1
|
Petit JCJ, Mattielli N, De Jong J, Bouhoulle E, Debouge W, Maggi P, Hublet G, Fagel N, Pirard C, Charlier C, Suzanne R. High precision blood lead radiogenic isotope signatures in a community exposed to Pb contaminated soils and implications for the current Pb exposure of the European population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174763. [PMID: 39097024 DOI: 10.1016/j.scitotenv.2024.174763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 08/05/2024]
Abstract
Our study provides the most comprehensive dataset for high-precision radiogenic isotopes of lead (Pb) in blood for the western European population. It investigates their potential for elucidating the contribution of soil Pb to blood Pb using a human biomonitoring survey involving 81 adults and 4 children living in the urban area of Liège (Belgium). Soils in the area show moderate (median of 360 mg/kg) to high (95th percentile of 1000 mg/kg) Pb concentrations, due to former metal processing activities. Blood lead levels (BLL) measured in the study population are, on average, quantitatively consistent with a ∼ 20 % increase due to the exposure to Pb from soils, as estimated by a single-compartment biokinetic model. Consistently, its isotopic composition does not represent an endmember that fully accounts for the variability of Blood lead isotope (BLI) compositions measured in the study population. While some individuals show more thorogenic BLI ratios (relatively more enriched in 208Pb), which could be consistent with a greater exposure to local soils and/or by their country of birth, the BLI data mostly follow a trend roughly parallel to the European Standard Lead Pollution (ESLP) line, within the European leaded gasoline field, even two decades after the withdrawal of this source. Differences in BLI are probably associated with factors related to the presence of Pb in dwellings (pipes, paint) and drinking water distribution system, suggesting that the anthropogenic Pb in use, relevant to human exposure, may contain ore components of different origins, including the Australian Pb ore signature.
Collapse
Affiliation(s)
- Jérôme C J Petit
- Institut Scientifique de Service Public, Rue du Chéra 200, 4000 Liège, Belgium.
| | - Nadine Mattielli
- Laboratoire G-TIME, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt 50 CP106/02 1050, Bruxelles, Belgium
| | - Jeroen De Jong
- Laboratoire G-TIME, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt 50 CP106/02 1050, Bruxelles, Belgium
| | - Elodie Bouhoulle
- Institut Scientifique de Service Public, Rue du Chéra 200, 4000 Liège, Belgium
| | - Wendy Debouge
- Laboratoire G-TIME, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt 50 CP106/02 1050, Bruxelles, Belgium
| | - Patrick Maggi
- FPS Health, Food Chain Safety and Environment, Ecotoxicology Unit from Service Plant protection and Fertilising products, 5/2 Avenue Galilée, B-1210 Brussels, Belgium
| | - Geneviève Hublet
- Laboratoire G-TIME, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt 50 CP106/02 1050, Bruxelles, Belgium
| | - Nathalie Fagel
- Laboratoire Argiles, Géochimie et Environnements sédimentaires (AGEs), Department of Geology, Faculty of Sciences, University of Liège, Liège B-4000, Belgium
| | - Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, B-4000 Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, B-4000 Liege, Belgium
| | - Remy Suzanne
- Institut Scientifique de Service Public, Rue du Chéra 200, 4000 Liège, Belgium
| |
Collapse
|
2
|
Tao Z, Xia T, Chen F, Zhang L, Wei R, Chen S, Jia L, Lan W, Pan K. Cadmium contamination in sediments from a mangrove wetland: Insights from lead isotopes. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135667. [PMID: 39226682 DOI: 10.1016/j.jhazmat.2024.135667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Cadmium (Cd) pollution has gained significant attention in mangrove sediments due to its high toxicity and mobility. However, the sources of Cd and the factors influencing its accumulation in these sediments have remained elusive. In this study, we utilized lead (Pb) isotopic signatures for the first time to assess Cd contamination in mangrove sediments from the northern region of the Beibu Gulf. A strong correlation was observed between Cd and Pb concentrations in the mangrove sediments, suggesting a shared source that can be estimated using Pb isotopic signatures. By employing a Bayesian mixing model, we determined that 70.1 ± 8.2 % of Cd originated from natural sources, while 12.9 ± 4.9 %, 9.8 ± 3.7 %, and 7.1 ± 3.4 % were attributed to agricultural activities, non-ferrous metal smelting, and coal combustion, respectively. Our study clearly suggests that natural Cd could also dominate the high Cd content. Agricultural activities were the most important anthropogenic Cd sources, and the increased anthropogenic Cd accumulation in mangrove sediment was related to organic matter. This study introduces a novel approach for assessing Cd contamination in mangrove sediment, providing useful insights into Cd pollution in coastal wetlands.
Collapse
Affiliation(s)
- Zhenghua Tao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianxiang Xia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Lina Zhang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shanshan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Lin Jia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Wenlu Lan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Cortis R, Cavoura O, Davidson CM, Ryan H. Ecological risk from potentially toxic element legacy contamination in sediment from the Forth and Clyde Canal, Scotland, UK. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:833. [PMID: 39177884 DOI: 10.1007/s10661-024-12995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Industrial activities on the banks of waterways can degrade both the waterbody and the surrounding area and continue to exert pressure on the environment even after the closure of the industries involved. An assessment was undertaken to determine concentration, distribution, mobility and ecological risk of potentially toxic elements (PTE) from legacy contamination in sediments of the Forth and Clyde Canal, UK. Concentrations of PTE, determined by ICP-MS following aqua regia digestion, were 5.54-219 mg kg-1 for As, < 0.025-11.0 mg kg-1 for Cd, 44.8-883 mg kg-1 for Cr, 39.3-618 mg kg-1 for Cu, 35.8-72.1 g kg-1 for Fe, 720-4460 mg kg-1 for Mn, 42.0-154 mg kg-1 for Ni, 93.9-2740 mg kg-1 for Pb, 5.36-122 mg kg-1 for Sn and 288-3640 mg kg-1 for Zn. With the exception of Fe and Mn, higher levels were observed at urban locations than at rural. Enhanced Cr, Pb and Sn content at suburban locations could be attributed to historical industrial activities on the canal bank, while widespread distribution of As and Pb was consistent with atmospheric deposition. In the inner-city area, sediment quality was severely deteriorated, and the potential ecological risk was very high. Fractionation patterns, determined using the modified BCR sequential extraction, indicated a particularly high risk of mobilization for Cd, Mn and Zn, and the highest exchangeable fraction risk from Zn. The research highlights the need to assess and, where necessary, manage legacy contaminated sites in line with the UN 2030 Agenda for Sustainable Development.
Collapse
Affiliation(s)
- Robert Cortis
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Olga Cavoura
- Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521, Athens, Greece.
| | - Christine M Davidson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Hayley Ryan
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
4
|
Tao Z, Peng G, Chen F, Guo Q, Wei R, Pan K, Deng Y, Jiao L, Zhang Z, Chen S, Xia T. Elevated lead mobility in sediments of a eutrophic drinking water reservoir during spring and summer seasons: Insights from isotopic signatures. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134833. [PMID: 38880043 DOI: 10.1016/j.jhazmat.2024.134833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Lead (Pb) pollution in sediments remains a major concern for ecosystem quality due to the robust interaction at the sediment/water interface, particularly in shallow lakes. However, understanding the mechanism behind seasonal fluctuations in Pb mobility in these sediments is lacking. Here, the seasonal variability of Pb concentration and isotopic ratio were investigated in the uppermost sediments of a shallow eutrophic drinking lake located in southeast China. Results reveal a sharp increase in labile Pb concentration during autumn-winter period, reaching ∼ 3-fold higher levels than during the spring-summer seasons. Despite these fluctuations, there was a notable overlap in the Pb isotopic signatures within the labile fraction across four seasons, suggesting that anthropogenic sources are not responsible for the elevated labile Pb concentration in autumn-winter seasons. Instead, the abnormally elevated labile Pb concentration during autumn-winter was probably related to reduction dissolution of Fe/Mn oxides, while declined labile Pb concentration during spring-summer may be attributed to adsorption/precipitation of Fe/Mn oxides. These large seasonal changes imply the importance of considering seasonal effects when conducting sediment sampling. We further propose a solution that using Pb isotopic signatures within the labile fraction instead of the bulk sediment can better reflect the information of anthropogenic Pb sources.
Collapse
Affiliation(s)
- Zhenghua Tao
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Guogan Peng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yinan Deng
- MNR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Guangzhou 510075, China
| | - Linlin Jiao
- College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Tianxiang Xia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China.
| |
Collapse
|
5
|
An DW, Yu YL, Hara A, Martens DS, Yang WY, Cheng YB, Huang QF, Asayama K, Stolarz-Skrzypek K, Rajzer M, Verhamme P, Nawrot TS, Li Y, Staessen JA. Lead-associated mortality in the US 1999-2020: a time-stratified analysis of a national cohort. J Hypertens 2024; 42:1322-1330. [PMID: 38511337 PMCID: PMC11216377 DOI: 10.1097/hjh.0000000000003713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVES We undertook time-stratified analyses of the National Health and Nutrition Examination Survey in the US to assess time trends (1999-2020) in the associations of blood lead (BL) with blood pressure, mortality, the BL-associated population attributable fraction (PAF). METHODS Vital status of participants, 20-79 years old at enrolment, was ascertained via the National Death Index. Regressions, mediation analyses and PAF were multivariable adjusted and standardized to 2020 US Census data. RESULTS In time-stratified analyses, BL decreased from 1.76 μg/dl in 1999-2004 to 0.93 μg/dl in 2017-2020, while the proportion of individuals with BL < 1 μg/dl increased from 19.2% to 63.0%. Total mortality was unrelated to BL (hazard ratio (HR) for a fourfold BL increment: 1.05 [95% confidence interval, CI: 0.93-1.17]). The HR for cardiovascular death was 1.44 (1.01-2.07) in the 1999-2000 cycle, but lost significance thereafter. BL was directly related to cardiovascular mortality, whereas the indirect BL pathway via BP was not significant. Low socioeconomic status (SES) was directly related to BL and cardiovascular mortality, but the indirect SES pathway via BL lost significance in 2007-2010. From 1999-2004 to 2017-2020, cardiovascular PAF decreased ( P < 0.001) from 7.80% (0.17-14.4%) to 2.50% (0.05-4.68%) and number of lead-attributable cardiovascular deaths from 53 878 (1167-99 253) to 7539 (160-14 108). CONCLUSION Due to implementation of strict environmental policies, lead exposure is no longer associated with total mortality, and the mildly increased cardiovascular mortality is not associated with blood lead via blood pressure in the United States.
Collapse
Affiliation(s)
- De-Wei An
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Yu-Ling Yu
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Azusa Hara
- Division of Drug Development and Regulatory Science, Faculty of Pharmacy, Keio University, Japan
| | - Dries S. Martens
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Wen-Yi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Bang Cheng
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi-Fang Huang
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kei Asayama
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Katarzyna Stolarz-Skrzypek
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University, Kraków, Poland
| | - Marek Rajzer
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University, Kraków, Poland
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences
| | - Tim S. Nawrot
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Yan Li
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jan A. Staessen
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine
- Biomedical Sciences Group, Faculty of Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Pálešová N, Řiháčková K, Kuta J, Pindur A, Šebejová L, Čupr P. Internal Flames: Metal(loid) Exposure Linked to Alteration of the Lipid Profile in Czech Male Firefighters (CELSPAC-FIREexpo Study). ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:679-686. [PMID: 39006815 PMCID: PMC11238583 DOI: 10.1021/acs.estlett.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
Increased wildfire activity increases the demands on fire rescue services and firefighters' contact with harmful chemicals. This study aimed to determine firefighters' exposure to toxic metal(loid)s and its association with the lipid profile. CELSPAC-FIREexpo study participants (including 110 firefighters) provided urine and blood samples to quantify urinary levels of metal(loid)s (arsenic, cadmium (Cd), mercury, and lead (Pb)), and serum lipid biomarkers (cholesterol (CHOL), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglycerides (TG)). The associations were investigated by using multiple linear regression and Bayesian weighted quantile sum (BWQS) regression. Higher levels of Pb were observed in firefighters. Pb was positively associated with CHOL and TG. Cd was negatively associated with HDL. In the BWQS model, the mixture of metal(loid)s was associated positively with CHOL (β = 14.75, 95% CrI = 2.45-29.08), LDL (β = 15.14, 95% CrI = 3.39-29.35), and TG (β = 14.79, 95% CrI = 0.73-30.42), while negatively with HDL (β = -14.96, 95% CrI = -25.78 to -1.8). Pb emerged as a key component in a metal(loid) mixture. The results suggest that higher exposure to lead and the mixture of metal(loid)s is associated with the alteration of the lipid profile, which can result in an unfavorable cardiometabolic profile, especially in occupationally exposed firefighters.
Collapse
Affiliation(s)
- Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Katarína Řiháčková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jan Kuta
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Aleš Pindur
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Training Centre of Fire Rescue Service, Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00 Brno, Czech Republic
| | - Ludmila Šebejová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
7
|
Shaheen SO. Toxic metals and lung health: silent poisons? Thorax 2024; 79:601-602. [PMID: 38604665 DOI: 10.1136/thorax-2024-221518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
|
8
|
Moyebi OD, Lebbie T, Carpenter DO. Standards for levels of lead in soil and dust around the world. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0030. [PMID: 38856075 DOI: 10.1515/reveh-2024-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024]
Abstract
Lead poisoning is a serious environmental health problem in every country in the world. Exposure to lead results in neurocognitive and behavioral changes, has adverse effects on the immune system, causes anemia, hypertension and perturbs other organ systems. The effects of lead poisoning are most critical for children because their bodies are growing and developing, and particularly because agents that reduce cognitive function and attention span as well as promote disruptive behavior will have life-long consequences. Lead exposure, especially to children, is a major health disparity issue. If the next generation starts with reduced cognitive ability, there will be significant barriers for development of skills and country-wide development. While there are many sources of exposure to lead, the commonest source is lead in soil and dust. Since lead is an element, it does not go away and past releases of lead into the environment remain as soil and dust contamination. This is an especially important route of exposure to children because children regularly play in soil and are exposed via hand-to-mouth activity. In addition to indoor sources of lead, contaminated soil is tracked on shoes or feet and blown by air currents into homes, accumulating in household dust which is a major source of exposure for both children and adults. The purpose of this review is to determine standards presumed to be health protective for lead and dust in different countries. We find that many countries have no standards for lead in soil and dust and rely on standards set by the World Health Organization or the US Environmental Protection Agency, and these standards may or may not be enforced. There is considerable variation in standards set by other countries.
Collapse
Affiliation(s)
- Omosehin D Moyebi
- Department of Environmental Health Sciences, School of Public Health, 1084 University at Albany , Rensselaer, NY, USA
- Nursing Program, School of Science, Navajo Technical University, Crownpoint, NM, USA
| | - Tamba Lebbie
- Department of Environmental Health Sciences, School of Public Health, 1084 University at Albany , Rensselaer, NY, USA
| | - David O Carpenter
- Department of Environmental Health Sciences, School of Public Health, 1084 University at Albany , Rensselaer, NY, USA
- A World Health Organization Collaborating Center on Environmental Health, 1084 Institute for Health and the Environment, University at Albany , Rensselaer, NY, USA
| |
Collapse
|
9
|
Chen L, Fang L, Yang X, Luo X, Qiu T, Zeng Y, Huang F, Dong F, White JC, Bolan N, Rinklebe J. Sources and human health risks associated with potentially toxic elements (PTEs) in urban dust: A global perspective. ENVIRONMENT INTERNATIONAL 2024; 187:108708. [PMID: 38703447 DOI: 10.1016/j.envint.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Long-term exposure to urban dust containing potentially toxic elements (PTEs) poses detrimental impacts on human health. However, studies estimating human health risks in urban dusts from a global perspective are scarce. We evaluated data for twelve PTEs in urban dusts across 59 countries from 463 published articles, including their concentrations, input sources, and probabilistic risks to human health. We found that 34.1 and 60.3% of those investigated urban dusts have been heavily contaminated with As and Cd, respectively. The input of PTEs was significantly correlated with economic structure due to emissions of industrial activities and traffic emissions being the major sources. Based on the Monte Carlo simulation, we found that the mean hazard index below the safe threshold (1.0) could still cause non-negligible risks to human health. Arsenic and Cr were the major PTEs threatening human health, and relatively high risk levels were observed in cities in China, Korea, Chile, Malaysia, and Australia. Importantly, our analysis suggested that PTEs threaten the health of approximately 92 million adults and 280 million children worldwide. Overall, our study provides important foundational understanding and guidance for policy decision-making to reduce the potential risks associated with PTE exposure and to promote sustainable development of urban economies.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Xing Yang
- College of Ecology and Environment, Hainan University, Haikou 570100, China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fengyu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China; College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, University of Wuppertal, Pauluskirchstraße 7, Wuppertal 42285, Germany
| |
Collapse
|
10
|
Zhang Y, Tang M, Zhang S, Lin Y, Yang K, Yang Y, Zhang J, Man J, Verginelli I, Shen C, Luo J, Luo Y, Yao Y. Mapping Blood Lead Levels in China during 1980-2040 with Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7270-7278. [PMID: 38625742 DOI: 10.1021/acs.est.3c09788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Lead poisoning is globally concerning, yet limited testing hinders effective interventions in most countries. We aimed to create annual maps of county-specific blood lead levels in China from 1980 to 2040 using a machine learning model. Blood lead data from China were sourced from 1180 surveys published between 1980 and 2022. Additionally, regional statistical figures for 15 natural and socioeconomic variables were obtained or estimated as predictors. A machine learning model, using the random forest algorithm and 2973 generated samples, was created to predict county-specific blood lead levels in China from 1980 to 2040. Geometric mean blood lead levels in children (i.e., age 14 and under) decreased significantly from 104.4 μg/L in 1993 to an anticipated 40.3 μg/L by 2040. The number exceeding 100 μg/L declined dramatically, yet South Central China remains a hotspot. Lead exposure is similar among different groups, but overall adults and adolescents (i.e., age over 14), females, and rural residents exhibit slightly lower exposure compared to that of children, males, and urban residents, respectively. Our predictions indicated that despite the general reduction, one-fourth of Chinese counties rebounded during 2015-2020. This slower decline might be due to emerging lead sources like smelting and coal combustion; however, the primary factor driving the decline should be the reduction of a persistent source, legacy gasoline-derived lead. Our approach innovatively maps lead exposure without comprehensive surveys.
Collapse
Affiliation(s)
- Yanni Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shuyou Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Environmental Science, College of Environment, Hohai University, Nanjing 210024, China
| | - Yaoyao Lin
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kaixuan Yang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yadi Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jiangjiang Zhang
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210024, China
| | - Jun Man
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijun Yao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Santoro N, Singer DM, Mulvey BK, Halasa K, Teutsch N, Shedleski A, Wood M. Neighborhood-scale lead (Pb) speciation in Akron, Ohio (USA) soils: primary sources, post-deposition diagenesis, and high concentrations of labile Pb. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:164. [PMID: 38592563 PMCID: PMC11003916 DOI: 10.1007/s10653-024-01954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Lead (Pb) poses a significant risk to infants and children through exposure to contaminated soil and dust. However, there is a lack of information on Pb speciation and distribution at the neighborhood-scale. This work aimed to determine: (1) the distribution of acid-extractable (labile) Pb and other metals ([M]AE) in two neighborhoods in Akron, Ohio (USA) (Summit Lake and West Akron; n = 82 samples); and (2) Pb speciation and potential sources. Total metal concentration ([M]T) and [M]AE was strongly correlated for Pb and Zn (R2 of 0.66 and 0.55, respectively), corresponding to 35% and 33% acid-extractability. Lead and Zn exhibited a strong positive correlation with each other (R2 = 0.56 for MT and 0.68 for MAE). Three types of Pb-bearing phases were observed by electron microscopy: (1) galena (PbS)-like (5-10 μm); (2) paint chip residuals (10-20 μm); and (3) Pb-bearing Fe-oxides (20 μm). Isotope ratio values for PbAE were 1.159 to 1.245 for 206Pb/207Pb, and 1.999 to 2.098 for 208Pb/206Pb, and there was a statistically significant difference between the two neighborhoods (p = 0.010 for 206Pb/207Pb and p = 0.009 for 208Pb/206Pb). Paint and petrol are the dominant sources of Pb, with some from coal and fly ash. Lead speciation and distribution is variable and reflects a complex relationship between the input of primary sources and post-deposition transformations. This work highlights the importance of community science collaborations to expand the reach of soil sampling and establish areas most at risk based on neighborhood-dependent Pb speciation and distribution for targeted remediation.
Collapse
Affiliation(s)
- Nicholas Santoro
- Department of Earth Sciences, Kent State University, Kent, OH, 44242, USA
| | - David M Singer
- Department of Earth Sciences, Kent State University, Kent, OH, 44242, USA.
| | - Bridget K Mulvey
- School of Teaching, Learning and Curriculum Studies, Kent State University, Kent, OH, 44242, USA
| | | | - Nadya Teutsch
- Geochemistry and Environmental Geology Division, Geological Survey of Israel, 9692100, Jerusalem, Israel
| | - Allie Shedleski
- Department of Earth Sciences, Kent State University, Kent, OH, 44242, USA
| | - Madison Wood
- Department of Earth Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
12
|
Cheng K, Chang Y, Lee X, Ji D, Qiao L, Zou Z, Duan Y, Huang RJ. Life-Course Health Risk Assessment of PM 2.5 Elements in China: Exposure Disparities by Species, Source, Age, Gender, and Location. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3629-3640. [PMID: 38354315 DOI: 10.1021/acs.est.3c05404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Key stages in people's lives have particular relevance for their health; the life-course approach stresses the importance of these stages. Here, we applied a life-course approach to analyze the health risks associated with PM2.5-bound elements, which were measured at three sites with varying environmental conditions in eastern China. Road traffic was found to be the primary source of PM2.5-bound elements at all three locations, but coal combustion was identified as the most important factor to induce both cancer risk (CR) and noncancer risk (NCR) across all age groups due to the higher toxicity of elements such as As and Pb associated with coal. Nearly half of NCR and over 90% of CR occurred in childhood (1-6 years) and adulthood (>18 years), respectively, and females have slightly higher NCR and lower CR than males. Rural population is found to be subject to the highest health risks. Synthesizing previous relevant studies and nationwide PM2.5 concentration measurements, we reveal ubiquitous and large urban-rural environmental exposure disparities over China.
Collapse
Affiliation(s)
- Kai Cheng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Yunhua Chang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Xuhui Lee
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Liping Qiao
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Zhong Zou
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Yusheng Duan
- Shanghai Environmental Monitoring Center, Shanghai 200030, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth and Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
13
|
Braysher EC, Brown AS, Brown RJC, Molden N. Traceable determination of metal composition of tyres using tandem ICP-MS and benchmarking of emissions inventories. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:298-304. [PMID: 38226490 DOI: 10.1039/d3em00344b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Non-exhaust emissions are becoming of increasing significance with respect to total particulate matter (PM) concentrations in ambient air. Of particular interest is the metal content of this PM since metallic compounds are well known to have toxic effects on human health and the environment. In this study, 'bottom-up' annual tyre wear emission rates were estimated and compared to top-down' emissions declared by the UK; it was calculated that between 14 and 25 tonnes of Zn entered the atmosphere in PM10 in 2020. The emission rates were estimated using a cost-effective, simple but robust validated method for analysis of the metals in tyres using tandem inductively coupled plasma mass spectrometry (ICP-MS/MS) for the first time, involving minimal offline sample preparation. This method was applied to five different tyre makes and brands, all available for sale in the UK, and the uncertainty of each measurement was determined. Traceability was ensured in all methods and novel validation techniques were applied due to lack of available reference materials. Zn was found to be the largest metal component in all tyres with a mass fraction of approximately 10 mg g-1. The mean mass fractions of metals in the tyres decreased in the order of Zn > Al > Fe > Mg > Ti > Pb > Cu > Ba > Ni. Significant differences in composition were found between the five tyres. The relative expanded uncertainties of the metals measurements ranged from 4 to 21%, with elements of higher mass fraction resulting in lower uncertainties. These findings will contribute to assessing current and future air quality challenges and will help to inform regulation surrounding non-exhaust emissions.
Collapse
Affiliation(s)
- Emma C Braysher
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK.
| | - Andrew S Brown
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK.
| | - Richard J C Brown
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK.
| | - Nick Molden
- Emissions Analytics, Unit 2 CR Bates Industrial Estate, Stokenchurch, High Wycombe, Buckinghamshire, HP14 3PD, UK
| |
Collapse
|
14
|
Barraza F, Javed MB, Noernberg T, Schultz J, Shotyk W. Spatial variation and chemical reactivity of dusts from open-pit bitumen mining using trace elements in snow. CHEMOSPHERE 2024; 350:141081. [PMID: 38160952 DOI: 10.1016/j.chemosphere.2023.141081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The chemical reactivity of trace elements (TEs) in dusts from bitumen mining, upgrading and related industrial activities in the Athabasca Bituminous Sands region (ABS), Alberta, Canada, was evaluated using the acid-soluble fraction of snow. Samples were collected at 14 sites along the Athabasca River (AR) and its tributaries, and at 3 remote locations. Following metal-free, ultra-clean procedures for processing and analysis, samples were leached with nitric acid (pH < 1), filtered (<0.45 μm), and analyzed using ICP-MS. Insoluble particles (>0.45 μm) were examined using SEM-EDS. Along the river, acid-soluble concentrations of TEs varied by 6 orders of magnitude, from 1 mg/L (Al) to less than 1 ng/L (Tl). Conservative (Al, Y, La, Th) and mobile (Li, Be, Cs, Sr) lithophile elements, those enriched in bitumen (V, Ni, Mo), and potentially toxic chalcophile elements (As, Cd, Pb, Sb, Tl) showed considerable spatial variation. Normalizing the concentrations of TEs in samples collected near industry to the corresponding concentrations in snow from the reference site (UTK), resulted in enrichments of V and most of the lithophile elements. Dust reactivity, quantified as the ratio of acid-soluble to total concentrations, was less than 50% suggesting limited bioaccessibility. The large differences in behaviour between Cd and Pb versus Ni and V could be due to the occurrence of the former pair in carbonate or sulfide minerals, versus acid-insoluble petcoke particles for the latter couple. Spatial variations in the reactivity of TEs most likely reflect the range in diversity and chemical stability of dust particles, and variations in their abundance in primary source areas. The leaching conditions employed here are extreme (pH < 1) and intended to identify an upper limit of chemical reactivity, with far less dust dissolution expected when these dusts encounter natural waters of the area which range in pH from 4 to 8.
Collapse
Affiliation(s)
- Fiorella Barraza
- Department of Renewable Resources, University of Alberta. Edmonton, AB, Canada
| | - Muhammad Babar Javed
- Department of Renewable Resources, University of Alberta. Edmonton, AB, Canada; Hatfield Consultants. Fort McMurray, AB, Canada
| | - Tommy Noernberg
- Department of Renewable Resources, University of Alberta. Edmonton, AB, Canada
| | - Judy Schultz
- Department of Renewable Resources, University of Alberta. Edmonton, AB, Canada
| | - William Shotyk
- Department of Renewable Resources, University of Alberta. Edmonton, AB, Canada.
| |
Collapse
|
15
|
Dwivedi S, Zehra F, Masih J, Gupta T, Lawrence A. Investigating the temporal dynamics of sub-micron particles and particle-bound transition metals in indoor air of a metropolitan city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:49. [PMID: 38227135 DOI: 10.1007/s10653-023-01786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024]
Abstract
The present study portrays an association between particle-bound transition metals and children's health. The indoor air quality of the urban metropolitan city households was monitored for four PM sizes, namely PM1.0-2.5, PM0.50-1.0, PM0.25-0.50 and PM<0.25, in major seasons observed in the city; summer and winter. Further transition/heavy metals, viz. Cr, Cu, Fe, Mn, Ni, Pb and Zn, were analysed in PM1-2.5 samples. In order to evaluate the effect, health risk assessment was performed using mathematical and computational model for assessing dermal exposure and dose estimation (multiple path particle dosimetry model version3.0). The study principally targeted the children aged 2-15 years for the health risk assessment. According to the results, for the largest particle size i.e. PM1.0-2.5 the highest deposition was in the head region (49.1%) followed by pulmonary (43.6%) and tracheobronchial region (7.2%), whereas, for the smallest particle size i.e. PM<0.25 the highest deposition was obtained in the pulmonary region (73.0%) followed by the head (13.6%) and TB region (13.2%). Also, the most imperilled group of children with highest dose accumulation was found to be children aged 8-9 years for all particle sizes. Moreover, the dermal exposure dose as evaluated was found to be preeminent for Ni, Zn and Pb. Besides, seasonal variation gesticulated towards elevated concentrations in winter relative to the summer season. Altogether, the study will provide a conception to the researchers in the fields mounting season-specific guidelines and mitigation approaches. Conclusively, the study commends future work focussing on defining the effects of other chemical components on particles and associated transition metal composition along with proper extenuation of the same.
Collapse
Affiliation(s)
- Samridhi Dwivedi
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
| | - Farheen Zehra
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
| | - Jamson Masih
- Department of Chemistry, Wilson College, Mumbai, India
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology, Kanpur, India
| | - Alfred Lawrence
- Department of Chemistry, Isabella Thoburn College, Lucknow, India.
| |
Collapse
|
16
|
Jiang H, Gao Y, Chen X, Wang B, Xu Z, Li Y, Sun X, Liu K, Divsalar A, Cheung E, Jiang L, Hong Y, Ding X. Single-Cell Study Unveils Lead Lifespan in Blood Cell Populations Follows a Universal Lognormal Distribution with Individual Skewness. Anal Chem 2024; 96:668-675. [PMID: 38176010 DOI: 10.1021/acs.analchem.3c03441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Lead is a widespread environmental hazard that can adversely affect multiple biological functions. Blood cells are the initial targets that face lead exposure. However, a systematic assessment of lead dynamics in blood cells at single-cell resolution is still absent. Herein, C57BL/6 mice were fed with lead-contaminated food. Peripheral blood was harvested at different days. Extracted red blood cells and leukocytes were stained with 19 metal-conjugated antibodies and analyzed by mass cytometry. We quantified the time-lapse lead levels in 12 major blood cell subpopulations and established the distribution of lead heterogeneity. Our results show that the lead levels in all major blood cell subtypes follow lognormal distributions but with distinctively individual skewness. The lognormal distribution suggests a multiplicative accumulation of lead with stochastic turnover of cells, which allows us to estimate the lead lifespan of different blood cell populations by calculating the distribution skewness. These findings suggest that lead accumulation by single blood cells follows a stochastic multiplicative process.
Collapse
Affiliation(s)
- Hui Jiang
- Nantong First People's Hospital and Nantong Hospital of Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Nantong226006, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P.R. China
| | - Yingying Gao
- Nantong First People's Hospital and Nantong Hospital of Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Nantong226006, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P.R. China
| | - Xiaoxiang Chen
- Nantong First People's Hospital and Nantong Hospital of Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Nantong226006, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P.R. China
| | - Boqian Wang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P.R. China
| | - Zhixiao Xu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P.R. China
| | - Yiyang Li
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P.R. China
| | - Xinyi Sun
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P.R. China
| | - Kun Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, P.R. China
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran15719-14911, Iran
| | - Edwin Cheung
- Cancer Centre, Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Taipa999078, Macau SAR
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200092, China
| | - Yifan Hong
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P.R. China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen518132, P.R. China
| | - Xianting Ding
- Nantong First People's Hospital and Nantong Hospital of Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Nantong226006, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, P.R. China
| |
Collapse
|
17
|
Brown AS, Barker SJ, Brown RJC, Wyche KP, Butterfield DM. A robust regression analysis method to determine the significance of trends in concentrations of heavy metals in UK ambient air and improve network design and emission inventories. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:101. [PMID: 38157065 DOI: 10.1007/s10661-023-12248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
A novel application of the Theil-Sen robust regression method for determining the temporal trends in the concentration of heavy metals in UK ambient air over the period 2005-2020 is presented and compared to other regression methods. We have demonstrated improvements over non-robust methods of regression, proving the ability to tease out trends that are small with respect to the variability of the concentration measurement. The method is used to identify, in general, large and significant trends in the concentrations of Ni, As, Pb and V over the period 2005-2020, either across the UK as a whole or at groupings of site classifications in the UK. These trends have been compared to trends in emission data determined in the same manner. Although the results for most metals provide confidence that the UK metal network of monitoring sites is successful in appropriately capturing changes in emissions, a key finding of this work is the disagreement between trends in measured concentrations and emissions for Cu, Mn and Ni, for which we suggest improvements in future network design. The results also indicate that UK emission data for V should be reviewed, as we propose that the rate of reduction of V emissions is likely to have been overestimated.
Collapse
Affiliation(s)
- Andrew S Brown
- Air Quality and Aerosol Metrology Group, National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| | - Stephanie J Barker
- Air Quality and Aerosol Metrology Group, National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- Centre for Earth Observation Science, School of Environment and Technology, University of Brighton, Brighton, BN2 4GJ, UK
| | - Richard J C Brown
- Air Quality and Aerosol Metrology Group, National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Kevin P Wyche
- Centre for Earth Observation Science, School of Environment and Technology, University of Brighton, Brighton, BN2 4GJ, UK
| | - David M Butterfield
- Air Quality and Aerosol Metrology Group, National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| |
Collapse
|
18
|
Helmbrecht L, van Dongen SW, van der Weijden A, van Campenhout CT, Noorduin WL. Direct Environmental Lead Detection by Photoluminescent Perovskite Formation with Nanogram Sensitivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20494-20500. [PMID: 38008908 PMCID: PMC10720378 DOI: 10.1021/acs.est.3c06058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023]
Abstract
Although the global ban on leaded gasoline has markedly reduced lead poisoning, many other environmental sources of lead exposure, such as paint, pipes, mines, and recycling sites remain. Existing methods to identify these sources are either costly or unreliable. We report here a new, sensitive, and inexpensive lead detection method that relies on the formation of a perovskite semiconductor. The method only requires spraying the material of interest with methylammonium bromide and observing whether photoluminesence occurs under UV light to indicate the presence of lead. The method detects as little as 1.0 ng/mm2 of lead by the naked eye and 50 pg/mm2 using a digital photo camera. We exposed more than 50 different materials to our reagent and found no false negatives or false positives. The method readily detects lead in soil, paint, glazing, cables, glass, plastics, and dust and could be widely used for testing the environment and preventing lead poisoning.
Collapse
Affiliation(s)
- Lukas Helmbrecht
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
- Lumetallix
B.V, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | | - Willem L. Noorduin
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1090 GD, The Netherlands
- Lumetallix
B.V, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
19
|
Holder AL, Rao V, Kovalcik K, Virtaranta L. Particulate Pb emission factors from wildland fires in the United States. ATMOSPHERIC ENVIRONMENT: X 2023; 20:1-8. [PMID: 38269205 PMCID: PMC10805233 DOI: 10.1016/j.aeaoa.2023.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Wildland fires, which includes both wild and prescribed fires, and agricultural fires in sum are one of the largest sources of fine particulate matter (PM2.5) emissions to the atmosphere in the United States (US). Although wildland fire PM2.5 emissions are primarily composed of carbonaceous material, many other elements including trace metals are emitted at very low levels. Lead (Pb) is a US Environmental Protection Agency (EPA) criteria pollutant that is ubiquitous in the environment at very low concentrations including in biomass that can burn and emit Pb into the atmosphere. Although fires may emit Pb at very low concentrations, they can be a source of sizeable Pb emissions to the atmosphere because of the large quantity of PM2.5 emitted from fires. In this work, we measure Pb concentrations in unburned biomass, ash/residues, and particulate matter <2.5 μm (PM2.5) emitted from wildland fires using in-field measurements near prescribed fires and in laboratory simulations. Emission factors were calculated for multiple biomass types, representative of different regions of the US including grasslands in Oregon and Kansas; forest litter from Oregon, Montana, Minnesota, and North Carolina; and peat cores from Minnesota. Most of the biomass Pb remains in the ash/residues. The small percentage (<10%) that is emitted in PM2.5 is dependent on the biomass Pb concentration. The emissions factors measured here are several orders of magnitude lower than some reported in the literature, but the studies exhibited a wide range of values, which may be due to large uncertainties in the measurement method rather than differences in Pb emissions. Wildland fires are expected to increase in size and frequency in future years and these new emission factors can be used to improve the accuracy of Pb emissions estimates and better constrain our understanding of Pb emissions to the atmosphere.
Collapse
Affiliation(s)
- Amara L. Holder
- U.S. Environmental Protection Agency, Office of Research and Development, 109 T. W. Alexander Dr., Durham, NC 27709
| | - Venkatesh Rao
- U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, 109 T. W. Alexander Dr., Durham, NC 27709
| | - Kasey Kovalcik
- U.S. Environmental Protection Agency, Office of Research and Development, 109 T. W. Alexander Dr., Durham, NC 27709
| | - Larry Virtaranta
- U.S. Environmental Protection Agency, Office of Research and Development, 109 T. W. Alexander Dr., Durham, NC 27709
| |
Collapse
|
20
|
Birch GF, Wang X, Liu E, Laidlaw M. Similarity in human health risk assessment using models of soil-blood lead levels (IEUBK) and non-carcinogenic condition (US EPA 2002). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165512. [PMID: 37442470 DOI: 10.1016/j.scitotenv.2023.165512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Soil lead (Pb) concentrations in Sydney estuary (Australia) catchment are substantially elevated and strongly associated with traffic networks. This study compared the health risk predictions of blood Pb levels (BLL) in children using the soil IEUBK model and an independent, non-carcinogenic human health risk (NCR) assessment using the soil US EPA 2002 model. The predictions by the two models were significantly correlated (p < 0.001) and showed similar spatial distributions, but the NCR model may be more stringent in protection of human health when exposed to soil Pb in relation to adverse health effect, as the warning soil Pb concentration from the BLL was 4.6-fold higher than that from the NCR. The empirical IEUBK model considers gastric phase adsorption only and of the three exposure pathways (ingestion, inhalation and dermal) assessed by the theoretical NCR model, ingestion was the major exposure route. The reason for the similarity in outcomes of the two models is unknown, however the close correlation may be due to broadly similar formulations and, or that neurological and non-carcinogenic risks may be related to the adverse effects of Pb on bodily function. Parallel studies of human health risk based on BLL and NCR models have not been attempted previously and this opportunity to compare results from the two health risk assessments employing the same soil metal data is therefore unique.
Collapse
Affiliation(s)
- Gavin F Birch
- Geocoastal Research Group, School of Geosciences, Sydney University, NSW 2006, Australia.
| | - Xiaoyu Wang
- College of Geography and Environment, Shandong Normal University, Ji'nan 250358, PR China
| | - Enfeng Liu
- Geocoastal Research Group, School of Geosciences, Sydney University, NSW 2006, Australia; College of Geography and Environment, Shandong Normal University, Ji'nan 250358, PR China
| | | |
Collapse
|
21
|
Tao Z, Hu J, Guo Q, Wei R, Jiao L, Li Y, Chen F, Fan B, Lan W, Pan K. Coupling isotopic signatures and partial extraction method to examine lead pollution in mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132252. [PMID: 37604039 DOI: 10.1016/j.jhazmat.2023.132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
Elevated lead (Pb) has been widely observed in mangrove sediments due to human activities, yet understanding the sources of Pb in these sediments and the factors influencing Pb accumulation is challenging. Here, we combined Pb isotopes with partial extraction methods to study Pb contamination levels in mangrove sediments from the eastern and western parts of the Maowei Sea, China. Our results showed that the Pb in the leachate and residual fraction was mainly from anthropogenic and natural sources, respectively. The use of 204Pb isotope analysis can reveal some overlooked differences between anthropogenic and natural sources. Calculation by Bayesian mixing model showed no significant difference in the total anthropogenic contribution between the two sites, but the relative contribution of each end member differed. The contribution of Pb/Zn ores was much higher in the eastern sites (30.9 ± 5.1%) than in the west (18.4 ± 5.5%), while that of agricultural activities was much lower in the east (5.2 ± 3.1%) than in the west (13.5 ± 4.6%). The elevated anthropogenic Pb accumulation in mangrove sediments was ascribed to organic matter. This study provides more data on Pb isotopic composition and new insights into Pb biogeochemistry in the mangrove environment.
Collapse
Affiliation(s)
- Zhenghua Tao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Linlin Jiao
- College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Bailing Fan
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
22
|
Cadondon J, Vallar E, Roque FJ, Rempillo O, Mandia P, Orbecido A, Beltran A, Deocaris C, Morris V, Belo L, Galvez MC. Elemental distribution and source analysis of atmospheric aerosols from Meycauayan, Bulacan, Philippines. Heliyon 2023; 9:e19459. [PMID: 37809711 PMCID: PMC10558599 DOI: 10.1016/j.heliyon.2023.e19459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
One of the industrialized cities in the Philippines is Meycauayan, Bulacan. This study reports the elemental distribution and source apportionment in eight varying land cover-land use type sampling points located along the Marilao-Meycauayan- Obando Rivers System. Elemental analysis was conducted using a scanning electron microscope coupled with energy dispersive x-ray. Cu, Pb, Zn, Cr, Mn, As, Cd, Co, Fe, Ni, Ti, and V concentrations were determined using Inductively Coupled Plasma Mass Spectrometry, and Hg concentrations by Mercury analyzer. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and Pearson's r correlation were used to analyze different sources of heavy metals and its corresponding land use-land cover type. The aerosol samples showed the presence of heavy metals Pb and Hg, elements that were also detected in trace amounts in the water measurements. Concentrations of heavy metals such as Cu, Fe, Pb, Zn, V, Ni, and As found in the atmospheric aerosols and urban dusts were attributed to anthropogenic sources such as residential, commercial and industrial wastes. Other source of aerosols in the area were traffic and crustal emissions in Meycauayan. Using HCA, there are 3 clusters observed based on the similar sets of heavy metals: (1) AQS1 (Caingin), AQS2 (Banga), and AQS8 (Malhacan); (2) AQS3(Calvario), AQS4 (Camalig), and AQS5(Langka); (3) AQS1(Sto Nino-Perez), and (AQS7) (Sterling). These groups are related based on different land use setting such as residential/commercial, agricultural, and commercial/industrial areas. Our study recommends the need to address heavy metal pollution in Meycauayan in support to the ongoing implementation of laws and regulations by the local and private sectors.
Collapse
Affiliation(s)
- Jumar Cadondon
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Division of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Visayas, Miagao 5023, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Edgar Vallar
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Floro Junior Roque
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Ofelia Rempillo
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Paulito Mandia
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Aileen Orbecido
- Department of Chemical Engineering, Gokongwei College of Engineering, De La Salle University, Manila 0922, Philippines
| | - Arnel Beltran
- Department of Chemical Engineering, Gokongwei College of Engineering, De La Salle University, Manila 0922, Philippines
| | - Custer Deocaris
- Philippine Nuclear Research Institute, Department of Science and Technology, Quezon City, Philippines
| | - Vernon Morris
- School of Mathematical and Natural Sciences, New College for Interdisciplinary Arts and Sciences, Arizona State University PO Box 37100, MC 1251, Phoenix, AZ, USA
| | - Lawrence Belo
- Department of Chemical Engineering, Gokongwei College of Engineering, De La Salle University, Manila 0922, Philippines
| | - Maria Cecilia Galvez
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| |
Collapse
|
23
|
Wilhelm K, Longman J, Standish CD, De Kock T. The Historic Built Environment As a Long-Term Geochemical Archive: Telling the Time on the Urban "Pollution Clock". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12362-12375. [PMID: 37436401 PMCID: PMC10448721 DOI: 10.1021/acs.est.3c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
This study introduces a novel methodology for utilizing historic built environments as reliable long-term geochemical archives, addressing a gap in the reconstruction of past anthropogenic pollution levels in urban settings. For the first time, we employ high-resolution laser ablation mass spectrometry for lead isotope (206Pb/207Pb and 208Pb/206Pb) analysis on 350-year-old black crust stratigraphies found on historic built structures, providing insights into past air pollution signatures. Our findings reveal a gradual shift in the crust stratigraphy toward lower 206Pb/207Pb and higher 208Pb/206Pb isotope ratios from the older to the younger layers, indicating changes in lead sources over time. Mass balance analysis of the isotope data shows black crust layers formed since 1669 primarily contain over 90% Pb from coal burning, while other lead sources from a set of modern pollution including but not limited to leaded gasoline (introduced after 1920) become dominant (up to 60%) from 1875 onward. In contrast to global archives such as ice cores that provide integrated signals of long-distance pollution, our study contributes to a deeper understanding of localized pollution levels, specifically in urban settings. Our approach complements multiple sources of evidence, enhancing our understanding of air pollution dynamics and trends, and the impact of human activities on urban environments.
Collapse
Affiliation(s)
- Katrin Wilhelm
- Oxford
Resilient Buildings and Landscapes Laboratory (OxRBL), School of Geography
and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, U.K.
| | - Jack Longman
- Marine
Isotope Geochemistry, Institute for Chemistry and Biology of the Marine
Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Department
of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United
Kingdom
| | - Christopher D. Standish
- School
of Ocean & Earth Sciences, University
of Southampton, National Oceanography Centre, European Way, Southampton, SO14 3ZH, U.K.
| | - Tim De Kock
- Antwerp
Cultural Heritage Sciences (ARCHES), Faculty of Design, University of Antwerp Blindestraat 9, 2000 Antwerp, Belgium
| |
Collapse
|
24
|
Laidlaw MAS, Mielke HW, Filippelli GM. Assessing Unequal Airborne Exposure to Lead Associated With Race in the USA. GEOHEALTH 2023; 7:e2023GH000829. [PMID: 37496883 PMCID: PMC10366417 DOI: 10.1029/2023gh000829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
Recent research applied the United States Environmental Protection Agency's Chemical Speciation Network and Interagency Monitoring of Protected Visual Environments monitoring stations and observed that mean concentrations of atmospheric lead (Pb) in highly segregated counties are a factor of 5 higher than in well-integrated counties and argument is made that regulation of existing airborne Pb emissions will reduce children's Pb exposure. We argue that one of the main sources of children's current Pb exposure is from resuspension of legacy Pb in soil dust and that the racial disparity of Pb exposure is associated with Pb-contaminated community soils.
Collapse
Affiliation(s)
| | | | - Gabriel M. Filippelli
- Department of Earth SciencesIndiana University‐Purdue University Indianapolis (IUPUI)IndianapolisINUSA
- Indiana University Environmental Resilience InstituteBloomingtonINUSA
| |
Collapse
|
25
|
Lacerda D, Pestana IA, Santos Vergilio CD, de Rezende CE. Global decrease in blood lead concentrations due to the removal of leaded gasoline. CHEMOSPHERE 2023; 324:138207. [PMID: 36822521 DOI: 10.1016/j.chemosphere.2023.138207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Lead (Pb) is a chemical element with extreme toxicity that is classified as one of the ten chemicals of most significant concern to human health. The main problem involving Pb is its use as a fuel additive (tetraethyllead - TEL) at a global level, which raised the atmospheric Pb concentrations. It is estimated that between 80 and 90% of the atmospheric Pb in large cities came from the use of TEL, and as a consequence, it was also the main source responsible for human exposure to the element. Therefore, this work aimed to evaluate, through a systematic review, the blood concentrations of Pb in scientific articles published in the first two decades of the 2000s to compare the global and regional trends of each continent over time. Our data show the importance of removing TEL in decreasing human exposure to Pb worldwide. We observed exponentially decreasing blood Pb concentrations over the years after additive removal on all continents, resulting in a global trend which TEL's use was the major process governing human exposure worldwide. In addition, the results also showed that, despite the removal of Pb additives lowering levels of human blood Pb, the general population remains exposed to the element through exogenous and endogenous sources. The exhaust Pb particles were deposited into the environment in proportion to the traffic flows, and the legacy of Pb in the environment requires novel primary prevention remedy to curtail exposure.
Collapse
Affiliation(s)
- Diego Lacerda
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro. Avenida Alberto Lamego, 2000, Parque Califórnia, Campos Dos Goytacazes, Rio de Janeiro, CEP: 28.013-602, Brazil.
| | - Inácio Abreu Pestana
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro. Avenida Alberto Lamego, 2000, Parque Califórnia, Campos Dos Goytacazes, Rio de Janeiro, CEP: 28.013-602, Brazil
| | - Cristiane Dos Santos Vergilio
- Laboratório de Ecotoxicologia, Departamento de Biologia, Centro de Ciências Exatas Naturais e da Saúde, Universidade Federal Do Espírito Santo - Campus Alegre. Alto Universitário, S/N, Guararema, Alegre, Espírito Santo, CEP: 29.500-000, Brazil
| | - Carlos Eduardo de Rezende
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro. Avenida Alberto Lamego, 2000, Parque Califórnia, Campos Dos Goytacazes, Rio de Janeiro, CEP: 28.013-602, Brazil
| |
Collapse
|
26
|
Briard J, Ayrault S, Roy-Barman M, Bordier L, L'Héritier M, Azéma A, Syvilay D, Baron S. Determining the geochemical fingerprint of the lead fallout from the Notre-Dame de Paris fire: Lessons for a better discrimination of chemical signatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160676. [PMID: 36513227 DOI: 10.1016/j.scitotenv.2022.160676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
On 2019, the fire of Notre-Dame de Paris cathedral ("NDdP") spread an unknown amount of lead (Pb) dust from the roof of the cathedral over Paris. No data describing the geochemical fingerprint of the roof lead, as well as no particle collected during the fire, were available: a post-hoc sampling was performed. To discriminate the potential environmental impact of the fire from multiple Pb sources in Paris, it was mandatory to define unequivocally the fire dust geochemical signature. A dedicated and in hindsight geochemistry-based strategy was developed to eliminate any source of potential contamination due to sampling substrates or previously deposited dust. Radiogenic Pb isotopic signatures (206Pb/207Pb and 208Pb/206Pb ratios) and elemental ratios were determined in 23 Pb-rich samples collected inside NDdP. We determined that the dust collected on wood substrates on the first floor was most representative of fire emissions. These samples were the analyzed for the 4 Pb isotopes (204, 206, 207, 208) and the fire dust signature is characterized by ratio values of 206Pb/207Pb: 1.1669-1.1685, 208Pb/206Pb: 2.0981-2.1095, 208Pb/204Pb: 38.307-38.342, 207Pb/204Pb: 15.633-15.639 and 206Pb/204Pb: 18.242-18.275. In addition, the fire dust presents typical element-to-Pb ratio. This fingerprint was compared to the signatures of the known local Pb sources. The geochemical fingerprint of the fire is significantly different from that of the dominant urban Pb source. This will allow future evaluation of the contribution of the fire to Paris Pb pollution and of the real extent of the area affected by the Pb-containing dust plume. Moreover, the geographical origin of Pb used for the roof restauration and the spire building was identified. These findings open new ways to study the Pb sources in historical monuments for environmental impacts evaluation, as well as for historical perspectives.
Collapse
Affiliation(s)
- Justine Briard
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE UMR 8212, CEA-CNRS-UVSQ, Université Paris Saclay, France
| | - Sophie Ayrault
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE UMR 8212, CEA-CNRS-UVSQ, Université Paris Saclay, France.
| | - Matthieu Roy-Barman
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE UMR 8212, CEA-CNRS-UVSQ, Université Paris Saclay, France
| | - Louise Bordier
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE UMR 8212, CEA-CNRS-UVSQ, Université Paris Saclay, France
| | - Maxime L'Héritier
- Archéologie et Sciences de l'Antiquité, ArScAn UMR 7041, CNRS, Université Paris 8, France
| | - Aurélia Azéma
- Laboratoire de Recherche des Monuments Historiques, CRC USR 3224, Muséum National d'Histoire Naturelle - CNRS - Ministère de la Culture, France
| | - Delphine Syvilay
- Laboratoire de Recherche des Monuments Historiques, CRC USR 3224, Muséum National d'Histoire Naturelle - CNRS - Ministère de la Culture, France
| | - Sandrine Baron
- Laboratoire Travaux et Recherches Archéologiques sur les Cultures, les Espaces et les Sociétés, TRACES UMR 5608, CNRS - Université de Toulouse, France
| |
Collapse
|
27
|
Zhao YB, Cen T, Jiang F, He W, Zhang X, Feng X, Gao M, Ludwig C, Bakker E, Wang J. Aerosol-into-liquid capture and detection of atmospheric soluble metals across the gas-liquid interface using Janus-membrane electrodes. Proc Natl Acad Sci U S A 2023; 120:e2219388120. [PMID: 36848559 PMCID: PMC10013784 DOI: 10.1073/pnas.2219388120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/28/2022] [Indexed: 03/01/2023] Open
Abstract
The soluble fraction of atmospheric transition metals is particularly associated with health effects such as reactive oxygen species compared to total metals. However, direct measurements of the soluble fraction are restricted to sampling and detection units in sequence burdened with a compromise between time resolution and system bulkiness. Here, we propose the concept of aerosol-into-liquid capture and detection, which allowed one-step particle capture and detection via the Janus-membrane electrode at the gas-liquid interface, enabling active enrichment and enhanced mass transport of metal ions. The integrated aerodynamic/electrochemical system was capable of capturing airborne particles with a cutoff size down to 50 nm and detecting Pb(II) with a limit of detection of 95.7 ng. The proposed concept can pave the way for cost-effective and miniaturized systems, for the capture and detection of airborne soluble metals in air quality monitoring, especially for abrupt air pollution events with high airborne metal concentrations (e.g., wildfires and fireworks).
Collapse
Affiliation(s)
- Yi-Bo Zhao
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Tianyu Cen
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Bioenergy and Catalysis Laboratory, Energy and Environment Research Division, Paul Scherrer Institut, Villigen5232, Switzerland
| | - Fuze Jiang
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Weidong He
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
- Filter Test Center, College of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning110819, China
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Xiaoxiao Feng
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Min Gao
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Christian Ludwig
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Bioenergy and Catalysis Laboratory, Energy and Environment Research Division, Paul Scherrer Institut, Villigen5232, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva1211, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| |
Collapse
|
28
|
Beyer DE, Varga M, Fazekas P, Pánczél JK. Distribution of Pb, Sr, and U isotopic signature and multielement composition of sediment in Lake Balaton (Hungary) at a sediment trap deep dredged 40 years ago near Balatongyörök-search for routes of recent pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42311-42326. [PMID: 36646980 DOI: 10.1007/s11356-022-25120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
We studied the Pb, Sr, and U isotopic composition and the concentration of toxic metal elements in sediment core samples collected in Lake Balaton at a sediment trap that was deep dredged in 1979, to analyze their changes in the last 40 years. Pb isotopic composition profiles of cores taken from the sediment trap showed different 206Pb/207Pb ratios ranging from 1.206 ± 0.002 at the bottom of the core (phase 1) compared to 1.185 ± 0.002 at the top of the core (phase 2). Phase 2 is the fraction reflecting isotopic signatures of the latest 40 years. At 80-100-cm depth, a transition zone was observed. Pb concentration together with Zn, Sb, Cu, Cd, and Fe showed elevated, 2-4 times higher values in the top phase of the sediment. The calculated Pb isotopic composition of pollutant Pb fraction was 1.177 ± 0.005 in the case of the 206Pb/207Pb and 2.456 ± 0.004 for 208Pb/207Pb, which shows good agreement with literature data for lead ores in Poland and Germany, but it is distinct from literature data for leaded fuel concerning Middle and Eastern Europe. The marked difference in the Pb signatures of phases enabled the construction of a sediment deposition rate map. U and Mo showed a characteristic concentration peak positioned exactly at the depth of the Pb signature transition. The isotopic signature of U based on 234U and 235U also showed a similar pattern. We suggest that the deposition of U and Mo can be related to cyanobacterial blooms in Lake Balaton in the late 1970s and early1980s.
Collapse
|
29
|
Alriksson S, Voxberg E, Karlsson H, Ljunggren S, Augustsson A. Temporal risk assessment - 20th century Pb emissions to air and exposure via inhalation in the Swedish glass district. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159843. [PMID: 36461567 DOI: 10.1016/j.scitotenv.2022.159843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
The objective of the present study was to assess historical emissions of Pb to air around a number of glassworks sites in southeastern Sweden, and the possible implications for human exposure. To do so, a four-step method was applied. First, emissions of Pb to air around 10 glassworks were modelled for the 20th century. Second, an assessment of the resulting exposure was made for a number of scenarios. Third, the number of people potentially exposed at different times was estimated, and fourth, measurements of "current" Pb concentrations in PM10 material from four sites were conducted in 2019. The results show that the highest emissions, and exposures, occurred from 1970 to1980. It coincides with the time period when the highest number of people resided in the villages. At this time, the average Pb concentration in air around the six largest factories was about 2.4 μg Pb/m3, i.e. 16 times the present US national ambient air quality standard (NAAQS) of 0.15 μg Pb/m3. By year 2000 the modelled average concentration had dropped to 0.05 μg Pb/m3, a level that is normal for urban regions today. The PM10 measurements from 2019 indicate a further decline, now with a mean value of about 0.02 μg Pb/m3. Over the entire study period, inhalation hazard quotients (HQs) exceeded the dietary HQ by many orders of magnitude, indicating that inhalation has been the most prevalent exposure pathway in the past. At present, both pathways are judged to be associated with low exposures. Even if only roughly approximated, a picture of the historical exposure can increase our understanding of the connection between exposure and disease, and can be valuable when risks are to be communicated to residents near contaminated areas.
Collapse
Affiliation(s)
- Stina Alriksson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Elin Voxberg
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anna Augustsson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
30
|
Philippe M, Le Pape P, Resongles E, Landrot G, Freydier R, Bordier L, Baptiste B, Delbes L, Baya C, Casiot C, Ayrault S. Fate of antimony contamination generated by road traffic - A focus on Sb geochemistry and speciation in stormwater ponds. CHEMOSPHERE 2023; 313:137368. [PMID: 36574574 DOI: 10.1016/j.chemosphere.2022.137368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Although antimony (Sb) contamination has been documented in urban areas, knowledge gaps remain concerning the contributions of the different sources to the Sb urban biogeochemical cycle, including non-exhaust road traffic emissions, urban materials leaching/erosion and waste incineration. Additionally, details are lacking about Sb chemical forms involved in urban soils, sediments and water bodies. Here, with the aim to document the fate of metallic contaminants emitted through non-exhaust traffic emissions in urban aquatic systems, we studied trace element contamination, with a particular focus on Sb geochemistry, in three highway stormwater pond systems, standing as models of surface environments receiving road-water runoff. In all systems, differentiated on the basis of lead isotopic signatures, Sb shows the higher enrichment factor with respect to the geochemical background, up to 130, compared to other traffic-related inorganic contaminants (Co, Cr, Ni, Cu, Zn, Cd, Pb). Measurements of Sb isotopic composition (δ123Sb) performed on solid samples, including air-exposed dusts and underwater sediments, show an average signature of 0.07 ± 0.05‰ (n = 25, all sites), close to the δ123Sb value measured previously in certified reference material of road dust (BCR 723, δ123Sb = 0.03 ± 0.05‰). Moreover, a fractionation of Sb isotopes is observed between solid and dissolved phases in one sample, which might result from Sb (bio)reduction and/or adsorption processes. SEM-EDXS investigations show the presence of discrete submicrometric particles concentrating Sb in all the systems, interpreted as friction residues of Sb-containing brake pads. Sb solid speciation determined by linear combination fitting of X-Ray Absorption Near Edge Structure (XANES) spectra at the Sb K-edge shows an important spatial variability in the ponds, with Sb chemical forms likely driven by local redox conditions: "dry" samples exposed to air exhibited contributions from Sb(V)-O (52% to 100%) and Sb(III)-O (<10% to 48%) species whereas only underwater samples, representative of suboxic/anoxic conditions, showed an additional contribution from Sb(III)-S (41% to 80%) species. Altogether, these results confirm the traffic emission as a specific source of Sb emission in surface environments. The spatial variations of Sb speciation observed along the road-to-pond continuum likely reflect a high geochemical reactivity, which could have important implications on Sb transfer properties in (sub)surface hydrosystems.
Collapse
Affiliation(s)
- M Philippe
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France; Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France
| | - P Le Pape
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France.
| | - E Resongles
- HydroSciences Montpellier (HSM), Université de Montpellier - CNRS - IRD, Montpellier, France
| | - G Landrot
- Synchrotron SOLEIL, F-91192 Gif-Sur-Yvette, France
| | - R Freydier
- HydroSciences Montpellier (HSM), Université de Montpellier - CNRS - IRD, Montpellier, France
| | - L Bordier
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| | - B Baptiste
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France
| | - L Delbes
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France
| | - C Baya
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, 4 place Jussieu, 75252 Paris, Cedex 5, France
| | - C Casiot
- HydroSciences Montpellier (HSM), Université de Montpellier - CNRS - IRD, Montpellier, France
| | - S Ayrault
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
31
|
Park SB, Kim EA, Kim KY, Koh B. Induction of toxicity in human colon cells and organoids by size- and composition-dependent road dust. RSC Adv 2023; 13:2833-2840. [PMID: 36756445 PMCID: PMC9845984 DOI: 10.1039/d2ra07500h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Environmental pollution, including the annual resurgence of particulate matter derived from road dust, is a serious issue worldwide. Typically, the size of road dust is less than 10 μm; thus, road dust can penetrate into human organs, including the brain, through inhalation and intake by mouth. Therefore, the toxicity of road dust has been intensively studied in vitro and in vivo. However, in vitro systems, including 2D cell cultures, cannot mimic complex human organs, and there are several discrepancies between in vivo and human systems. Here, we used human colon cells and organoids to evaluate the cytotoxicity of particulate matter derived from road dust. The toxicity of road dust collected in industrialized and high traffic areas and NIST urban particulate matter reference samples were evaluated in 2D and 3D human colon cells as well as colon organoids and their characteristics were carefully examined. Data suggest that the size and elemental compositions of road dust can correlate with colon organoid toxicity, and thus, a more careful assessment of the size and elemental compositions of road dust should be conducted to predict its effect on human health.
Collapse
Affiliation(s)
- Sung Bum Park
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Eun-Ah Kim
- National Assembly Futures InstituteMembers Office Bldg, 1 Uisadang-daero, Yeongdeungpo-guSeoul07233Republic of Korea
| | - Ki Young Kim
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Byumseok Koh
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| |
Collapse
|
32
|
Non-traditional stable isotopic analysis for source tracing of atmospheric particulate matter. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Trujillo-Vázquez SK, Gaona-Domínguez S, Villeda-González JD, Librado-Osorio R, Luna-López A, Bonilla-González E, Valencia-Quintana PR, Gómez-Olivares JL. Oxidative stress in the ovaries of mice chronically exposed to a low lead concentration: A generational approach. Reprod Toxicol 2023; 115:40-48. [PMID: 36473649 DOI: 10.1016/j.reprotox.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Lead (Pb) is a heavy metal that alters the oxidation-reduction balance, affecting reproductive health and transfer during pregnancy and lactation. However, the multigenerational impact of exposure to low concentrations of Pb on mammalian ovaries has not been assessed. This study evaluated general parameters, histology, redox state (RS), protein carbonylation (PC), lipid peroxidation (LP), and hormone concentrations in the ovaries of mice (CD1® ICR) of three successive generations with both unigenerational (E1) and multigenerational (E2) exposure to 0.2 ppm lead acetate through the drinking water and a control group. Body weight, food consumption, the number of born pups, and their weight after weaning were not significantly affected by Pb exposure in E1 and E2. However, the ovaries of three successive generations of the E1 group, in which only the F0 was exposed, showed alterations in the ovarian histoarchitecture, increase in follicular atresia, decrease in the number of available follicles, and a significant RS and PC elevation that were surprisingly similar to those observed in the E2 group. LP increased in the second generation of E1 and E2, while hormone concentration was not altered. This is the first demonstration that exposure to low concentration of Pb induces multigenerational histological alterations and oxidative stress in mouse ovaries, that the termination of this exposure does not ensure the safety of later generations and that the lack of modifications in general parameters may facilitate the silent development of pathologies that affect ovarian health.
Collapse
Affiliation(s)
- S K Trujillo-Vázquez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, México.
| | - S Gaona-Domínguez
- Departamento de Farmacobiología, Centro de Investigaciones y Estudios Avanzados (CINVESTAV) Campus sur, Mexico City, Mexico
| | - J D Villeda-González
- Instituto de Fisiología Celular, Departamento de Neurodesarrollo y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - R Librado-Osorio
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Mexico City, Mexico
| | - A Luna-López
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Mexico City, Mexico
| | - E Bonilla-González
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - P R Valencia-Quintana
- Laboratorio "Rafael Villalobos Petrini" de Toxicología Genómica y Química Ambiental, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - J L Gómez-Olivares
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| |
Collapse
|
34
|
Dietrich M, Rader ST, Filippelli GM. Using community science for detailed pollution research: a case-study approach in Indianapolis, IN, USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4269-4277. [PMID: 35971050 DOI: 10.1007/s11356-022-22561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal contamination in urban environments, particularly lead (Pb) pollution, is a health hazard both to humans and ecological systems. Despite wide recognition of urban metal pollution in many cities, there is still relatively limited research regarding heavy metal distribution and transport at the household-scale between soils and indoor dusts-the most important scale for actual human interaction and exposure. Thus, using community-scientist-generated samples in Indianapolis, IN (USA), we applied bulk chemistry, Pb isotopes, and scanning electron microscopy (SEM) to illustrate how detailed analytical techniques can aid in interpretation of Pb pollution distribution at the household-scale. Our techniques provide definitive evidence for Pb paint sourcing in some homes, while others may be polluted with Pb from past industrial/vehicular sources. SEM revealed anthropogenic particles suggestive of Pb paint and the widespread occurrence of Fe-rich metal anthropogenic spherules across all homes, indicative of pollutant transport processes. The variability of Pb pollution at the household scale evident in just four homes is a testament to the heterogeneity and complexity of urban pollution. Future urban pollution research efforts would do well to utilize these more detailed analytical methods on community-sourced samples to gain better insight into where the Pb came from and how it currently exists in the environment. However, these methods should be applied after large-scale pollution screening techniques such as portable X-ray fluorescence (XRF), with more detailed analytical techniques focused on areas where bulk chemistry alone cannot pinpoint dominant pollution mechanisms and where community scientists can also give important metadata to support geochemical interpretations.
Collapse
Affiliation(s)
- Matthew Dietrich
- Department of Earth Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Shelby T Rader
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN, USA
| | - Gabriel M Filippelli
- Department of Earth Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
- Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
35
|
Gravina P, Sebastiani B, Bruschi F, Petroselli C, Moroni B, Selvaggi R, Goretti E, Pallottini M, Ludovisi A, Cappelletti D. Sources and trends of trace elements and polycyclic aromatic hydrocarbons in a shallow lake in the Mediterranean area from sediment archives of the Anthropocene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85815-85828. [PMID: 36125684 PMCID: PMC9668802 DOI: 10.1007/s11356-022-22939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/04/2022] [Indexed: 05/13/2023]
Abstract
In this study, the anthropogenic contamination in Trasimeno lake (Central Italy) was investigated using three sediment cores spanning over the last 150 years (Anthropocene) to identify the primary sources of pollution and quantify the level of contaminant enrichment in the basin. First, based on the relative cumulative frequency and linear regression methods, we obtained a geochemical baseline for the lake using the deeper parts of the sediment cores. The geochemical baseline allowed us to determine the values of trace elements enrichment factors. On this knowledge, as a second result, we were able to reconstruct the natural sources and the anthropogenic impact on the lake with a biennial resolution. This goal has been obtained by combining different inorganic and organic chemical proxies such as trace elements, polycyclic aromatic hydrocarbons, and lead isotope ratios and exploiting both principal component and factor analysis to associate chemical proxies to human-driven contamination processes. Five different groups of elements have been identified, one of which is of natural origin and four of anthropogenic origin. In particular, it was possible to identify the times and impacts of the industrial activities during the Second World War, which dispersed heavy metals in sediments. Moreover, we found evidence of the recent human activities that have characterized the surroundings of the basin, such as Pb inputs related to the use of gasoline and the enrichment of certain elements generally used in agricultural activities (such as P, Cu, and Mn) due to the development of this sector in the last 40 years.
Collapse
Affiliation(s)
- Paola Gravina
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Bartolomeo Sebastiani
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Federica Bruschi
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Chiara Petroselli
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Beatrice Moroni
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Roberta Selvaggi
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Enzo Goretti
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Matteo Pallottini
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - Alessandro Ludovisi
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| | - David Cappelletti
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, Perugia, 60123 Umbria Italy
| |
Collapse
|
36
|
Microbiome–Gut Dissociation in the Neonate: Autism-Related Developmental Brain Disease and the Origin of the Placebo Effect. GASTROINTESTINAL DISORDERS 2022. [DOI: 10.3390/gidisord4040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
While the importance of the intestinal microbiome has been realised for a number of years, the significance of the phrase microbiota–gut–brain axis is only just beginning to be fully appreciated. Our recent work has focused on the microbiome as if it were a single entity, modifying the expression of the genetic inheritance of the individual by the generation of interkingdom signalling molecules, semiochemicals, such as dopamine. In our view, the purpose of the microbiome is to convey information about the microbial environment of the mother so as to calibrate the immune system of the new-born, giving it the ability to distinguish harmful pathogens from the harmless antigens of pollen, for example, or to help distinguish self from non-self. In turn, this requires the partition of nutrition between the adult and its microbiome to ensure that both entities remain viable until the process of reproduction. Accordingly, the failure of a degraded microbiome to interact with the developing gut of the neonate leads to failure of this partition in the adult: to low faecal energy excretion, excessive fat storage, and concomitant problems with the immune system. Similarly, a weakened gut–brain axis distorts interoceptive input to the brain, increasing the risk of psychiatric diseases such as autism. These effects account for David Barker’s 1990 suggestion of “the fetal and infant origins of adult disease”, including schizophrenia, and David Strachan’s 1989 observation of childhood immune system diseases, such as hay fever and asthma. The industrialisation of modern life is increasing the intensity and scale of these physical and psychiatric diseases and it seems likely that subclinical heavy metal poisoning of the microbiome contributes to these problems. Finally, the recent observation of Harald Brüssow, that reported intestinal bacterial composition does not adequately reflect the patterns of disease, would be accounted for if microbial eukaryotes were the key determinant of microbiome effectiveness. In this view, the relative success of “probiotic” bacteria is due to their temporary immune system activation of the gut–brain axis, in turn suggesting a potential mechanism for the placebo effect.
Collapse
|
37
|
Ray I, Das R, Chua SL, Wang X. Seasonal variation of atmospheric Pb sources in Singapore - Elemental and lead isotopic compositions of PM 10 as source tracer. CHEMOSPHERE 2022; 307:136029. [PMID: 36028124 DOI: 10.1016/j.chemosphere.2022.136029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 05/16/2023]
Abstract
Southeast Asia has become a hotspot of anthropogenic particulate matter (PM) emissions due to increased coal combustion, high-temperature industrial operations, vehicular traffic, and agricultural biomass burning. Lead (Pb), a criteria pollutant, bound to such PM can be hazardous when inhaled, even at extremely low concentrations. Precise and accurate source apportionment of atmospheric Pb is thus, critical in order to minimize its exposure. This study investigates the sources of atmospheric Pb in Singapore aerosol samples (PM10) using Pb isotopes and elemental composition as tracers of contamination sources. PM10 aerosol sampling was conducted over a period of 1 year from June 2017 to May 2018 to capture the seasonal variations in sources of atmospheric Pb. Elemental concentrations reveal particularly high enrichment factors for Pb, Cu, V, Ni and Zn, especially when under the influence of southwest (SW) and inter monsoon (IM) winds. Pb isotopic ratios across the three seasons (206/207Pb = 1.147-1.150 and 208/207Pb = 2.420-2.428) are not significantly different. The Pb isotopic signatures and V/Ni ratios for all three seasons overlap with those of gasoline, diesel and ship emissions. Moreover, V/Pb values of more than unity for SW and IM winds suggest influence of transboundary coal combustion emissions particularly from Indonesia. Consequently, using Pb isotopic fingerprints and elemental ratios, we find that the primary sources of atmospheric Pb are vehicular & ship emissions, heavy oil combustion, transboundary coal combustion emissions, waste incineration and recirculation of historic leaded gasoline.
Collapse
Affiliation(s)
- Iravati Ray
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata, India; Earth Observatory of Singapore, Nanyang Technological University, Singapore.
| | - Song Lin Chua
- Asian School of Environment, Nanyang Technological University, Singapore
| | - Xianfeng Wang
- Earth Observatory of Singapore, Nanyang Technological University, Singapore; Asian School of Environment, Nanyang Technological University, Singapore
| |
Collapse
|
38
|
Lupolt SN, Santo RE, Kim BF, Burke TA, Nachman KE. Urban Soil Safety Policies: The Next Frontier for Mitigating Lead Exposures and Promoting Sustainable Food Production. GEOHEALTH 2022; 6:e2022GH000615. [PMID: 36176572 PMCID: PMC9473349 DOI: 10.1029/2022gh000615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Urban soils bear the persistent legacy of leaded gasoline and past industrial practices. Soil safety policies (SSPs) are an important public health tool with the potential to inform, identify, and mitigate potential health risks faced by urban growers, but little is known about how these policies may protect growers from exposures to lead and other soil contaminants. We reviewed and evaluated 43 urban agriculture (UA) policies in 40 US cities pertaining to soil safety. About half of these cities had a least one SSP that offered recommendations or provided services for soil testing. Eight cities had at least one SSP containing a requirement pertaining to any topic (e.g., soil testing, a specific best practice for growing). We found notable inconsistencies across SSPs for "acceptable" levels of lead in soils and the activities and behaviors recommended at each level. We specify research needed to inform revisions to US Environmental Protection Agency guidance for lead in soils specific to UA. We conclude with a series of recommendations to guide the development or revision of SSPs.
Collapse
Affiliation(s)
- Sara N. Lupolt
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
- Center for a Livable FutureJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
- Risk Sciences and Public Policy InstituteJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
| | - Raychel E. Santo
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
- Center for a Livable FutureJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
| | - Brent F. Kim
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
- Center for a Livable FutureJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
| | - Thomas A. Burke
- Risk Sciences and Public Policy InstituteJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
- Department of Health Policy and ManagementJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
| | - Keeve E. Nachman
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
- Center for a Livable FutureJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
- Risk Sciences and Public Policy InstituteJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
- Department of Health Policy and ManagementJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
| |
Collapse
|
39
|
Maret W. The quintessence of metallomics: a harbinger of a different life science based on the periodic table of the bioelements. Metallomics 2022; 14:mfac051. [PMID: 35820043 PMCID: PMC9406523 DOI: 10.1093/mtomcs/mfac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
This year marks the 20th anniversary of the field of metallomics. As a landmark in time, it is an occasion to reflect on the past, present, and future of this integrated field of biometal sciences. A fundamental bias is one reason for having metallomics as a scientific discipline. The focus of biochemistry on the six non-metal chemical elements, collectively known with the acronym SPONCH (sulphur, phosphorus, oxygen, nitrogen, carbon, hydrogen), glosses over the fact that the lower quantities of many other elements have qualities that made them instrumental in the evolution of life and pivotal in numerous life processes. The metallome, alongside the genome, proteome, lipidome, and glycome, should be regarded as a fifth pillar of elemental-vis-à-vis molecular-building blocks in biochemistry. Metallomics as 'global approaches to metals in the biosciences' considers the biological significance of most chemical elements in the periodic table, not only the ones essential for life, but also the non-essential ones that are present in living matter-some at higher concentrations than the essential ones. The non-essential elements are bioactive with either positive or negative effects. Integrating the significance of many more chemical elements into the life sciences requires a transformation in learning and teaching with a focus on elemental biology in addition to molecular biology. It should include the dynamic interactions between the biosphere and the geosphere and how the human footprint is changing the ecology globally and exposing us to many additional chemical elements that become new bioelements.
Collapse
Affiliation(s)
- Wolfgang Maret
- Metal Metabolism Group, Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, UK
| |
Collapse
|
40
|
Lead Exposure Causes Spinal Curvature during Embryonic Development in Zebrafish. Int J Mol Sci 2022; 23:ijms23179571. [PMID: 36076969 PMCID: PMC9455242 DOI: 10.3390/ijms23179571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Lead (Pb) is an important raw material for modern industrial production, they enter the aquatic environment in several ways and cause serious harm to aquatic ecosystems. Lead ions (Pb2+) are highly toxic and can accumulate continuously in organisms. In addition to causing biological deaths, it can also cause neurological damage in vertebrates. Our experiment found that Pb2+ caused decreased survival, delayed hatching, decreased frequency of voluntary movements at 24 hpf, increased heart rate at 48 hpf and increased malformation rate in zebrafish embryos. Among them, the morphology of spinal malformations varied, with 0.4 mg/L Pb2+ causing a dorsal bending of the spine of 72 hpf zebrafish and a ventral bending in 120 hpf zebrafish. It was detected that spinal malformations were mainly caused by Pb2+-induced endoplasmic reticulum stress and apoptosis. The genetic changes in somatic segment development which disrupted developmental polarity as well as osteogenesis, resulting in uneven myotomal development. In contrast, calcium ions can rescue the series of responses induced by lead exposure and reduce the occurrence of spinal curvature. This article proposes new findings of lead pollution toxicity in zebrafish.
Collapse
|
41
|
Olowoyo JO, Lion N, Unathi T, Oladeji OM. Concentrations of Pb and Other Associated Elements in Soil Dust 15 Years after the Introduction of Unleaded Fuel and the Human Health Implications in Pretoria, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10238. [PMID: 36011873 PMCID: PMC9408104 DOI: 10.3390/ijerph191610238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Leaded fuel has been reported to contain certain amounts of toxic trace metals such as Pb and Cadmium (Cd), which may have negative impacts on humans and the environment. Unleaded fuel was introduced to South Africa in 2006 with the aim of reducing and eventually eliminating the negative impact of leaded fuel on the environment. However, trace metals are usually nonbiodegradable, and it may therefore be necessary to monitor their presence in the environment so as to evaluate their possible impact on human health. The present study evaluated the levels of Pb and other heavy metals in soil samples collected from petrol (gas) filling stations and from busy roads just around the filling stations in Pretoria, South Africa, fifteen years after the introduction of unleaded fuel. A total of twenty-four (24) soil samples were analysed for lead (Pb), chromium (Cr), copper (Cu), zinc (Zn), arsenic (As), iron (Fe), manganese (Mn), nickel (Ni), titanium (Ti), and cadmium (Cd) using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results showed that the concentrations of the trace metals were in the following ranges: Pb, 0.08 ± 0.02−188.36 ± 15.32 ug/g; Mn, 5.35 ± 0.34−6842.43 ± 1.35 ug/g; Zn, 1.82 ± 0.22−9814.89 ± 22.32 ug/g; As, 0.21 ± 0.00−8.42 ± 2.44 ug/g; Cu, 10.51 ± 3.41−859 ± 0.09 ug/g; Cr, 5.80 ± 2.21−417.70 ± 9.08 ug/g; Ti, 19.94 ± 4.99−1036.12 ± 1.49 ug/g; and Fe, 3.06 ± 7.87−674.07 ± 12.22 mg/g. The highest concentrations from all the elements were recorded for Fe in all the collected soil samples. The concentrations of Pb in the soils collected from sites associated with high traffic and industrial areas were higher than for those from all other sites, and the differences were significant (p < 0.05). The pollution index (PI), which is the anthropogenic influence of the trace metals, and the geoaccumulation (Igeo), which allows for the removal of possible variations as regards the studied element in the soil due to the possible differences in the background value, showed that some samples were enriched anthropogenically. The PI for Ni, Pb, Cu, and Cr indicated highly anthropogenically contaminated soils, especially at sites associated with high traffic volumes and in industrial areas. The Igeo showed moderately polluted areas for Pb and Cu in high-traffic areas. The exposure routes for the toxic trace metals that were of concern in the study were either through ingestion or dermal contact. The calculated hazard quotient showed both noncarcinogenic and carcinogenic risks for Fe and Mn via ingestion and through dermal contact for both children and adults, respectively. The concentrations of Pb were high and similar to those that were previously reported in the study and pointed to vehicular emission as one of the contributors. The study also noticed an increase in the presence of Mn and Fe in all soil samples.
Collapse
|
42
|
Mielke HW, Gonzales CR, Powell ET, Egendorf SP. Lead in Air, Soil, and Blood: Pb Poisoning in a Changing World. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9500. [PMID: 35954853 PMCID: PMC9368099 DOI: 10.3390/ijerph19159500] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: Leaded petrol became a worldwide vehicle fuel during the 20th century. While leaded petrol was totally banned on 30 August 2021, its lead (Pb) dust legacy remains in the environment as soil Pb. The health impacts of Pb are well known and risks occur when exposures are above zero. The inextricable links between air Pb, soil Pb, and blood Pb are not widely A. Exposure risks continue even after banning leaded petrol and must be explored. (2) Methods: This article evaluates selected examples of temporal measurements of atmospheric Pb and human Pb exposure and the effect of soil Pb on blood Pb. Several search engines were used to find articles on temporal changes in air Pb and human Pb exposures. New Orleans studies provided empirical data on the association between soil Pb and blood Pb. (3) Results: Vehicle Pb emission trends are closely associated with air Pb and blood Pb. Air Pb deposited in soil becomes a reservoir of Pb dust that is known to be remobilized into the atmosphere. (4) Conclusions: The dust from leaded petrol continues to pose major exposure risks to humans. Exogenous sources of Pb in soil and its remobilization into air along with endogenous bone Pb establish the baseline exposure of children and adults. Reducing human exposure to Pb requires novel policies to decrease exogenous contact from the reservoir of Pb in soil and curtailing remobilization of soil Pb into the atmosphere. Mitigating exposure to soil Pb must therefore play a central role in advancing primary prevention.
Collapse
Affiliation(s)
- Howard W. Mielke
- Department of Pharmacology, Tulane School of Medicine, New Orleans, LA 70112, USA
| | | | - Eric T. Powell
- Lead Lab, Inc., New Orleans, LA 70119, USA; (C.R.G.); (E.T.P.)
| | | |
Collapse
|
43
|
Ye J, Li J, Wang P, Ning Y, Liu J, Yu Q, Bi X. Inputs and sources of Pb and other metals in urban area in the post leaded gasoline era. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119389. [PMID: 35523381 DOI: 10.1016/j.envpol.2022.119389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The contamination status of heavy metals in urban environment changes frequently with the industrial structure adjustment, energy conservation and emission reduction and thus requires timely investigation. Based on enrichment factor, multivariate statistical analysis and isotope fingerprinting, we assessed comprehensively the inputs and sources of heavy metals in different samples from an urban area that was less impacted by leaded gasoline exhaust. The road dust contained relatively high levels of Cr, Pb and Zn (with enrichment factor >2) that originated from both exhaust and non-exhaust traffic emissions, while the moss plants could accumulate high levels of Pb and Zn from the deposition of traffic exhaust emission. This suggest that the traffic emission is still an important source of metals in the urban area although gasoline is currently lead free. On the contrary, the occurrences of metals in the urban soils were controlled by natural sources and non-traffic anthropogenic emission. These findings revealed that different samples would receive different inputs of metals from different sources in the urban area, and the responsiveness and sensitiveness of these urban samples to metal inputs can be ranked as moss ≥ dust > soil. Taken together, our results suggested that in order to avoid generalizing and get detail source information, multi-samples and multi-measures must be adopted in the assessment of integrated urban environmental quality.
Collapse
Affiliation(s)
- Jiaxin Ye
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Junjie Li
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Pengcong Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Yongqiang Ning
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Qianqian Yu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Xiangyang Bi
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
44
|
Microbiome–Gut Dissociation in the Neonate: Obesity and Coeliac Disease as Examples of Microbiome Function Deficiency Disorder. GASTROINTESTINAL DISORDERS 2022. [DOI: 10.3390/gidisord4030012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of this article is to provide a direction for translational research based on an analysis of the nature of complex, immune-related conditions such as obesity and coeliac disease. In essence, it seems that the prevalence of these non-communicable diseases is related to the degradation of the microbiome during the industrialisation of society, and that their nature can be used to infer the functions of the “pre-industrial” microbiome. Based on this analysis, the key point is the necessity for the fully functioning microbiome, acting alongside the parental genetic inheritance of the child, to be in place immediately after birth. In our view, this is achieved by the seemingly accidental process of maternal microbial inheritance during normal birth. Note, however, that this is not possible if the microbiome of the mother is itself degraded following previous problems. Under these conditions the health of a child may be affected from the moment of birth, although, with the exception of atopic diseases, such as eczema and food allergy, the consequences may not become apparent until late childhood or as an adult. In this way, this microbiome function deficiency hypothesis incorporates the epidemiological observations of David Strachan and David Barker in that their onset can be traced to early childhood. Coeliac disease has been chosen as an illustrative example of a multifactorial disorder due to the fact that, in addition to a series of immune system manifestations and a potential problem with food absorption, there is also a significant psychological component. Finally, it is worth noting that an ingestible sensor calibrated to the detection of interkingdom communication molecules (semiochemicals) within the intestine may offer a practical way of assessment and, perhaps, amelioration of at least some of the consequences of non-communicable disease.
Collapse
|
45
|
Wang X, Birch GF, Liu E. Traffic emission dominates the spatial variations of metal contamination and ecological-health risks in urban park soil. CHEMOSPHERE 2022; 297:134155. [PMID: 35240153 DOI: 10.1016/j.chemosphere.2022.134155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Metals in urban park soil are closely related to traffic emissions, which adversely affect soil quality and human health. However, little is known about the quantitative impacts of traffic on the spatial variations of metals in park soil after the banning of leaded gasoline. Herein, concentrations of Cu, Pb and Zn in surface soil of four recreational parks of Sydney (Ashfield, Robson, Lamberts and Leichhardt) were measured to evaluate their spatial characteristics in contamination, ecological and health risks and relationships with traffic emissions. Contamination of metals are assessed by contamination factor (CF). Normalized metal concentrations (<63 μm) in the park soil were 24-614, 23-3520 and 99-3060 mg kg-1 for Cu, Pb and Zn, respectively, and CFs ranged from 1.4 to 207, whose variations inter- and intra-parks were related to traffic volumes. Traffic emission accounted for 72-84% of metals contamination in soil of Ashfield, Robson and Lamberts by sites, whereas the values were 25-70% for Leichhardt due to the absence of a surrounding arterial road. In Ashfield and Robson Parks, metal concentrations from traffic decreased exponentially with distance from arterial roads. Metals in Lamberts Park and in areas near arterial roads in Ashfield and Robson Parks may raise ecological risk, and traffic sources contributed to 61-81% of the risk. The ranges of ecological risk zones away from arterial roads and average daily traffic volumes showed an exponential relationship. Copper and Zn in soil of the four parks have no non-carcinogenic health risk for children and adults, and Pb has negligible health risk for adults. Lead in Lamberts Park and in sites near arterial roads of Ashfield and Robson Parks may raise non-carcinogenic risk for children (HI > 1) due to traffic emissions. These results emphasize the remarkable influence of traffic emissions on urban soil metal, which can be predicated quantitatively by traffic volume.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China
| | - Gavin F Birch
- Geocoastal Research Group, School of Geosciences, The University of Sydney, NSW, 2006, Australia
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China; Geocoastal Research Group, School of Geosciences, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
46
|
Chebli A, Mimoun S, Brahimi B, Zebbiche Y, Seleymi S, Cheradi S, Hamzaoui F. Évaluation de l’exposition au plomb et au monoxyde de carbone des travailleurs de parking de la région d’Alger. ARCH MAL PROF ENVIRO 2022. [DOI: 10.1016/j.admp.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Rather RA, Bano H, Padder SA, Baba TR, Ara S, Lone FA, Nazir S. Impact of Anthropogenic Pressure on Physico-chemical Characteristics of Forest Soils of Kashmir Himalaya. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:1088-1097. [PMID: 35113217 DOI: 10.1007/s00128-022-03458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The present study was carried out during the years 2017-2018 and assessed the impact of anthropogenic activities on the physico-chemical characteristics of soil in the Kashmir Himalaya. At disturbed sites anthropogenic activities like deforestation, grazing, tourism, urbanization, traffic etc. are seen prominent and their effect on soil environment resulted in less vegetation cover and exhibited diminution in organic matter. There was a significant increase in moisture content (21.13 ± 1.51), organic carbon (2.65% ± 0.52%), available nitrogen (493.790 ± 2.105 kg/ha), and potassium (432.727 ± 1.738 kg/ha) at undisturbed area Baerabal Harwan. However, there was a reduced pH (5.39 ± 0.230) and available phosphorus (18.993 ± 1.370) at undisturbed area in contrast to disturbed sites. Significantly higher values of Fe, Cu, Zn and Ni were found in disturbed areas (46.33 ± 0.16, 3.972 ± 0.001, 2.224 ± 0.003 and 1.7033 ± 0.002 ppm) respectively. The present findings could be helpful in formulating conservation strategies of soil at disturbed areas that are affected by anthropogenic activities which effects the soil microbial health of the forest soils. The study therefore indicated the need for employing best forest management and effective enforcement with vigorous reforestation programmes and would be a way forward towards mitigating the ongoing deterioration of the plant-soil system, sustaining forest productivity and soil fertility in the long run, and protecting people's livelihoods.
Collapse
Affiliation(s)
- Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technolgy, Shalimar, Kashmir, 190025, India.
| | - Haleema Bano
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technolgy, Shalimar, Kashmir, 190025, India
| | - Shahid Ahmad Padder
- Division of Basic Sciences and Humanities, Faculty of Horticulture, Sher-E-Kashmir University of Agricultural Sciences and Technology, Shalimar, Kashmir, 190025, India
| | - Tawseef Rehman Baba
- Division of Fruit Science, Sher-E-Kashmir University of Agricultural Sciences and Technolgy, Shalimar, Kashmir, 190025, India
| | - Shoukat Ara
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technolgy, Shalimar, Kashmir, 190025, India
| | - Farooq Ahmad Lone
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technolgy, Shalimar, Kashmir, 190025, India
| | - Sarjeel Nazir
- Department of Botany, Aligarh Muslim University (AMU), Aligarh, UP, 202002, India
| |
Collapse
|
48
|
Caballero‐Gómez H, White HK, O’Shea MJ, Pepino R, Howarth M, Gieré R. Spatial Analysis and Lead-Risk Assessment of Philadelphia, USA. GEOHEALTH 2022; 6:e2021GH000519. [PMID: 35340281 PMCID: PMC8934574 DOI: 10.1029/2021gh000519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 05/10/2023]
Abstract
Childhood lead poisoning is an issue that continues to plague major U.S. cities. Despite efforts by the Philadelphia Department of Public Health to curtail systemic childhood lead poisoning, children continue to be identified with elevated blood lead levels. The persistence of elevated blood lead levels in children is concerning because lead poisoning has been linked to decreases in academic achievement and IQ, with associated repercussions for entire communities. This paper reports the results of an analysis of the spatial distribution of houses with lead paint (i.e., pre-1978), demolitions, and occurrence of historic smelters, in West and North Philadelphia, relative to elevated blood lead level data, to determine which lead sources act as primary lead-risk factors. The presence of lead paint in homes and the number of demolitions of older properties were found to have the highest correlations to elevated blood lead levels for children in Philadelphia. Using lead-risk factors including lead paint, housing code violations, demolitions, and owner-occupied housing units, a lead-risk assessment was performed at the census tract level to identify future soil sampling sites and high-risk neighborhoods in Philadelphia. These sites of high risk for lead exposure, and in particular the census tracts 175 and 172, should be prioritized for lead poisoning prevention initiatives.
Collapse
Affiliation(s)
- H. Caballero‐Gómez
- Department of ChemistryHaverford CollegeHaverfordPAUSA
- Now at University of CaliforniaLos AngelesCAUSA
| | - H. K. White
- Department of ChemistryHaverford CollegeHaverfordPAUSA
| | - M. J. O’Shea
- Department of Earth and Environmental ScienceUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - R. Pepino
- Department of Earth and Environmental ScienceUniversity of PennsylvaniaPhiladelphiaPAUSA
- Center of Excellence in Environmental ToxicologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - M. Howarth
- Center of Excellence in Environmental ToxicologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - R. Gieré
- Department of Earth and Environmental ScienceUniversity of PennsylvaniaPhiladelphiaPAUSA
- Center of Excellence in Environmental ToxicologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
49
|
Smith D, Palacios-Pérez M, Jheeta S. The Enclosed Intestinal Microbiome: Semiochemical Signals from the Precambrian and Their Disruption by Heavy Metal Pollution. Life (Basel) 2022; 12:287. [PMID: 35207574 PMCID: PMC8879143 DOI: 10.3390/life12020287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
It is increasingly likely that many non-communicable diseases of humans and associated animals are due to the degradation of their intestinal microbiomes, a situation often referred to as dysbiosis. An analysis of the resultant diseases offers an opportunity to probe the function of these microbial partners of multicellular animals. In our view, it now seems likely that vertebrate animals and their microbiomes have coevolved throughout the Ediacaran-Cambrian transition and beyond, operating by semiochemical messaging between the multicellular host and its microbial community guest. A consideration of the overall role of the mutualistic intestinal microbiome as an enclosed bioreactor throws up a variety of challenging concepts. In particular: the significance of the microbiome with respect to the immune system suggests that microeukaryotes could act as microbial sentinel cells; the ubiquity of bacteriophage viruses implies the rapid turnover of microbial composition by a viral-shunt mechanism; and high microbial diversity is needed to ensure that horizontal gene transfer allows valuable genetic functions to be expressed. We have previously postulated that microbes of sufficient diversity must be transferred from mother to infant by seemingly accidental contamination during the process of natural birth. We termed this maternal microbial inheritance and suggested that it operates alongside parental genetic inheritance to modify gene expression. In this way, the adjustment of the neonate immune system by the microbiome may represent one of the ways in which the genome of a vertebrate animal interacts with its microbial environment. The absence of such critical functions in the neonate may help to explain the observation of persistent immune-system problems in affected adults. Equally, granted that the survival of the guest microbiome depends on the viability of its host, one function of microbiome-generated semiochemicals could be to facilitate the movement of food through the digestive tract, effectively partitioning nutrition between host and guest. In the event of famine, downregulation of microbial growth and therefore of semiochemical production would allow all available food to be consumed by the host. Although it is often thought that non-communicable diseases, such as type 2 diabetes, are caused by consumption of food containing insufficient dietary fibre, our hypothesis suggests that poor-quality food is not the prime cause but that the tendency for disease follows the degradation of the intestinal microbiome, when fat build-up occurs because the relevant semiochemicals can no longer be produced. It is the purpose of this paper to highlight the possibility that the origins of the microbiome lie in the Precambrian and that the disconnection of body and microbiome gives rise to non-communicable disease through the loss of semiochemical signalling. We further surmise that this disconnect has been largely brought about by heavy metal poisoning, potentially illuminating a facet of the exposome, the sum total of environmental insults that influence the expression of the genetic inheritance of an animal.
Collapse
Affiliation(s)
- David Smith
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Miryam Palacios-Pérez
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
- Theoretical Biology Group, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Sohan Jheeta
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
| |
Collapse
|
50
|
Wang Z, Wade AM, Richter DD, Stapleton HM, Kaste JM, Vengosh A. Legacy of anthropogenic lead in urban soils: Co-occurrence with metal(loids) and fallout radionuclides, isotopic fingerprinting, and in vitro bioaccessibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151276. [PMID: 34717995 DOI: 10.1016/j.scitotenv.2021.151276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 05/25/2023]
Abstract
Anthropogenic lead (Pb) in soils poses risks to human health, particularly to the neuropsychological development of exposed children. Delineating the sources and potential bioavailability of soil Pb, as well as its relationship with other contaminants is critical in mitigating potential human exposure. Here, we present an integrative geochemical analysis of total elemental concentrations, radionuclides of 137Cs and 210Pb, Pb isotopic compositions, and in vitro bioaccessibility of Pb in surface soils sampled from different locations near Durham, North Carolina. Elevated Pb (>400 mg/kg) was commonly observed in soils from urban areas (i.e., near residential house foundation and along urban streets), which co-occurred with other potentially toxic metal(loids) such as Zn, Cd, and Sb. In contrast, soils from city parks and suburban areas had systematically lower concentrations of metal(loids) that were comparable to geological background. The activities of 137Cs and excess 210Pb, coupled with their correlations with Pb and co-occurring metal(loids) were used to indicate the persistence and remobilization of historical atmospherically deposited contaminants. Coupled with total Pb concentrations, the soil Pb isotopic compositions further indicated that house foundation soils had significant input of legacy lead-based paint (mean = 1.1895 and 2.0618 for 206Pb/207Pb and 208Pb/206Pb, respectively), whereas urban streetside soils exhibited a clear mixed origin, dominantly of legacy leaded gasoline (1.2034 and 2.0416) and atmospheric deposition (1.2004-1.2055 and 2.0484-2.0525). The in vitro bioaccessibility of Pb in contaminated urban soils furthermore revealed that more than half of Pb in the contaminated soils was potentially bioavailable, whose Pb isotope ratios were identical to that of bulk soils, demonstrating the utility of using Pb isotopes for tracking human exposure to anthropogenic Pb in soils and house dust. Overall, this study demonstrated a holistic assessment for comprehensively understanding anthropogenic Pb in urban soils, including its co-occurrence with other toxic contaminants, dominant sources, and potential bioavailability upon human exposure.
Collapse
Affiliation(s)
- Zhen Wang
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Anna M Wade
- U.S. Environmental Protection Agency (EPA), Cincinnati, OH 45268, USA
| | - Daniel D Richter
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | | | - James M Kaste
- Department of Geology, William & Mary, Williamsburg, VA 23185, USA
| | - Avner Vengosh
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| |
Collapse
|