1
|
Ceballos-Ávila D, Vázquez-Sandoval I, Ferrusca-Martínez F, Jiménez-Sánchez A. Conceptually innovative fluorophores for functional bioimaging. Biosens Bioelectron 2024; 264:116638. [PMID: 39153261 DOI: 10.1016/j.bios.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Fluorophore chemistry is at the forefront of bioimaging, revolutionizing the visualization of biological processes with unparalleled precision. From the serendipitous discovery of mauveine in 1856 to cutting-edge fluorophore engineering, this field has undergone transformative evolution. Today, the synergy of chemistry, biology, and imaging technologies has produced diverse, specialized fluorophores that enhance brightness, photostability, and targeting capabilities. This review delves into the history and innovation of fluorescent probes, showcasing their pivotal role in advancing our understanding of cellular dynamics and disease mechanisms. We highlight groundbreaking molecules and their applications, envisioning future breakthroughs that promise to redefine biomedical research and diagnostics.
Collapse
Affiliation(s)
- Daniela Ceballos-Ávila
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Ixsoyen Vázquez-Sandoval
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Fernanda Ferrusca-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Chen Z, Luo R, Xu T, Wang L, Deng S, Wu J, Wang H, Lin Y, Bu M. Design, synthesis and antitumor effects of lupeol quaternary phosphonium salt derivatives. Bioorg Med Chem 2024; 113:117934. [PMID: 39369566 DOI: 10.1016/j.bmc.2024.117934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Lupeol is a natural pentacyclic triterpenoid with a wide range of biological activities. To improve the water solubility and targeting of lupeol, in the following study, we synthesized 27 lupeol derivatives in the first series by introducing lipophilic cations with lupeol as the lead compound. Through the screening of different cancer cells, we found that some of the derivatives showed better activity than cisplatin against human non-small cell lung cancer A549 cells, among which compound 6c was found to have an IC50 value of 1.83 μM and a selectivity index of 21.02 (IC50MRC-5/IC50A549) against A549 cells. To further improve the antiproliferative activity of the compounds, we replaced the ester linkage of the linker with a carbamate linkage and synthesized a second series of five lupeol derivatives which were screened for activity, among which compound 14f was found to have an IC50 value of 1.36 μM and a selectivity index of 15.60 (IC50MRC-5/IC50A549) against A549 cells. We further evaluated the bioactivity of compounds 6c and 14f and found that both compounds induced apoptosis in A549 cells, promoted an increase in intracellular reactive oxygen species and decrease in mitochondrial membrane potential, and inhibited the cell cycle in the S phase. Of the compounds, compound 14f showed stronger bioactivity than compound 6c. We then selected compound 14f for molecular-level Western blot evaluation and in vivo evaluation in the zebrafish xenograft A549 tumor cell model. Compound 14f was found to significantly downregulate Bcl-2 protein expression and upregulate Bax, Cyt C, cleaved caspase-9, and cleaved caspase-3 protein expression, and 14f was found to be able to inhibit the proliferation of A549 cells in the zebrafish xenograft model. The above results suggest that compound 14f has great potential in the development of antitumor drugs targeting mitochondria.
Collapse
Affiliation(s)
- Zongxing Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Ran Luo
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Tianci Xu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Lu Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Siqi Deng
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jiale Wu
- College of Pharmacy, Hainan University, Haikou 570228, Hainan, PR China
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| |
Collapse
|
3
|
Manavi MA, Salehi M, Mohammad Jafari R, Dehpour AR. From dyes to drugs: The historical impact and future potential of dyes in drug discovery. Arch Pharm (Weinheim) 2024; 357:e2400532. [PMID: 39239985 DOI: 10.1002/ardp.202400532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024]
Abstract
In the late 19th century, progress in dye chemistry led to advances in industrial organic chemistry in Germany. Over the next few decades, this revealed dyes not just as color agents but as promising lead compounds for drug development. Collaborations between dye chemists and medical researchers were crucial in turning these unexpected discoveries into structured medicinal chemistry efforts. The outcomes included major drug classes like sulfa antibiotics, antifungal azoles, and others, resulting in a legacy where dyes served not only as biological stains but as crucial tools for understanding complex natural products and drug interactions. Today, the impact of dye molecules persists in clinical therapies, molecular probing, pharmacokinetic tracing, and high-throughput screening. This review underscores the historical contributions shaping contemporary pharmaceutical sciences, highlighting the role of dyes as indispensable tools propelling drug discovery across generations.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Research Center for antibiotic stewardship and antimicrobial resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infectious Disease and Tropical Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Landoni JC, Kleele T, Winter J, Stepp W, Manley S. Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. Annu Rev Cell Dev Biol 2024; 40:219-240. [PMID: 38976811 DOI: 10.1146/annurev-cellbio-111822-114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
Collapse
Affiliation(s)
- Juan C Landoni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Tatjana Kleele
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich (ETH), Zürich, Switzerland;
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Julius Winter
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Willi Stepp
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Suliana Manley
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| |
Collapse
|
5
|
Ribou AC, Riera F, Durand F, Henry L. Integrated multiscale analysis reveals complex gender-specific changes in lymphocytes of smokers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104566. [PMID: 39260712 DOI: 10.1016/j.etap.2024.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Environmental stressors induce specific physiological responses that can be measured in the blood, notably by morphological changes in lymphocytes. Tobacco being the best-known stress in terms of its impact on health, we studied the physiological properties of peripheral blood lymphocytes in a population of 33 healthy non-smokers and smokers. Proteasome amount, mitochondria energy levels, changes in membrane properties and cell and nuclear size were analyzed to obtain 28 parameters from two fluorescence-based techniques: flow cytometry and cell imaging. The results showed that none of the parameters alone identified gender and smoking status, but that statistical analysis of these parameters, whether or not combined with a third set of data, hematological data, can. Statistical analysis of selected parameters clearly discriminates between male and female samples, as well as smokers and non-smokers. Effects of tobacco smoke pollutants are more pronounced in female smokers than in other groups.
Collapse
Affiliation(s)
- Anne-Cécile Ribou
- Espace-Dev, Univ. Perpignan Via Domitia, Bat. B, 52 av. Paul Alduy, Perpignan 66860, France; Espace-Dev, UMR 228, Univ. Montpellier, UPVD, IRD, Montpellier, France.
| | - Florence Riera
- Espace-Dev, Univ. Perpignan Via Domitia, Bat. B, 52 av. Paul Alduy, Perpignan 66860, France; Espace-Dev, UMR 228, Univ. Montpellier, UPVD, IRD, Montpellier, France.
| | - Fabienne Durand
- Espace-Dev, Univ. Perpignan Via Domitia, Bat. B, 52 av. Paul Alduy, Perpignan 66860, France; Espace-Dev, UMR 228, Univ. Montpellier, UPVD, IRD, Montpellier, France.
| | - Laurent Henry
- IBMM CNRS UMR5247, Univ, Montpellier, France; Laboratoire d'Histologie-Embryologie-Cytogénétique, Faculté de Médecine Montpelier-Nîmes, Nimes, France.
| |
Collapse
|
6
|
Wang L, Tian S, Deng S, Wu J, Wang H, Guo X, Han C, Ren W, Han Y, Zhou J, Lin Y, Bu M. Design and synthesis of novel mitochondria-targeted ergosterol peroxide derivatives as potential anti-cancer agents. Bioorg Chem 2024; 153:107862. [PMID: 39362080 DOI: 10.1016/j.bioorg.2024.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Ergosterol peroxide (EP) is a natural steroid compound that has been reported to have significant antitumor activity. However, its poor water solubility and cellular uptake mean that it has weak efficacy against tumor cells. Herein, we designed and synthesized a series of EP derivatives with mitochondrial targeting properties. Of these, compound 15a showed an IC50 value of 0.32 μM against MCF-7 cells, which was 67-fold higher than that of the parental EP (IC50 = 21.46 μM), and was better than cisplatin (IC50 = 4.23 μM), had a selectivity index of 25.28 (IC50MCF-10A/IC50MCF-7). Additionally, compound 15a promoted an increase in intracellular reactive oxygen species levels and a decrease in mitochondrial membrane potential, and blocked the cell cycle in the G0/G1 phase. In a mouse model of breast cancer, 15a showed 89.85 % tumor inhibition at a dose of 20 mg/kg, which is similar to the therapeutic effect of the cisplatin. On the basis of these results, 15a could be considered for further preclinical evaluation for cancer therapy.
Collapse
Affiliation(s)
- Lu Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Shuang Tian
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Siqi Deng
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jiale Wu
- College of Pharmacy, Hainan University, Haikou 570228, Hainan, PR China
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Xiaoshan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Cuicui Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Wenkang Ren
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yinglong Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jianwen Zhou
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| |
Collapse
|
7
|
Yin G, Ruan Q, Jiang Y, Feng J, Han P, Wang Q, Li Z, Zhang J. Novel 99mTc-Labeled Mannose Derivative as a Highly Promising Single Photon Emission Computed Tomography Probe for Tumor Imaging. J Med Chem 2024; 67:15796-15806. [PMID: 39058751 DOI: 10.1021/acs.jmedchem.4c01425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) has been the most used positron emission tomography imaging agent for clinical applications. Single photon emission computed tomography (SPECT) imaging is cheaper and used more widely for diagnostic use, but there is no SPECT tumor imaging agent for clinical applications comparable to [18F]FDG. Mannose is a C2 epimer of glucose and can also be transported into tumor cells via glucose transporters (GLUTs). To develop a novel SPECT tumor imaging agent with satisfactory tumor uptake and tumor/nontarget ratios, here a mannose derivative (CN7DM) was synthesized and radiolabeled with technetium-99m to prepare [99mTc]Tc-CN7DM. The six-coordinated structure of [99mTc]Tc-CN7DM was confirmed by the corresponding rhenium compound (Re-CN7DM). [99mTc]Tc-CN7DM was transported into cancer cells via GLUTs and may be trapped in the cancer cells by electrostatic attraction. The probe exhibited high uptake in tumors and low uptake in nontarget tissues in mice bearing different tumors, indicating that [99mTc]Tc-CN7DM exhibited promising potential for SPECT tumor imaging and warranted further clinical investigation.
Collapse
Affiliation(s)
- Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Department of Nuclear Technology and Application, China Institute of Atomic Energy, Beijing 102413, China
| | - Peiwen Han
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zuojie Li
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
8
|
Fardel O, Moreau A, Carteret J, Denizot C, Le Vée M, Parmentier Y. The Competitive Counterflow Assay for Identifying Drugs Transported by Solute Carriers: Principle, Applications, Challenges/Limits, and Perspectives. Eur J Drug Metab Pharmacokinet 2024; 49:527-539. [PMID: 38958896 DOI: 10.1007/s13318-024-00902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The identification of substrates for solute carriers (SLCs) handling drugs is an important challenge, owing to the major implication of these plasma membrane transporters in pharmacokinetics and drug-drug interactions. In this context, the competitive counterflow (CCF) assay has been proposed as a practical and less expensive approach than the reference functional uptake assays for discriminating SLC substrates and non-substrates. The present article was designed to summarize and discuss key-findings about the CCF assay, including its principle, applications, challenges and limits, and perspectives. The CCF assay is based on the decrease of the steady-state accumulation of a tracer substrate in SLC-positive cells, caused by candidate substrates. Reviewed data highlight the fact that the CCF assay has been used to identify substrates and non-substrates for organic cation transporters (OCTs), organic anion transporters (OATs), and organic anion transporting polypeptides (OATPs). The performance values of the CCF assay, calculated from available CCF study data compared with reference functional uptake assay data, are, however, rather mitigated, indicating that the predictability of the CCF method for assessing SLC-mediated transportability of drugs is currently not optimal. Further studies, notably aimed at standardizing the CCF assay and developing CCF-based high-throughput approaches, are therefore required in order to fully precise the interest and relevance of the CCF assay for identifying substrates and non-substrates of SLCs.
Collapse
Affiliation(s)
- Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35043, Rennes, France.
| | - Amélie Moreau
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Claire Denizot
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Yannick Parmentier
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Shim G, Youn YS. Precise subcellular targeting approaches for organelle-related disorders. Adv Drug Deliv Rev 2024; 212:115411. [PMID: 39032657 DOI: 10.1016/j.addr.2024.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Pharmacological research has expanded to the nanoscale level with advanced imaging technologies, enabling the analysis of drug distribution at the cellular organelle level. These advances in research techniques have contributed to the targeting of cellular organelles to address the fundamental causes of diseases. Beyond navigating the hurdles of reaching lesion tissues upon administration and identifying target cells within these tissues, controlling drug accumulation at the organelle level is the most refined method of disease management. This approach opens new avenues for the development of more potent therapeutic strategies by delving into the intricate roles and interplay of cellular organelles. Thus, organelle-targeted approaches help overcome the limitations of conventional therapies by precisely regulating functionally compartmentalized spaces based on their environment. This review discusses the basic concepts of organelle targeting research and proposes strategies to target diseases arising from organelle dysfunction. We also address the current challenges faced by organelle targeting and explore future research directions.
Collapse
Affiliation(s)
- Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
10
|
Joniová J, Gerelli E, Wagnières G. Study and optimization of the photobiomodulation effects induced on mitochondrial metabolic activity of human cardiomyocytes for different radiometric and spectral conditions. Life Sci 2024; 351:122760. [PMID: 38823506 DOI: 10.1016/j.lfs.2024.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Photobiomodulation (PBM) represents a promising and powerful approach for non-invasive therapeutic interventions. This emerging field of research has gained a considerable attention due to its potential for multiple disciplines, including medicine, neuroscience, and sports medicine. While PBM has shown the ability to stimulate various cellular processes in numerous medical applications, the fine-tuning of treatment parameters, such as wavelength, irradiance, treatment duration, and illumination geometry, remains an ongoing challenge. Furthermore, additional research is necessary to unveil the specific mechanisms of action and establish standardized protocols for diverse clinical applications. Given the widely accepted understanding that mitochondria play a pivotal role in the PBM mechanisms, our study delves into a multitude of PBM illumination parameters while assessing the PBM's effects on the basis of endpoints reflecting the mitochondrial metabolism of human cardiac myocytes (HCM), that are known for their high mitochondrial density. These endpoints include: i) the endogenous production of protoporphyrin IX (PpIX), ii) changes in mitochondrial potential monitored by Rhodamine 123 (Rhod 123), iii) changes in the HCM's oxygen consumption, iv) the fluorescence lifetime of Rhod 123 in mitochondria, and v) alterations of the mitochondrial morphology. The good correlation observed between these different methods to assess PBM effects underscores that monitoring the endogenous PpIX production offers interesting indirect insights into the mitochondrial metabolic activity. This conclusion is important since many approved therapeutics and cancer detection approaches are based on the use of PpIX. Finally, this correlation strongly suggests that the PBM effects mentioned above have a common "fundamental" mechanistic origin.
Collapse
Affiliation(s)
- Jaroslava Joniová
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Station 6, 1015 Lausanne, Switzerland; G Life Quantum, Avenue des Bouleaux 117, 01710 Thoiry, France.
| | - Emmanuel Gerelli
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Station 6, 1015 Lausanne, Switzerland; G Life Quantum, Avenue des Bouleaux 117, 01710 Thoiry, France
| | - Georges Wagnières
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Station 6, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Prasad P, Jaber M, Alahmadi TA, Almoallim HS, Ramu AK. Solanine Inhibits Proliferation and Angiogenesis and Induces Apoptosis through Modulation of EGFR Signaling in KB-ChR-8-5 Multidrug-Resistant Oral Cancer Cells. J Clin Med 2024; 13:4493. [PMID: 39124760 PMCID: PMC11313312 DOI: 10.3390/jcm13154493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Background: The most important factors contributing to multi-drug resistance in oral cancer include overexpression of the EGFR protein and the downstream malignancy regulators that are associated with it. This study investigates the impact of solanine on inflammation, proliferation, and angiogenesis inhibition in multidrug-resistant oral cancer KB-Chr-8-5 cells through inhibition of the EGFR/PI3K/Akt/NF-κB signaling pathway. Methods: Cell viability was assessed using an MTT assay to evaluate cytotoxic effects. Production of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨM), and AO/EtBr staining were analyzed to assess apoptosis and mitochondrial dysfunction. Western blotting was employed to examine protein expression related to angiogenesis, apoptosis, and signaling pathways. Experiments were conducted in triplicate. Results: Solanine treatment at concentrations of 10, 20, and 30 μM significantly increased ROS production, which is indicative of its antioxidant properties. This increase was associated with decreased mitochondrial membrane potential (ΔΨM) with p < 0.05, suggesting mitochondrial dysfunction. Inhibition of EGFR led to reduced activity of PI3K, Akt, and NF-κB, resulting in decreased expression of iNOS, IL-6, Cyclin D1, PCNA, VEGF, Mcl-1, and HIF-1α and increased levels of the apoptotic proteins Bax, caspase-9, and caspase-3. These changes collectively inhibited the growth of multidrug-resistant (MDR) cancer cells. Conclusions: Solanine acts as a potent disruptor of cellular processes by inhibiting the EGFR-mediated PI3K/Akt/NF-κB signaling pathway. These results suggest that solanine holds promise as a potential preventive or therapeutic agent against multidrug-resistant cancers.
Collapse
Affiliation(s)
- Prathibha Prasad
- Medical and Dental Sciences Department, College of Dentistry, Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Oral Pathology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Mohamed Jaber
- Clinical Dental Sciences, College of Dentistry, Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Hesham S. Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Arun Kumar Ramu
- Department of Biochemistry and Biotechnology, Centre for Research and Development Ponnaiyah Ramajayam Institute of Science and Technology (PRIST Deemed University), Thanjavur 613403, India
| |
Collapse
|
12
|
Chen S, Wang J, Guan D, Tan B, Zhai T, Yang L, Han Y, Liu Y, Liu Q, Zhang Y. Near-Infrared Spontaneously Blinking Fluorophores for Live Cell Super-Resolution Imaging with Minimized Phototoxicity. Anal Chem 2024; 96:10860-10869. [PMID: 38889184 DOI: 10.1021/acs.analchem.4c02445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Single-molecule localization microscopy (SMLM) requires high-intensity laser irradiation, typically exceeding kW/cm2, to yield a sufficient photon count. However, this intense visible light exposure incurs substantial cellular toxicity, hindering its use in living cells. Here, we developed a class of near-infrared (NIR) spontaneously blinking fluorophores for SMLM. These NIR fluorophores are a combination of rhodamine spirolactams and merocyanine derivatives, where the rhodamine spirolactam component converts between a bright and dark state based on pH-dependent spirocyclization and merocyanine derivatives shift the excitation wavelength into the infrared. Single-molecule characterizations demonstrated their potential for SMLM. At a moderate power density of 3.93 kW/cm2, these probes exhibit duty cycle as low as 0.18% and an emission rate as high as 26,700 photons/s. Phototoxicity assessment under single-molecule imaging conditions reveals that NIR illumination (721 nm) minimizes harm to living cells. Employing these NIR fluorophores, we successfully captured time-lapse super-resolution tracking of mitochondria at a Fourier ring correlation (FRC) resolution of 69.4 nm and reconstructed the ultrastructures of endoplasmic reticulum (ER) in living cells.
Collapse
Affiliation(s)
- Song Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jing Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Daoming Guan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Baojin Tan
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Tianli Zhai
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Lu Yang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yuheng Han
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
13
|
Vasileva B, Krasteva N, Hristova-Panusheva K, Ivanov P, Miloshev G, Pavlov A, Georgiev V, Georgieva M. Exploring the Biosafety Potential of Haberlea rhodopensis Friv. In Vitro Culture Total Ethanol Extract: A Comprehensive Assessment of Genotoxicity, Mitotoxicity, and Cytotoxicity for Therapeutic Applications. Cells 2024; 13:1118. [PMID: 38994970 PMCID: PMC11240332 DOI: 10.3390/cells13131118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
The escalating elderly population worldwide has prompted a surge of interest in longevity medicine. Its goal is to interfere with the speed of ageing by slowing it down or even reversing its accompanying effects. As a field, it is rapidly growing and spreading into different branches. One of these is the use of nutraceuticals as anti-ageing drugs. This field is gaining massive popularity nowadays, as people are shifting towards a more natural approach to life and seeking to use natural products as a source of medicine. The present article focuses on the cellular effect of Haberlea rhodopensis Friv. in vitro culture total ethanol extract (HRT), produced by a sustainable biotechnological approach. The extract showed a similar phytochemical profile to plant leaf extract and was rich in primary bioactive ingredients-caffeoyl phenylethanoid glycosides, myconoside, and paucifloside. This study examined the biosafety potential, cytotoxicity, genotoxicity, and mitochondrial activity of the extract using in vitro cultures. The results showed high cell survival rates and minimal cytotoxic effects on Lep3 cells, with no induction of reactive oxygen species nor genotoxicity. Additionally, the extract positively influenced mitochondrial activity, indicating potential benefits for cellular health. The results are promising and show the beneficial effect of HRT without the observation of any adverse effects, which sets the foundation for its further testing and potential therapeutic applications.
Collapse
Affiliation(s)
- Bela Vasileva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Penyo Ivanov
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Atanas Pavlov
- Laboratory of Cell Biosystems, Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
- Department of Analytical Chemistry and Physical Chemistry, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Vasil Georgiev
- Laboratory of Cell Biosystems, Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
14
|
Diel KAP, Santana Filho PC, Pitol Silveira P, Ribeiro RL, Teixeira PC, Rodrigues Júnior LC, Marinho LC, Romão PRT, von Poser GL. Antiprotozoal potential of Vismia species (Hypericaceae), medicinal plants used to fight cutaneous leishmaniasis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118028. [PMID: 38492792 DOI: 10.1016/j.jep.2024.118028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of Vismia (Hypericaceae), known in Brazil as "lacre", are commonly used in traditional Amazonian medicine for the treatment of skin lesions, including those caused by Leishmania infection. AIM OF THE STUDY Hexane extracts from the leaves of Vismia cayennensis, V. gracilis, V. sandwithii and V. guianensis, as well as from the fruits of the latter, in addition to the anthraquinones vismiaquinone, physcion and chrysophanol isolated from these species were explored for their anti-promastigote and anti-amastigote activity on Leishmania amazonensis. MATERIALS AND METHODS Extracts were prepared by static maceration with n-hexane. The compounds, isolated by chromatographic techniques, were identified by spectroscopic methods (1H and 13C NMR). Promastigotes of L.amazonensis were incubated with hexane extracts (1-50 μg/mL) or anthraquinones (1-50 μM) and the parasite survival analyzed. The action of compounds on reactive oxygen species (ROS) production, mitochondrial membrane potential, and membrane integrity of promastigotes were evaluated by flow cytometer, and the cytotoxicity on mammalian cells using MTT assay. Furthermore, the activity of compounds against amastigotes and nitric oxide production were also investigated. RESULTS Vismiaquinone and physcion were obtained from the leaves of V. guianensis. Physcion, as well as chrysophanol, were isolated from V. sandwithii. Vismia cayennensis and V. gracilis also showed vismiaquinone, compound detected in lower quantity in the fruits of V. guianensis. All extracts were active against the parasite, corroborating the popular use. The greatest activity against promastigotes was achieved with V. guianensis extract (IC50 4.3 μg/mL), precisely the most used Vismia species for treating cutaneous leishmaniasis. Vismiaquinone and physcion exhibited relevant activity with IC50 12.6 and 2.6 μM, respectively. Moreover, all extracts and anthraquinones tested induced ROS production, mitochondrial dysfunction, membrane disruption and were able to kill intracellular amastigote forms, being worthy of further in vivo studies as potential antileishmanial drugs. CONCLUSIONS The overall data achieved in the current investigation scientifically validate the traditional use of Vismia species, mainly V. guianensis, as an anti-Leishmania agent. Furthermore, the promising results presented here indicate species of Vismia as potentially useful resources of Brazilian flora for the discovery of therapeutic solutions for neglected diseases.
Collapse
Affiliation(s)
- Kriptsan Abdon Poletto Diel
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Santana, 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Cesar Santana Filho
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pablo Pitol Silveira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Santana, 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafaela Laura Ribeiro
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Coelho Teixeira
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Carlos Rodrigues Júnior
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas C Marinho
- Universidade Federal do Maranhão, Departamento de Biologia, Avenida dos Portugueses 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Pedro Roosevelt Torres Romão
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Gilsane Lino von Poser
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Santana, 90610-000, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
15
|
Zheng J, Li D, Dong J, Wang P, Geng H. Design, synthesis and inhibitory activity against Candida albicans of a series of derivatives with 5-nitrofuran scaffold. Mol Divers 2024:10.1007/s11030-024-10892-y. [PMID: 38811449 DOI: 10.1007/s11030-024-10892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
The increasing resistance of Candida albicans against the currently available antifungal drugs has exerted enormous damage to human health. To develop novel and efficient antifungal agents with unique structure, a series of derivatives containing 5-nitrofuran scaffold (33 examples) were designed, synthesized, and screened the in vitro antifungal activities. Bioassay results disclosed that 5-nitrofuran derivatives could dramatically inhibit the growth of six strains of Candida albicans, particularly the drug-resistant clinical ones. There were ten kinds of compounds exhibited stronger inhibitory activities against tested fungi than those of fluconazole. For all tested fungi, B5 showed the highest activity with the MIC80 values of 0.25-8 µg/mL. The results of cytotoxicity assay displayed that B5 hardly influenced the growth of HL-7702 cell lines, consequently, it was safe for people and animals. The preliminary exploration of antifungal mechanism documented that B5 could destroy the morphology of tested fungi, facilitate the formation of reactive oxygen species, ultimately inhibited the proliferation of the tested fungi. In conclusion, a new and safe lead compound was successfully developed for the treatment of Candida albicans infection.
Collapse
Affiliation(s)
- Jinshuo Zheng
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Dongchun Li
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jia Dong
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Panchen Wang
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Huiling Geng
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
16
|
Ren W, Ge X, Li M, Sun J, Li S, Gao S, Shan C, Gao B, Xi P. Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe. LIGHT, SCIENCE & APPLICATIONS 2024; 13:116. [PMID: 38782912 PMCID: PMC11116397 DOI: 10.1038/s41377-024-01463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024]
Abstract
Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution.
Collapse
Affiliation(s)
- Wei Ren
- Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xichuan Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Meiqi Li
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jing Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Shiyi Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Shu Gao
- Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
| | - Chunyan Shan
- School of Life Sciences, Peking University, Beijing, 100871, China.
- National Center for Protein Sciences, Peking University, Beijing, 100871, China.
| | - Baoxiang Gao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China.
| | - Peng Xi
- Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Chen J, Stephan T, Gaedke F, Liu T, Li Y, Schauss A, Chen P, Wulff V, Jakobs S, Jüngst C, Chen Z. An aldehyde-crosslinking mitochondrial probe for STED imaging in fixed cells. Proc Natl Acad Sci U S A 2024; 121:e2317703121. [PMID: 38687792 PMCID: PMC11087744 DOI: 10.1073/pnas.2317703121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Fluorescence labeling of chemically fixed specimens, especially immunolabeling, plays a vital role in super-resolution imaging as it offers a convenient way to visualize cellular structures like mitochondria or the distribution of biomolecules with high detail. Despite the development of various distinct probes that enable super-resolved stimulated emission depletion (STED) imaging of mitochondria in live cells, most of these membrane-potential-dependent fluorophores cannot be retained well in mitochondria after chemical fixation. This lack of suitable mitochondrial probes has limited STED imaging of mitochondria to live cell samples. In this study, we introduce a mitochondria-specific probe, PK Mito Orange FX (PKMO FX), which features a fixation-driven cross-linking motif and accumulates in the mitochondrial inner membrane. It exhibits high fluorescence retention after chemical fixation and efficient depletion at 775 nm, enabling nanoscopic imaging both before and after aldehyde fixation. We demonstrate the compatibility of this probe with conventional immunolabeling and other strategies commonly used for fluorescence labeling of fixed samples. Moreover, we show that PKMO FX facilitates correlative super-resolution light and electron microscopy, enabling the correlation of multicolor fluorescence images and transmission EM images via the characteristic mitochondrial pattern. Our probe further expands the mitochondrial toolkit for multimodal microscopy at nanometer resolutions.
Collapse
Affiliation(s)
- Jingting Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen37075, Germany
| | - Felix Gaedke
- Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne50931, Germany
| | - Tianyan Liu
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Yiyan Li
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Astrid Schauss
- Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne50931, Germany
| | - Peng Chen
- Peking University-Nanjing Institute of Translational Medicine, Nanjing211800, China
- Genvivo Biotech (PuHaiJingShan), Nanjing211800, China
| | - Veronika Wulff
- Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne50931, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen37075, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology Translational, Neuroinflammation and Automated Microscopy, Göttingen37075, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen37099, Germany
| | - Christian Jüngst
- Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne50931, Germany
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing211800, China
- Genvivo Biotech (PuHaiJingShan), Nanjing211800, China
| |
Collapse
|
18
|
He Z, Liu D, Li H, Gao W, Li X, Ma H, Shi W. Amphiphilic Rhodamine Fluorescent Probes Combined with Basal Imaging for Fine Structures of the Cell Membrane. Anal Chem 2024; 96:7257-7264. [PMID: 38664861 DOI: 10.1021/acs.analchem.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Confocal fluorescence imaging of fine structures of the cell membrane is important for understanding their biofunctions but is often neglected due to the lack of an effective method. Herein, we develop new amphiphilic rhodamine fluorescent probe RMGs in combination with basal imaging for this purpose. The probes show high signal-to-noise ratio and brightness and low internalization rate, making them suitable for imaging the fine substructures of the cell membrane. Using the representative probe RMG3, we not only observed the cell pseudopodia and intercellular nanotubes but also monitored the formation of migrasomes in real time. More importantly, in-depth imaging studies on more cell lines revealed for the first time that hepatocellular carcinoma cells secreted much more adherent extracellular vesicles than other cell lines, which might serve as a potential indicator of liver cells. We believe that RMGs may be useful for investigating the fine structures of the cell membrane.
Collapse
Affiliation(s)
- Zixu He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diankai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - He Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Saridakis I, Riomet M, Belleza OJV, Coussanes G, Singer NK, Kastner N, Xiao Y, Smith E, Tona V, de la Torre A, Lopes EF, Sánchez‐Murcia PA, González L, Sitte HH, Maulide N. PyrAtes: Modular Organic Salts with Large Stokes Shifts for Fluo-rescence Microscopy. Angew Chem Int Ed Engl 2024; 63:e202318127. [PMID: 38570814 PMCID: PMC11497256 DOI: 10.1002/anie.202318127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/05/2024]
Abstract
The deployment of small-molecule fluorescent agents plays an ever-growing role in medicine and drug development. Herein, we complement the portfolio of powerful fluorophores, reporting the serendipitous discovery and development of a novel class with an imidazo[1,2-a]pyridinium triflate core, which we term PyrAtes. These fluorophores are synthesized in a single step from readily available materials (>60 examples) and display Stokes shifts as large as 240 nm, while also reaching NIR-I emissions at λmax as long as 720 nm. Computational studies allow the development of a platform for the prediction of λmax and λEm. Furthermore, we demonstrate the compatibility of these novel fluorophores with live cell imaging in HEK293 cells, suggesting PyrAtes as potent intracellular markers.
Collapse
Affiliation(s)
- Iakovos Saridakis
- Institute of Organic ChemistryUniversity of ViennaWähringer Strasse 381090ViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Strasse 421090ViennaAustria
| | - Margaux Riomet
- Institute of Organic ChemistryUniversity of ViennaWähringer Strasse 381090ViennaAustria
| | - Oliver J. V. Belleza
- Centre of Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaSchwarzspanierstraße 17A1090ViennaAustria
| | - Guilhem Coussanes
- Institute of Organic ChemistryUniversity of ViennaWähringer Strasse 381090ViennaAustria
| | - Nadja K. Singer
- Institute of Theoretical ChemistryUniversity of ViennaWähringer Strasse 171090ViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Strasse 421090ViennaAustria
| | - Nina Kastner
- Centre of Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaSchwarzspanierstraße 17A1090ViennaAustria
| | - Yi Xiao
- Institute of Organic ChemistryUniversity of ViennaWähringer Strasse 381090ViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Strasse 421090ViennaAustria
- CeMM Research Center for Molecular Medicine of theAustrian Academy of SciencesLazarettgasse 141090ViennaAustria
| | - Elliot Smith
- Institute of Organic ChemistryUniversity of ViennaWähringer Strasse 381090ViennaAustria
| | - Veronica Tona
- Institute of Organic ChemistryUniversity of ViennaWähringer Strasse 381090ViennaAustria
| | - Aurélien de la Torre
- Institute of Organic ChemistryUniversity of ViennaWähringer Strasse 381090ViennaAustria
| | - Eric F. Lopes
- Institute of Organic ChemistryUniversity of ViennaWähringer Strasse 381090ViennaAustria
| | | | - Leticia González
- Institute of Theoretical ChemistryUniversity of ViennaWähringer Strasse 171090ViennaAustria
| | - Harald H. Sitte
- Centre of Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaSchwarzspanierstraße 17A1090ViennaAustria
- Hourani Center for Applied Scientific ResearchAl-Ahliyya Amman University19328AmmanJordan
- Center for Addiction Research and Science - AddRessMedical University ViennaWähringer Strasse 13 A1090ViennaAustria
| | - Nuno Maulide
- Institute of Organic ChemistryUniversity of ViennaWähringer Strasse 381090ViennaAustria
- CeMM Research Center for Molecular Medicine of theAustrian Academy of SciencesLazarettgasse 141090ViennaAustria
| |
Collapse
|
20
|
Li F, Xiang R, Liu Y, Hu G, Jiang Q, Jia T. Approaches and challenges in identifying, quantifying, and manipulating dynamic mitochondrial genome variations. Cell Signal 2024; 117:111123. [PMID: 38417637 DOI: 10.1016/j.cellsig.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Mitochondria, the cellular powerhouses, possess their own unique genetic system, including replication, transcription, and translation. Studying these processes is crucial for comprehending mitochondrial disorders, energy production, and their related diseases. Over the past decades, various approaches have been applied in detecting and quantifying mitochondrial genome variations with also the purpose of manipulation of mitochondria or mitochondrial genome for therapeutics. Understanding the scope and limitations of above strategies is not only fundamental to the understanding of basic biology but also critical for exploring disease-related novel target(s), as well to develop innovative therapies. Here, this review provides an overview of different tools and techniques for accurate mitochondrial genome variations identification, quantification, and discuss novel strategies for the manipulation of mitochondria to develop innovative therapeutic interventions, through combining the insights gained from the study of mitochondrial genetics with ongoing single cell omics combined with advanced single molecular tools.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Run Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guoliang Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Quanbo Jiang
- Light, Nanomaterials, Nanotechnologies (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes, France
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; CNRS-UMR9187, INSERM U1196, PSL-Research University, 91405 Orsay, France; CNRS-UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France.
| |
Collapse
|
21
|
Desai S, Grefte S, van de Westerlo E, Lauwen S, Paters A, Prehn JHM, Gan Z, Keijer J, Adjobo-Hermans MJW, Koopman WJH. Performance of TMRM and Mitotrackers in mitochondrial morphofunctional analysis of primary human skin fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149027. [PMID: 38109971 DOI: 10.1016/j.bbabio.2023.149027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Mitochondrial membrane potential (Δψ) and morphology are considered key readouts of mitochondrial functional state. This morphofunction can be studied using fluorescent dyes ("probes") like tetramethylrhodamine methyl ester (TMRM) and Mitotrackers (MTs). Although these dyes are broadly used, information comparing their performance in mitochondrial morphology quantification and Δψ-sensitivity in the same cell model is still scarce. Here we applied epifluorescence microscopy of primary human skin fibroblasts to evaluate TMRM, Mitotracker Red CMXros (CMXros), Mitotracker Red CMH2Xros (CMH2Xros), Mitotracker Green FM (MG) and Mitotracker Deep Red FM (MDR). All probes were suited for automated quantification of mitochondrial morphology parameters when Δψ was normal, although they did not deliver quantitatively identical results. The mitochondrial localization of TMRM and MTs was differentially sensitive to carbonyl cyanide-4-phenylhydrazone (FCCP)-induced Δψ depolarization, decreasing in the order: TMRM ≫ CHM2Xros = CMXros = MDR > MG. To study the effect of reversible Δψ changes, the impact of photo-induced Δψ "flickering" was studied in cells co-stained with TMRM and MG. During a flickering event, individual mitochondria displayed subsequent TMRM release and uptake, whereas this phenomenon was not observed for MG. Spatiotemporal and computational analysis of the flickering event provided evidence that TMRM redistributes between adjacent mitochondria by a mechanism dependent on Δψ and TMRM concentration. In summary, this study demonstrates that: (1) TMRM and MTs are suited for automated mitochondrial morphology quantification, (2) numerical data obtained with different probes is not identical, and (3) all probes are sensitive to FCCP-induced Δψ depolarization, with TMRM and MG displaying the highest and lowest sensitivity, respectively. We conclude that TMRM is better suited for integrated analysis of Δψ and mitochondrial morphology than the tested MTs under conditions that Δψ is not substantially depolarized.
Collapse
Affiliation(s)
- Shruti Desai
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sander Grefte
- Department of Physiology and Medical Physics and SFI FutureNeuro Centre, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Els van de Westerlo
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susette Lauwen
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Angela Paters
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics and SFI FutureNeuro Centre, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Zhuohui Gan
- Human and Animal Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Werner J H Koopman
- Human and Animal Physiology, Wageningen University & Research, Wageningen, the Netherlands; Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
22
|
De Biasi S, Gigan JP, Borella R, Santacroce E, Lo Tartaro D, Neroni A, Paschalidis N, Piwocka K, Argüello RJ, Gibellini L, Cossarizza A. Cell metabolism: Functional and phenotypic single cell approaches. Methods Cell Biol 2024; 186:151-187. [PMID: 38705598 DOI: 10.1016/bs.mcb.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Several metabolic pathways are essential for the physiological regulation of immune cells, but their dysregulation can cause immune dysfunction. Hypermetabolic and hypometabolic states represent deviations in the magnitude and flexibility of effector cells in different contexts, for example in autoimmunity, infections or cancer. To study immunometabolism, most methods focus on bulk populations and rely on in vitro activation assays. Nowadays, thanks to the development of single-cell technologies, including multiparameter flow cytometry, mass cytometry, RNA cytometry, among others, the metabolic state of individual immune cells can be measured in a variety of samples obtained in basic, translational and clinical studies. Here, we provide an overview of different single-cell approaches that are employed to investigate both mitochondrial functions and cell dependence from mitochondria metabolism. Moreover, besides the description of the appropriate experimental settings, we discuss the strengths and weaknesses of different approaches with the aim to suggest how to study cell metabolism in the settings of interest.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.
| | - Julien Paul Gigan
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Rafael José Argüello
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
Zorova LD, Abramicheva PA, Andrianova NV, Babenko VA, Zorov SD, Pevzner IB, Popkov VA, Semenovich DS, Yakupova EI, Silachev DN, Plotnikov EY, Sukhikh GT, Zorov DB. Targeting Mitochondria for Cancer Treatment. Pharmaceutics 2024; 16:444. [PMID: 38675106 PMCID: PMC11054825 DOI: 10.3390/pharmaceutics16040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
There is an increasing accumulation of data on the exceptional importance of mitochondria in the occurrence and treatment of cancer, and in all lines of evidence for such participation, there are both energetic and non-bioenergetic functional features of mitochondria. This analytical review examines three specific features of adaptive mitochondrial changes in several malignant tumors. The first feature is characteristic of solid tumors, whose cells are forced to rebuild their energetics due to the absence of oxygen, namely, to activate the fumarate reductase pathway instead of the traditional succinate oxidase pathway that exists in aerobic conditions. For such a restructuring, the presence of a low-potential quinone is necessary, which cannot ensure the conventional conversion of succinate into fumarate but rather enables the reverse reaction, that is, the conversion of fumarate into succinate. In this scenario, complex I becomes the only generator of energy in mitochondria. The second feature is the increased proliferation in aggressive tumors of the so-called mitochondrial (peripheral) benzodiazepine receptor, also called translocator protein (TSPO) residing in the outer mitochondrial membrane, the function of which in oncogenic transformation stays mysterious. The third feature of tumor cells is the enhanced retention of certain molecules, in particular mitochondrially directed cations similar to rhodamine 123, which allows for the selective accumulation of anticancer drugs in mitochondria. These three features of mitochondria can be targets for the development of an anti-cancer strategy.
Collapse
Affiliation(s)
- Ljubava D. Zorova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Polina A. Abramicheva
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Nadezda V. Andrianova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Valentina A. Babenko
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Savva D. Zorov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Dmitry S. Semenovich
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Elmira I. Yakupova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Denis N. Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
| | - Egor Y. Plotnikov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Gennady T. Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.D.Z.); (P.A.A.); (V.A.B.); (S.D.Z.); (I.B.P.); (V.A.P.); (D.S.S.); (E.I.Y.); (D.N.S.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
24
|
Kowaltowski AJ, Abdulkader F. How and when to measure mitochondrial inner membrane potentials. Biophys J 2024:S0006-3495(24)00176-0. [PMID: 38454598 DOI: 10.1016/j.bpj.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
The scientific literature on mitochondria has increased significantly over the years due to findings that these organelles have widespread roles in the onset and progression of pathological conditions such as metabolic disorders, neurodegenerative and cardiovascular diseases, inflammation, and cancer. Researchers have extensively explored how mitochondrial properties and functions are modified in different models, often using fluorescent inner mitochondrial membrane potential (ΔΨm) probes to assess functional mitochondrial aspects such as protonmotive force and oxidative phosphorylation. This review provides an overview of existing techniques to measure ΔpH and ΔΨm, highlighting their advantages, limitations, and applications. It discusses drawbacks of ΔΨm probes, especially when used without calibration, and conditions where alternative methods should replace ΔΨm measurements for the benefit of the specific scientific objectives entailed. Studies investigating mitochondria and their vast biological roles would be significantly advanced by the understanding of the correct applications as well as limitations of protonmotive force measurements and use of fluorescent ΔΨm probes, adopting more precise, artifact-free, sensitive, and quantitative measurements of mitochondrial functionality.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Fernando Abdulkader
- Departmento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Rahman KMM, Bist G, Kumbham S, Foster BA, Woo S, You Y. Mitochondrial targeting improves the selectivity of singlet-oxygen cleavable prodrugs in NMIBC treatment. Photochem Photobiol 2024:10.1111/php.13928. [PMID: 38433310 PMCID: PMC11369125 DOI: 10.1111/php.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Mitochondria play an essential role in cancer treatment by providing apoptotic signals. Hexyl aminolevulinate, an FDA-approved diagnosis for non-muscle invasive bladder cancer, induces the production of protoporphyrin IX (PpIX) preferentially by mitochondria in cancer cells. Photosensitizer PpIX upon illumination can release active chemotherapy drugs from singlet oxygen-activatable prodrugs. Prodrugs placed close enough to PpIX formed in mitochondria can improve the antitumor efficiency of PpIX-PDT. The preferred uptake of prodrugs by cancer cells and tumors can further enhance the selective damage of cancer cells over non-cancer cells and surrounding normal tissues. Mitochondriotropic prodrugs of anticancer drugs, such as paclitaxel and SN-38, were synthesized using rhodamine, a mitochondrial-targeting moiety. In vitro, the mitochondrial targeting helped achieve preferential cellular uptake in cancer cells. In RT112 cells (human bladder cancer cells), intracellular prodrug concentrations were 2-3 times higher than the intracellular prodrug concentrations in BdEC cells (human bladder epithelial cells), after 2 h incubation. In an orthotopic rat bladder tumor model, mitochondria-targeted prodrugs achieved as much as 34 times higher prodrug diffusion in the tumor area compared to the nontumor bladder area. Overall, mitochondria targeting made prodrugs more effective in targeting cancer cells and tumors over non-tumor areas, thereby reducing nonspecific toxicity.
Collapse
Affiliation(s)
- Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Ganesh Bist
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Soniya Kumbham
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Barbara A. Foster
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| |
Collapse
|
26
|
Raja K, Kallem P, Chinnasamy A. Chemotherapeutic and Antiproliferative Effect of Purified Protein from Marine Catfish Tachysurus Dussumieri on Human Colon Cancer Cell Line. Cell Biochem Biophys 2024; 82:247-257. [PMID: 38183602 DOI: 10.1007/s12013-023-01209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
The present study aimed to investigate the purified protein from the epidermal mucus of marine catfish Tachysurus dussumieri on the human colon cancer cell line. The bioactive protein was purified with the Anion exchange chromatography and the collected fractions were then tested to assess cell viability in HT 29 cells through the MTT assay. The most responding active purified protein fraction (PPF III) was characterized with the MALDI-TOF/MS it shared a similar homology and sequence with 90% of antimicrobial peptides from external secretions of amphibians. Typical morphological changes of apoptotic cells, including cell shrinkage and detachment, DNA damage, and nuclear condensation were observed after the treatment of bioactive protein. PPF III triggered ROS, increasing the LDH activity, disruption of mitochondrial membrane potential, and upregulation of Cleaved caspase 3/9, Cytochrome-c, Bax, and downregulation of Bcl-2 protein and gene expression on HT 29 cells.
Collapse
Affiliation(s)
- Kavitha Raja
- Department of Zoology, University of Madras, Life Science, Guindy Campus, Chennai, 600025, Tamilnadu, India
| | - Parashuram Kallem
- Department of Environmental and Public Health, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates.
| | - Arulvasu Chinnasamy
- Department of Zoology, University of Madras, Life Science, Guindy Campus, Chennai, 600025, Tamilnadu, India.
| |
Collapse
|
27
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
28
|
Hao Q, He X, Wang KN, Niu J, Meng F, Fu J, Zong C, Liu Z, Yu X. Long-Chain Fluorescent Probe for Straightforward and Nondestructive Staining Mitochondria in Fixed Cells and Tissues. Anal Chem 2024. [PMID: 38330436 DOI: 10.1021/acs.analchem.3c05660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Normally, small-molecule fluorescent probes dependent on the mitochondrial membrane potential (MMP) are invalid for fixed cells and tissues, which limits their clinical applications when the fixation of pathological specimens is imperative. Given that mitochondrial morphology is closely associated with disease, we developed a long-chain mitochondrial probe for fixed cells and tissues, DMPQ-12, by installing a C12-alkyl chain into the quinoline moiety. In fixed cells stained with DMPQ-12, filament mitochondria and folded cristae were observed with confocal and structural illumination microscopy, respectively. In titration test with three major phospholipids, DMPQ-12 exhibited a stronger binding force to mitochondria-exclusive cardiolipin, revealing its targeting mechanism. Moreover, mitochondrial morphological changes in the three lesion models were clearly visualized in fixed cells. Finally, by DMPQ-12, three kinds of mitochondria with different morphologies were observed in situ in fixed muscle tissues. This work breaks the conventional concept that organic fluorescent probes only stain mitochondria with normal membrane potentials and opens new avenues for comprehensive mitochondrial investigations in research and clinical settings.
Collapse
Affiliation(s)
- Qiuhua Hao
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Xiuquan He
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, P. R. China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Jie Niu
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Fangfang Meng
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Jinyu Fu
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Chong Zong
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
29
|
Chan SJW, Zhu JY, Mia Soh WW, Bazan GC. Real-Time Monitoring of Mitochondrial Damage Using Conjugated Oligoelectrolytes. J Am Chem Soc 2024; 146:660-667. [PMID: 38131111 DOI: 10.1021/jacs.3c10531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Conjugated oligoelectrolytes (COEs) comprise a class of fluorescent reporters with tunable optical properties and lipid bilayer affinity. These molecules have proven effective in a range of bioimaging applications; however, their use in characterizing specific subcellular structures remains restricted. Such capabilities would broaden COE applications to understand cellular dysfunction, cell communication, and the targets of different pharmaceutical agents. Here, we disclose a novel COE derivative, COE-CN, which enables the visualization of mitochondria, including morphological changes and lysosomal fusion upon treatment with depolarizing agents. COE-CN is characterized by the presence of imidazolium solubilizing groups and an optically active cyanovinyl-linked distyrylbenzene core with intramolecular charge-transfer characteristics. Our current understanding is that the relatively shorter molecular length of COE-CN leads to weaker binding within lipid bilayer membranes, which allows sampling of internal cellular structures and ultimately to different localization relative to elongated COEs. As a means of practical demonstration, COE-CN can be used to diagnose cells with damaged mitochondria via flow cytometry. Coupled with an elongated COE that does not translocate upon depolarization, changes in ratiometric fluorescence intensity can be used to monitor mitochondrial membrane potential disruption, demonstrating the potential for use in diagnostic assays.
Collapse
Affiliation(s)
- Samuel J W Chan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Ji-Yu Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wilson Wee Mia Soh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
30
|
Iwata K, Ferdousi F, Arai Y, Isoda H. Modulation of mitochondrial activity by sugarcane (Saccharum officinarum L.) top extract and its bioactive polyphenols: a comprehensive transcriptomics analysis in C2C12 myotubes and HepG2 hepatocytes. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:2. [PMID: 38177614 PMCID: PMC10766937 DOI: 10.1007/s13659-023-00423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Age-related mitochondrial dysfunction leads to defects in cellular energy metabolism and oxidative stress defense systems, which can contribute to tissue damage and disease development. Among the key regulators responsible for mitochondrial quality control, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is an important target for mitochondrial dysfunction. We have previously reported that bioactive polyphenols extracted from sugarcane top (ST) ethanol extract (STEE) could activate neuronal energy metabolism and increase astrocyte PGC-1α transcript levels. However, their potential impact on the mitochondria activity in muscle and liver cells has not yet been investigated. To address this gap, our current study examined the effects of STEE and its polyphenols on cultured myotubes and hepatocytes in vitro. Rhodamine 123 assay revealed that the treatment with STEE and its polyphenols resulted in an increase in mitochondrial membrane potential in C2C12 myotubes. Furthermore, a comprehensive examination of gene expression patterns through transcriptome-wide microarray analysis indicated that STEE altered gene expressions related to mitochondrial functions, fatty acid metabolism, inflammatory cytokines, mitogen-activated protein kinase (MAPK) signaling, and cAMP signaling in both C2C12 myotubes and HepG2 hepatocytes. Additionally, protein-protein interaction analysis identified the PGC-1α interactive-transcription factors-targeted regulatory network of the genes regulated by STEE, and the quantitative polymerase chain reaction results confirmed that STEE and its polyphenols upregulated the transcript levels of PGC-1α in both C2C12 and HepG2 cells. These findings collectively suggest the potential beneficial effects of STEE on muscle and liver tissues and offer novel insights into the potential nutraceutical applications of this material.
Collapse
Affiliation(s)
- Kengo Iwata
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Nippo Co., Ltd., Daito, Osaka, 574-0062, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
31
|
Gimondi S, Ferreira H, Reis RL, Neves NM. Intracellular Trafficking of Size-Tuned Nanoparticles for Drug Delivery. Int J Mol Sci 2023; 25:312. [PMID: 38203483 PMCID: PMC10779336 DOI: 10.3390/ijms25010312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Polymeric nanoparticles (NPs) are widely used as drug delivery systems in nanomedicine. Despite their widespread application, a comprehensive understanding of their intracellular trafficking remains elusive. In the present study, we focused on exploring the impact of a 20 nm difference in size on NP performance, including drug delivery capabilities and intracellular trafficking. For that, poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PLGA-PEG) NPs with sizes of 50 and 70 nm were precisely tailored. To assess their prowess in encapsulating and releasing therapeutic agents, we have employed doxorubicin (Dox), a well-established anticancer drug widely utilized in clinical settings, as a model drug. Then, the beneficial effect of the developed nanoformulations was evaluated in breast cancer cells. Finally, we performed a semiquantitative analysis of both NPs' uptake and intracellular localization by immunostaining lysosomes, early endosomes, and recycling endosomes. The results show that the smaller NPs (50 nm) were able to reduce the metabolic activity of cancer cells more efficiently than NPs of 70 nm, in a time and concentration-dependent manner. These findings are corroborated by intracellular trafficking studies that reveal an earlier and higher uptake of NPs, with 50 nm compared to the 70 nm ones, by the breast cancer cells. Consequently, this study demonstrates that NP size, even in small increments, has an important impact on their therapeutic effect.
Collapse
Affiliation(s)
- Sara Gimondi
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.G.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| | - Helena Ferreira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.G.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.G.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.G.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| |
Collapse
|
32
|
Agrawal H, Giri PS, Meena P, Rath SN, Mishra AK. A Neutral Flavin-Triphenylamine Probe for Mitochondrial Bioimaging under Different Microenvironments. ACS Med Chem Lett 2023; 14:1857-1862. [PMID: 38116415 PMCID: PMC10726442 DOI: 10.1021/acsmedchemlett.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
A bioinspired design built around a neutral flavin-triphenylamine core has been investigated for selective mitochondrial bioimaging capabilities in different microenvironments. Significant advantages with respect to long-term tracking, faster internalization, penetrability within the spheroid structures, and strong emission signal under induced hypoxia conditions have been observed, which could offer an alternative to the existing mitotrackers for hypoxia-related biological events.
Collapse
Affiliation(s)
- Harsha
Gopal Agrawal
- Department
of Chemistry, Indian Institute of Technology, Sangareddy, Hyderabad 502285, Telangana, India
| | - Pravin Shankar Giri
- Department
of Biomedical Engineering, Indian Institute
of Technology, Sangareddy, Hyderabad502285, Telangana, India
| | - Poonam Meena
- Department
of Chemistry, Indian Institute of Technology, Sangareddy, Hyderabad 502285, Telangana, India
| | - Subha Narayan Rath
- Department
of Biomedical Engineering, Indian Institute
of Technology, Sangareddy, Hyderabad502285, Telangana, India
| | - Ashutosh Kumar Mishra
- Department
of Chemistry, Indian Institute of Technology, Sangareddy, Hyderabad 502285, Telangana, India
| |
Collapse
|
33
|
Turnbull JL, Golden RP, Benlian BR, Henn KM, Lipman SM, Miller EW. Mild and scalable synthesis of phosphonorhodamines. Chem Sci 2023; 14:11365-11373. [PMID: 37886078 PMCID: PMC10599461 DOI: 10.1039/d3sc02590j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 10/28/2023] Open
Abstract
Since their discovery in 1887, rhodamines have become indispensable fluorophores for biological imaging. Recent studies have extensively explored heteroatom substitution at the 10' position and a variety of substitution patterns on the 3',6' nitrogens. Although 3-carboxy- and 3-sulfono-rhodamines were first reported in the 19th century, the 3-phosphono analogues have never been reported. Here, we report a mild, scalable synthetic route to 3-phosphonorhodamines. We explore the substrate scope and investigate mechanistic details of an exogenous acid-free condensation. Tetramethyl-3-phosphonorhodamine (phosTMR) derivatives can be accessed on the 1.5 mmol scale in up to 98% yield (2 steps). phosTMR shows a 12- to 500-fold increase in water solubility relative to 3-carboxy and 3-sulfonorhodamine derivatives and has excellent chemical stability. Additionally, phosphonates allow for chemical derivatization; esterification of phosTMR facilitates intracellular delivery with localization profiles that differ from 3-carboxyrhodamines. The free phosphonate can be incorporated into a molecular wire scaffold to create a phosphonated rhodamine voltage reporter, phosphonoRhoVR. PhosRhoVR 1 can be synthesized in just 6 steps, with an overall yield of 37% to provide >400 mg of material, compared to a 6-step, ∼2% yield for the previously reported RhoVR 1. PhosRhoVR 1 possesses excellent voltage sensitivity (37% ΔF/F) and a 2-fold increase in cellular brightness compared to RhoVR 1.
Collapse
Affiliation(s)
- Joshua L Turnbull
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Ryan P Golden
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Brittany R Benlian
- Department of Molecular & Cell Biology, University of California Berkeley CA 94720-1460 USA
| | - Katharine M Henn
- Helen Wills Neuroscience Institute, University of California Berkeley CA 94720-1460 USA
| | - Soren M Lipman
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Evan W Miller
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
- Department of Molecular & Cell Biology, University of California Berkeley CA 94720-1460 USA
- Helen Wills Neuroscience Institute, University of California Berkeley CA 94720-1460 USA
| |
Collapse
|
34
|
Abramicheva PA, Andrianova NV, Babenko VA, Zorova LD, Zorov SD, Pevzner IB, Popkov VA, Semenovich DS, Yakupova EI, Silachev DN, Plotnikov EY, Sukhikh GT, Zorov DB. Mitochondrial Network: Electric Cable and More. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1596-1607. [PMID: 38105027 DOI: 10.1134/s0006297923100140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Mitochondria in a cell can unite and organize complex, extended structures that occupy the entire cellular volume, providing an equal supply with energy in the form of ATP synthesized in mitochondria. In accordance with the chemiosmotic concept, the oxidation energy of respiratory substrates is largely stored in the form of an electrical potential difference on the inner membrane of mitochondria. The theory of the functioning of extended mitochondrial structures as intracellular electrical wires suggests that mitochondria provide the fastest delivery of electrical energy through the cellular volume, followed by the use of this energy for the synthesis of ATP, thereby accelerating the process of ATP delivery compared to the rather slow diffusion of ATP in the cell. This analytical review gives the history of the cable theory, lists unsolved critical problems, describes the restructuring of the mitochondrial network and the role of oxidative stress in this process. In addition to the already proven functioning of extended mitochondrial structures as electrical cables, a number of additional functions are proposed, in particular, the hypothesis is put forth that mitochondrial networks maintain the redox potential in the cellular volume, which may vary depending on the physiological state, as a result of changes in the three-dimensional organization of the mitochondrial network (fragmentation/fission-fusion). A number of pathologies accompanied by a violation of the redox status and the participation of mitochondria in them are considered.
Collapse
Affiliation(s)
- Polina A Abramicheva
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nadezda V Andrianova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valentina A Babenko
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Ljubava D Zorova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Savva D Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina B Pevzner
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Vasily A Popkov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Dmitry S Semenovich
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elmira I Yakupova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Denis N Silachev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Egor Y Plotnikov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Dmitry B Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
35
|
Ravi S, Duraisamy P, Krishnan M, Martin LC, Manikandan B, Ramar M. Sitosterol-rich Digera muricata against 7-ketocholesterol and lipopolysaccharide-mediated atherogenic responses by modulating NF-ΚB/iNOS signalling pathway in macrophages. 3 Biotech 2023; 13:331. [PMID: 37670802 PMCID: PMC10475456 DOI: 10.1007/s13205-023-03741-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Digera muricata L., commonly known as Tartara, is an edible herb used as traditional medicine in many countries of Africa and Asia. This study aimed to elucidate the effect of a phytosterol-rich extract of D. muricata on 7-ketocholesterol-mediated atherosclerosis in macrophages. The extract was examined by phytochemical analyses, GC-MS, TLC, DPPH scavenging and hRBC membrane stabilization assays. Macrophage polarization was studied with experimental groups framed based on alamar blue cell viability and griess assays. Regulations of arginase enzyme activity, ROS generation, mitochondrial membrane potential, cell membrane integrity, pinocytosis, lipid uptake and peroxidation, as well as, intracellular calcium deposition were determined. In addition, expressions of atherogenic mediators were analysed using PCR, ELISA and immunocytochemistry techniques. Diverse phytochemicals with higher free radical scavenging activity and anti-inflammatory potential have been detected in the D. muricata. Co-treatment with D. muricata markedly reduced the atherogenic responses induced by 7KCh in the presence of LPS such as ROS, especially, NO and O2- along with lipid peroxidation. Furthermore, D. muricata significantly normalized mitochondrial membrane potential, cell membrane integrity, pinocytic activity, intracellular lipid accumulation and calcium deposition. These results provided us with the potentiality of D. muricata in ameliorating atherogenesis. Additionally, it decreased the expression of pro-atherogenic mediators (iNOS, COX-2, MMP9, IL-6, IL-1β, CD36, CD163 and TGFβ1) and increased anti-atherogenic mediators (MRC1 and PPARγ) with high cellular expressions of NF-κB and iNOS. Results showed the potential of sitosterol-rich D. muricata as a versatile biomedical therapeutic agent against abnormal macrophage polarization and its associated pathologies.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600 015 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| |
Collapse
|
36
|
Koren SA, Ahmed Selim N, De la Rosa L, Horn J, Farooqi MA, Wei AY, Müller-Eigner A, Emerson J, Johnson GVW, Wojtovich AP. All-optical spatiotemporal mapping of ROS dynamics across mitochondrial microdomains in situ. Nat Commun 2023; 14:6036. [PMID: 37758713 PMCID: PMC10533892 DOI: 10.1038/s41467-023-41682-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Hydrogen peroxide (H2O2) functions as a second messenger to signal metabolic distress through highly compartmentalized production in mitochondria. The dynamics of reactive oxygen species (ROS) generation and diffusion between mitochondrial compartments and into the cytosol govern oxidative stress responses and pathology, though these processes remain poorly understood. Here, we couple the H2O2 biosensor, HyPer7, with optogenetic stimulation of the ROS-generating protein KillerRed targeted into multiple mitochondrial microdomains. Single mitochondrial photogeneration of H2O2 demonstrates the spatiotemporal dynamics of ROS diffusion and transient hyperfusion of mitochondria due to ROS. This transient hyperfusion phenotype required mitochondrial fusion but not fission machinery. Measurement of microdomain-specific H2O2 diffusion kinetics reveals directionally selective diffusion through mitochondrial microdomains. All-optical generation and detection of physiologically-relevant concentrations of H2O2 between mitochondrial compartments provide a map of mitochondrial H2O2 diffusion dynamics in situ as a framework to understand the role of ROS in health and disease.
Collapse
Affiliation(s)
- Shon A Koren
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Nada Ahmed Selim
- University of Rochester Medical Center, Department of Pharmacology and Physiology, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Lizbeth De la Rosa
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Jacob Horn
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - M Arsalan Farooqi
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Alicia Y Wei
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Annika Müller-Eigner
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Jacen Emerson
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Gail V W Johnson
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA.
| |
Collapse
|
37
|
Liu K, Zhang Z, Liu R, Li JP, Jiang D, Pan R. Click-Chemistry-Enabled Nanopipettes for the Capture and Dynamic Analysis of a Single Mitochondrion inside One Living Cell. Angew Chem Int Ed Engl 2023; 62:e202303053. [PMID: 37334855 DOI: 10.1002/anie.202303053] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The in-depth study of single cells requires the dynamically molecular information in one particular nanometer-sized organelle in a living cell, which is difficult to achieve using current methods. Due to high efficiency of click chemistry, a new nanoelectrode-based pipette architecture with dibenzocyclooctyne at the tip is designed to realize fast conjugation with azide group-containing triphenylphosphine, which targets mitochondrial membranes. The covalent binding of one mitochondrion at the tip of the nanopipette allows a small region of the membrane to be isolated on the Pt surface inside the nanopipette. Therefore, the release of reactive oxygen species (ROS) from the mitochondrion is monitored, which is not interfered by the species present in the cytosol. The dynamic tracking of ROS release from one mitochondrion reveals the distinctive "ROS-induced ROS release" within the mitochondria. Further study of RSL3-induced ferroptosis using nanopipettes provides direct evidence for supporting the noninvolvement of glutathione peroxidase 4 in the mitochondria during RSL3-induced ROS generation, which has not previously been observed at the single-mitochondrion level. Eventually, this established strategy should overcome the existing challenge of the dynamic measurement of one special organelle in the complicated intracellular environment, which opens a new direction for electroanalysis in subcellular analysis.
Collapse
Affiliation(s)
- Kang Liu
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zheng Zhang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing, 100190, China
| | - Jie P Li
- The State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
38
|
Köckenberger J, Klemt I, Sauer C, Arkhypov A, Reshetnikov V, Mokhir A, Heinrich MR. Cyanine- and Rhodamine-Derived Alkynes for the Selective Targeting of Cancerous Mitochondria through Radical Thiol-Yne Coupling in Live Cells. Chemistry 2023; 29:e202301340. [PMID: 37171462 DOI: 10.1002/chem.202301340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023]
Abstract
Despite their long history and their synthetic potential underlined by various recent advances, radical thiol-yne coupling reactions have so far only rarely been exploited for the functionalization of biomolecules, and no examples yet exist for their application in live cells - although natural thiols show widespread occurrence therein. By taking advantage of the particular cellular conditions of mitochondria in cancer cells, we have demonstrated that radical thiol-yne coupling represents a powerful reaction principle for the selective targeting of these organelles. Within our studies, fluorescently labeled reactive alkyne probes were investigated, for which the fluorescent moiety was chosen to enable both mitochondria accumulation as well as highly sensitive detection. After preliminary studies under cell-free conditions, the most promising alkyne-dye conjugates were evaluated in various cellular experiments comprising analysis by flow cytometry and microscopy. All in all, these results pave the way for improved future therapeutic strategies relying on live-cell compatibility and selectivity among cellular compartments.
Collapse
Affiliation(s)
- Johannes Köckenberger
- Department of Chemistry and Pharmacy Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Insa Klemt
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Caroline Sauer
- Department of Chemistry and Pharmacy Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Anton Arkhypov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Viktor Reshetnikov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
39
|
Kolesova EP, Egorova VS, Syrocheva AO, Frolova AS, Kostyushev D, Kostyusheva A, Brezgin S, Trushina DB, Fatkhutdinova L, Zyuzin M, Demina PA, Khaydukov EV, Zamyatnin AA, Parodi A. Proteolytic Resistance Determines Albumin Nanoparticle Drug Delivery Properties and Increases Cathepsin B, D, and G Expression. Int J Mol Sci 2023; 24:10245. [PMID: 37373389 DOI: 10.3390/ijms241210245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Proteolytic activity is pivotal in maintaining cell homeostasis and function. In pathological conditions such as cancer, it covers a key role in tumor cell viability, spreading to distant organs, and response to the treatment. Endosomes represent one of the major sites of cellular proteolytic activity and very often represent the final destination of internalized nanoformulations. However, little information about nanoparticle impact on the biology of these organelles is available even though they represent the major location of drug release. In this work, we generated albumin nanoparticles with a different resistance to proteolysis by finely tuning the amount of cross-linker used to stabilize the carriers. After careful characterization of the particles and measurement of their degradation in proteolytic conditions, we determined a relationship between their sensitivity to proteases and their drug delivery properties. These phenomena were characterized by an overall increase in the expression of cathepsin proteases regardless of the different sensitivity of the particles to proteolytic degradation.
Collapse
Affiliation(s)
- Ekaterina P Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Vera S Egorova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiia O Syrocheva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiia S Frolova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry Kostyushev
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Anastasiia Kostyusheva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey Brezgin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Daria B Trushina
- Department of Biomedical Engineering, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, 119333 Moscow, Russia
| | | | - Mikhail Zyuzin
- School of Physics, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Polina A Demina
- Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Evgeny V Khaydukov
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrey A Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
40
|
Guo Y, Yin L, Qian X, Yang Y, Luo X. PET/d-PET (PdP) Pairing for the Design of Dual-Channel Probes. Anal Chem 2023. [PMID: 37314854 DOI: 10.1021/acs.analchem.3c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Design principles of two-channel fluorescence probes are limited. Herein, we report a new principle, i.e., PET/d-PET (PdP) pairing, for the rational design of two-channel probes. Two fluorophores are required in such a PdP-type probe. They mutually quench their fluorescence via PET and d-PET. In the presence of an analyte-of-interest, such a PdP pair is converted into a FRET pair for signaling. The embodiment of such a principle is Rh-TROX, by tethering a rhodamine fluorophore with an ROS-sensitive probe (TotalROX). Fluorescence of both fluorophores in Rh-TROX was quenched as expected. The addition of highly reactive oxidative species led to the recovery of the fluorescence properties of both. The simultaneous fluorescence enhancement in two channels is a viable way to avoid false-positive signals. The new PdP principle could potentially be applied to the development of probes for another range of substrates.
Collapse
Affiliation(s)
- Yinghua Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Yin
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Youjun Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
41
|
Salladay RA, Pittermann J. Using heat plumes to simulate post-fire effects on cambial viability and hydraulic performance in Sequoia sempervirens stems. TREE PHYSIOLOGY 2023; 43:769-780. [PMID: 36715648 DOI: 10.1093/treephys/tpad006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 05/13/2023]
Abstract
Injury to the xylem and vascular cambium is proposed to explain mortality following low severity fires. These tissues have been assessed independently, but the relative significance of the xylem and cambium is still uncertain. The goal of this study is to evaluate the xylem dysfunction hypothesis and cambium necrosis hypothesis simultaneously. The hot dry conditions of a low severity fire were simulated in a drying oven, exposing Sequoia sempervirens (Lamb. ex D. Don) shoots to 70 and 100 °C for 6-60 min. Cambial viability was measured with Neutral Red stain and water transport capacity was assessed by calculating the loss of hydraulic conductivity. Vulnerability curves were also constructed to determine susceptibility to drought-induced embolism following heat exposure. The vascular cambium died completely at 100 °C after only 6 min of heat exposure, while cells remained viable at 70 °C temperatures for up to 15 min. Sixty minutes of exposure to 70 °C reduced stem hydraulic conductivity by 40%, while 45 min at 100 °C caused complete loss of conductivity. The heat treatments dropped hydraulic conductivity irrecoverably but did not significantly impact post-fire vulnerability to embolism. Overall, the damaging effects of high temperature occurred more rapidly in the vascular cambium than xylem following heat exposure. Importantly, the xylem remained functional until the most extreme treatments, long after the vascular cambium had died. Our results suggest that the viability of the vascular cambium may be more critical to post-fire survival than xylem function in S. sempervirens. Given the complexity of fire, we recommend ground-truthing the cambial and xylem post-fire response on a diverse range of species.
Collapse
Affiliation(s)
- Ryan A Salladay
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Jarmila Pittermann
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
42
|
Sivagnanam S, Mahato P, Das P. An overview on the development of different optical sensing platforms for adenosine triphosphate (ATP) recognition. Org Biomol Chem 2023; 21:3942-3983. [PMID: 37128980 DOI: 10.1039/d3ob00209h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adenosine triphosphate (ATP), one of the biological anions, plays a crucial role in several biological processes including energy transduction, cellular respiration, enzyme catalysis and signaling. ATP is a bioactive phosphate molecule, recognized as an important extracellular signaling agent. Apart from serving as a universal energy currency for various cellular events, ATP is also considered a factor responsible for numerous physiological activities. It regulates cellular metabolism by breaking phosphoanhydride bonds. Several diseases have been reported widely based on the levels and behavior of ATP. The variation of ATP concentration usually causes a foreseeable impact on mitochondrial physiological function. Mitochondrial dysfunction is responsible for the occurrence of many severe diseases such as angiocardiopathy, malignant tumors and Parkinson's disease. Therefore, there is high demand for developing a sensitive, fast-responsive, nontoxic and versatile detection platform for the detection of ATP. To this end, considerable efforts have been employed by several research groups throughout the world to develop specific and sensitive detection platforms to recognize ATP. Although a repertoire of optical chemosensors (both colorimetric and fluorescent) for ATP has been developed, many of them are not arrayed appropriately. Therefore, in this present review, we focused on the design and sensing strategy of some chemosensors including metal-free, metal-based, sequential sensors, aptamer-based sensors, nanoparticle-based sensors etc. for ATP recognition via diverse binding mechanisms.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| | - Prasenjit Mahato
- Department of Chemistry, Raghunathpur College, Sidho-Kanho-Birsha University, Purulia, West Bengal-723133, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| |
Collapse
|
43
|
Behera PC, Karmakar V, Ghosh A, Dey S, Rangra NK, Bag B. Anti-cancer potential of substituted "amino-alkyl-rhodamine" derivatives against MCF-7 human breast cancer cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1001-1007. [PMID: 36595094 DOI: 10.1007/s00210-022-02376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Breast cancer is the most prevalent diagnosed cancer among women and the main cause of morbidity and mortality. As for breast cancer, MCF-7 cells are an important candidate since they are widely utilized in research for estrogen receptor (ER)-positive breast cancer cell assays, and various sub-clones have been identified to reflect different classes of ER-positive tumors with varied levels of nuclear receptor expression. Rhodamines and its derivatives have shown a great interest over the past two decades due to their excellent structural and spectroscopic properties. Rhodamine derivatives have been widely investigated for their mitochondrial targeting and chemotherapeutic properties. Rhodamine derivatives, in particular, have been widely investigated for their therapeutic properties. In this regard, several studies have shown that rhodamine dye derivatives have promising in vitro and in vivo therapeutic efficacy. The present study deals with potential anticancer activity of few synthesized rhodamine derivatives against MCF-7 cell lines.
Collapse
Affiliation(s)
- Padma Charan Behera
- Department of Pharmaceutical Sciences, Jharkhand Rai University, Ratu Road, Ranchi, 835222, Jharkhand, India.
| | - Varnita Karmakar
- Department of Pharmacology, Eminent College of Pharmaceutical Technology, Barasat, 700126, West Bengal, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences, Jharkhand Rai University, Ratu Road, Ranchi, 835222, Jharkhand, India
| | - Suddhasatya Dey
- Department of Pharmacy, Sanaka Educational Trusts Group of Institutions, Durgapur, 713212, West Bengal, India
| | - Naresh Kumar Rangra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal-Kalan, GT Road, Moga, 142001, PB, India
| | - Bamaprasad Bag
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, P.O.: R.R.L, Bhubaneswar, 751013, Odisha, India.
| |
Collapse
|
44
|
Wan W, Li ADQ. Full-Quantum Treatment of Molecular Systems Confirms Novel Supracence Photonic Properties. Int J Mol Sci 2023; 24:ijms24087490. [PMID: 37108652 PMCID: PMC10138974 DOI: 10.3390/ijms24087490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Our understanding of molecules has stagnated at a single quantum system, with atoms as Newtonian particles and electrons as quantum particles. Here, however, we reveal that both atoms and electrons in a molecule are quantum particles, and their quantum-quantum interactions create a previously unknown, newfangled molecular property-supracence. Molecular supracence is a phenomenon in which the molecule transfers its potential energy from quantum atoms to photo-excited electrons so that the emitted photon has more energy than that of the absorbed one. Importantly, experiments reveal such quantum energy exchanges are independent of temperature. When quantum fluctuation results in absorbing low-energy photons, yet still emitting high-energy photons, supracence occurs. This report, therefore, reveals novel principles governing molecular supracence via experiments that were rationalized by full quantum (FQ) theory. This advancement in understanding predicts the super-spectral resolution of supracence, and molecular imaging confirms such innovative forecasts using closely emitting rhodamine 123 and rhodamine B in living cell imaging of mitochondria and endosomes.
Collapse
Affiliation(s)
- Wei Wan
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Alexander D Q Li
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
45
|
Ong HC, Coimbra JTS, Ramos MJ, Xing B, Fernandes PA, García F. Beyond the TPP + "gold standard": a new generation mitochondrial delivery vector based on extended PN frameworks. Chem Sci 2023; 14:4126-4133. [PMID: 37063789 PMCID: PMC10094279 DOI: 10.1039/d2sc06508h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondrial targeting represents an attractive strategy for treating metabolic, degenerative and hyperproliferative diseases, since this organelle plays key roles in essential cellular functions. Triphenylphosphonium (TPP+) moieties - the current "gold standard" - have been widely used as mitochondrial targeting vectors for a wide range of molecular cargo. Recently, further optimisation of the TPP+ platform drew considerable interest as a way to enhance mitochondrial therapies. However, although the modification of this system appears promising, the core structure of the TPP+ moiety remains largely unchanged. Thus, this study explored the use of aminophosphonium (PN+) and phosphazenylphosphonium (PPN+) main group frameworks as novel mitochondrial delivery vectors. The PPN+ moiety was found to be a highly promising platform for this purpose, owing to its unique electronic properties and high lipophilicity. This has been demonstrated by the high mitochondrial accumulation of a PPN+-conjugated fluorophore relative to its TPP+-conjugated counterpart, and has been further supported by density functional theory and molecular dynamics calculations, highlighting the PPN+ moiety's unusual electronic properties. These results demonstrate the potential of novel phosphorus-nitrogen based frameworks as highly effective mitochondrial delivery vectors over traditional TPP+ vectors.
Collapse
Affiliation(s)
- How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - João T S Coimbra
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Maria J Ramos
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Bengang Xing
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Pedro A Fernandes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo Avda Julian Claveria 8 33006 Asturias Spain
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
46
|
Singh D, Regar R, Soppina P, Soppina V, Kanvah S. Imaging of mitochondria/lysosomes in live cells and C. elegans. Org Biomol Chem 2023; 21:2220-2231. [PMID: 36805145 DOI: 10.1039/d3ob00086a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Two rhodamine-phenothiazine conjugates, RP1 and RP2, were synthesized, and their photophysical properties, subcellular localization, and photocytotoxicity were investigated. We observed robust localization of RP1 in mitochondria and dual localization in mitochondria and lysosomes with RP2 in live cells. Live cell imaging with these probes allowed us to track the dynamics of mitochondria and lysosomes during ROS-induced mitochondrial damage and the subsequent lysosomal digestion of the damaged mitochondria. The fluorophores also demonstrated preferential accumulation in cancer cells compared to normal cells and had strong photo-cytotoxicity. However, no cytotoxicity was observed in the dark. The mitochondrial staining and light-induced ROS production were not limited to mammalian cell lines, but were also observed in the animal model C. elegans. The study demonstrated the potential applications of these probes in visualizing the mitochondria-lysosome cross-talk after ROS production and for photodynamic therapy.
Collapse
Affiliation(s)
- Deepmala Singh
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| | - Ramprasad Regar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| | - Pushpanjali Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382055, India. .,Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa 768019, India
| | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat-382055, India.
| |
Collapse
|
47
|
Chen Z, Yang L, Xu W, Xu F, Sheng J, Xiao Q, Song X, Chen W. Homoadamantane-Fused Tetrahydroquinoxaline as a Robust Electron-Donating Unit for High-Performance Asymmetric NIR Rhodamine Development. Anal Chem 2023; 95:3325-3331. [PMID: 36716181 DOI: 10.1021/acs.analchem.2c04445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rhodamines have emerged as a useful class of dye for bioimaging. However, intrinsic issues such as short emission wavelengths and small Stokes shifts limit their widespread applications in living systems. By taking advantage of the homoadamantane-fused tetrahydroquinoxaline (HFT) moiety as an electron donor, we developed a new class of asymmetric NIR rhodamine dyes, NNR1-7. These new dyes retained ideal photophysical properties from the classical rhodamine scaffold and showed large Stokes shifts (>80 nm) with improved chemo/photostability. We found that NNR1-7 specifically target cellular mitochondria with superior photobleaching resistance and improved tolerance for cell fixation compared to commercial mitochondria trackers. Based on NNR4, a novel NIR pH sensor (NNR4M) was also constructed and successfully applied for real-time monitoring of variations in lysosomal pH. We envision this design strategy would find broad applications in the development of highly stable NIR dyes with a large Stokes shift.
Collapse
Affiliation(s)
- Zhipeng Chen
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Wenju Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| | - Feifei Xu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Jiarong Sheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province 410083, P. R. China
| | - Wenqiang Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| |
Collapse
|
48
|
Spatola Rossi T, Kriechbaumer V. An Interplay between Mitochondrial and ER Targeting of a Bacterial Signal Peptide in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:617. [PMID: 36771701 PMCID: PMC9920398 DOI: 10.3390/plants12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Protein targeting is essential in eukaryotic cells to maintain cell function and organelle identity. Signal peptides are a major type of targeting sequences containing a tripartite structure, which is conserved across all domains in life. They are frequently included in recombinant protein design in plants to increase yields by directing them to the endoplasmic reticulum (ER) or apoplast. The processing of bacterial signal peptides by plant cells is not well understood but could aid in the design of efficient heterologous expression systems. Here we analysed the signal peptide of the enzyme PmoB from methanotrophic bacteria. In plant cells, the PmoB signal peptide targeted proteins to both mitochondria and the ER. This dual localisation was still observed in a mutated version of the signal peptide sequence with enhanced mitochondrial targeting efficiency. Mitochondrial targeting was shown to be dependent on a hydrophobic region involved in transport to the ER. We, therefore, suggest that the dual localisation could be due to an ER-SURF pathway recently characterised in yeast. This work thus sheds light on the processing of bacterial signal peptides by plant cells and proposes a novel pathway for mitochondrial targeting in plants.
Collapse
Affiliation(s)
- Tatiana Spatola Rossi
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Oxford Brookes Centre for Bioimaging, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Oxford Brookes Centre for Bioimaging, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
49
|
Hanafy AS, Steinlein P, Pitsch J, Silva MH, Vana N, Becker AJ, Graham ME, Schoch S, Lamprecht A, Dietrich D. Subcellular analysis of blood-brain barrier function by micro-impalement of vessels in acute brain slices. Nat Commun 2023; 14:481. [PMID: 36717572 PMCID: PMC9886996 DOI: 10.1038/s41467-023-36070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
The blood-brain barrier (BBB) is a tightly and actively regulated vascular barrier. Answering fundamental biological and translational questions about the BBB with currently available approaches is hampered by a trade-off between accessibility and biological validity. We report an approach combining micropipette-based local perfusion of capillaries in acute brain slices with multiphoton microscopy. Micro-perfusion offers control over the luminal solution and allows application of molecules and drug delivery systems, whereas the bath solution defines the extracellular milieu in the brain parenchyma. Here we show, that this combination allows monitoring of BBB transport at the cellular level, visualization of BBB permeation of cells and molecules in real-time and resolves subcellular details of the neurovascular unit. In combination with electrophysiology, it permits comparison of drug effects on neuronal activity following luminal versus parenchymal application. We further apply micro-perfusion to the human and mouse BBB of epileptic hippocampi highlighting its utility for translational research and analysis of therapeutic strategies.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Pia Steinlein
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Julika Pitsch
- Section for Translational Epilepsy Research, Dept. of Neuropathology, University Hospital Bonn, Bonn, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Mariella Hurtado Silva
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Natascha Vana
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Dept. of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Mark Evan Graham
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Dept. of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
50
|
Application Prospects of Triphenylphosphine-Based Mitochondria-Targeted Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030666. [PMID: 36765624 PMCID: PMC9913854 DOI: 10.3390/cancers15030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer is one of the leading causes of death and the most important impediments to the efforts to increase life expectancy worldwide. Currently, chemotherapy is the main treatment for cancer, but it is often accompanied by side effects that affect normal tissues and organs. The search for new alternatives to chemotherapy has been a hot research topic in the field of antineoplastic medicine. Drugs targeting diseased tissues or cells can significantly improve the efficacy of drugs. Therefore, organelle-targeted antitumor drugs are being explored, such as mitochondria-targeted antitumor drugs. Mitochondria is the central site of cellular energy production and plays an important role in cell survival and death. Moreover, a large number of studies have shown a close association between mitochondrial metabolism and tumorigenesis and progression, making mitochondria a promising new target for cancer therapy. Combining mitochondrial targeting agents with drug molecules is an effective way of mitochondrial targeting. In addition, hyperpolarized tumor cell membranes and mitochondrial membrane potentially allow selective accumulation of mitochondria-targeted drugs. This enhances the direct killing of tumor cells by drug molecules while minimizing the potential toxicity to normal cells. In this review, we discuss the common pro-mitochondrial agents, the advantages of triphenylphosphine (TPP) in mitochondrial-targeted cancer therapy and systematically summarize various TPP-based mitochondria-targeting anticancer drugs.
Collapse
|