. Front Microbiol 2023; 14:1233194. [PMID: 37670983 PMCID: PMC10475585 DOI: 10.3389/fmicb.2023.1233194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023] Open
Abstract
The current opioid pandemic is a major public health crisis in the United States, affecting millions of people and imposing significant health and socioeconomic burdens. Preclinical and clinical research over the past few decades has delineated certain molecular mechanisms and identified various genetic, epigenetic, and environmental factors responsible for the pathophysiology and comorbidities associated with opioid use. Opioid use-induced epigenetic modifications have been identified as one of the important factors that mediate genetic changes in brain regions that control reward and drug-seeking behavior and are also implicated in the development of tolerance. Recently, it has been shown that opioid use results in microbial dysbiosis, leading to gut barrier disruption, which drives systemic inflammation, impacting the perception of pain, the development of analgesic tolerance, and behavioral outcomes. In this review, we highlight the potential role of microbiota and microbial metabolites in mediating the epigenetic modifications induced by opioid use.
Collapse
Affiliation(s)
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
38
|
Zhang L, Ji Q, Chen Q, Wei Z, Liu S, Zhang L, Zhang Y, Li Z, Liu H, Sui H. Akkermansia muciniphila inhibits tryptophan metabolism via the AhR/β-catenin signaling pathway to counter the progression of colorectal cancer. Int J Biol Sci 2023; 19:4393-4410. [PMID: 37781044 PMCID: PMC10535706 DOI: 10.7150/ijbs.85712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/03/2023] [Indexed: 10/03/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila), a gram-negative anaerobic bacterium, is selectively decreased in the fecal microbiota of patients with colorectal cancer (CRC), but its molecular mechanism in CRC development remains inconclusive. In this study, we first confirmed the inhibitory effect of A. muciniphila on CRC formation and analyzed the metabolic role of intestinal flora in human Polyps, A-CRA (advanced colorectal adenoma) and CRC samples. To better clarify the role of A. muciniphila in CRC development, a pseudo-germ-free (GF) azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model was established, followed by infection with or without A. muciniphila. Metabolomic analysis and RNA-seq analysis showed tryptophan-mediated aryl hydrocarbon receptor (AhR) was significantly down-regulated in A. muciniphila-infected CRC mice. Then, mice with intestinal specific AhR deficiency (AhRfl/fl Cre) were generated and were used in 2 murine models: AOM/DSS treatment as a model of carcinogen-induced colon cancer and a genetically induced model using ApcMin/+ mice. Notably, AhR deficiency inhibited CRC growth in the AOM/DSS and ApcMin/+ mouse model. Moreover, AhR deficiency inhibited, rather than enhanced, tumor formation and tumor-derived organoids in Apc-deficient cells both in vivo and in vitro by activating Wnt/β-catenin signaling and TCF4/LEF1-dependent transcription. Furthermore, the antitumor effectiveness of A. muciniphila was abolished either in a human colon cancer tumor model induced by subcutaneous transplantation of AhR-silenced CRC cells, or AhR-deficienty spontaneous colorectal cancer model. In conclusion, supplementation with A. muciniphila. protected mice from CRC development by specifically inhibiting tryptophan-mediated AhR/β-catenin signaling.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Combine Traditional Chinese & Western, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Chen
- Department of critical care medicine, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, 450002, China
| | - Zhenzhen Wei
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Shanghai General Hospital Jiading Branch-Pharmacy school of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Translational medicine Research Center for Cancer Prevention and Treatment, Shanghai 201803, China
| | - Shuochuan Liu
- Department of Breast disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Long Zhang
- University of Shanghai for Science and Technology and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, Institute of Biomedical Sciences and Clinical Technology Transformation, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuli Zhang
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Shanghai General Hospital Jiading Branch-Pharmacy school of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Translational medicine Research Center for Cancer Prevention and Treatment, Shanghai 201803, China
| | - Zan Li
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Shanghai General Hospital Jiading Branch-Pharmacy school of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Translational medicine Research Center for Cancer Prevention and Treatment, Shanghai 201803, China
| | - Huaimin Liu
- Department of Combine Traditional Chinese & Western, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Hua Sui
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Shanghai General Hospital Jiading Branch-Pharmacy school of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Translational medicine Research Center for Cancer Prevention and Treatment, Shanghai 201803, China
| |
Collapse
|
39
|
Yue K, Sheng D, Xue X, Zhao L, Zhao G, Jin C, Zhang L. Bidirectional Mediation Effects between Intratumoral Microbiome and Host DNA Methylation Changes Contribute to Stomach Adenocarcinoma. Microbiol Spectr 2023; 11:e0090423. [PMID: 37260411 PMCID: PMC10434028 DOI: 10.1128/spectrum.00904-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023] Open
Abstract
The induction of aberrant DNA methylation is the major pathway by which Helicobacter pylori infection induces stomach adenocarcinoma (STAD). The involvement of the non-H. pylori gastric microbiota in this mechanism remains to be examined. RNA sequencing data, clinical information, and DNA methylation data were obtained from The Cancer Genome Atlas (TCGA) STAD project. The Kraken 2 pipeline was employed to explore the microbiome profiles. The microbiome was associated with occurrence, distal metastasis, and prognosis, and differential methylation changes related to distal metastasis and prognosis were analyzed. Bi-directional mediation effects of the intratumoral microbiome and host DNA methylation changes on the metastasis and prognosis of STAD were identified by mediation analysis. The expression of the ZNF215 gene was verified by real-time quantitative PCR (RT-qPCR). A cell counting kit 8 (CCK8) cell proliferation experiment and a cell clone formation experiment were used to evaluate the proliferation and invasion abilities of gastric cells. Our analysis revealed that H. pylori and other cancer-related microorganisms were related to the occurrence, progression, or prognosis of STAD. The related methylated genes were particularly enriched in related cancer pathways. Kytococcus sedentarius and Actinomyces oris, which interacted strongly with methylation changes in immune genes, were associated with prognosis. Cell experiments verified that Staphylococcus saccharolyticus could promote the proliferation and cloning of gastric cells by regulating the gene expression level of the ZNF215 gene. Our study suggested that the bi-directional mediation effect between intratumoral microorganisms and host epigenetics was key to the distal metastasis of cancer cells and survival deterioration in the tumor microenvironment of stomach tissues of patients with STAD. IMPORTANCE The burgeoning field of oncobiome research declared that members of the intratumoral microbiome besides Helicobacter pylori existed in tumor tissues and participated in the occurrence and development of gastric cancer, and the methylation of host DNA may be a potential target of microbes and their metabolites. Current research focuses mostly on species composition, but the functional genes of the members of the microbiota are also key to their interaction with the host. Therefore, we focused on characterizing the species composition and functional gene composition of microbes in gastric cancer, and we suggest that microbes may further participate in the occurrence and development of cancer by influencing abnormal epigenetic changes in the host. Some key bioinformatics analysis results were verified by in vitro experiments. Thus, we consider that the tumor microbiota-host epigenetic axis of gastric cancer microorganisms and the host explains the mechanism of the microbiota participating in cancer occurrence and development, and we make some verifiable experimental predictions.
Collapse
Affiliation(s)
- Kaile Yue
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dashuang Sheng
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinxin Xue
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lanlan Zhao
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chuandi Jin
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Zhang
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
40
|
Gutierrez-Angulo M, Ayala-Madrigal MDLL, Moreno-Ortiz JM, Peregrina-Sandoval J, Garcia-Ayala FD. Microbiota composition and its impact on DNA methylation in colorectal cancer. Front Genet 2023; 14:1037406. [PMID: 37614819 PMCID: PMC10442805 DOI: 10.3389/fgene.2023.1037406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer is a complex disease resulting from the interaction of genetics, epigenetics, and environmental factors. DNA methylation is frequently found in tumor suppressor genes to promote cancer development. Several factors are associated with changes in the DNA methylation pattern, and recently, the gastrointestinal microbiota could be associated with this epigenetic change. The predominant phyla in gut microbiota are Firmicutes and Bacteroidetes; however, an enrichment of Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus bovis, among others, has been reported in colorectal cancer, although the composition could be influenced by several factors, including diet, age, sex, and cancer stage. Fusobacterium nucleatum, a gram-negative anaerobic bacillus, is mainly associated with colorectal cancer patients positive for the CpG island methylator phenotype, although hypermethylation in genes such as MLH1, CDKN2A, MTSS1, RBM38, PKD1, PTPRT, and EYA4 has also been described. Moreover, Hungatella hathewayi, a gram-positive, rod-shaped bacterium, is related to hypermethylation in SOX11, THBD, SFRP2, GATA5, ESR1, EYA4, CDX2, and APC genes. The underlying epigenetic mechanism is unclear, although it could be implicated in the regulation of DNA methyltransferases, enzymes that catalyze the transfer of a methyl group on cytosine of CpG sites. Since DNA methylation is a reversible event, changes in gut microbiota could modulate the gene expression through DNA methylation and improve the colorectal cancer prognosis.
Collapse
Affiliation(s)
- Melva Gutierrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Maria de la Luz Ayala-Madrigal
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jose Miguel Moreno-Ortiz
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jorge Peregrina-Sandoval
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Fernando Daniel Garcia-Ayala
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
41
|
Queen J, Shaikh F, Sears CL. Understanding the mechanisms and translational implications of the microbiome for cancer therapy innovation. NATURE CANCER 2023; 4:1083-1094. [PMID: 37525016 DOI: 10.1038/s43018-023-00602-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
The intersection of the microbiota and cancer and the mechanisms that define these interactions are a fascinating, rapidly evolving area of cancer biology and therapeutics. Here we present recent insights into the mechanisms by which specific bacteria or their communities contribute to carcinogenesis and discuss the bidirectional interplay between microbiota and host gene or epigenome signaling. We conclude with comments on manipulation of the microbiota for the therapeutic benefit of patients with cancer.
Collapse
Affiliation(s)
- Jessica Queen
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fyza Shaikh
- Cancer Immunology Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cancer Immunology Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Molecular Immunology, Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
42
|
Loyola Irizarry HG, Brito IL. Characterizing conjugative plasmids from an antibiotic-resistant dataset for use as broad-host delivery vectors. Front Microbiol 2023; 14:1199640. [PMID: 37389338 PMCID: PMC10301749 DOI: 10.3389/fmicb.2023.1199640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023] Open
Abstract
Human microbiome engineering is increasingly proposed as a way to modulate health outcomes. However, one of the current limitations to engineering microbial communities in situ is delivery of a genetic payload for introducing or modifying genes. Indeed, there is a need to identify novel broad-host delivery vectors for microbiome engineering. Therefore, in this study, we characterized conjugative plasmids from a publicly available dataset of antibiotic-resistant isolate genomes in order to identify potential broad-host vectors for further applications. From the 199 closed genomes available in the CDC & FDA AR Isolate Bank, we identified 439 plasmids, of which 126 were predicted to be mobilizable and 206 conjugative. Various characteristics of the conjugative plasmids, such as size, replication origin, conjugation machinery, host defense mechanisms, and plasmid stability proteins, were analyzed to determine these plasmids' potential host-range. Following this analysis, we clustered plasmid sequences and chose 22 unique, broad-host range plasmids that would be suitable for use as delivery vectors. This novel set of plasmids will provide a valuable resource for engineering microbial communities.
Collapse
|
43
|
Li Y, Liu G, Gong R, Xi Y. Gut Microbiome Dysbiosis in Patients with Endometrial Cancer vs. Healthy Controls Based on 16S rRNA Gene Sequencing. Curr Microbiol 2023; 80:239. [PMID: 37294364 DOI: 10.1007/s00284-023-03361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Metabolic diseases like obesity, diabetes, and hypertension are considered major risk factors associated with endometrial cancer. Considering that an imbalance in the gut microbiome may lead to metabolic alterations, we hypothesized that alteration in the gut microbioma might be an indirect factor in the development of endometrial cancer. Our aim was to profile the gut microbiota of patients with endometrial cancer compared with healthy controls in this study. Thus, we used 16S rRNA high-throughput gene sequencing on the Illumina NovaSeq platform to profile microbial communities. Fecal samples were collected from 33 endometrial cancer patients (EC group) and 32 healthy controls (N group) between February 2021 and July 2021. The total numbers of operational taxonomic units (OTUs) in the N and EC groups were 28,537 and 18,465, respectively, while the number of OTUs shared by the two groups was 4771. This study was the first to report that the alpha diversity of the gut microbiota was significantly reduced in endometrial cancer patients vs. healthy controls. Also, there was a significant difference in the distribution of microbiome between the two groups: the abundance of Firmicutes, Clostridia, Clostridiales, Ruminococcaceae, Faecalibacterium, and Gemmiger_formicis decreased, while that of Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae and Shigella increased significantly in the EC group vs. healthy controls (all p < 0.05). The predominant intestinal microbiota of the endometrial cancer patients was Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, and Shigella. These results imply that adjusting the composition of the gut microbiota and maintaining microbiota homeostasis may be an effective strategy for preventing and treating endometrial cancer.
Collapse
Affiliation(s)
- Yue Li
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center (Group), No.1, Dunhuang Road, Shahekou District, Dalian, Liaoning, 116033, P.R. China
| | - Geng Liu
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center (Group), No.1, Dunhuang Road, Shahekou District, Dalian, Liaoning, 116033, P.R. China
| | - Runqi Gong
- Department of Obstetrics and Gynecology, Liaoning Provincial Hospital for women and children, Shenyang, Liaoning, 110004, P.R. China
| | - Yong Xi
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center (Group), No.1, Dunhuang Road, Shahekou District, Dalian, Liaoning, 116033, P.R. China.
| |
Collapse
|
44
|
Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00766-x. [PMID: 37169888 DOI: 10.1038/s41571-023-00766-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Colorectal cancer (CRC) is one of the commonest cancers globally. A unique aspect of CRC is its intimate association with the gut microbiota, which forms an essential part of the tumour microenvironment. Research over the past decade has established that dysbiosis of gut bacteria, fungi, viruses and Archaea accompanies colorectal tumorigenesis, and these changes might be causative. Data from mechanistic studies demonstrate the ability of the gut microbiota to interact with the colonic epithelia and immune cells of the host via the release of a diverse range of metabolites, proteins and macromolecules that regulate CRC development. Preclinical and some clinical evidence also underscores the role of the gut microbiota in modifying the therapeutic responses of patients with CRC to chemotherapy and immunotherapy. Herein, we summarize our current understanding of the role of gut microbiota in CRC and outline the potential translational and clinical implications for CRC diagnosis, prevention and treatment. Emphasis is placed on how the gut microbiota could now be better harnessed by developing targeted microbial therapeutics as chemopreventive agents against colorectal tumorigenesis, as adjuvants for chemotherapy and immunotherapy to boost drug efficacy and safety, and as non-invasive biomarkers for CRC screening and patient stratification. Finally, we highlight the hurdles and potential solutions to translating our knowledge of the gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
45
|
Wang AJ, Song D, Hong YM, Liu NN. Multi-omics insights into the interplay between gut microbiota and colorectal cancer in the "microworld" age. Mol Omics 2023; 19:283-296. [PMID: 36916422 DOI: 10.1039/d2mo00288d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Colorectal cancer (CRC) is a multifactorial heterogeneous disease largely due to both genetic predisposition and environmental factors including the gut microbiota, a dynamic microbial ecosystem inhabiting the gastrointestinal tract. Elucidation of the molecular mechanisms by which the gut microbiota interacts with the host may contribute to the pathogenesis, diagnosis, and promotion of CRC. However, deciphering the influence of genetic variants and interactions with the gut microbial ecosystem is rather challenging. Despite recent advancements in single omics analysis, the application of multi-omics approaches to integrate multiple layers of information in the microbiome and host to introduce effective prevention, diagnosis, and treatment strategies is still in its infancy. Here, we integrate host- and microbe-based multi-omics studies, respectively, to provide a strategy to explore potential causal relationships between gut microbiota and colorectal cancer. Specifically, we summarize the recent multi-omics studies such as metagenomics combined with metabolomics and metagenomics combined with genomics. Meanwhile, the sample size and sample types commonly used in multi-omics research, as well as the methods of data analysis, were also generalized. We highlight multiple layers of information from multi-omics that need to be verified by different types of models. Together, this review provides new insights into the clinical diagnosis and treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- An-Jun Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Yue-Mei Hong
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
46
|
Ahrodia T, Kandiyal B, Das B. Microbiota and epigenetics: Health impact. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:93-117. [PMID: 37225326 DOI: 10.1016/bs.pmbts.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Epigenetic changes associated with disease development and progressions are of increasing importance because of their potential diagnostic and therapeutic applications. Several epigenetic changes associated with chronic metabolic disorders have been studied in various diseases. Epigenetic changes are mostly modulated by environmental factors, including the human microbiota living in different parts of our bodies. The microbial structural components and the microbially derived metabolites directly interact with host cells, thereby maintaining homeostasis. Microbiome dysbiosis, on the other hand, is known to produce elevated levels of disease-linked metabolites, which may directly affect a host metabolic pathway or induce epigenetic changes that can lead to disease development. Despite their important role in host physiology and signal transduction, there has been little research into the mechanics and pathways associated with epigenetic modifications. This chapter focuses on the relationship between microbes and their epigenetic effects in diseased pathology, as well as on the regulation and metabolism of the dietary options available to the microbes. Furthermore, this chapter also provides a prospective link between these two important phenomena, termed "Microbiome and Epigenetics."
Collapse
Affiliation(s)
- Taruna Ahrodia
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Bharti Kandiyal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
47
|
Oosterlinck B, Ceuleers H, Arras W, De Man JG, Geboes K, De Schepper H, Peeters M, Lebeer S, Skieceviciene J, Hold GL, Kupcinskas J, Link A, De Winter BY, Smet A. Mucin-microbiome signatures shape the tumor microenvironment in gastric cancer. MICROBIOME 2023; 11:86. [PMID: 37085819 PMCID: PMC10120190 DOI: 10.1186/s40168-023-01534-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS We aimed to identify mucin-microbiome signatures shaping the tumor microenvironment in gastric adenocarcinomas and clinical outcomes. METHODS We performed high-throughput profiling of the mucin phenotypes present in 108 gastric adenocarcinomas and 20 functional dyspepsia cases using validated mucin-based RT-qPCRs with subsequent immunohistochemistry validation and correlated the data with clinical outcome parameters. The gastric microbiota was assessed by 16S rRNA gene sequencing, taxonomy, and community composition determined, microbial networks analyzed, and the metagenome inferred in association with mucin phenotypes and expression. RESULTS Gastric adenocarcinomas with an intestinal mucin environment or high-level MUC13 expression are associated with poor survival. On the contrary, gastric MUC5AC or MUC6 abundance was associated with a more favorable outcome. The oral taxa Neisseria, Prevotella, and Veillonella had centralities in tumors with intestinal and mixed phenotypes and were associated with MUC13 overexpression, highlighting their role as potential drivers in MUC13 signaling in GC. Furthermore, dense bacterial networks were observed in intestinal and mixed mucin phenotype tumors whereas the lowest community complexity was shown in null mucin phenotype tumors due to higher Helicobacter abundance resulting in a more decreased diversity. Enrichment of oral or intestinal microbes was mucin phenotype dependent. More specifically, intestinal mucin phenotype tumors favored the establishment of pro-inflammatory oral taxa forming strong co-occurrence networks. CONCLUSIONS Our results emphasize key roles for mucins in gastric cancer prognosis and shaping microbial networks in the tumor microenvironment. Specifically, the enriched oral taxa associated with aberrant MUC13 expression can be potential biomarkers in predicting disease outcomes. Video Abstract.
Collapse
Affiliation(s)
- Baptiste Oosterlinck
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Wout Arras
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Karen Geboes
- Pathology Department, Gent University Hospital, Ghent, Belgium
| | - Heiko De Schepper
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Marc Peeters
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Jurgita Skieceviciene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Georgina L Hold
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University, Magdeburg, Germany
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium.
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
48
|
Pellegrino A, Coppola G, Santopaolo F, Gasbarrini A, Ponziani FR. Role of Akkermansia in Human Diseases: From Causation to Therapeutic Properties. Nutrients 2023; 15:nu15081815. [PMID: 37111034 PMCID: PMC10142179 DOI: 10.3390/nu15081815] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The gut microbiota plays a critical role in the modulation of host metabolism and immune response, and its impairment has been implicated in many gastrointestinal and extraintestinal diseases. Current evidence shows the well-documented role of A. muciniphila in maintaining the integrity of the intestinal barrier, modulating the host immune response, and improving several metabolic pathways, making it a key element in the pathogenesis of several human diseases. In this scenario, A. muciniphila is the most promising next-generation probiotic and one of the first microbial species suitable for specific clinical use when compared with traditional probiotics. Further studies are needed to provide more accurate insight into its mechanisms of action and to better elucidate its properties in several major areas, paving the way for a more integrated and personalized therapeutic approach that finally makes the most of our knowledge of the gut microbiota.
Collapse
Affiliation(s)
- Antonio Pellegrino
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
49
|
Di Tucci C, De Vito I, Muzii L. Immune-Onco-Microbiome: A New Revolution for Gynecological Cancers. Biomedicines 2023; 11:biomedicines11030782. [PMID: 36979761 PMCID: PMC10045465 DOI: 10.3390/biomedicines11030782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Despite significant advances in understanding the pathogenetic mechanisms underlying gynaecological cancers, these cancers still remain widespread. Recent research points to a possible link between microbiota and cancer, and the most recent attention is focusing on the relationship between the microbiome, the immune system, and cancer. The microbiome diversity can affect carcinogenesis and the patient’s immune response, modulating the inflammatory cascade and the severity of adverse events. In this review, we presented the recent evidence regarding microbiome alterations in patients with gynaecological tumours to understand if the link that exists between microbiome, immunity, and cancer can guide the prophylactic, diagnostic, and therapeutic management of gynaecological cancers.
Collapse
Affiliation(s)
- Chiara Di Tucci
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, 00161 Rome, Italy
- Correspondence:
| | | | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
50
|
Zhou P, Lu SL, Chang L, Liao B, Cheng M, Xu X, Sui X, Liu F, Zhang M, Wang Y, Yang R, Li R, Pan H, Zhang C. The pan-cancer landscape of abnormal DNA methylation and intratumor microorganisms. Neoplasia 2023; 37:100882. [PMID: 36791577 PMCID: PMC9958063 DOI: 10.1016/j.neo.2023.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Microorganisms play very important roles in carcinogenesis, tumor progression, and resistance upon treatment. Due to the challenge of accurately acquiring samples and quantifying low-biomass tissue microorganisms, most studies have focused on the effect of gut microorganisms on cancer treatments, especially the efficacy of immunotherapy. Although recent publications reveal the potential interactions between intratumor microorganisms and the immune microenvironment, whether and to what extent the intratumor microorganism could affect progression and treatment outcome remain controversial. This study is aiming to evaluate the associations among intratumor microorganisms, DNA methylation cancer driver genes, immune response, and clinical outcomes from a pan-cancer perspective, using 6,876 TCGA samples across 21 cancer types. We revealed that tumor microorganism dysbiosis is closely associated with the abnormal tumor methylome and/or tumor microenvironment, which might serve to enhance the proliferation ability and fitness for the therapy of tumors. These findings shed the light on a better understanding of the interactions between tumor cells and carcinogens during and after tumor formation, as well as microorganism-associated methylation alterations that could further serve as biomarkers for clinical outcome assessment.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | | | - Liang Chang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Baoying Liao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Ming Cheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiaolin Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xin Sui
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Fenting Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Mingshu Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yinxue Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Heng Pan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Chao Zhang
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|