1
|
Sohn YJ, Yang D. Spatial incoherence-driven optical reconstruction of holograms with observer shift-invariance. LIGHT, SCIENCE & APPLICATIONS 2025; 14:191. [PMID: 40355411 PMCID: PMC12069550 DOI: 10.1038/s41377-025-01823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/23/2025] [Accepted: 03/09/2025] [Indexed: 05/14/2025]
Abstract
Coherence preserves phase consistency between wavefields, enabling accurate recording and reconstruction in holography. Although recent advances in computational optics have realized holographic data acquisition using incoherent light by computationally retrieving information, optical reconstruction still requires partially coherent light sources. We demonstrate a hologram that reconstructs 3-dimensional distribution utilizing incoherence. By decomposing incoherent light into infinitesimal coherent lights and calculating their propagations, the incoherent sum is optimized to resemble the desired 3-dimensional scene, whereas individual coherent lights reconstruct completely different intensities. Incoherence provides high image quality and a wide eyebox, with the reconstructed intensity remaining shift-invariant under pupil displacement, allowing a 1000-fold expansion of the eyebox. We confirm the shift-invariance through a proof-of-concept experiment and demonstrate real-time synthesis of incoherent holograms using a neural network, significantly reducing computational costs. Our method could inspire new approaches in photonics using incoherent light and be practically adopted in holographic displays.
Collapse
Affiliation(s)
- Yeo Ju Sohn
- Department of Family Medicine, Ewha Womans University College of Medicine, Seoul, 07804, South Korea
| | - Daeho Yang
- Department of Physics, Gachon University, Seongnam, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
2
|
Liu W, Delikoyun K, Chen Q, Yildiz A, Myo SK, Kuan WS, Soong JTY, Cove ME, Hayden O, Lee HK. OAH-Net: a deep neural network for efficient and robust hologram reconstruction for off-axis digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2025; 16:894-909. [PMID: 40109528 PMCID: PMC11919354 DOI: 10.1364/boe.547292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 03/22/2025]
Abstract
Off-axis digital holographic microscopy is a high-throughput, label-free imaging technology that provides three-dimensional, high-resolution information about samples, which is particularly useful in large-scale cellular imaging. However, the hologram reconstruction process poses a significant bottleneck for timely data analysis. To address this challenge, we propose a novel reconstruction approach that integrates deep learning with the physical principles of off-axis holography. We initialized part of the network weights based on the physical principle and then fine-tuned them via supersized learning. Our off-axis hologram network (OAH-Net) retrieves phase and amplitude images with errors that fall within the measurement error range attributable to hardware, and its reconstruction speed significantly surpasses the microscope's acquisition rate. Crucially, OAH-Net, trained and validated on diluted whole blood samples, demonstrates remarkable external generalization capabilities on unseen samples with distinct patterns. Additionally, it can be seamlessly integrated with other models for downstream tasks, enabling end-to-end real-time hologram analysis. This capability further expands off-axis holography's applications in both biological and medical studies.
Collapse
Affiliation(s)
- Wei Liu
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, 138671, Singapore
| | - Kerem Delikoyun
- School of Computation, Information and Technology, Technical University of Munich, Arcisstr. 21, 80333, Munich, Germany
- TUMCREATE, 1 Create Way, 138602, Singapore
| | - Qianyu Chen
- School of Computation, Information and Technology, Technical University of Munich, Arcisstr. 21, 80333, Munich, Germany
- TUMCREATE, 1 Create Way, 138602, Singapore
| | | | - Si Ko Myo
- TUMCREATE, 1 Create Way, 138602, Singapore
| | - Win Sen Kuan
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, 117597, Singapore
- Emergency Medicine Department, National University Hospital, 5 Lower Kent Ridge Road, 119074, Singapore
| | - John Tshon Yit Soong
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, 117597, Singapore
- Department of Medicine, National University of Singapore, NUHS Tower Block, 119228, Singapore
| | - Matthew Edward Cove
- Department of Medicine, National University of Singapore, NUHS Tower Block, 119228, Singapore
| | - Oliver Hayden
- School of Computation, Information and Technology, Technical University of Munich, Arcisstr. 21, 80333, Munich, Germany
- TUMCREATE, 1 Create Way, 138602, Singapore
| | - Hwee Kuan Lee
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, 138671, Singapore
- Centre for Frontier AI Research, Agency for Science, Technology and Research, 1 Fusionopolis Way, 138671, Singapore
- International Research Laboratory on Artificial Intelligence, Agency for Science, Technology and Research, 1 Fusionopolis Way, 138671, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, 639798, Singapore
- School of Computing, National University of Singapore, 13 Computing Dr, 117417, Singapore
| |
Collapse
|
3
|
Vila-Andrés R, Martínez-Espert A, Furlan WD, Esteve-Taboada JJ, Micó V. Non-contact lensless holographic reconstruction of diffractive intraocular lenses profiles. Sci Rep 2025; 15:566. [PMID: 39747332 PMCID: PMC11696758 DOI: 10.1038/s41598-024-84363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
A lensless compact arrangement based on digital in-line holography under Gabor's regime is proposed as a novel contactless method to assess the profile of multifocal intraocular lenses (MIOLs) which are conformed by several diffractive rings. Diffractive MIOLs are a widely adopted ophthalmologic option for the correction of presbyopia in patients undergoing cataract surgery. The MIOL optical design might introduce non-negligible optical performance differences between lenses as well as the introduction of undesirable photic phenomena (such as halos and glare) affecting the vision of users. Therefore, the customized topographic control of each manufactured MIOL model, along with the advancement of optical simulation routines, is increasingly necessary to provide users with optimized performance of these implanted optics, as well as predictable and realistic expectations of their future vision with these solutions. In this manuscript, experimental results of the reconstruction of different smooth and highly edged diffractive profiles from a pair of commercially available MIOLs are presented. Besides, a study evaluating the convergence and robustness of the proposed iterative phase-retrieval routine based on a modified classical Gerchberg-Saxton algorithm is performed. These results provide experimental validation of the proposed technique for accurately measuring the optical profiles of MIOLs.
Collapse
Affiliation(s)
- Rosa Vila-Andrés
- Faculty of Physics, Department of Optics and Optometry and Vision Sciences, Universitat de València, Burjassot, Spain.
| | - Anabel Martínez-Espert
- Faculty of Physics, Department of Optics and Optometry and Vision Sciences, Universitat de València, Burjassot, Spain
| | - Walter D Furlan
- Faculty of Physics, Department of Optics and Optometry and Vision Sciences, Universitat de València, Burjassot, Spain
| | - José J Esteve-Taboada
- Faculty of Physics, Department of Optics and Optometry and Vision Sciences, Universitat de València, Burjassot, Spain
| | - Vicente Micó
- Faculty of Physics, Department of Optics and Optometry and Vision Sciences, Universitat de València, Burjassot, Spain
| |
Collapse
|
4
|
Lopera MJ, Buitrago-Duque C, Garcia-Sucerquia J, Nie Y, Ottevaere H, Trujillo C. Simulation of digital lensless holographic microscopy holograms: a physics-image processing approach. OPTICS EXPRESS 2024; 32:48509-48524. [PMID: 39876154 DOI: 10.1364/oe.541013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/13/2024] [Indexed: 01/30/2025]
Abstract
This work presents a method for simulating digital lensless holographic microscopy (DLHM) holograms using a physics-based image processing approach. While DLHM has gained significant attention in biology, biomedicine, and environmental monitoring, the current modeling of DLHM holograms has been limited, hindering potential applications, including learning-based solutions and generative model training. In this study, the DLHM propagation process is decomposed into the diffraction of a complex-valued spherical wavefront and the non-homogeneous magnification of the diffracted field that encodes the sample information, which accelerates and enhances the hologram simulation. The proposed model is validated by comparing simulated and experimental holograms of standard test targets under diverse imaging conditions. Comparative analyses are conducted against other DLHM hologram modeling methods, including direct Rayleigh-Sommerfeld diffraction, its convolutional implementation, and the Fresnel-Bluestein formalism. The proposed model is shown to outperform these methods in overall similarity to experimental recordings across a wide range of imaging conditions while maintaining computational efficiency. This DLHM hologram modeling approach provides researchers with a powerful tool for simulating trustable holograms. The model can be publicly accessed through the open-access repository https://github.com/mloper23/DLHM-model.
Collapse
|
5
|
Kumar M S, Hong J. Generalizable deep learning approach for 3D particle imaging using holographic microscopy (HM). OPTICS EXPRESS 2024; 32:48159-48173. [PMID: 39876127 DOI: 10.1364/oe.535207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/22/2024] [Indexed: 01/30/2025]
Abstract
Despite its potential for label-free particle diagnostics, holographic microscopy is limited by specialized processing methods that struggle to generalize across diverse settings. We introduce a deep learning architecture leveraging human perception of longitudinal variation of diffracted patterns of particles, which enables highly generalizable analysis of 3D particle information with orders of magnitude improvement in processing speed. Trained with minimal synthetic and real holograms of simple particles, our method demonstrates exceptional performance across various challenging cases, including high particle concentrations, significant noise, and a wide range of particle sizes, complex shapes, and optical properties, exceeding the diversity of training datasets.
Collapse
|
6
|
Belashov AV, Zhikhoreva AA, Salova AV, Belyaeva TN, Litvinov IK, Kornilova ES, Semenova IV. SLIM-assisted automatic cartography of cell death types and rates resulting from localized photodynamic treatment. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:C72-C81. [PMID: 39889066 DOI: 10.1364/josaa.534241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/20/2024] [Indexed: 02/02/2025]
Abstract
We report a spatial light interference microscopy (SLIM)-based methodology aimed at automatic monitoring and analysis of changes in cellular morphology within extended fields of view in cytological samples. The experimental validation was performed on HeLa cells in vitro subjected to localized photodynamic treatment. The performed long-term noninvasive monitoring using the SLIM technique allowed us to estimate quantitative parameters characterizing the dynamics of average phase shift in individual cells and to reveal changes in their morphology specific for different mechanisms of cell death. The results obtained evidenced that the proposed SLIM-based methodology provides an opportunity for identification of cell death type and quantification of cell death rate in an automatic mode. The major sources of potential errors that can affect the results obtained are discussed. The developed methodology is promising for automatic monitoring of large ensembles of individual cells and for quantitative characterization of their response to various treatment modalities.
Collapse
|
7
|
Wdowiak E, Rogalski M, Arcab P, Zdańkowski P, Józwik M, Trusiak M. Quantitative phase imaging verification in large field-of-view lensless holographic microscopy via two-photon 3D printing. Sci Rep 2024; 14:23611. [PMID: 39384947 PMCID: PMC11464779 DOI: 10.1038/s41598-024-74866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Large field-of-view (FOV) microscopic imaging (over 100 mm2) with high lateral resolution (1-2 μm) plays a pivotal role in biomedicine and biophotonics, especially within the label-free regime. Lensless digital holographic microscopy (LDHM) is promising in this context but ensuring accurate quantitative phase imaging (QPI) in large FOV LDHM is challenging. While phantoms, 3D printed by two-photon polymerization (TPP), have facilitated testing small FOV lens-based QPI systems, an equivalent evaluation for lensless techniques remains elusive, compounded by issues such as twin-image and beam distortions, particularly towards the detector's edges. Here, we propose an application of TPP over large area to examine phase consistency in LDHM. Our research involves fabricating widefield phase test targets with galvo and piezo scanning, scrutinizing them under single-shot twin-image corrupted conditions and multi-frame iterative twin-image minimization scenarios. By measuring the structures near the detector's edges, we verified LDHM phase imaging errors across the entire FOV, with less than 12% phase value difference between areas. Our findings indicate that TPP, followed by LDHM and Linnik interferometry cross-verification, requires new design considerations for precise large-area photonic manufacturing. This research paves the way for quantitative benchmarking of large FOV lensless phase imaging, enhancing understanding and further development of LDHM technique.
Collapse
Affiliation(s)
- Emilia Wdowiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., Warsaw, 02-525, Poland.
| | - Mikołaj Rogalski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., Warsaw, 02-525, Poland
| | - Piotr Arcab
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., Warsaw, 02-525, Poland
| | - Piotr Zdańkowski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., Warsaw, 02-525, Poland
| | - Michał Józwik
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., Warsaw, 02-525, Poland
| | - Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., Warsaw, 02-525, Poland.
| |
Collapse
|
8
|
Lee I, Lee A, Shin S, Kumar S, Nam MH, Kang KW, Kim BS, Cho SD, Kim H, Han S, Park SH, Seo S, Jun HS. Use of a platform with lens-free shadow imaging technology to monitor natural killer cell activity. Biosens Bioelectron 2024; 261:116512. [PMID: 38908292 DOI: 10.1016/j.bios.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Natural killer (NK) cells are a crucial component of the innate immune system. This study introduces Cellytics NK, a novel platform for rapid and precise measurement of NK cell activity. This platform combines an NK-specific activation stimulator cocktail (ASC) and lens-free shadow imaging technology (LSIT), using optoelectronic components. LSIT captures digital hologram images of resting and ASC-activated NK cells, while an algorithm evaluates cell size and cytoplasmic complexity using shadow parameters. The combined shadow parameter derived from the peak-to-peak distance and width standard deviation rapidly distinguishes active NK cells from inactive NK cells at the single-cell level within 30 s. Here, the feasibility of the system was demonstrated by assessing NK cells from healthy donors and immunocompromised cancer patients, demonstrating a significant difference in the innate immunity index (I3). Cancer patients showed a lower I3 value (161%) than healthy donors (326%). I3 was strongly correlated with NK cell activity measured using various markers such as interferon-gamma, tumor necrosis factor-alpha, perforin, granzyme B, and CD107a. This technology holds promise for advancing immune functional assays, offering rapid and accurate on-site analysis of NK cells, a crucial innate immune cell, with its compact and cost-effective optoelectronic setup, especially in the post-COVID-19 era.
Collapse
Affiliation(s)
- Inha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Ahyeon Lee
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Sanghoon Shin
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Samir Kumar
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ka-Won Kang
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Byung Soo Kim
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hawon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sunmi Han
- Metaimmunetech Inc., Sejong, 30019, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sungkyu Seo
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea; Metaimmunetech Inc., Sejong, 30019, Republic of Korea.
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Metaimmunetech Inc., Sejong, 30019, Republic of Korea.
| |
Collapse
|
9
|
Ravasio C, Teruzzi L, Siano M, Cremonesi L, Paroli B, Potenza MA. A customizable digital holographic microscope. HARDWAREX 2024; 19:e00569. [PMID: 39253063 PMCID: PMC11381907 DOI: 10.1016/j.ohx.2024.e00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/20/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
We propose a compact, portable, and low-cost holographic microscope designed for the characterization of micrometric particles suspended in a liquid. This system is built around a commercial optical microscope by substituting its illumination source (a light-emitting diode) with a collimated laser beam. Similarly, a quartz flow cell replaces the microscope glass slide using a 3D-printed custom mount. With the hardware presented in this paper, the holographic imaging of the electromagnetic fields emitted by the particles that intercept the laser beam achieves a resolution close to that of optical microscopes but with a greater depth of field. Several morphological and optical features can be extracted from the holograms, including particle projected section, aspect ratio, and extinction cross-section. Additionally, we introduce a remote system control that enables users to process the acquired holograms on a remote computational device. This work provides a comprehensive description of the methodology of image processing in holographic microscopy and a series of validation measurements conducted using calibrated particles. This technique is suitable for the characterization of airborne particles found in snow, firn, and ice; here we report experimental results obtained from Alpine ice cores.
Collapse
Affiliation(s)
- Claudia Ravasio
- Earth and Environmental Sciences Department, University of Milano-Bicocca, Milan, Italy
| | - Luca Teruzzi
- Department of Physics, University of Milan, Milan, Italy
| | - Mirko Siano
- Department of Physics, University of Milan, Milan, Italy
| | - Llorenç Cremonesi
- Earth and Environmental Sciences Department, University of Milano-Bicocca, Milan, Italy
| | - Bruno Paroli
- Department of Physics, University of Milan, Milan, Italy
| | - Marco A.C. Potenza
- Department of Physics, University of Milan, Milan, Italy
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Rosen J, Alford S, Allan B, Anand V, Arnon S, Arockiaraj FG, Art J, Bai B, Balasubramaniam GM, Birnbaum T, Bisht NS, Blinder D, Cao L, Chen Q, Chen Z, Dubey V, Egiazarian K, Ercan M, Forbes A, Gopakumar G, Gao Y, Gigan S, Gocłowski P, Gopinath S, Greenbaum A, Horisaki R, Ierodiaconou D, Juodkazis S, Karmakar T, Katkovnik V, Khonina SN, Kner P, Kravets V, Kumar R, Lai Y, Li C, Li J, Li S, Li Y, Liang J, Manavalan G, Mandal AC, Manisha M, Mann C, Marzejon MJ, Moodley C, Morikawa J, Muniraj I, Narbutis D, Ng SH, Nothlawala F, Oh J, Ozcan A, Park Y, Porfirev AP, Potcoava M, Prabhakar S, Pu J, Rai MR, Rogalski M, Ryu M, Choudhary S, Salla GR, Schelkens P, Şener SF, Shevkunov I, Shimobaba T, Singh RK, Singh RP, Stern A, Sun J, Zhou S, Zuo C, Zurawski Z, Tahara T, Tiwari V, Trusiak M, Vinu RV, Volotovskiy SG, Yılmaz H, De Aguiar HB, Ahluwalia BS, Ahmad A. Roadmap on computational methods in optical imaging and holography [invited]. APPLIED PHYSICS. B, LASERS AND OPTICS 2024; 130:166. [PMID: 39220178 PMCID: PMC11362238 DOI: 10.1007/s00340-024-08280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging. In addition to registering the perspectives of the modern-day architects of the above research areas, the roadmap also reports some of the latest studies on the topic. Computational codes and pseudocodes are presented for computational methods in a plug-and-play fashion for readers to not only read and understand but also practice the latest algorithms with their data. We believe that this roadmap will be a valuable tool for analyzing the current trends in computational methods to predict and prepare the future of computational methods in optical imaging and holography. Supplementary Information The online version contains supplementary material available at 10.1007/s00340-024-08280-3.
Collapse
Affiliation(s)
- Joseph Rosen
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Blake Allan
- Faculty of Science Engineering and Built Environment, Deakin University, Princes Highway, Warrnambool, VIC 3280 Australia
| | - Vijayakumar Anand
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
| | - Shlomi Arnon
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Francis Gracy Arockiaraj
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Jonathan Art
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Bijie Bai
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Ganesh M. Balasubramaniam
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Tobias Birnbaum
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- Swave BV, Gaston Geenslaan 2, 3001 Leuven, Belgium
| | - Nandan S. Bisht
- Applied Optics and Spectroscopy Laboratory, Department of Physics, Soban Singh Jeena University Campus Almora, Almora, Uttarakhand 263601 India
| | - David Blinder
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba Japan
| | - Liangcai Cao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Qian Chen
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
| | - Ziyang Chen
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Karen Egiazarian
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Mert Ercan
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| | - Andrew Forbes
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - G. Gopakumar
- Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, Vallikavu, Kerala India
| | - Yunhui Gao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Sorbonne Universite ´, Ecole Normale Supe ´rieure-Paris Sciences et Lettres (PSL) Research University, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Paweł Gocłowski
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Alon Greenbaum
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695 USA
| | - Ryoichi Horisaki
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
| | - Daniel Ierodiaconou
- Faculty of Science Engineering and Built Environment, Deakin University, Princes Highway, Warrnambool, VIC 3280 Australia
| | - Saulius Juodkazis
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 2-12-1, Ookayama, Tokyo, 152-8550 Japan
| | - Tanushree Karmakar
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Vladimir Katkovnik
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Svetlana N. Khonina
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
- Samara National Research University, 443086 Samara, Russia
| | - Peter Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602 USA
| | - Vladislav Kravets
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Ravi Kumar
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502 India
| | - Yingming Lai
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X1Pd7 Canada
| | - Chen Li
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Jiaji Li
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Shaoheng Li
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602 USA
| | - Yuzhu Li
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Jinyang Liang
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X1Pd7 Canada
| | - Gokul Manavalan
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Aditya Chandra Mandal
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Manisha Manisha
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Christopher Mann
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011 USA
- Center for Materials Interfaces in Research and Development, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Marcin J. Marzejon
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Chané Moodley
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Junko Morikawa
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 2-12-1, Ookayama, Tokyo, 152-8550 Japan
| | - Inbarasan Muniraj
- LiFE Lab, Department of Electronics and Communication Engineering, Alliance School of Applied Engineering, Alliance University, Bangalore, Karnataka 562106 India
| | - Donatas Narbutis
- Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, Sauletekio 9, 10222 Vilnius, Lithuania
| | - Soon Hock Ng
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
| | - Fazilah Nothlawala
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeonghun Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141 South Korea
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141 South Korea
- Tomocube Inc., Daejeon, 34051 South Korea
| | - Alexey P. Porfirev
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Mariana Potcoava
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Shashi Prabhakar
- Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009 India
| | - Jixiong Pu
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Mani Ratnam Rai
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Mikołaj Rogalski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Meguya Ryu
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (AIST), 1-1-1 Umezono, Tsukuba, 305-8563 Japan
| | - Sakshi Choudhary
- Department Chemical Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Shiva, Israel
| | - Gangi Reddy Salla
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502 India
| | - Peter Schelkens
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | - Sarp Feykun Şener
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| | - Igor Shevkunov
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Tomoyoshi Shimobaba
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba Japan
| | - Rakesh K. Singh
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Ravindra P. Singh
- Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009 India
| | - Adrian Stern
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Jiasong Sun
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Shun Zhou
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Chao Zuo
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Tatsuki Tahara
- Applied Electromagnetic Research Center, Radio Research Institute, National Institute of Information and Communications Technology (NICT), 4-2-1 Nukuikitamachi, Koganei, Tokyo 184-8795 Japan
| | - Vipin Tiwari
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - R. V. Vinu
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Sergey G. Volotovskiy
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Hasan Yılmaz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Hilton Barbosa De Aguiar
- Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Sorbonne Universite ´, Ecole Normale Supe ´rieure-Paris Sciences et Lettres (PSL) Research University, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Balpreet S. Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
11
|
Kim J, Lee SJ. Digital in-line holographic microscopy for label-free identification and tracking of biological cells. Mil Med Res 2024; 11:38. [PMID: 38867274 PMCID: PMC11170804 DOI: 10.1186/s40779-024-00541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Digital in-line holographic microscopy (DIHM) is a non-invasive, real-time, label-free technique that captures three-dimensional (3D) positional, orientational, and morphological information from digital holographic images of living biological cells. Unlike conventional microscopies, the DIHM technique enables precise measurements of dynamic behaviors exhibited by living cells within a 3D volume. This review outlines the fundamental principles and comprehensive digital image processing procedures employed in DIHM-based cell tracking methods. In addition, recent applications of DIHM technique for label-free identification and digital tracking of various motile biological cells, including human blood cells, spermatozoa, diseased cells, and unicellular microorganisms, are thoroughly examined. Leveraging artificial intelligence has significantly enhanced both the speed and accuracy of digital image processing for cell tracking and identification. The quantitative data on cell morphology and dynamics captured by DIHM can effectively elucidate the underlying mechanisms governing various microbial behaviors and contribute to the accumulation of diagnostic databases and the development of clinical treatments.
Collapse
Affiliation(s)
- Jihwan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
12
|
Picazo-Bueno JÁ, Ketelhut S, Schnekenburger J, Micó V, Kemper B. Off-axis digital lensless holographic microscopy based on spatially multiplexed interferometry. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22715. [PMID: 39161785 PMCID: PMC11331263 DOI: 10.1117/1.jbo.29.s2.s22715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Significance Digital holographic microscopy (DHM) is a label-free microscopy technique that provides time-resolved quantitative phase imaging (QPI) by measuring the optical path delay of light induced by transparent biological samples. DHM has been utilized for various biomedical applications, such as cancer research and sperm cell assessment, as well as for in vitro drug or toxicity testing. Its lensless version, digital lensless holographic microscopy (DLHM), is an emerging technology that offers size-reduced, lightweight, and cost-effective imaging systems. These features make DLHM applicable, for example, in limited resource laboratories, remote areas, and point-of-care applications. Aim In addition to the abovementioned advantages, in-line arrangements for DLHM also include the limitation of the twin-image presence, which can restrict accurate QPI. We therefore propose a compact lensless common-path interferometric off-axis approach that is capable of quantitative imaging of fast-moving biological specimens, such as living cells in flow. Approach We suggest lensless spatially multiplexed interferometric microscopy (LESSMIM) as a lens-free variant of the previously reported spatially multiplexed interferometric microscopy (SMIM) concept. LESSMIM comprises a common-path interferometric architecture that is based on a single diffraction grating to achieve digital off-axis holography. From a series of single-shot off-axis holograms, twin-image free and time-resolved QPI is achieved by commonly used methods for Fourier filtering-based reconstruction, aberration compensation, and numerical propagation. Results Initially, the LESSMIM concept is experimentally demonstrated by results from a resolution test chart and investigations on temporal stability. Then, the accuracy of QPI and capabilities for imaging of living adherent cell cultures is characterized. Finally, utilizing a microfluidic channel, the cytometry of suspended cells in flow is evaluated. Conclusions LESSMIM overcomes several limitations of in-line DLHM and provides fast time-resolved QPI in a compact optical arrangement. In summary, LESSMIM represents a promising technique with potential biomedical applications for fast imaging such as in imaging flow cytometry or sperm cell analysis.
Collapse
Affiliation(s)
- José Ángel Picazo-Bueno
- University of Muenster, Biomedical Technology Center, Muenster, Germany
- University of Valencia, Department of Optics, Optometry and Vision Science, Burjassot, Spain
| | - Steffi Ketelhut
- University of Muenster, Biomedical Technology Center, Muenster, Germany
| | | | - Vicente Micó
- University of Valencia, Department of Optics, Optometry and Vision Science, Burjassot, Spain
| | - Björn Kemper
- University of Muenster, Biomedical Technology Center, Muenster, Germany
| |
Collapse
|
13
|
Goswami N, Anastasio MA, Popescu G. Quantitative phase imaging techniques for measuring scattering properties of cells and tissues: a review-part I. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22713. [PMID: 39026612 PMCID: PMC11257415 DOI: 10.1117/1.jbo.29.s2.s22713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024]
Abstract
Significance Quantitative phase imaging (QPI) techniques offer intrinsic information about the sample of interest in a label-free, noninvasive manner and have an enormous potential for wide biomedical applications with negligible perturbations to the natural state of the sample in vitro. Aim We aim to present an in-depth review of the scattering formulation of light-matter interactions as applied to biological samples such as cells and tissues, discuss the relevant quantitative phase measurement techniques, and present a summary of various reported applications. Approach We start with scattering theory and scattering properties of biological samples followed by an exploration of various microscopy configurations for 2D QPI for measurement of structure and dynamics. Results We reviewed 157 publications and presented a range of QPI techniques and discussed suitable applications for each. We also presented the theoretical frameworks for phase reconstruction associated with the discussed techniques and highlighted their domains of validity. Conclusions We provide detailed theoretical as well as system-level information for a wide range of QPI techniques. Our study can serve as a guideline for new researchers looking for an exhaustive literature review of QPI methods and relevant applications.
Collapse
Affiliation(s)
- Neha Goswami
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Mark A. Anastasio
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| |
Collapse
|
14
|
Vila-Andrés R, Esteve-Taboada JJ, Micó V. Soft Contact Lens Engraving Characterization by Wavefront Holoscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:3492. [PMID: 38894283 PMCID: PMC11174835 DOI: 10.3390/s24113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Permanent engravings on contact lenses provide information about the manufacturing process and lens positioning when they are placed on the eye. The inspection of their morphological characteristics is important, since they can affect the user's comfort and deposit adhesion. Therefore, an inverted wavefront holoscope (a lensless microscope based on Gabor's principle of in-line digital holography) is explored for the characterization of the permanent marks of soft contact lenses. The device, based on an in-line transmission configuration, uses a partially coherent laser source to illuminate the soft contact lens placed in a cuvette filled with a saline solution for lens preservation. Holograms were recorded on a digital sensor and reconstructed by back propagation to the image plane based on the angular spectrum method. In addition, a phase-retrieval algorithm was used to enhance the quality of the recovered images. The instrument was experimentally validated through a calibration process in terms of spatial resolution and thickness estimation, showing values that perfectly agree with those that were theoretically expected. Finally, phase maps of different engravings for three commercial soft contact lenses were successfully reconstructed, validating the inverted wavefront holoscope as a potential instrument for the characterization of the permanent marks of soft contact lenses. To improve the final image quality of reconstructions, the geometry of lenses should be considered to avoid induced aberration effects.
Collapse
Affiliation(s)
| | | | - Vicente Micó
- Department of Optics and Optometry and Vision Sciences, Faculty of Physics, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
15
|
Wang R, Yang L, Lee Y, Sun K, Shen K, Zhao Q, Wang T, Zhang X, Liu J, Song P, Zheng G. Spatially-coded Fourier ptychography: flexible and detachable coded thin films for quantitative phase imaging with uniform phase transfer characteristics. ADVANCED OPTICAL MATERIALS 2024; 12:2303028. [PMID: 39473443 PMCID: PMC11521390 DOI: 10.1002/adom.202303028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 11/02/2024]
Abstract
Fourier ptychography (FP) is an enabling imaging technique that produces high-resolution complex-valued images with extended field coverages. However, when FP images a phase object with any specific spatial frequency, the captured images contain only constant values, rendering the recovery of the corresponding linear phase ramp impossible. This challenge is not unique to FP but also affects other common microscopy techniques -- a rather counterintuitive outcome given their widespread use in phase imaging. The underlying issue originates from the non-uniform phase transfer characteristic inherent in microscope systems, which impedes the conversion of object wavefields into discernible intensity variations. To address this challenge, we present spatially-coded Fourier ptychography (scFP), a new method that synergizes FP with spatial-domain coded detection for true quantitative phase imaging. In scFP, a flexible and detachable coded thin film is attached atop the image sensor in a regular FP setup. The spatial modulation of this thin film ensures a uniform phase response across the entire synthetic bandwidth. It improves reconstruction quality and corrects refractive index underestimation issues prevalent in conventional FP and related tomographic implementations. The inclusion of the coded thin film further adds a new dimension of measurement diversity in the spatial domain. The development of scFP is expected to catalyse new research directions and applications for phase imaging, emphasizing the need for true quantitative accuracy with uniform frequency response.
Collapse
Affiliation(s)
- Ruihai Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Liming Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Yujin Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | | | - Kuangyu Shen
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, USA
| | - Qianhao Zhao
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Tianbo Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Xincheng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Jiayi Liu
- Farmington High School, Farmington, USA
| | - Pengming Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| |
Collapse
|
16
|
Rogalski M, Arcab P, Stanaszek L, Micó V, Zuo C, Trusiak M. Physics-driven universal twin-image removal network for digital in-line holographic microscopy. OPTICS EXPRESS 2024; 32:742-761. [PMID: 38175095 DOI: 10.1364/oe.505440] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Digital in-line holographic microscopy (DIHM) enables efficient and cost-effective computational quantitative phase imaging with a large field of view, making it valuable for studying cell motility, migration, and bio-microfluidics. However, the quality of DIHM reconstructions is compromised by twin-image noise, posing a significant challenge. Conventional methods for mitigating this noise involve complex hardware setups or time-consuming algorithms with often limited effectiveness. In this work, we propose UTIRnet, a deep learning solution for fast, robust, and universally applicable twin-image suppression, trained exclusively on numerically generated datasets. The availability of open-source UTIRnet codes facilitates its implementation in various DIHM systems without the need for extensive experimental training data. Notably, our network ensures the consistency of reconstruction results with input holograms, imparting a physics-based foundation and enhancing reliability compared to conventional deep learning approaches. Experimental verification was conducted among others on live neural glial cell culture migration sensing, which is crucial for neurodegenerative disease research.
Collapse
|
17
|
Astratov VN, Sahel YB, Eldar YC, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao YT, Hsieh CL, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked NT, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng JX, Kariman BS, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang GJ, Chu SW, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen MJ, Stanciu SG, Smolyaninova VN, Smolyaninov II, Leonhardt U, Sahebdivan S, Wang Z, Luk’yanchuk B, Wu L, Maslov AV, Jin B, Simovski CR, Perrin S, Montgomery P, Lecler S. Roadmap on Label-Free Super-Resolution Imaging. LASER & PHOTONICS REVIEWS 2023; 17:2200029. [PMID: 38883699 PMCID: PMC11178318 DOI: 10.1002/lpor.202200029] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 06/18/2024]
Abstract
Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.
Collapse
Affiliation(s)
- Vasily N. Astratov
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Yair Ben Sahel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yonina C. Eldar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Nikolay Zheludev
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Junxiang Zhao
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zachary Burns
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Material Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Evgenii Narimanov
- School of Electrical Engineering, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Neha Goswami
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Emanuel Pfitzner
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Yi-Teng Hsiao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Brian Abbey
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Melbourne, Victoria, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - Alberto Diaspro
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Aymeric LeGratiet
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- Université de Rennes, CNRS, Institut FOTON - UMR 6082, F-22305 Lannion, France
| | - Paolo Bianchini
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Natan T. Shaked
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 6997801, Israel
| | - Bertrand Simon
- LP2N, Institut d’Optique Graduate School, CNRS UMR 5298, Université de Bordeaux, Talence France
| | - Nicolas Verrier
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | | | - Olivier Haeberlé
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | - Sheng Wang
- School of Physics and Technology, Wuhan University, China
- Wuhan Institute of Quantum Technology, China
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, USA
| | - Yeran Bai
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Behjat S. Kariman
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Katsumasa Fujita
- Department of Applied Physics and the Advanced Photonics and Biosensing Open Innovation Laboratory (AIST); and the Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Moshe Sinvani
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Zeev Zalevsky
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Guan-Jie Huang
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shi-Wei Chu
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Omer Tzang
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Dror Hershkovitz
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Ori Cheshnovsky
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Mikko J. Huttunen
- Laboratory of Photonics, Physics Unit, Tampere University, FI-33014, Tampere, Finland
| | - Stefan G. Stanciu
- Center for Microscopy – Microanalysis and Information Processing, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Vera N. Smolyaninova
- Department of Physics Astronomy and Geosciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Igor I. Smolyaninov
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ulf Leonhardt
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sahar Sahebdivan
- EMTensor GmbH, TechGate, Donau-City-Strasse 1, 1220 Wien, Austria
| | - Zengbo Wang
- School of Computer Science and Electronic Engineering, Bangor University, Bangor, LL57 1UT, United Kingdom
| | - Boris Luk’yanchuk
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Alexey V. Maslov
- Department of Radiophysics, University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Boya Jin
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Constantin R. Simovski
- Department of Electronics and Nano-Engineering, Aalto University, FI-00076, Espoo, Finland
- Faculty of Physics and Engineering, ITMO University, 199034, St-Petersburg, Russia
| | - Stephane Perrin
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Paul Montgomery
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Sylvain Lecler
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
18
|
Hassini H, Dorizzi B, Thellier M, Klossa J, Gottesman Y. Investigating the Joint Amplitude and Phase Imaging of Stained Samples in Automatic Diagnosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:7932. [PMID: 37765989 PMCID: PMC10536387 DOI: 10.3390/s23187932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
The diagnosis of many diseases relies, at least on first intention, on an analysis of blood smears acquired with a microscope. However, image quality is often insufficient for the automation of such processing. A promising improvement concerns the acquisition of enriched information on samples. In particular, Quantitative Phase Imaging (QPI) techniques, which allow the digitization of the phase in complement to the intensity, are attracting growing interest. Such imaging allows the exploration of transparent objects not visible in the intensity image using the phase image only. Another direction proposes using stained images to reveal some characteristics of the cells in the intensity image; in this case, the phase information is not exploited. In this paper, we question the interest of using the bi-modal information brought by intensity and phase in a QPI acquisition when the samples are stained. We consider the problem of detecting parasitized red blood cells for diagnosing malaria from stained blood smears using a Deep Neural Network (DNN). Fourier Ptychographic Microscopy (FPM) is used as the computational microscopy framework to produce QPI images. We show that the bi-modal information enhances the detection performance by 4% compared to the intensity image only when the convolution in the DNN is implemented through a complex-based formalism. This proves that the DNN can benefit from the bi-modal enhanced information. We conjecture that these results should extend to other applications processed through QPI acquisition.
Collapse
Affiliation(s)
- Houda Hassini
- Samovar, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France; (B.D.); (Y.G.)
- TRIBVN/T-Life, 92800 Puteaux, France;
| | - Bernadette Dorizzi
- Samovar, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France; (B.D.); (Y.G.)
| | - Marc Thellier
- AP-HP, Centre National de Référence du Paludisme, 75013 Paris, France;
- Institut Pierre-Louis d’Épidémiologie et de Santé Publique, Sorbonne Université, INSERM, 75013 Paris, France
| | | | - Yaneck Gottesman
- Samovar, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France; (B.D.); (Y.G.)
| |
Collapse
|
19
|
Jiang S, Song P, Wang T, Yang L, Wang R, Guo C, Feng B, Maiden A, Zheng G. Spatial- and Fourier-domain ptychography for high-throughput bio-imaging. Nat Protoc 2023; 18:2051-2083. [PMID: 37248392 PMCID: PMC12034321 DOI: 10.1038/s41596-023-00829-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/03/2023] [Indexed: 05/31/2023]
Abstract
First envisioned for determining crystalline structures, ptychography has become a useful imaging tool for microscopists. However, ptychography remains underused by biomedical researchers due to its limited resolution and throughput in the visible light regime. Recent developments of spatial- and Fourier-domain ptychography have successfully addressed these issues and now offer the potential for high-resolution, high-throughput optical imaging with minimal hardware modifications to existing microscopy setups, often providing an excellent trade-off between resolution and field of view inherent to conventional imaging systems, giving biomedical researchers the best of both worlds. Here, we provide extensive information to enable the implementation of ptychography by biomedical researchers in the visible light regime. We first discuss the intrinsic connections between spatial-domain coded ptychography and Fourier ptychography. A step-by-step guide then provides the user instructions for developing both systems with practical examples. In the spatial-domain implementation, we explain how a large-scale, high-performance blood-cell lens can be made at negligible expense. In the Fourier-domain implementation, we explain how adding a low-cost light source to a regular microscope can improve the resolution beyond the limit of the objective lens. The turnkey operation of these setups is suitable for use by professional research laboratories, as well as citizen scientists. Users with basic experience in optics and programming can build the setups within a week. The do-it-yourself nature of the setups also allows these procedures to be implemented in laboratory courses related to Fourier optics, biomedical instrumentation, digital image processing, robotics and capstone projects.
Collapse
Affiliation(s)
- Shaowei Jiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Pengming Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Tianbo Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Liming Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Ruihai Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Chengfei Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Andrew Maiden
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, UK
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA.
| |
Collapse
|
20
|
Zapata-Valencia SI, Tobon-Maya H, Garcia-Sucerquia J. Image enhancement and field of view enlargement in digital lensless holographic microscopy by multi-shot imaging. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:C150-C156. [PMID: 37132985 DOI: 10.1364/josaa.482496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A method to improve the quality of reconstructed images while the field of view (FOV) is enlarged in digital lensless holographic microscopy (DLHM) is presented. Multiple DLHM holograms are recorded while a still sample is located at different places of the plane containing it. The different locations of the sample must produce a set of DLHM holograms that share an overlapped area with a fixed DLHM hologram. The relative displacement among multiple DLHM holograms is computed by means of a normalized cross-correlation. The value of the computed displacement is utilized to produce a new DLHM hologram resulting from the coordinated addition of multi-shot DLHM holograms with the corresponding compensated displacement. The composed DLHM hologram carries enhanced information of the sample in a larger format, leading to a reconstructed image with improved quality and larger FOV. The feasibility of the method is illustrated and validated with results obtained from imaging a calibration test target and a biological specimen.
Collapse
|
21
|
Micó V, Rogalski M, Picazo-Bueno JÁ, Trusiak M. Single-shot wavelength-multiplexed phase microscopy under Gabor regime in a regular microscope embodiment. Sci Rep 2023; 13:4257. [PMID: 36918618 PMCID: PMC10015059 DOI: 10.1038/s41598-023-31300-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Phase imaging microscopy under Gabor regime has been recently reported as an extremely simple, low cost and compact way to update a standard bright-field microscope with coherent sensing capabilities. By inserting coherent illumination in the microscope embodiment and producing a small defocus distance of the sample at the input plane, the digital sensor records an in-line Gabor hologram of the target sample, which is then numerically post-processed to finally achieve the sample's quantitative phase information. However, the retrieved phase distribution is affected by the two well-known drawbacks when dealing with Gabor's regime, that is, coherent noise and twin image disturbances. Here, we present a single-shot technique based on wavelength multiplexing for mitigating these two effects. A multi-illumination laser source (including 3 diode lasers) illuminates the sample and a color digital sensor (conventional RGB color camera) is used to record the wavelength-multiplexed Gabor hologram in a single exposure. The technique is completed by presenting a novel algorithm based on a modified Gerchberg-Saxton kernel to finally retrieve an enhanced quantitative phase image of the sample, enhanced in terms of coherent noise removal and twin image minimization. Experimental validations are performed in a regular Olympus BX-60 upright microscope using a 20X 0.46NA objective lens and considering static (resolution test targets) and dynamic (living spermatozoa) phase samples.
Collapse
Affiliation(s)
- Vicente Micó
- Departamento de Óptica y Optometría y Ciencias de la Visión, Universidad de Valencia, C/Doctor Moliner 50, 46100, Burjassot, Spain.
| | - Mikołaj Rogalski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02‑525, Warsaw, Poland
| | - José Ángel Picazo-Bueno
- Departamento de Óptica y Optometría y Ciencias de la Visión, Universidad de Valencia, C/Doctor Moliner 50, 46100, Burjassot, Spain
| | - Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02‑525, Warsaw, Poland
| |
Collapse
|
22
|
Chen X, Wang H, Razi A, Kozicki M, Mann C. DH-GAN: a physics-driven untrained generative adversarial network for holographic imaging. OPTICS EXPRESS 2023; 31:10114-10135. [PMID: 37157567 DOI: 10.1364/oe.480894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Digital holography is a 3D imaging technique by emitting a laser beam with a plane wavefront to an object and measuring the intensity of the diffracted waveform, called holograms. The object's 3D shape can be obtained by numerical analysis of the captured holograms and recovering the incurred phase. Recently, deep learning (DL) methods have been used for more accurate holographic processing. However, most supervised methods require large datasets to train the model, which is rarely available in most DH applications due to the scarcity of samples or privacy concerns. A few one-shot DL-based recovery methods exist with no reliance on large datasets of paired images. Still, most of these methods often neglect the underlying physics law that governs wave propagation. These methods offer a black-box operation, which is not explainable, generalizable, and transferrable to other samples and applications. In this work, we propose a new DL architecture based on generative adversarial networks that uses a discriminative network for realizing a semantic measure for reconstruction quality while using a generative network as a function approximator to model the inverse of hologram formation. We impose smoothness on the background part of the recovered image using a progressive masking module powered by simulated annealing to enhance the reconstruction quality. The proposed method exhibits high transferability to similar samples, which facilitates its fast deployment in time-sensitive applications without the need for retraining the network from scratch. The results show a considerable improvement to competitor methods in reconstruction quality (about 5 dB PSNR gain) and robustness to noise (about 50% reduction in PSNR vs noise increase rate).
Collapse
|
23
|
McKay GN, Oommen A, Pacheco C, Chen MT, Ray SC, Vidal R, Haeffele BD, Durr NJ. Lens Free Holographic Imaging for Urinary Tract Infection Screening. IEEE Trans Biomed Eng 2023; 70:1053-1061. [PMID: 36129868 PMCID: PMC10027617 DOI: 10.1109/tbme.2022.3208220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The diagnosis of urinary tract infection (UTI) currently requires precise specimen collection, handling infectious human waste, controlled urine storage, and timely transportation to modern laboratory equipment for analysis. Here we investigate holographic lens free imaging (LFI) to show its promise for enabling automatic urine analysis at the patient bedside. METHODS We introduce an LFI system capable of resolving important urine clinical biomarkers such as red blood cells, white blood cells, crystals, and casts in 2 mm thick urine phantoms. RESULTS This approach is sensitive to the particulate concentrations relevant for detecting several clinical urine abnormalities such as hematuria and pyuria, linearly correlating to ground truth hemacytometer measurements with R 2 = 0.9941 and R 2 = 0.9973, respectively. We show that LFI can estimate E. coli concentrations of 10 3 to 10 5 cells/mL by counting individual cells, and is sensitive to concentrations of 10 5 cells/mL to 10 8 cells/mL by analyzing hologram texture. Further, LFI measurements of blood cell concentrations are relatively insensitive to changes in bacteria concentrations of over seven orders of magnitude. Lastly, LFI reveals clear differences between UTI-positive and UTI-negative urine from human patients. CONCLUSION LFI is sensitive to clinically-relevant concentrations of bacteria, blood cells, and other sediment in large urine volumes. SIGNIFICANCE Together, these results show promise for LFI as a tool for urine screening, potentially offering early, point-of-care detection of UTI and other pathological processes.
Collapse
|
24
|
Wang T, Jiang S, Song P, Wang R, Yang L, Zhang T, Zheng G. Optical ptychography for biomedical imaging: recent progress and future directions [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:489-532. [PMID: 36874495 PMCID: PMC9979669 DOI: 10.1364/boe.480685] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 05/25/2023]
Abstract
Ptychography is an enabling microscopy technique for both fundamental and applied sciences. In the past decade, it has become an indispensable imaging tool in most X-ray synchrotrons and national laboratories worldwide. However, ptychography's limited resolution and throughput in the visible light regime have prevented its wide adoption in biomedical research. Recent developments in this technique have resolved these issues and offer turnkey solutions for high-throughput optical imaging with minimum hardware modifications. The demonstrated imaging throughput is now greater than that of a high-end whole slide scanner. In this review, we discuss the basic principle of ptychography and summarize the main milestones of its development. Different ptychographic implementations are categorized into four groups based on their lensless/lens-based configurations and coded-illumination/coded-detection operations. We also highlight the related biomedical applications, including digital pathology, drug screening, urinalysis, blood analysis, cytometric analysis, rare cell screening, cell culture monitoring, cell and tissue imaging in 2D and 3D, polarimetric analysis, among others. Ptychography for high-throughput optical imaging, currently in its early stages, will continue to improve in performance and expand in its applications. We conclude this review article by pointing out several directions for its future development.
Collapse
Affiliation(s)
- Tianbo Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- These authors contributed equally to this work
| | - Shaowei Jiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- These authors contributed equally to this work
| | - Pengming Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- These authors contributed equally to this work
| | - Ruihai Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Liming Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Terrance Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
25
|
Picazo-Bueno JÁ, Sanz M, Granero L, García J, Micó V. Multi-Illumination Single-Holographic-Exposure Lensless Fresnel (MISHELF) Microscopy: Principles and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:1472. [PMID: 36772511 PMCID: PMC9918952 DOI: 10.3390/s23031472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Lensless holographic microscopy (LHM) comes out as a promising label-free technique since it supplies high-quality imaging and adaptive magnification in a lens-free, compact and cost-effective way. Compact sizes and reduced prices of LHMs make them a perfect instrument for point-of-care diagnosis and increase their usability in limited-resource laboratories, remote areas, and poor countries. LHM can provide excellent intensity and phase imaging when the twin image is removed. In that sense, multi-illumination single-holographic-exposure lensless Fresnel (MISHELF) microscopy appears as a single-shot and phase-retrieved imaging technique employing multiple illumination/detection channels and a fast-iterative phase-retrieval algorithm. In this contribution, we review MISHELF microscopy through the description of the principles, the analysis of the performance, the presentation of the microscope prototypes and the inclusion of the main biomedical applications reported so far.
Collapse
Affiliation(s)
- José Ángel Picazo-Bueno
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany
| | - Martín Sanz
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
| | - Luis Granero
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
| | - Javier García
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
| | - Vicente Micó
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
26
|
Arcab P, Mirecki B, Stefaniuk M, Pawłowska M, Trusiak M. Experimental optimization of lensless digital holographic microscopy with rotating diffuser-based coherent noise reduction. OPTICS EXPRESS 2022; 30:42810-42828. [PMID: 36522993 DOI: 10.1364/oe.470860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/23/2022] [Indexed: 06/17/2023]
Abstract
Laser-based lensless digital holographic microscopy (LDHM) is often spoiled by considerable coherent noise factor. We propose a novel LDHM method with significantly limited coherent artifacts, e.g., speckle noise and parasitic interference fringes. It is achieved by incorporating a rotating diffuser, which introduces partial spatial coherence and preserves high temporal coherence of laser light, crucial for credible in-line hologram reconstruction. We present the first implementation of the classical rotating diffuser concept in LDHM, significantly increasing the signal-to-noise ratio while preserving the straightforwardness and compactness of the LDHM imaging device. Prior to the introduction of the rotating diffusor, we performed LDHM experimental hardware optimization employing 4 light sources, 4 cameras, and 3 different optical magnifications (camera-sample distances). It was guided by the quantitative assessment of numerical amplitude/phase reconstruction of test targets, conducted upon standard deviation calculation (noise factor quantification), and resolution evaluation (information throughput quantification). Optimized rotating diffuser LDHM (RD-LDHM) method was successfully corroborated in technical test target imaging and examination of challenging biomedical sample (60 µm thick mouse brain tissue slice). Physical minimization of coherent noise (up to 50%) was positively verified, while preserving optimal spatial resolution of phase and amplitude imaging. Coherent noise removal, ensured by proposed RD-LDHM method, is especially important in biomedical inference, as speckles can falsely imitate valid biological features. Combining this favorable outcome with large field-of-view imaging can promote the use of reported RD-LDHM technique in high-throughput stain-free biomedical screening.
Collapse
|
27
|
Mirecki B, Rogalski M, Arcab P, Rogujski P, Stanaszek L, Józwik M, Trusiak M. Low-intensity illumination for lensless digital holographic microscopy with minimized sample interaction. BIOMEDICAL OPTICS EXPRESS 2022; 13:5667-5682. [PMID: 36733749 PMCID: PMC9872902 DOI: 10.1364/boe.464367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/18/2023]
Abstract
Exposure to laser light alters cell culture examination via optical microscopic imaging techniques based on label-free coherent digital holography. To mitigate this detrimental feature, researchers tend to use a broader spectrum and lower intensity of illumination, which can decrease the quality of holographic imaging due to lower resolution and higher noise. We study the lensless digital holographic microscopy (LDHM) ability to operate in the low photon budget (LPB) regime to enable imaging of unimpaired live cells with minimized sample interaction. Low-cost off-the-shelf components are used, promoting the usability of such a straightforward approach. We show that recording data in the LPB regime (down to 7 µW of illumination power) does not limit the contrast or resolution of the hologram phase and amplitude reconstruction compared to regular illumination. The LPB generates hardware camera shot noise, however, to be effectively minimized via numerical denoising. The ability to obtain high-quality, high-resolution optical complex field reconstruction was confirmed using the USAF 1951 amplitude sample, phase resolution test target, and finally, live glial restricted progenitor cells (as a challenging strongly absorbing and scattering biomedical sample). The proposed approach based on severely limiting the photon budget in lensless holographic microscopy method can open new avenues in high-throughout (optimal resolution, large field-of-view, and high signal-to-noise-ratio single-hologram reconstruction) cell culture imaging with minimized sample interaction.
Collapse
Affiliation(s)
- Bartosz Mirecki
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
- Authors contributed equally to this work
| | - Mikołaj Rogalski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
- Authors contributed equally to this work
| | - Piotr Arcab
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
- Authors contributed equally to this work
| | - Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Adolfa Pawinskiego St., 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Adolfa Pawinskiego St., 02-106 Warsaw, Poland
| | - Michał Józwik
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Maciej Trusiak
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| |
Collapse
|
28
|
Saito M, Kitamura M, Ide Y, Nguyen MH, Le BD, Mai AT, Miyashiro D, Mayama S, Umemura K. An Efficient Method of Observing Diatom Frustules via Digital Holographic Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-5. [PMID: 36124414 DOI: 10.1017/s1431927622012508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, we propose a convenient method to enable pretreatment of target objects using digital holographic microscopy (DHM). As a test sample, we used diatom frustules (Nitzschia sp.) as the target objects. In the generally used sample preparation method, the frustule suspension is added dropwise onto a glass substrate or into a glass chamber. While our work confirms good observation of purified frustules using the typical sample preparation method, we also demonstrate a new procedure to observe unseparated structures of frustules prepared by baking them on a mica surface. The baked frustules on the mica surface were transferred to a glass chamber with 1% sodium dodecyl sulfate solution. In this manner, the unseparated structures of the diatom frustules were clearly observed. Furthermore, metal-coated frustules prepared by sputtering onto them on a mica surface were also clearly observed using the same procedure. Our method can be applied for the observation of any target object that is pretreated on a solid surface. We expect our proposed method to be a basis for establishing DHM techniques for microscopic observations of biomaterials.
Collapse
Affiliation(s)
- Makoto Saito
- Biophysics Section, Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Masaki Kitamura
- Biophysics Section, Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yuki Ide
- Biophysics Section, Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Minh Hieu Nguyen
- VNU University of University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Binh Duong Le
- National Center for Technological Progress, 25 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
| | - Anh Tuan Mai
- VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Daisuke Miyashiro
- ScienceCafe MC2 Co., Ltd., 3-88 Hanasaki-Cho, Yokohama Naka-ku, Kanagawa 231-0063, Japan
| | - Shigeki Mayama
- Tokyo Diatomology Labo, 2-3-2 Nukuikitamachi, Koganei, Tokyo 184-0015, Japan
| | - Kazuo Umemura
- Biophysics Section, Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
29
|
Satake SI. Micro- and Nanoscale Imaging of Fluids in Water Using Refractive-Index-Matched Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3203. [PMID: 36144991 PMCID: PMC9505072 DOI: 10.3390/nano12183203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Three-dimensional (3D) visualization in water is a technique that, in addition to macroscale visualization, enables micro- and nanoscale visualization via a microfabrication technique, which is particularly important in the study of biological systems. This review paper introduces micro- and nanoscale 3D fluid visualization methods. First, we introduce a specific holographic fluid measurement method that can visualize three-dimensional fluid phenomena; we introduce the basic principles and survey both the initial and latest related research. We also present a method of combining this technique with refractive-index-matched materials. Second, we outline the TIRF method, which is a method for nanoscale fluid measurements, and introduce measurement examples in combination with imprinted materials. In particular, refractive-index-matched materials are unaffected by diffraction at the nanoscale, but the key is to create nanoscale shapes. The two visualization methods reviewed here can also be used for other fluid measurements; however, because these methods can used in combination with refractive-index-matched materials in water, they are expected to be applied to experimental measurements of biological systems.
Collapse
Affiliation(s)
- Shin-Ichi Satake
- Department of Applied Electronics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
30
|
Rogalski M, Picazo-Bueno JA, Winnik J, Zdańkowski P, Micó V, Trusiak M. Accurate automatic object 4D tracking in digital in-line holographic microscopy based on computationally rendered dark fields. Sci Rep 2022; 12:12909. [PMID: 35902721 PMCID: PMC9334364 DOI: 10.1038/s41598-022-17176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Building on Gabor seminal principle, digital in-line holographic microscopy provides efficient means for space-time investigations of large volumes of interest. Thus, it has a pivotal impact on particle tracking that is crucial in advancing various branches of science and technology, e.g., microfluidics and biophysical processes examination (cell motility, migration, interplay etc.). Well-established algorithms often rely on heavily regularized inverse problem modelling and encounter limitations in terms of tracking accuracy, hologram signal-to-noise ratio, accessible object volume, particle concentration and computational burden. This work demonstrates the DarkTrack algorithm-a new approach to versatile, fast, precise, and robust 4D holographic tracking based on deterministic computationally rendered high-contrast dark fields. Its unique capabilities are quantitatively corroborated employing a novel numerical engine for simulating Gabor holographic recording of time-variant volumes filled with predefined dynamic particles. Our solution accounts for multiple scattering and thus it is poised to secure an important gap in holographic particle tracking technology and allow for ground-truth-driven benchmarking and quantitative assessment of tracking algorithms. Proof-of-concept experimental evaluation of DarkTrack is presented via analyzing live spermatozoa. Software supporting both novel numerical holographic engine and DarkTrack algorithm is made open access, which opens new possibilities and sets the stage for democratization of robust holographic 4D particle examination.
Collapse
Affiliation(s)
- Mikołaj Rogalski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525, Warsaw, Poland
| | - Jose Angel Picazo-Bueno
- Departamento de Óptica y de Optometría y Ciencias de la Visión, Universitat de Valencia, C/Doctor Moliner 50, 46100, Burjassot, Spain
| | - Julianna Winnik
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525, Warsaw, Poland
| | - Piotr Zdańkowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525, Warsaw, Poland
| | - Vicente Micó
- Departamento de Óptica y de Optometría y Ciencias de la Visión, Universitat de Valencia, C/Doctor Moliner 50, 46100, Burjassot, Spain
| | - Maciej Trusiak
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525, Warsaw, Poland.
| |
Collapse
|
31
|
Liu H, Wu X, Liu G, Ren H, R V V, Chen Z, Pu J. Label-free single-shot imaging with on-axis phase-shifting holographic reflectance quantitative phase microscopy. JOURNAL OF BIOPHOTONICS 2022; 15:e202100400. [PMID: 35285152 DOI: 10.1002/jbio.202100400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Quantitative phase microscopy (QPM) has been emerged as an indispensable diagnostic and characterization tool in biomedical imaging with its characteristic nature of label-free, noninvasive, and real time imaging modality. The integration of holography to the conventional microscopy opens new advancements in QPM featuring high-resolution and quantitative three-dimensional image reconstruction. However, the holography schemes suffer in space-bandwidth and time-bandwidth issues in the off-axis and phase-shifting configuration, respectively. Here, we introduce an on-axis phase-shifting holography based QPM system with single-shot imaging capability. The technique utilizes the Fizeau interferometry scheme in combination with polarization phase-shifting and space-division multiplexing to achieve the single-shot recording of the multiple phase-shifted holograms. Moreover, the high-speed imaging capability with instantaneous recording of spatially phase shifted holograms offers the flexible utilization of the approach in dynamic quantitative phase imaging with robust phase stability. We experimentally demonstrated the validity of the approach by quantitative phase imaging and depth-resolved imaging of paramecium cells. Furthermore, the technique is applied to the phase imaging and quantitative parameter estimation of red blood cells. This integration of a Fizeau-based phase-shifting scheme to the optical microscopy enables a simple and robust tool for the investigations of engineered and biological specimen with real-time quantitative analysis.
Collapse
Affiliation(s)
- Hanzi Liu
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Xiaoyan Wu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
- Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang, China
| | - Guodong Liu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
- Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang, China
| | - Hongliang Ren
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Vinu R V
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Ziyang Chen
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Jixiong Pu
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
32
|
Nette F, Guerra de Souza AC, Laskay T, Ohms M, Dömer D, Drömann D, Rapoport DH. Method for simultaneous tracking of thousands of unlabeled cells within a transparent 3D matrix. PLoS One 2022; 17:e0270456. [PMID: 35749549 PMCID: PMC9232129 DOI: 10.1371/journal.pone.0270456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Three-dimensional tracking of cells is one of the most powerful methods to investigate multicellular phenomena, such as ontogenesis, tumor formation or wound healing. However, 3D tracking in a biological environment usually requires fluorescent labeling of the cells and elaborate equipment, such as automated light sheet or confocal microscopy. Here we present a simple method for 3D tracking large numbers of unlabeled cells in a collagen matrix. Using a small lensless imaging setup, consisting of an LED and a photo sensor only, we were able to simultaneously track ~3000 human neutrophil granulocytes in a collagen droplet within an unusually large field of view (>50 mm2) at a time resolution of 4 seconds and a spatial resolution of ~1.5 μm in xy- and ~30 μm in z-direction. The setup, which is small enough to fit into any conventional incubator, was used to investigate chemotaxis towards interleukin-8 (IL-8 or CXCL8) and N-formylmethionyl-leucyl-phenylalanine (fMLP). The influence of varying stiffness and pore size of the embedding collagen matrix could also be quantified. Furthermore, we demonstrate our setup to be capable of telling apart healthy neutrophils from those where a condition of inflammation was (I) induced by exposure to lipopolysaccharide (LPS) and (II) caused by a pre-existing asthma condition. Over the course of our experiments we have tracked more than 420.000 cells. The large cell numbers increase statistical relevance to not only quantify cellular behavior in research, but to make it suitable for future diagnostic applications, too.
Collapse
Affiliation(s)
- Falk Nette
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology, Lübeck, Germany
| | | | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Mareike Ohms
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniel Dömer
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Daniel Drömann
- Medical Clinic III Pneumology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Daniel Hans Rapoport
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
33
|
Lopera MJ, Trujillo C. Holographic point source for digital lensless holographic microscopy. OPTICS LETTERS 2022; 47:2862-2865. [PMID: 35648949 DOI: 10.1364/ol.459146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
A holographic point source (HPS) developed for digital lensless holographic microscopy (HPS-DLHM) is presented. The HPS is an off-axis phase transmission hologram of an experimental micrometer pinhole recorded on a photopolymer holographic film. An amplitude division interferometer, adjusted to operate at maximum diffraction efficiency, has been employed to record the hologram. The results of HPS-DLHM have been contrasted with the results obtained via conventional DLHM, and the two techniques were found to give similar measurements. Compared with conventional pinhole-based DLHM illumination, our cost-effective proposal provides increased mechanical stability, the possibility of wider spherical illumination cones, and shorter reconstruction distances. These superior features pave the way to applying this quantitative phase imaging (QPI) technique in biomedical and telemedicine applications. The imaging capabilities of our HPS-DLHM proposal have been tested by using an intricate sample of a honeybee leg, a low-absorption sample of epithelial cheek cells, a 1951 USAF test target, and smeared human erythrocytes.
Collapse
|
34
|
Koppanen M, Kesti T, Kokko M, Rintala J, Palmroth M. An online flow-imaging particle counter and conventional water quality sensors detect drinking water contamination in the presence of normal water quality fluctuations. WATER RESEARCH 2022; 213:118149. [PMID: 35151088 DOI: 10.1016/j.watres.2022.118149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Contamination detection in drinking water is crucial for water utilities in terms of public health; however, current online water quality sensors can be unresponsive to various possible contaminants consisting of particulate and dissolved content or require a constant supply of reagents and sample preparation. We used a two-line test environment connected to a drinking water distribution system with flow-imaging particle counters and conventional sensors to assess their responses to the injection of contaminants into one line, including stormwater, treated wastewater, wastewater, well water, and Escherichia coli, while simultaneously measuring responses to normal water quality fluctuations in the other line. These water quality fluctuations were detected with all of the conventional sensors (except conductivity) and with 3 out of 5 of the size- and shape-derived particle classes of the flow-imaging particle counter. The flow-imaging particle counter was able to detect all of the studied contaminants, e.g. municipal wastewater at 0.001% (v/v), while the oxidation-reduction potential sensor outperformed other conventional sensors, detecting the same wastewater at 0.03% (v/v). The presence of particles less than 1 µm in size was shown to be a generic parameter for the detection of particulates present in the studied contaminants; however, they manifested a considerable response to fluctuations which led to lower relative response to contaminants in comparison to larger particles. The particle size and class distributions of contaminants were different from those of drinking water, and thus monitoring particles larger than 1 µm or specific particle classes of flow-imaging particle counter, which are substantially more abundant in contaminated water than in pure drinking water, can improve the detection of contamination events. Water utilities could optimize contamination detection by selecting water quality parameters with a minimal response to quality fluctuations and/or a high relative response to contaminants.
Collapse
Affiliation(s)
- Markus Koppanen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101, Tampere, Finland.
| | - Tero Kesti
- Uponor Corporation, Kaskimäenkatu 2, FI-33900 Tampere, Finland
| | - Marika Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101, Tampere, Finland
| | - Jukka Rintala
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101, Tampere, Finland
| | - Marja Palmroth
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101, Tampere, Finland
| |
Collapse
|
35
|
Single-Shot On-Axis Fizeau Polarization Phase-Shifting Digital Holography for Complex-Valued Dynamic Object Imaging. PHOTONICS 2022. [DOI: 10.3390/photonics9030126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Digital holography assisted with inline phase-shifting methods has the benefit of a large field of view and a high resolution, but it is limited in dynamic imaging due to sequential detection of multiple holograms. Here we propose and experimentally demonstrate a single-shot phase-shifting digital holography system based on a highly stable on-axis Fizeau-type polarization interferometry. The compact on-axis design of the system with the capability of instantaneous recording of multiple phase-shifted holograms and with robust stability features makes the technique a novel tool for the imaging of complex-valued dynamic objects. The efficacy of the approach is demonstrated experimentally by complex field imaging of various kinds of reflecting-type static and dynamic objects. Moreover, a quantitative analysis on the robust phase stability and sensitivity of the technique is evaluated by comparing the approach with conventional phase-shifting methods. The high phase stability and dynamic imaging potential of the technique are expected to make the system an ideal tool for quantitative phase imaging and real-time imaging of dynamic samples.
Collapse
|
36
|
Wu P, Zhang D, Yuan J, Zeng S, Gong H, Luo Q, Yang X. Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography. OPTICS EXPRESS 2022; 30:5177-5191. [PMID: 35209487 DOI: 10.1364/oe.451409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Fluorescence microscopy plays an irreplaceable role in biomedicine. However, limited depth of field (DoF) of fluorescence microscopy is always an obstacle of image quality, especially when the sample is with an uneven surface or distributed in different depths. In this manuscript, we combine deep learning with Fresnel incoherent correlation holography to describe a method to obtain significant large DoF fluorescence microscopy. Firstly, the hologram is restored by the Auto-ASP method from out-of-focus to in-focus in double-spherical wave Fresnel incoherent correlation holography. Then, we use a generative adversarial network to eliminate the artifacts introduced by Auto-ASP and output the high-quality image as a result. We use fluorescent beads, USAF target and mouse brain as samples to demonstrate the large DoF of more than 400µm, which is 13 times better than that of traditional wide-field microscopy. Moreover, our method is with a simple structure, which can be easily combined with many existing fluorescence microscopic imaging technology.
Collapse
|
37
|
Sirico DG, Cavalletti E, Miccio L, Bianco V, Memmolo P, Sardo A, Ferraro P. Kinematic analysis and visualization of Tetraselmis microalgae 3D motility by digital holography. APPLIED OPTICS 2022; 61:B331-B338. [PMID: 35201156 DOI: 10.1364/ao.444976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
A study on locomotion in a 3D environment of Tetraselmis microalgae by digital holographic microscopy is reported. In particular, a fast and semiautomatic criterion is revealed for tracking and analyzing the swimming path of a microalga (i.e., Tetraselmis species) in a 3D volume. Digital holography (DH) in a microscope off-axis configuration is exploited as a useful method to enable fast autofocusing and recognition of objects in the field of view, thus coupling DH with appropriate numerical algorithms. Through the proposed method we measure, simultaneously, the tri-dimensional paths followed by the flagellate microorganism and the full set of the kinematic parameters that describe the swimming behavior of the analyzed microorganisms by means of a polynomial fitting and segmentation. Furthermore, the method is capable to furnish the accurate morphology of the microorganisms at any instant of time along its 3D trajectory. This work launches a promising trend having as the main objective the combined use of DH and motility microorganism analysis as a label-free and non-invasive environmental monitoring tool, employable also for in situ measurements. Finally, we show that the locomotion can be visualized intriguingly by different modalities to furnish marine biologists with a clear 3D representation of all the parameters of the kinematic set in order to better understand the behavior of the microorganism under investigation.
Collapse
|
38
|
Jiang S, Guo C, Bian Z, Wang R, Zhu J, Song P, Hu P, Hu D, Zhang Z, Hoshino K, Feng B, Zheng G. Ptychographic sensor for large-scale lensless microbial monitoring with high spatiotemporal resolution. Biosens Bioelectron 2022; 196:113699. [PMID: 34653716 DOI: 10.1016/j.bios.2021.113699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023]
Abstract
Traditional microbial detection methods often rely on the overall property of microbial cultures and cannot resolve individual growth event at high spatiotemporal resolution. As a result, they require bacteria to grow to confluence and then interpret the results. Here, we demonstrate the application of an integrated ptychographic sensor for lensless cytometric analysis of microbial cultures over a large scale and with high spatiotemporal resolution. The reported device can be placed within a regular incubator or used as a standalone incubating unit for long-term microbial monitoring. For longitudinal study where massive data are acquired at sequential time points, we report a new temporal-similarity constraint to increase the temporal resolution of ptychographic reconstruction by 7-fold. With this strategy, the reported device achieves a centimeter-scale field of view, a half-pitch spatial resolution of 488 nm, and a temporal resolution of 15-s intervals. For the first time, we report the direct observation of bacterial growth in a 15-s interval by tracking the phase wraps of the recovered images, with high phase sensitivity like that in interferometric measurements. We also characterize cell growth via longitudinal dry mass measurement and perform rapid bacterial detection at low concentrations. For drug-screening application, we demonstrate proof-of-concept antibiotic susceptibility testing and perform single-cell analysis of antibiotic-induced filamentation. The combination of high phase sensitivity, high spatiotemporal resolution, and large field of view is unique among existing microscopy techniques. As a quantitative and miniaturized platform, it can improve studies with microorganisms and other biospecimens at resource-limited settings.
Collapse
Affiliation(s)
- Shaowei Jiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Chengfei Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Zichao Bian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ruihai Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Jiakai Zhu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Pengming Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Patrick Hu
- Department of Computer Science, University of California Irvine, Irvine, CA, 92697, USA
| | - Derek Hu
- Amador Valley High School, Pleasanton, CA, 94566, USA
| | - Zibang Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
39
|
Picazo-Bueno JA, Trindade K, Sanz M, Micó V. Design, Calibration, and Application of a Robust, Cost-Effective, and High-Resolution Lensless Holographic Microscope. SENSORS (BASEL, SWITZERLAND) 2022; 22:553. [PMID: 35062512 PMCID: PMC8780948 DOI: 10.3390/s22020553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 01/04/2023]
Abstract
Lensless holographic microscope (LHM) is an emerging very promising technology that provides high-quality imaging and analysis of biological samples without utilizing any lens for imaging. Due to its small size and reduced price, LHM can be a very useful tool for the point-of-care diagnosis of diseases, sperm assessment, or microfluidics, among others, not only employed in advanced laboratories but also in poor and/or remote areas. Recently, several LHMs have been reported in the literature. However, complete characterization of their optical parameters remains not much presented yet. Hence, we present a complete analysis of the performance of a compact, reduced cost, and high-resolution LHM. In particular, optical parameters such as lateral and axial resolutions, lateral magnification, and field of view are discussed into detail, comparing the experimental results with the expected theoretical values for different layout configurations. We use high-resolution amplitude and phase test targets and several microbeads to characterize the proposed microscope. This characterization is used to define a balanced and matched setup showing a good compromise between the involved parameters. Finally, such a microscope is utilized for visualization of static, as well as dynamic biosamples.
Collapse
Affiliation(s)
- Jose Angel Picazo-Bueno
- Optics and Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain; (K.T.); (M.S.); (V.M.)
| | | | | | | |
Collapse
|
40
|
Pal D, Nazarenko Y, Preston TC, Ariya PA. Advancing the science of dynamic airborne nanosized particles using Nano-DIHM. Commun Chem 2021; 4:170. [PMID: 36697661 PMCID: PMC9814397 DOI: 10.1038/s42004-021-00609-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/23/2021] [Indexed: 01/28/2023] Open
Abstract
In situ and real-time characterization of aerosols is vital to several fundamental and applied research domains including atmospheric chemistry, air quality monitoring, or climate change studies. To date, digital holographic microscopy is commonly used to characterize dynamic nanosized particles, but optical traps are required. In this study, a novel integrated digital in-line holographic microscope coupled with a flow tube (Nano-DIHM) is demonstrated to characterize particle phase, shape, morphology, 4D dynamic trajectories, and 3D dimensions of airborne particles ranging from the nanoscale to the microscale. We demonstrate the application of Nano-DIHM for nanosized particles (≤200 nm) in dynamic systems without optical traps. The Nano-DIHM allows observation of moving particles in 3D space and simultaneous measurement of each particle's three dimensions. As a proof of concept, we report the real-time observation of 100 nm and 200 nm particles, i.e. polystyrene latex spheres and the mixture of metal oxide nanoparticles, in air and aqueous/solid/heterogeneous phases in stationary and dynamic modes. Our observations are validated by high-resolution scanning/transmission electron microscopy and aerosol sizers. The complete automation of software (Octopus/Stingray) with Nano-DIHM permits the reconstruction of thousands of holograms within an hour with 62.5 millisecond time resolution for each hologram, allowing to explore the complex physical and chemical processes of aerosols.
Collapse
Affiliation(s)
- Devendra Pal
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada
| | - Yevgen Nazarenko
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada
| | - Thomas C Preston
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC, H3A 2K6, Canada
| | - Parisa A Ariya
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada.
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC, H3A 2K6, Canada.
| |
Collapse
|
41
|
Song P, Guo C, Jiang S, Wang T, Hu P, Hu D, Zhang Z, Feng B, Zheng G. Optofluidic ptychography on a chip. LAB ON A CHIP 2021; 21:4549-4556. [PMID: 34726219 DOI: 10.1039/d1lc00719j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report the implementation of a fully on-chip, lensless microscopy technique termed optofluidic ptychography. This imaging modality complements the miniaturization provided by microfluidics and allows the integration of ptychographic microscopy into various lab-on-a-chip devices. In our prototype, we place a microfluidic channel on the top surface of a coverslip and coat the bottom surface with a scattering layer. The channel and the coated coverslip substrate are then placed on top of an image sensor for diffraction data acquisition. Similar to the operation of a flow cytometer, the device utilizes microfluidic flow to deliver specimens across the channel. The diffracted light from the flowing objects is modulated by the scattering layer and recorded by the image sensor for ptychographic reconstruction, where high-resolution quantitative complex images are recovered from the diffraction measurements. By using an image sensor with a 1.85 μm pixel size, our device can resolve the 550 nm linewidth on the resolution target. We validate the device by imaging different types of biospecimens, including C. elegans, yeast cells, paramecium, and closterium sp. We also demonstrate a high-resolution ptychographic reconstruction at a video framerate of 30 frames per second. The reported technique can address a wide range of biomedical needs and engenders new ptychographic imaging innovations in a flow cytometer configuration.
Collapse
Affiliation(s)
- Pengming Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Chengfei Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Shaowei Jiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Tianbo Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Patrick Hu
- Department of Computer Science, University of California Irvine, Irvine, CA, 92697, USA
| | - Derek Hu
- Amador Valley High School, Pleasanton, CA, 94566, USA
| | - Zibang Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
42
|
Shangraw M, Ling H. Improving axial localization of weak phase particles in digital in-line holography. APPLIED OPTICS 2021; 60:7099-7106. [PMID: 34612994 DOI: 10.1364/ao.435021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
One shortcoming of digital in-line holography (DIH) is the low axial position accuracy due to the elongated particle traces in the reconstruction field. Here, we propose a method that improves the axial localization of DIH when applying it to track the motion of weak phase particles in dense suspensions. The proposed method detects particle positions based on local intensities in the reconstruction field consisting of scattering and incident waves. We perform both numerical and experimental tests and demonstrate that the proposed method has a higher axial position accuracy than the previous method based on the local intensities in the reconstructed scattered field. We show that the proposed method has an axial position error below 1.5 particle diameters for holograms with a particle concentration of 4700particles/mm3. The proposed method is further validated by tracking the Brownian motion of 1µmparticles in dense suspensions.
Collapse
|
43
|
MacNeil L, Missan S, Luo J, Trappenberg T, LaRoche J. Plankton classification with high-throughput submersible holographic microscopy and transfer learning. BMC Ecol Evol 2021; 21:123. [PMID: 34134620 PMCID: PMC8207568 DOI: 10.1186/s12862-021-01839-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plankton are foundational to marine food webs and an important feature for characterizing ocean health. Recent developments in quantitative imaging devices provide in-flow high-throughput sampling from bulk volumes-opening new ecological challenges exploring microbial eukaryotic variation and diversity, alongside technical hurdles to automate classification from large datasets. However, a limited number of deployable imaging instruments have been coupled with the most prominent classification algorithms-effectively limiting the extraction of curated observations from field deployments. Holography offers relatively simple coherent microscopy designs with non-intrusive 3-D image information, and rapid frame rates that support data-driven plankton imaging tasks. Classification benchmarks across different domains have been set with transfer learning approaches, focused on repurposing pre-trained, state-of-the-art deep learning models as classifiers to learn new image features without protracted model training times. Combining the data production of holography, digital image processing, and computer vision could improve in-situ monitoring of plankton communities and contribute to sampling the diversity of microbial eukaryotes. RESULTS Here we use a light and portable digital in-line holographic microscope (The HoloSea) with maximum optical resolution of 1.5 μm, intensity-based object detection through a volume, and four different pre-trained convolutional neural networks to classify > 3800 micro-mesoplankton (> 20 μm) images across 19 classes. The maximum classifier performance was quickly achieved for each convolutional neural network during training and reached F1-scores > 89%. Taking classification further, we show that off-the-shelf classifiers perform strongly across every decision threshold for ranking a majority of the plankton classes. CONCLUSION These results show compelling baselines for classifying holographic plankton images, both rare and plentiful, including several dinoflagellate and diatom groups. These results also support a broader potential for deployable holographic microscopes to sample diverse microbial eukaryotic communities, and its use for high-throughput plankton monitoring.
Collapse
Affiliation(s)
- Liam MacNeil
- Biology Department, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4J1, Canada.
| | - Sergey Missan
- 4Deep inwater imaging, 71 Appaloosa Run, Hammonds Plains, NS, B4B 0G2, Canada
| | - Junliang Luo
- Department of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, NS, B3H 4R2, Canada
| | - Thomas Trappenberg
- Department of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, NS, B3H 4R2, Canada
| | - Julie LaRoche
- Biology Department, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4J1, Canada.
| |
Collapse
|
44
|
Go T, Kim J, Lee SJ. Three-dimensional volumetric monitoring of settling particulate matters on a leaf using digital in-line holographic microscopy. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124116. [PMID: 33049638 DOI: 10.1016/j.jhazmat.2020.124116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Plants are considered as a possible modality to reduce particulate matter (PM) particles from ambient air in an ecofriendly manner. A new precise monitoring technique that can explore interactions between individual PM particles and a leaf surface is necessary to understand the underlying mechanisms of PM removal of plant leaves. In this study, a digital in-line holographic microscopy (DIHM) was employed to experimentally investigate the settling motions of PM particles over the leaf surface. The in-plane positions and sizes of opaque PMs with irregular shapes were obtained from the projection images of numerically reconstructed holographic images. The depth positions of PMs were determined by using proper selection of an autofocusing criterion with automatic segmentation method. The edge of a hairy Perilla frutescens leaf was detected by adopting several digital imaging processing techniques. The DIHM technique was applied in this study to accurately detect 3D settling trajectories of PMs with velocity information of PMs in the midair and near leaf surface, simultaneously.
Collapse
Affiliation(s)
- Taesik Go
- Division of Biomedical Engineering, College of Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jihwan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
45
|
Tobon-Maya H, Zapata-Valencia S, Zora-Guzmán E, Buitrago-Duque C, Garcia-Sucerquia J. Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope. APPLIED OPTICS 2021; 60:A205-A214. [PMID: 33690371 DOI: 10.1364/ao.405605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/17/2020] [Indexed: 06/12/2023]
Abstract
In this work, the design, construction, and testing of the most cost-effective digital lensless holographic microscope to date are presented. The architecture of digital lensless holographic microscopy (DLHM) is built by means of a 3D-printed setup and utilizing off-the-shelf materials to produce a DLHM microscope costing US$52.82. For the processing of the recorded in-line holograms, an open-source software specifically developed to process this type of recordings is utilized. The presented DLHM setup has all the degrees of freedom needed to achieve different fields of view, levels of spatial resolution, and 2D scanning of the sample. The feasibility of the presented platform is tested by imaging non-bio and bio samples; the resolution test targets, a section of the head of a Drosophila melanogaster fly, red blood cells, and cheek cells are imaged on the built microscope.
Collapse
|
46
|
Schnitzler L, Zarzycki J, Gerhard M, Konde S, Rexer KH, Erb TJ, Maier UG, Koch M, Hofmann MR, Moog D. Lensless digital holographic microscopy as an efficient method to monitor enzymatic plastic degradation. MARINE POLLUTION BULLETIN 2021; 163:111950. [PMID: 33444995 DOI: 10.1016/j.marpolbul.2020.111950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
A big challenge of the 21st century is to cope with the huge amounts of plastic waste on Earth. Especially the oceans are heavily polluted with plastics. To counteract this issue, biological (enzymatic) plastic decomposition is increasingly gaining attention. Recently it was shown that polyethylene terephthalate (PET) can be degraded in a saltwater-based environment using bacterial PETase produced by a marine diatom. At moderate temperatures, plastic biodegradation is slow and requires sensitive methods for detection, at least at initial stages. However, conventional methods for verifying the plastic degradation are either complex, expensive, time-consuming or they interfere with the degradation process. Here, we adapt lensless digital holographic microscopy (LDHM) as a new application for efficiently monitoring enzymatic degradation of a PET glycol copolymer (PETG). LDHM is a cost-effective, compact and sensitive optical method. We demonstrate enzymatic PETG degradation over a time course of 43 days employing numerical analysis of LDHM images.
Collapse
Affiliation(s)
- Lena Schnitzler
- Photonics and Terahertz Technology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Jan Zarzycki
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Marina Gerhard
- Department of Physics and Material Sciences Center, University of Marburg, Renthof 5, 35032 Marburg, Germany
| | - Srumika Konde
- Department of Physics and Material Sciences Center, University of Marburg, Renthof 5, 35032 Marburg, Germany
| | - Karl-Heinz Rexer
- Department for Evolutionary Ecology of Plants, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Uwe G Maier
- SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35043 Marburg, Germany; Laboratory for Cell Biology, Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Martin Koch
- Department of Physics and Material Sciences Center, University of Marburg, Renthof 5, 35032 Marburg, Germany
| | - Martin R Hofmann
- Photonics and Terahertz Technology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Daniel Moog
- SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35043 Marburg, Germany; Laboratory for Cell Biology, Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|
47
|
Spies RM, Cole GH, Engevik MA, Nordberg BG, Scharnick EA, Vliem IM, Brolo AG, Lindquist NC. Digital plasmonic holography with iterative phase retrieval for sensing. OPTICS EXPRESS 2021; 29:3026-3037. [PMID: 33770910 DOI: 10.1364/oe.412844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Propagating surface plasmon waves have been used for many applications including imaging and sensing. However, direct in-plane imaging of micro-objects with surface plasmon waves suffers from the lack of simple, two-dimensional lenses, mirrors, and other optical elements. In this paper, we apply lensless digital holographic techniques and leakage radiation microscopy to achieve in-plane surface imaging with propagating surface plasmon waves. As plasmons propagate in two-dimensions and scatter from various objects, a hologram is formed over the surface. Iterative phase retrieval techniques applied to this hologram remove twin image interference for high-resolution in-plane imaging and enable further applications in real-time plasmonic phase sensing.
Collapse
|
48
|
Tobon H, Trujillo C, Garcia-Sucerquia J. Preprocessing in digital lensless holographic microscopy for intensity reconstructions with enhanced contrast. APPLIED OPTICS 2021; 60:A215-A221. [PMID: 33690372 DOI: 10.1364/ao.404297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
In this work, a numerical method to enhance the contrast of intensity hologram reconstructions of digital lensless holographic microscopy (DLHM) is presented. The method manipulates the in-line hologram and reference images through mathematical operations between them; additionally, a sharpening operation, functionalized in terms of the parameters of the recording setup, is applied to the said images. The preprocessing of the recorded images produces a modified in-line hologram and a reference wave image from which an intensity reconstruction with a 25% improvement of its contrast, with respect to the conventional reconstruction procedure, is achieved. The method is illustrated with intensity reconstructions of a hologram of a monolayer of polystyrene spheres 1.09 µm in diameter. Finally, the preprocessing method is validated with a modeled hologram, successfully applied to holograms of the section of the head a Drosophila melanogaster fly and its results are contrasted with those obtained via bright-field microscopy.
Collapse
|
49
|
Huang X, Li Y, Xu X, Wang R, Yao J, Han W, Wei M, Chen J, Xuan W, Sun L. High-Precision Lensless Microscope on a Chip Based on In-Line Holographic Imaging. SENSORS 2021; 21:s21030720. [PMID: 33494493 PMCID: PMC7865896 DOI: 10.3390/s21030720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/26/2023]
Abstract
The lensless on-chip microscope is an emerging technology in the recent decade that can realize the imaging and analysis of biological samples with a wide field-of-view without huge optical devices and any lenses. Because of its small size, low cost, and being easy to hold and operate, it can be used as an alternative tool for large microscopes in resource-poor or remote areas, which is of great significance for the diagnosis, treatment, and prevention of diseases. To improve the low-resolution characteristics of the existing lensless shadow imaging systems and to meet the high-resolution needs of point-of-care testing, here, we propose a high-precision on-chip microscope based on in-line holographic technology. We demonstrated the ability of the iterative phase recovery algorithm to recover sample information and evaluated it with image quality evaluation algorithms with or without reference. The results showed that the resolution of the holographic image after iterative phase recovery is 1.41 times that of traditional shadow imaging. Moreover, we used machine learning tools to identify and count the mixed samples of mouse ascites tumor cells and micro-particles that were iterative phase recovered. The results showed that the on-chip cell counter had high-precision counting characteristics as compared with manual counting of the microscope reference image. Therefore, the proposed high-precision lensless microscope on a chip based on in-line holographic imaging provides one promising solution for future point-of-care testing (POCT).
Collapse
|
50
|
Ling H, Sridhar K, Gollapudi S, Kumar J, Ohgami RS. Measurement of Cell Volume Using In-Line Digital Holography. Microscopy (Oxf) 2020; 70:333-339. [PMID: 33372674 DOI: 10.1093/jmicro/dfaa077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 11/14/2022] Open
Abstract
The measurement of the volume of blood cells is important for clinical diagnosis and patient management. While digital holography microscopy (DHM) has been used to obtain such information, previous off-axis setups usually involve a separated reference beam and are thus not very easy to implement. Here, we use the simple in-line Gabor setup without separation of a reference beam to measure the shape and volume of cells mounted on glass slides. Inherent to the in-line holograms, the reconstructed phase of the object is affected by the virtual image noise, producing errors in the cell volume measurement. We optimized our approach to use a single hologram without phase retrieval, increasing distance between cell and hologram plane to reduce the measurement error of cell volume to less than 6% in some instances. Therefore, the in-line Gabor setup can be a useful and simple tool to obtain volumetric and morphologic cellular information.
Collapse
Affiliation(s)
- Hangjian Ling
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA
| | - Kaushik Sridhar
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco CA 94143, USA
| | - Sumanth Gollapudi
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco CA 94143, USA
| | - Jyoti Kumar
- Department of Pathology, Stanford University, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Robert S Ohgami
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco CA 94143, USA
| |
Collapse
|