1
|
Kim MS, Kim DH, Lee JS. A review of environmental epigenetics in aquatic invertebrates. MARINE POLLUTION BULLETIN 2024; 208:117011. [PMID: 39326327 DOI: 10.1016/j.marpolbul.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Aquatic ecosystems face significant challenges due to increasing human-induced environmental stressors. Recent studies emphasize the role of epigenetic mechanisms in the stress responses and adaptations of organisms to those stressors. Epigenetics influences gene expression, enabling phenotypic plasticity and transgenerational effects. Therefore, understanding the epigenetic responses of aquatic invertebrates to environmental stressors is imperative for aquatic ecosystem research. In this study, we organize the mechanisms of epigenetics in aquatic invertebrates and explore their roles in the responses of aquatic invertebrates to environmental stressors. Furthermore, we discuss the inheritance of epigenetic changes and their influence across generations in aquatic invertebrates. A comprehensive understanding of epigenetic responses is crucial for long-term ecosystem management and conservation strategies in the face of irreversible climate change in aquatic environments. In this review, we synthesize existing knowledge about environmental epigenetics in aquatic invertebrates to provide insights and suggest directions for future research.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Xie H, Li X, Sun Y, Lin L, Xu K, Lu H, Cheng B, Xue S, Cheng D, Qiang S. DNA Methylation of the Autonomous Pathway Is Associated with Flowering Time Variations in Arabidopsis thaliana. Int J Mol Sci 2024; 25:7478. [PMID: 39000585 PMCID: PMC11242178 DOI: 10.3390/ijms25137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Plant flowering time is affected by endogenous and exogenous factors, but its variation patterns among different populations of a species has not been fully established. In this study, 27 Arabidopsis thaliana accessions were used to investigate the relationship between autonomous pathway gene methylation, gene expression and flowering time variation. DNA methylation analysis, RT-qPCR and transgenic verification showed that variation in the flowering time among the Arabidopsis populations ranged from 19 to 55 days and was significantly correlated with methylation of the coding regions of six upstream genes in the autonomous pathway, FLOWERING LOCUS VE (FVE), FLOWERING LOCUS Y (FY), FLOWERING LOCUS D (FLD), PEPPER (PEP), HISTONE DEACETYLASE 5 (HAD5) and Pre-mRNA Processing Protein 39-1 (PRP39-1), as well as their relative expression levels. The expression of FVE and FVE(CS) was modified separately through degenerate codon substitution of cytosine and led to earlier flowering of transgenic plants by 8 days and 25 days, respectively. An accurate determination of methylated sites in FVE and FVE(CS) among those transgenic plants and the recipient Col-0 verified the close relationship between the number of methylation sites, expression and flowering time. Our findings suggest that the methylation variation of these six key upstream transcription factors was associated with the gene expression level of the autonomous pathway and flowering time in Arabidopsis. The FVE(CS) and FVE genes in transgenic plants tended to be hypermethylated, which could be a protective mechanism for plants. However, modification of gene sequences through degenerate codon substitution to reduce cytosine can avoid hypermethylated transferred genes in transgenic plants. It may be possible to partially regulate the flowering of plants by modified trans-epigenetic technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sheng Qiang
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.X.); (X.L.); (Y.S.); (L.L.); (K.X.); (H.L.); (B.C.); (S.X.); (D.C.)
| |
Collapse
|
3
|
Ramos YFM, Rice SJ, Ali SA, Pastrello C, Jurisica I, Rai MF, Collins KH, Lang A, Maerz T, Geurts J, Ruiz-Romero C, June RK, Thomas Appleton C, Rockel JS, Kapoor M. Evolution and advancements in genomics and epigenomics in OA research: How far we have come. Osteoarthritis Cartilage 2024; 32:858-868. [PMID: 38428513 DOI: 10.1016/j.joca.2024.02.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most prevalent musculoskeletal disease affecting articulating joint tissues, resulting in local and systemic changes that contribute to increased pain and reduced function. Diverse technological advancements have culminated in the advent of high throughput "omic" technologies, enabling identification of comprehensive changes in molecular mediators associated with the disease. Amongst these technologies, genomics and epigenomics - including methylomics and miRNomics, have emerged as important tools to aid our biological understanding of disease. DESIGN In this narrative review, we selected articles discussing advancements and applications of these technologies to OA biology and pathology. We discuss how genomics, deoxyribonucleic acid (DNA) methylomics, and miRNomics have uncovered disease-related molecular markers in the local and systemic tissues or fluids of OA patients. RESULTS Genomics investigations into the genetic links of OA, including using genome-wide association studies, have evolved to identify 100+ genetic susceptibility markers of OA. Epigenomic investigations of gene methylation status have identified the importance of methylation to OA-related catabolic gene expression. Furthermore, miRNomic studies have identified key microRNA signatures in various tissues and fluids related to OA disease. CONCLUSIONS Sharing of standardized, well-annotated omic datasets in curated repositories will be key to enhancing statistical power to detect smaller and targetable changes in the biological signatures underlying OA pathogenesis. Additionally, continued technological developments and analysis methods, including using computational molecular and regulatory networks, are likely to facilitate improved detection of disease-relevant targets, in-turn, supporting precision medicine approaches and new treatment strategies for OA.
Collapse
Affiliation(s)
- Yolande F M Ramos
- Dept. Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarah J Rice
- Biosciences Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shabana Amanda Ali
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Muhammad Farooq Rai
- Department of Biological Sciences, Center for Biotechnology, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annemarie Lang
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC -Hospital Universitario A Coruña, SERGAS, A Coruña, Spain
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - C Thomas Appleton
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jason S Rockel
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Roberts JB, Rice SJ. Osteoarthritis as an Enhanceropathy: Gene Regulation in Complex Musculoskeletal Disease. Curr Rheumatol Rep 2024; 26:222-234. [PMID: 38430365 PMCID: PMC11116181 DOI: 10.1007/s11926-024-01142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE OF REVIEW Osteoarthritis is a complex and highly polygenic disease. Over 100 reported osteoarthritis risk variants fall in non-coding regions of the genome, ostensibly conferring functional effects through the disruption of regulatory elements impacting target gene expression. In this review, we summarise the progress that has advanced our knowledge of gene enhancers both within the field of osteoarthritis and more broadly in complex diseases. RECENT FINDINGS Advances in technologies such as ATAC-seq have facilitated our understanding of chromatin states in specific cell types, bolstering the interpretation of GWAS and the identification of effector genes. Their application to osteoarthritis research has revealed enhancers as the principal regulatory element driving disease-associated changes in gene expression. However, tissue-specific effects in gene regulatory mechanisms can contribute added complexity to biological interpretation. Understanding gene enhancers and their altered activity in specific cell and tissue types is the key to unlocking the genetic complexity of osteoarthritis. The use of single-cell technologies in osteoarthritis research is still in its infancy. However, such tools offer great promise in improving our functional interpretation of osteoarthritis GWAS and the identification of druggable targets. Large-scale collaborative efforts will be imperative to understand tissue and cell-type specific molecular mechanisms underlying enhancer function in disease.
Collapse
Affiliation(s)
- Jack B Roberts
- Skeletal Research Group, International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Sarah J Rice
- Skeletal Research Group, International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
5
|
McDonnell E, Orr SE, Barter MJ, Rux D, Brumwell A, Wrobel N, Murphy L, Overmann LM, Sorial AK, Young DA, Soul J, Rice SJ. Epigenetic mechanisms of osteoarthritis risk in human skeletal development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.05.24306832. [PMID: 38766055 PMCID: PMC11100852 DOI: 10.1101/2024.05.05.24306832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The epigenome, including the methylation of cytosine bases at CG dinucleotides, is intrinsically linked to transcriptional regulation. The tight regulation of gene expression during skeletal development is essential, with ~1/500 individuals born with skeletal abnormalities. Furthermore, increasing evidence is emerging to link age-associated complex genetic musculoskeletal diseases, including osteoarthritis (OA), to developmental factors including joint shape. Multiple studies have shown a functional role for DNA methylation in the genetic mechanisms of OA risk using articular cartilage samples taken from aged patients. Despite this, our knowledge of temporal changes to the methylome during human cartilage development has been limited. We quantified DNA methylation at ~700,000 individual CpGs across the epigenome of developing human articular cartilage in 72 samples ranging from 7-21 post-conception weeks, a time period that includes cavitation of the developing knee joint. We identified significant changes in 8% of all CpGs, and >9400 developmental differentially methylated regions (dDMRs). The largest hypermethylated dDMRs mapped to transcriptional regulators of early skeletal patterning including MEIS1 and IRX1. Conversely, the largest hypomethylated dDMRs mapped to genes encoding extracellular matrix proteins including SPON2 and TNXB and were enriched in chondrocyte enhancers. Significant correlations were identified between the expression of these genes and methylation within the hypomethylated dDMRs. We further identified 811 CpGs at which significant dimorphism was present between the male and female samples, with the majority (68%) being hypermethylated in female samples. Following imputation, we captured the genotype of these samples at >5 million variants and performed epigenome-wide methylation quantitative trait locus (mQTL) analysis. Colocalization analysis identified 26 loci at which genetic variants exhibited shared impacts upon methylation and OA genetic risk. This included loci which have been previously reported to harbour OA-mQTLs (including GDF5 and ALDH1A2), yet the majority (73%) were novel (including those mapping to CHST3, FGF1 and TEAD1). To our knowledge, this is the first extensive study of DNA methylation across human articular cartilage development. We identify considerable methylomic plasticity within the development of knee cartilage and report active epigenomic mediators of OA risk operating in prenatal joint tissues.
Collapse
Affiliation(s)
- Euan McDonnell
- Computational Biology Facility, University of Liverpool, MerseyBio, Crown Street, United Kingdom
| | - Sarah E Orr
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Matthew J Barter
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Danielle Rux
- Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Abby Brumwell
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Lynne M Overmann
- Human Developmental Biology Resource, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Antony K Sorial
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - David A Young
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Jamie Soul
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sarah J Rice
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Sharma G, Sultana A, Abdullah KM, Pothuraju R, Nasser MW, Batra SK, Siddiqui JA. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol 2024; 154:275-285. [PMID: 36379849 PMCID: PMC10175516 DOI: 10.1016/j.semcdb.2022.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashrafi Sultana
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Johansson J, Lidéus S, Höijer I, Ameur A, Gudmundsson S, Annerén G, Bondeson ML, Wilbe M. A novel quantitative targeted analysis of X-chromosome inactivation (XCI) using nanopore sequencing. Sci Rep 2023; 13:12856. [PMID: 37553382 PMCID: PMC10409790 DOI: 10.1038/s41598-023-34413-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/29/2023] [Indexed: 08/10/2023] Open
Abstract
X-chromosome inactivation (XCI) analyses often assist in diagnostics of X-linked traits, however accurate assessment remains challenging with current methods. We developed a novel strategy using amplification-free Cas9 enrichment and Oxford nanopore technologies sequencing called XCI-ONT, to investigate and rigorously quantify XCI in human androgen receptor gene (AR) and human X-linked retinitis pigmentosa 2 gene (RP2). XCI-ONT measures methylation over 116 CpGs in AR and 58 CpGs in RP2, and separate parental X-chromosomes without PCR bias. We show the usefulness of the XCI-ONT strategy over the PCR-based golden standard XCI technique that only investigates one or two CpGs per gene. The results highlight the limitations of using the golden standard technique when the XCI pattern is partially skewed and the advantages of XCI-ONT to rigorously quantify XCI. This study provides a universal XCI-method on DNA, which is highly valuable in clinical and research framework of X-linked traits.
Collapse
Affiliation(s)
- Josefin Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Sarah Lidéus
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Ida Höijer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Sanna Gudmundsson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden.
| |
Collapse
|
8
|
Fuggle NR, Laskou F, Harvey NC, Dennison EM. A review of epigenetics and its association with ageing of muscle and bone. Maturitas 2022; 165:12-17. [PMID: 35841774 DOI: 10.1016/j.maturitas.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 10/31/2022]
Abstract
Ageing is defined as the 'increasing frailty of an organism with time that reduces the ability of that organism to deal with stress'. It has been suggested that epigenetics may underlie the observation that some individuals appear to age faster than others. Epigenetics is the study of changes which occur in an organism due to changes in expression of the genetic code rather than changes to the genetic code itself; that is, epigenetic mechanisms impact upon the function of DNA without changing the DNA sequence. It is important to recognise that epigenetic changes, in contrast to genetic changes, can vary according to different cell types and therefore can demonstrate significant tissue-specificity. There are different types of epigenetic mechanisms: histone modification, non-coding RNAs and DNA methylation. Epigenetic clocks have been developed using statistical techniques to identify the optimal combination of CpG sites (from methylation arrays) to correlate with chronological age. This review considers how epigenetic factors may affect rates of ageing of muscle and bone and provides an overview of current understanding in this area. We discuss studies using first-generation epigenetic clocks, as well as the second-generation iterations, which appear to show stronger associations with the ageing muscle phenotype. We also review epigenome-wide association studies that have been performed in various tissues examining relationships with osteoporosis and fracture. It is hoped that an understanding of this area will lead to interventions that might prevent or reduce rates of musculoskeletal ageing in later life.
Collapse
Affiliation(s)
- N R Fuggle
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - F Laskou
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - N C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - E M Dennison
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
9
|
Ocañas SR, Ansere VA, Tooley KB, Hadad N, Chucair-Elliott AJ, Stanford DR, Rice S, Wronowski B, Pham KD, Hoffman JM, Austad SN, Stout MB, Freeman WM. Differential Regulation of Mouse Hippocampal Gene Expression Sex Differences by Chromosomal Content and Gonadal Sex. Mol Neurobiol 2022; 59:4669-4702. [PMID: 35589920 PMCID: PMC9119800 DOI: 10.1007/s12035-022-02860-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/25/2022] [Indexed: 01/23/2023]
Abstract
Common neurological disorders, like Alzheimer's disease (AD), multiple sclerosis (MS), and autism, display profound sex differences in prevalence and clinical presentation. However, sex differences in the brain with health and disease are often overlooked in experimental models. Sex effects originate, directly or indirectly, from hormonal or sex chromosomal mechanisms. To delineate the contributions of genetic sex (XX v. XY) versus gonadal sex (ovaries v. testes) to the epigenomic regulation of hippocampal sex differences, we used the Four Core Genotypes (FCG) mouse model which uncouples chromosomal and gonadal sex. Transcriptomic and epigenomic analyses of ~ 12-month-old FCG mouse hippocampus, revealed genomic context-specific regulatory effects of genotypic and gonadal sex on X- and autosome-encoded gene expression and DNA modification patterns. X-chromosomal epigenomic patterns, classically associated with X-inactivation, were established almost entirely by genotypic sex, independent of gonadal sex. Differences in X-chromosome methylation were primarily localized to gene regulatory regions including promoters, CpG islands, CTCF binding sites, and active/poised chromatin, with an inverse relationship between methylation and gene expression. Autosomal gene expression demonstrated regulation by both genotypic and gonadal sex, particularly in immune processes. These data demonstrate an important regulatory role of sex chromosomes, independent of gonadal sex, on sex-biased hippocampal transcriptomic and epigenomic profiles. Future studies will need to further interrogate specific CNS cell types, identify the mechanisms by which sex chromosomes regulate autosomes, and differentiate organizational from activational hormonal effects.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Tooley
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Shannon Rice
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Benjamin Wronowski
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Jessica M Hoffman
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven N Austad
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael B Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Habano W, Miura T, Terashima J, Ozawa S. Aryl hydrocarbon receptor as a DNA methylation reader in the stress response pathway. Toxicology 2022; 470:153154. [PMID: 35301058 DOI: 10.1016/j.tox.2022.153154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The aryl hydrocarbon receptor (AhR) mediates various cellular responses upon exposure to exogenous and endogenous stress factors. In these responses, AhR plays a dual role as a stress sensor for detecting various AhR ligands and as a transcription factor that upregulates the expression of downstream effector genes, such as those encoding drug-metabolizing enzymes. As a transcription factor, it selectively binds to the unmethylated form of a specific sequence called the xenobiotic responsive element (XRE). We suggest that AhR is a novel DNA methylation reader, unlike classical methylation readers, such as methyl-CpG-binding protein 2, which binds to methylated sequences. Under physiological conditions of continuous exposure to endogenous AhR ligands, such as kynurenine, methylation states of the individual target XREs must be strictly regulated to select and coordinate the expression of downstream genes responsible for maintaining homeostasis in the body. In contrast, long-term exposure to AhR ligands frequently leads to changes in the methylation patterns around the XRE sequence. These data indicate that AhR may contribute to the adaptive cellular response to various stresses by modulating DNA methylation. Thus, the DNA methylation profile of AhR target genes should be dynamically controlled through a balance between robustness and flexibility under both physiological and stress conditions. AhR is a pivotal player in the regulation of stress response as it shows versatility by functioning as a stress sensor, methylation reader, and putative methylation modulator.
Collapse
Affiliation(s)
- Wataru Habano
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa 028-3694, Iwate, Japan.
| | - Toshitaka Miura
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa 028-3694, Iwate, Japan
| | - Jun Terashima
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa 028-3694, Iwate, Japan
| | - Shogo Ozawa
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa 028-3694, Iwate, Japan
| |
Collapse
|
11
|
Singh Rawat B, Venkataraman R, Budhwar R, Tailor P. Methionine- and Choline-Deficient Diet Identifies an Essential Role for DNA Methylation in Plasmacytoid Dendritic Cell Biology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:881-897. [PMID: 35101891 DOI: 10.4049/jimmunol.2100763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Diet plays an important role in lifestyle disorders associated with the disturbed immune system. During the study of methionine- and choline-deficient diet-induced nonalcoholic fatty liver disease, we observed a specific decrease in the plasmacytoid dendritic cell (pDC) fraction from murine spleens. While delineating the role for individual components, we identified that l-methionine supplementation correlates with representation of the pDC fraction. S-adenosylmethionine (SAM) is a key methyl donor, and we demonstrate that supplementation of methionine-deficient medium with SAM but not homocysteine reverses the defect in pDC development. l-Methionine has been implicated in maintenance of methylation status in the cell. Based on our observed effect of SAM and zebularine on DC subset development, we sought to clarify the role of DNA methylation in pDC biology. Whole-genome bisulfite sequencing analysis from the splenic DC subsets identified that pDCs display differentially hypermethylated regions in comparison with classical DC (cDC) subsets, whereas cDC1 and cDC2 exhibited comparable methylated regions, serving as a control in our study. We validated differentially methylated regions in the sorted pDC, CD8α+ cDC1, and CD4+ cDC2 subsets from spleens as well as FL-BMDC cultures. Upon analysis of genes linked with differentially methylated regions, we identified that differential DNA methylation is associated with the MAPK pathway such that its inhibition guides DC development toward the pDC subtype. Overall, our study identifies an important role for methionine in pDC biology.
Collapse
Affiliation(s)
| | - Ramya Venkataraman
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India
| | - Roli Budhwar
- Bionivid Technology Private Ltd., Bengaluru, Karnataka, India; and
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India;
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Brand BA, Blesson AE, Smith-Hicks CL. The Impact of X-Chromosome Inactivation on Phenotypic Expression of X-Linked Neurodevelopmental Disorders. Brain Sci 2021; 11:brainsci11070904. [PMID: 34356138 PMCID: PMC8305405 DOI: 10.3390/brainsci11070904] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022] Open
Abstract
Nearly 20% of genes located on the X chromosome are associated with neurodevelopmental disorders (NDD) due to their expression and role in brain functioning. Given their location, several of these genes are either subject to or can escape X-chromosome inactivation (XCI). The degree to which genes are subject to XCI can influence the NDD phenotype between males and females. We provide a general review of X-linked NDD genes in the context of XCI and detailed discussion of the sex-based differences related to MECP2 and FMR1, two common X-linked causes of NDD that are subject to XCI. Understanding the effects of XCI on phenotypic expression of NDD genes may guide the development of stratification biomarkers in X-linked disorders.
Collapse
Affiliation(s)
- Boudewien A Brand
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA; (B.A.B.); (A.E.B.)
| | - Alyssa E Blesson
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA; (B.A.B.); (A.E.B.)
| | - Constance L. Smith-Hicks
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Correspondence:
| |
Collapse
|
13
|
Das AB, Seddon AR, O'Connor KM, Hampton MB. Regulation of the epigenetic landscape by immune cell oxidants. Free Radic Biol Med 2021; 170:131-149. [PMID: 33444713 DOI: 10.1016/j.freeradbiomed.2020.12.453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Excessive production of microbicidal oxidants by neutrophils can damage host tissue. The short-term response of cells to oxidative stress is well understood, but the mechanisms behind long-term consequences require further clarification. Epigenetic pathways mediate cellular adaptation, and are therefore a potential target of oxidative stress. Indeed, there is evidence that many proteins and metabolites involved in epigenetic pathways are redox sensitive. In this review we provide an overview of the epigenetic landscape and discuss the potential for redox regulation. Using this information, we highlight specific examples where neutrophil oxidants react with epigenetic pathway components. We also use published data from redox proteomics to map out known intersections between oxidative stress and epigenetics that may signpost helpful directions for future investigation. Finally, we discuss the role neutrophils play in adaptive pathologies with a focus on tumour initiation and progression. We hope this information will stimulate further discourse on the emerging field of redox epigenomics.
Collapse
Affiliation(s)
- Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Annika R Seddon
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Karina M O'Connor
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
14
|
Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet 2021; 37:1012-1027. [PMID: 34120771 DOI: 10.1016/j.tig.2021.05.002] [Citation(s) in RCA: 349] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential.
Collapse
Affiliation(s)
- Atsuya Nishiyama
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
15
|
Migeon BR, Kazazian HH. Reflections on the history of genetic medicine at Johns Hopkins University. Am J Med Genet A 2021; 185:3224-3229. [PMID: 33955173 DOI: 10.1002/ajmg.a.62246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022]
Abstract
Two members of the faculty-who witnessed the birth of Genetic Medicine and remained to see it evolve-present their reflections about the history of genetic medicine at the Johns Hopkins Medical Institutions. They tell how the genetic units in Pediatrics and Medicine that were initiated by Barton Childs and Victor McKusick, respectively, became the McKusick Nathans Department of Genetic Medicine in 2020.
Collapse
Affiliation(s)
- Barbara R Migeon
- The McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Haig H Kazazian
- The McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Yi P, Xu X, Yao J, Qiu B. Analysis of mRNA Expression and DNA Methylation Datasets According to the Genomic Distribution of CpG Sites in Osteoarthritis. Front Genet 2021; 12:618803. [PMID: 33936160 PMCID: PMC8082497 DOI: 10.3389/fgene.2021.618803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Objectives Transcriptional changes in cartilage can impact function by causing degradation such as that which occurs during the development of osteoarthritis (OA). Epigenetic regulation may be a key factor leading to transcriptional changes in OA. In this study, we performed a combined analysis of DNA methylation and gene expression microarray datasets and identified key transcription factors (TFs) central to the regulation of gene expression in OA. Methods A DNA methylation profile dataset (GSE63106) and a gene expression profiling dataset (GSE114007) were extracted from the Gene Expression Omnibus (GEO). We used ChAMP methylation analysis and the Limma package to identify differentially methylation genes (DMGs) and differentially expressed genes (DEGs) from normal and human knee cartilage samples in OA. Function enrichment analysis of DMGs was conducted using the DAVID database. A combined analysis of DEGs and DMGs was conducted to identify key TFs in OA. We then validated the mRNA expression of selected TFs in normal and OA cartilage by RT-qPCR. Primary chondrocytes were cultured and treated with the DNA methylation inhibitor 5-Aza-2-deoxycytidine (5-Aza) for functional validation. Results We identified 2,170 differential methylation sites (DMS) containing 1005 genes and 1986 DEGs between normal human and OA cartilage. Functional analysis of DMGs revealed that focal adhesion, extracellular matrix (ECM)-receptor interactions, the PI3K-Akt signaling pathway, and the FoxO signaling pathway were involved in OA. Integrated analysis showed a subset of 17 TFs. Four TFs (ELF3, SOX11, RARA, and FOXD2) were validated. RT-qPCR results showed the mRNA expression of SOX11, RARA, and FOXD2 were consistent with the results from the mRNA expression data. However, the expression of ELF3 could not be validated. Upon 5-Aza-2'-deoxycytidine (5-Aza) treatment, the mRNA levels of ELF3 and SOX11 were down-regulated, whilst RARA was up-regulated, and FOXD2 showed no significant change in expression level. Conclusions the effect of DNA methylation on the transcriptional regulation is related to the distribution of methylated sites across the genome. Epigenetic studies on the positions of DMS in transcriptional units can inform a better understanding of the function of DNA methylation and its transcription regulation.
Collapse
Affiliation(s)
- Peng Yi
- Department of Orthopedic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiongfeng Xu
- Department of Orthopedic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiawei Yao
- Department of Orthopedic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Qiu
- Department of Orthopedic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Ivanova E, Le Guillou S, Hue-Beauvais C, Le Provost F. Epigenetics: New Insights into Mammary Gland Biology. Genes (Basel) 2021; 12:genes12020231. [PMID: 33562534 PMCID: PMC7914701 DOI: 10.3390/genes12020231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The mammary gland undergoes important anatomical and physiological changes from embryogenesis through puberty, pregnancy, lactation and involution. These steps are under the control of a complex network of molecular factors, in which epigenetic mechanisms play a role that is increasingly well described. Recently, studies investigating epigenetic modifications and their impacts on gene expression in the mammary gland have been performed at different physiological stages and in different mammary cell types. This has led to the establishment of a role for epigenetic marks in milk component biosynthesis. This review aims to summarize the available knowledge regarding the involvement of the four main molecular mechanisms in epigenetics: DNA methylation, histone modifications, polycomb protein activity and non-coding RNA functions.
Collapse
|
18
|
Feng Y, Endo M, Sugiyama H. Nucleosomes and Epigenetics from a Chemical Perspective. Chembiochem 2020; 22:595-612. [PMID: 32864867 DOI: 10.1002/cbic.202000332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Nucleosomes, which are the fundamental building blocks of chromatin, are highly dynamic, they play vital roles in the formation of higher-order chromatin structures and orchestrate gene regulation. Nucleosome structures, histone modifications, nucleosome-binding proteins, and their functions are being gradually unravelled with the development of epigenetics. With the continuous development of research approaches such as cryo-EM, FRET and next-generation sequencing for genome-wide analysis of nucleosomes, the understanding of nucleosomes is getting wider and deeper. Herein, we review recent progress in research on nucleosomes and epigenetics, from nucleosome structure to chromatin formation, with a focus on chemical aspects. Basic knowledge of the nucleosome (nucleosome structure, nucleosome position sequence, nucleosome assembly and remodeling), epigenetic modifications, chromatin structure, chemical biology methods and nucleosome, observation nucleosome by AFM, phase separation and nucleosomes are described in this review.
Collapse
Affiliation(s)
- Yihong Feng
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Kyoto, 606-8502, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University Yoshida-Ushinomiyacho, Kyoto, 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University Yoshida-Ushinomiyacho, Kyoto, 606-8501, Japan
| |
Collapse
|
19
|
Katoh K, Aiba K, Fukushi D, Yoshimura J, Suzuki Y, Mitsui J, Morishita S, Tuji S, Yamada K, Wakamatsu N. Clinical and molecular genetic characterization of two female patients harboring the Xq27.3q28 deletion with different ratios of X chromosome inactivation. Hum Mutat 2020; 41:1447-1460. [PMID: 32485067 DOI: 10.1002/humu.24058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 11/10/2022]
Abstract
A heterozygous deletion at Xq27.3q28 including FMR1, AFF2, and IDS causing intellectual disability and characteristic facial features is very rare in females, with only 10 patients having been reported. Here, we examined two female patients with different clinical features harboring the Xq27.3q28 deletion and determined the chromosomal breakpoints. Moreover, we assessed the X chromosome inactivation (XCI) in peripheral blood from both patients. Both patients had an almost overlapping deletion at Xq27.3q28, however, the more severe patient (Patient 1) showed skewed XCI of the normal X chromosome (79:21) whereas the milder patient (Patient 2) showed random XCI. Therefore, deletion at Xq27.3q28 critically affected brain development, and the ratio of XCI of the normal X chromosome greatly affected the clinical characteristics of patients with deletion at Xq27.3q28. As the chromosomal breakpoints were determined, we analyzed a change in chromatin domains termed topologically associated domains (TADs) using published Hi-C data on the Xq27.3q28 region, and found that only patient 1 had a possibility of a drastic change in TADs. The altered chromatin topologies on the Xq27.3q28 region might affect the clinical features of patient 1 by changing the expression of genes just outside the deletion and/or the XCI establishment during embryogenesis resulting in skewed XCI.
Collapse
Affiliation(s)
- Kimiko Katoh
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Kaori Aiba
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Daisuke Fukushi
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyo Suzuki
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, The University of Tokyo, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoji Tuji
- Department of Molecular Neurology, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Yamada
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Nobuaki Wakamatsu
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan.,Department of Neurology, Neurology and Stroke Center, Takamatsu Municipal Hospital, Takamatsu, Kagawa, Japan.,Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
20
|
The influence of DNA methylation on monoallelic expression. Essays Biochem 2020; 63:663-676. [PMID: 31782494 PMCID: PMC6923323 DOI: 10.1042/ebc20190034] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023]
Abstract
Monoallelic gene expression occurs in diploid cells when only one of the two alleles of a gene is active. There are three main classes of genes that display monoallelic expression in mammalian genomes: (1) imprinted genes that are monoallelically expressed in a parent-of-origin dependent manner; (2) X-linked genes that undergo random X-chromosome inactivation in female cells; (3) random monoallelically expressed single and clustered genes located on autosomes. The heritability of monoallelic expression patterns during cell divisions implies that epigenetic mechanisms are involved in the cellular memory of these expression states. Among these, methylation of CpG sites on DNA is one of the best described modification to explain somatic inheritance. Here, we discuss the relevance of DNA methylation for the establishment and maintenance of monoallelic expression patterns among these three groups of genes, and how this is intrinsically linked to development and cellular states.
Collapse
|
21
|
Dompe C, Janowicz K, Hutchings G, Moncrieff L, Jankowski M, Nawrocki MJ, Józkowiak M, Mozdziak P, Petitte J, Shibli JA, Dyszkiewicz-Konwińska M, Bruska M, Piotrowska-Kempisty H, Kempisty B, Nowicki M. Epigenetic Research in Stem Cell Bioengineering-Anti-Cancer Therapy, Regenerative and Reconstructive Medicine in Human Clinical Trials. Cancers (Basel) 2020; 12:E1016. [PMID: 32326172 PMCID: PMC7226111 DOI: 10.3390/cancers12041016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The epigenome denotes all the information related to gene expression that is not contained in the DNA sequence but rather results from chemical changes to histones and DNA. Epigenetic modifications act in a cooperative way towards the regulation of gene expression, working at the transcriptional or post-transcriptional level, and play a key role in the determination of phenotypic variations in cells containing the same genotype. Epigenetic modifications are important considerations in relation to anti-cancer therapy and regenerative/reconstructive medicine. Moreover, a range of clinical trials have been performed, exploiting the potential of epigenetics in stem cell engineering towards application in disease treatments and diagnostics. Epigenetic studies will most likely be the basis of future cancer therapies, as epigenetic modifications play major roles in tumour formation, malignancy and metastasis. In fact, a large number of currently designed or tested clinical approaches, based on compounds regulating epigenetic pathways in various types of tumours, employ these mechanisms in stem cell bioengineering.
Collapse
Affiliation(s)
- Claudia Dompe
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (C.D.); (L.M.); (M.N.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (K.J.); (G.H.)
| | - Krzysztof Janowicz
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (K.J.); (G.H.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (K.J.); (G.H.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Lisa Moncrieff
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (C.D.); (L.M.); (M.N.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (K.J.); (G.H.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jim Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, São Paulo 07023-070, Brazil;
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61 701 Poznan, Poland
| | - Małgorzata Bruska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (C.D.); (L.M.); (M.N.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (M.J.N.); (M.D.-K.); (M.B.)
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87 100 Torun, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (C.D.); (L.M.); (M.N.)
| |
Collapse
|
22
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 590] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Gupta OP, Dahuja A, Sachdev A, Jain PK, Kumari S, T V, Praveen S. Cytosine Methylation of Isoflavone Synthase Gene in the Genic Region Positively Regulates Its Expression and Isoflavone Biosynthesis in Soybean Seeds. DNA Cell Biol 2019; 38:510-520. [PMID: 31017480 DOI: 10.1089/dna.2018.4584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Plants, being sessile organisms, have evolved several dynamic mechanisms of gene regulation. Epigenetic modification especially cytosine methylation and demethylation actively regulates the expression of genes. To understand the role of cytosine methylation during isoflavonoid biosynthesis and accumulation, we performed cytosine methylation analysis in the coding region of two isoforms IFS1 and IFS2 gene, in two contrasting soybean genotypes differing in total isoflavone content (NRC37: high isoflavone; and NRC7: low isoflavone). The results indicated increased 5-mC in both the isoforms in NRC37 (∼20.51% in IFS2 and ∼85% in IFS1) compared with NRC7 (∼7.8% in IFS2 and ∼2.5% in IFS1) genotype, which signifies the positive role of 5-mC in the coding region of the gene leading to enhanced expression. In addition, temporal expression profiling [35 days after flowering (DAF), 45, 55, and 65 DAF] of both the isoforms showed increasing trend of accumulation in both the genotypes with maximum in NRC37 at 65 DAF. To further establish a correlation between methylation and expression of transcripts, we quantified the different isoforms of isoflavone in both the genotypes across all the stages. Therefore, the finding of this study would certainly increase our understanding of epigenetic regulation of isoflavone biosynthetic pathway mediated by the cytosine methylation that would assist molecular breeders to get high-performing soybean genotypes with better isoflavone yield.
Collapse
Affiliation(s)
- Om Prakash Gupta
- 1 Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Dahuja
- 1 Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Archana Sachdev
- 1 Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pradeep Kumar Jain
- 2 ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Sweta Kumari
- 1 Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vinutha T
- 1 Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shelly Praveen
- 1 Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
24
|
López AJ, Siciliano CA, Calipari ES. Activity-Dependent Epigenetic Remodeling in Cocaine Use Disorder. Handb Exp Pharmacol 2019; 258:231-263. [PMID: 31628597 DOI: 10.1007/164_2019_257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Substance use disorder (SUD) is a behavioral disorder characterized by cycles of abstinence, drug seeking, and relapse. SUD is characterized by aberrant learning processes which develop after repeated exposure to drugs of abuse. At the core of this phenotype is the persistence of symptoms, such as craving and relapse to drug seeking, long after the cessation of drug use. The neural basis of these behavioral changes has been linked to dysfunction in neural circuits across the brain; however, the molecular drivers that allow for these changes to persist beyond the lifespan of any individual protein remain opaque. Epigenetic adaptations - where DNA is modified to increase or decrease the probability of gene expression at key genes - have been identified as a mechanism underlying the long-lasting nature of drug-seeking behavior. Thus, to understand SUD, it is critical to define the interplay between neuronal activation and longer-term changes in transcription and epigenetic remodeling and define their role in addictive behaviors. In this review, we discuss the current understanding of drug-induced changes to circuit function, recent discoveries in epigenetic mechanisms that mediate these changes, and, ultimately, how these adaptations drive the persistent nature of relapse, with emphasis on adaptations in models of cocaine use disorder. Understanding the complex interplay between epigenetic gene regulation and circuit activity will be critical in elucidating the neural mechanisms underlying SUD. This, with the advent of novel genetic-based techniques, will allow for the generation of novel therapeutic avenues to improve treatment outcomes in SUD.
Collapse
Affiliation(s)
- Alberto J López
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt Institute for Infection, Immunology, and Infection, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Psychiatry and Behavioral Sciences, Vanderbilt Institute for Infection, Immunology, and Infection, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
25
|
Chakraborty A, Viswanathan P. Methylation-Demethylation Dynamics: Implications of Changes in Acute Kidney Injury. Anal Cell Pathol (Amst) 2018. [DOI: https://doi.org/10.1155/2018/8764384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over the years, the epigenetic landscape has grown increasingly complex. Until recently, methylation of DNA and histones was considered one of the most important epigenetic modifications. However, with the discovery of enzymes involved in the demethylation process, several exciting prospects have emerged that focus on the dynamic regulation of methylation and its crucial role in development and disease. An interplay of the methylation-demethylation machinery controls the process of gene expression. Since acute kidney injury (AKI), a major risk factor for chronic kidney disease and death, is characterised by aberrant expression of genes, understanding the dynamics of methylation and demethylation will provide new insights into the intricacies of the disease. Research on epigenetics in AKI has only made its mark in the recent years but has provided compelling evidence that implicates the involvement of methylation and demethylation changes in its pathophysiology. In this review, we explore the role of methylation and demethylation machinery in cellular epigenetic control and further discuss the contribution of methylomic changes and histone modifications to the pathophysiology of AKI.
Collapse
Affiliation(s)
- Anubhav Chakraborty
- Renal Research Lab, Centre for Bio-Medical Research, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Bio-Medical Research, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
26
|
Kresovich JK, Bulka CM, Joyce BT, Vokonas PS, Schwartz J, Baccarelli AA, Hibler EA, Hou L. The Inflammatory Potential of Dietary Manganese in a Cohort of Elderly Men. Biol Trace Elem Res 2018; 183:49-57. [PMID: 28822065 PMCID: PMC5844859 DOI: 10.1007/s12011-017-1127-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/08/2017] [Indexed: 01/11/2023]
Abstract
Manganese is an essential nutrient that may play a role in the production of inflammatory biomarkers. We examined associations between estimated dietary manganese intake from food/beverages and supplements with circulating biomarkers of inflammation. We further explored whether estimated dietary manganese intake affects DNA methylation of selected genes involved in the production of these biomarkers. We analyzed 1023 repeated measures of estimated dietary manganese intakes and circulating blood inflammatory biomarkers from 633 participants in the Normative Aging Study. Using mixed-effect linear regression models adjusted for covariates, we observed positive linear trends between estimated dietary manganese intakes and three circulating interleukin proteins. Relative to the lowest quartile of estimated intake, concentrations of IL-1β were 46% greater (95% CI - 5, 126), IL-6 52% greater (95% CI - 9, 156). and IL-8 32% greater (95% CI 2, 71) in the highest quartiles of estimated intake. Estimated dietary manganese intake was additionally associated with changes in DNA methylation of inflammatory biomarker-producing genes. Higher estimated intake was associated with higher methylation of NF-κβ member activator NKAP (Q4 vs Q1: β = 3.32, 95% CI - 0.6, 7.3). When stratified by regulatory function, higher manganese intake was associated with higher gene body methylation of NF-κβ member activators NKAP (Q4 vs Q1: β = 10.10, 95% CI - 0.8, 21) and NKAPP1 (Q4 vs Q1: β = 8.14, 95% CI 1.1, 15). While needed at trace amounts for various physiologic functions, our results suggest estimated dietary intakes of manganese at levels slightly above nutritional adequacy contribute to inflammatory biomarker production.
Collapse
Affiliation(s)
- Jacob K Kresovich
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Epidemiology and Biostatisitics, University of Illinois at Chicago School of Public Health, Chicago, IL, 60612, USA.
| | - Catherine M Bulka
- Division of Epidemiology and Biostatisitics, University of Illinois at Chicago School of Public Health, Chicago, IL, 60612, USA
| | - Brian T Joyce
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Division of Epidemiology and Biostatisitics, University of Illinois at Chicago School of Public Health, Chicago, IL, 60612, USA
| | - Pantel S Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Joel Schwartz
- Department of Environmental Health and Program in Quantitative Genomics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Andrea A Baccarelli
- Departments of Epidemiology and Environmental Health Sciences, Columbia University Mailman School of Public Health, New York City, NY, 10032, USA
| | - Elizabeth A Hibler
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
27
|
Chakraborty A, Viswanathan P. Methylation-Demethylation Dynamics: Implications of Changes in Acute Kidney Injury. Anal Cell Pathol (Amst) 2018; 2018:8764384. [PMID: 30073137 PMCID: PMC6057397 DOI: 10.1155/2018/8764384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 02/05/2023] Open
Abstract
Over the years, the epigenetic landscape has grown increasingly complex. Until recently, methylation of DNA and histones was considered one of the most important epigenetic modifications. However, with the discovery of enzymes involved in the demethylation process, several exciting prospects have emerged that focus on the dynamic regulation of methylation and its crucial role in development and disease. An interplay of the methylation-demethylation machinery controls the process of gene expression. Since acute kidney injury (AKI), a major risk factor for chronic kidney disease and death, is characterised by aberrant expression of genes, understanding the dynamics of methylation and demethylation will provide new insights into the intricacies of the disease. Research on epigenetics in AKI has only made its mark in the recent years but has provided compelling evidence that implicates the involvement of methylation and demethylation changes in its pathophysiology. In this review, we explore the role of methylation and demethylation machinery in cellular epigenetic control and further discuss the contribution of methylomic changes and histone modifications to the pathophysiology of AKI.
Collapse
Affiliation(s)
- Anubhav Chakraborty
- Renal Research Lab, Centre for Bio-Medical Research, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Bio-Medical Research, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
28
|
Abstract
The discovery of CpG islands (CGIs) and the study of their structure and properties run parallel to the development of molecular biology in the last two decades of the twentieth century and to the development of high-throughput genomic technologies at the turn of the millennium. First identified as discrete G + C-rich regions of unmethylated DNA in several vertebrates, CGIs were soon found to display additional distinctive chromatin features from the rest of the genome in terms of accessibility and of the epigenetic modifications of their histones. These features, together with their colocalization with promoters and with origins of DNA replication in mammals, highlighted their relevance in the regulation of genomic processes. Recent approaches have shown with unprecedented detail the dynamics and diversity of the epigenetic landscape of CGIs during normal development and under pathological conditions. Also, comparative analyses across species have started revealing how CGIs evolve and contribute to the evolution of the vertebrate genome.
Collapse
Affiliation(s)
- Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain.
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| |
Collapse
|
29
|
Nanan KK, Ocheltree C, Sturgill D, Mandler MD, Prigge M, Varma G, Oberdoerffer S. Independence between pre-mRNA splicing and DNA methylation in an isogenic minigene resource. Nucleic Acids Res 2017; 45:12780-12797. [PMID: 29244186 PMCID: PMC5727405 DOI: 10.1093/nar/gkx900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022] Open
Abstract
Actively transcribed genes adopt a unique chromatin environment with characteristic patterns of enrichment. Within gene bodies, H3K36me3 and cytosine DNA methylation are elevated at exons of spliced genes and have been implicated in the regulation of pre-mRNA splicing. H3K36me3 is further responsive to splicing, wherein splicing inhibition led to a redistribution and general reduction over gene bodies. In contrast, little is known of the mechanisms supporting elevated DNA methylation at actively spliced genic locations. Recent evidence associating the de novo DNA methyltransferase Dnmt3b with H3K36me3-rich chromatin raises the possibility that genic DNA methylation is influenced by splicing-associated H3K36me3. Here, we report the generation of an isogenic resource to test the direct impact of splicing on chromatin. A panel of minigenes of varying splicing potential were integrated into a single FRT site for inducible expression. Profiling of H3K36me3 confirmed the established relationship to splicing, wherein levels were directly correlated with splicing efficiency. In contrast, DNA methylation was equivalently detected across the minigene panel, irrespective of splicing and H3K36me3 status. In addition to revealing a degree of independence between genic H3K36me3 and DNA methylation, these findings highlight the generated minigene panel as a flexible platform for the query of splicing-dependent chromatin modifications.
Collapse
Affiliation(s)
- Kyster K. Nanan
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cody Ocheltree
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariana D. Mandler
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Prigge
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Garima Varma
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Chen Z, Li S, Subramaniam S, Shyy JYJ, Chien S. Epigenetic Regulation: A New Frontier for Biomedical Engineers. Annu Rev Biomed Eng 2017; 19:195-219. [PMID: 28301736 DOI: 10.1146/annurev-bioeng-071516-044720] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gene expression in mammalian cells depends on the epigenetic status of the chromatin, including DNA methylation, histone modifications, promoter-enhancer interactions, and noncoding RNA-mediated regulation. The coordinated actions of these multifaceted regulations determine cell development, cell cycle regulation, cell state and fate, and the ultimate responses in health and disease. Therefore, studies of epigenetic modulations are critical for our understanding of gene regulation mechanisms at the molecular, cellular, tissue, and organ levels. The aim of this review is to provide biomedical engineers with an overview of the principles of epigenetics, methods of study, recent findings in epigenetic regulation in health and disease, and computational and sequencing tools for epigenetics analysis, with an emphasis on the cardiovascular system. This review concludes with the perspectives of the application of bioengineering to advance epigenetics and the utilization of epigenetics to translate bioengineering research into clinical medicine.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91016; .,Department of Medicine, University of California at San Diego, La Jolla, California 92093; ,
| | - Shuai Li
- Department of Medicine, University of California at San Diego, La Jolla, California 92093; ,
| | - Shankar Subramaniam
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, California 92093; ,
| | - John Y-J Shyy
- Department of Medicine, University of California at San Diego, La Jolla, California 92093; ,
| | - Shu Chien
- Department of Medicine, University of California at San Diego, La Jolla, California 92093; , .,Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, California 92093; ,
| |
Collapse
|
31
|
|
32
|
Dirks RAM, Stunnenberg HG, Marks H. Genome-wide epigenomic profiling for biomarker discovery. Clin Epigenetics 2016; 8:122. [PMID: 27895806 PMCID: PMC5117701 DOI: 10.1186/s13148-016-0284-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022] Open
Abstract
A myriad of diseases is caused or characterized by alteration of epigenetic patterns, including changes in DNA methylation, post-translational histone modifications, or chromatin structure. These changes of the epigenome represent a highly interesting layer of information for disease stratification and for personalized medicine. Traditionally, epigenomic profiling required large amounts of cells, which are rarely available with clinical samples. Also, the cellular heterogeneity complicates analysis when profiling clinical samples for unbiased genome-wide biomarker discovery. Recent years saw great progress in miniaturization of genome-wide epigenomic profiling, enabling large-scale epigenetic biomarker screens for disease diagnosis, prognosis, and stratification on patient-derived samples. All main genome-wide profiling technologies have now been scaled down and/or are compatible with single-cell readout, including: (i) Bisulfite sequencing to determine DNA methylation at base-pair resolution, (ii) ChIP-Seq to identify protein binding sites on the genome, (iii) DNaseI-Seq/ATAC-Seq to profile open chromatin, and (iv) 4C-Seq and HiC-Seq to determine the spatial organization of chromosomes. In this review we provide an overview of current genome-wide epigenomic profiling technologies and main technological advances that allowed miniaturization of these assays down to single-cell level. For each of these technologies we evaluate their application for future biomarker discovery. We will focus on (i) compatibility of these technologies with methods used for clinical sample preservation, including methods used by biobanks that store large numbers of patient samples, and (ii) automation of these technologies for robust sample preparation and increased throughput.
Collapse
Affiliation(s)
- René A M Dirks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, The Netherlands
| |
Collapse
|
33
|
Ferreira WAS, Pinheiro DDR, Costa Junior CAD, Rodrigues-Antunes S, Araújo MD, Leão Barros MB, Teixeira ACDS, Faro TAS, Burbano RR, Oliveira EHCD, Harada ML, Borges BDN. An update on the epigenetics of glioblastomas. Epigenomics 2016; 8:1289-305. [PMID: 27585647 DOI: 10.2217/epi-2016-0040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glioblastomas, also known as glioblastoma multiforme (GBM), are the most aggressive and malignant type of primary brain tumor in adults, exhibiting notable variability at the histopathological, genetic and epigenetic levels. Recently, epigenetic alterations have emerged as a common hallmark of many tumors, including GBM. Considering that a deeper understanding of the epigenetic modifications that occur in GBM may increase the knowledge regarding the tumorigenesis, progression and recurrence of this disease, in this review we discuss the recent major advances in GBM epigenetics research involving histone modification, glioblastoma stem cells, DNA methylation, noncoding RNAs expression, including their main alterations and the use of epigenetic therapy as a valid option for GBM treatment.
Collapse
Affiliation(s)
- Wallax Augusto Silva Ferreira
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Danilo do Rosário Pinheiro
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Carlos Antonio da Costa Junior
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Symara Rodrigues-Antunes
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Mariana Diniz Araújo
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Mariceli Baia Leão Barros
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Adriana Corrêa de Souza Teixeira
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Thamirys Aline Silva Faro
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | | | | | - Maria Lúcia Harada
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Bárbara do Nascimento Borges
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| |
Collapse
|
34
|
Li S, Zhu Y, Zhi L, Han X, Shen J, Liu Y, Yao J, Yang X. DNA Methylation Variation Trends during the Embryonic Development of Chicken. PLoS One 2016; 11:e0159230. [PMID: 27438711 PMCID: PMC4954715 DOI: 10.1371/journal.pone.0159230] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/29/2016] [Indexed: 11/18/2022] Open
Abstract
The embryogenesis period is critical for epigenetic reprogramming and is thus of great significance in the research field of poultry epigenetics for elucidation of the trends in DNA methylation variations during the embryonic development of birds, particularly due to differences in embryogenesis between birds and mammals. Here, we first examined the variations in genomic DNA methylation during chicken embryogenesis through high-performance liquid chromatography using broilers as the model organism. We then identified the degree of DNA methylation of the promoters and gene bodies involved in two specific genes (IGF2 and TNF-α) using the bisulfite sequencing polymerase chain reaction method. In addition, we measured the expression levels of IGF2, TNF-α and DNA methyltransferase (DNMT) 1, 3a and 3b. Our results showed that the genomic DNA methylation levels in the liver, heart and muscle increased during embryonic development and that the methylation level of the liver was significantly higher in mid-anaphase. In both the muscle and liver, the promoter methylation levels of TNF-α first increased and then decreased, whereas the gene body methylation levels remained lower at embryonic ages E8, 11 and 14 before increasing notably at E17. The promoter methylation level of IGF2 decreased persistently, whereas the methylation levels in the gene body showed a continuous increase. No differences in the expression of TNF-α were found among E8, 11 and 14, whereas a significant increase was observed at E17. IGF2 showed increasing expression level during the examined embryonic stages. In addition, the mRNA and protein levels of DNMTs increased with increasing embryonic ages. These results suggest that chicken shows increasing genomic DNA methylation patterns during the embryonic period. Furthermore, the genomic DNA methylation levels in tissues are closely related to the genes expression levels, and gene expression may be simultaneously regulated by promoter hypomethylation and gene body hypermethylation.
Collapse
Affiliation(s)
- Shizhao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yufei Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lihui Zhi
- School of Mathematics and Computer Science, ShanXi Normal University, Linfen, Shanxi, People's Republic of China
| | - Xiaoying Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- * E-mail:
| |
Collapse
|
35
|
Machiela MJ, Zhou W, Karlins E, Sampson JN, Freedman ND, Yang Q, Hicks B, Dagnall C, Hautman C, Jacobs KB, Abnet CC, Aldrich MC, Amos C, Amundadottir LT, Arslan AA, Beane-Freeman LE, Berndt SI, Black A, Blot WJ, Bock CH, Bracci PM, Brinton LA, Bueno-de-Mesquita HB, Burdett L, Buring JE, Butler MA, Canzian F, Carreón T, Chaffee KG, Chang IS, Chatterjee N, Chen C, Chen C, Chen K, Chung CC, Cook LS, Crous Bou M, Cullen M, Davis FG, De Vivo I, Ding T, Doherty J, Duell EJ, Epstein CG, Fan JH, Figueroa JD, Fraumeni JF, Friedenreich CM, Fuchs CS, Gallinger S, Gao YT, Gapstur SM, Garcia-Closas M, Gaudet MM, Gaziano JM, Giles GG, Gillanders EM, Giovannucci EL, Goldin L, Goldstein AM, Haiman CA, Hallmans G, Hankinson SE, Harris CC, Henriksson R, Holly EA, Hong YC, Hoover RN, Hsiung CA, Hu N, Hu W, Hunter DJ, Hutchinson A, Jenab M, Johansen C, Khaw KT, Kim HN, Kim YH, Kim YT, Klein AP, Klein R, Koh WP, Kolonel LN, Kooperberg C, Kraft P, Krogh V, Kurtz RC, LaCroix A, Lan Q, Landi MT, Marchand LL, Li D, Liang X, Liao LM, Lin D, Liu J, Lissowska J, Lu L, Magliocco AM, Malats N, Matsuo K, McNeill LH, McWilliams RR, Melin BS, Mirabello L, Moore L, Olson SH, Orlow I, Park JY, Patiño-Garcia A, Peplonska B, Peters U, Petersen GM, Pooler L, Prescott J, Prokunina-Olsson L, Purdue MP, Qiao YL, Rajaraman P, Real FX, Riboli E, Risch HA, Rodriguez-Santiago B, Ruder AM, Savage SA, Schumacher F, Schwartz AG, Schwartz KL, Seow A, Wendy Setiawan V, Severi G, Shen H, Sheng X, Shin MH, Shu XO, Silverman DT, Spitz MR, Stevens VL, Stolzenberg-Solomon R, Stram D, Tang ZZ, Taylor PR, Teras LR, Tobias GS, Van Den Berg D, Visvanathan K, Wacholder S, Wang JC, Wang Z, Wentzensen N, Wheeler W, White E, Wiencke JK, Wolpin BM, Wong MP, Wu C, Wu T, Wu X, Wu YL, Wunder JS, Xia L, Yang HP, Yang PC, Yu K, Zanetti KA, Zeleniuch-Jacquotte A, Zheng W, Zhou B, Ziegler RG, Perez-Jurado LA, Caporaso NE, Rothman N, Tucker M, Dean MC, Yeager M, Chanock SJ. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nat Commun 2016; 7:11843. [PMID: 27291797 PMCID: PMC4909985 DOI: 10.1038/ncomms11843] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.
Collapse
Affiliation(s)
- Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Eric Karlins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Qi Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Casey Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Christopher Hautman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Kevin B. Jacobs
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
- Bioinformed, LLC, Gaithersburg, Maryland 20877, USA
| | - Christian C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Melinda C. Aldrich
- Department of Thoracic Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Christopher Amos
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Laufey T. Amundadottir
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alan A. Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, USA
- New York University Cancer Institute, New York, New York 10016, USA
| | - Laura E. Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - William J. Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- International Epidemiology Institute, Rockville, Maryland 20850, USA
| | - Cathryn H. Bock
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Paige M. Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California 94143, USA
| | - Louise A. Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - H Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3721 Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center, 3584 CX Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London SW7 2AZ, UK
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Julie E. Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Mary A. Butler
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio 45226, USA
| | - Federico Canzian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tania Carreón
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio 45226, USA
| | - Kari G. Chaffee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Chu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Constance Chen
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300040, China
| | - Charles C. Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Linda S. Cook
- University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Marta Crous Bou
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael Cullen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Faith G. Davis
- Department of Public Health Sciences, School of Public Health, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Immaculata De Vivo
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ti Ding
- Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, China
| | - Jennifer Doherty
- Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03755, USA
| | - Eric J. Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute, Catalan Institute of Oncology (ICO-IDIBELL), 08908 Barcelona, Spain
| | - Caroline G. Epstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jin-Hu Fan
- Shanghai Cancer Institute, Shanghai 200032, China
| | - Jonine D. Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Joseph F. Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Christine M. Friedenreich
- Department of Population Health Research, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada T2N 2T9
| | - Charles S. Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Steven Gallinger
- Fred A Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada M5G 1X5
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotaong University School of Medicine, Shanghai 200032, China
| | - Susan M. Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Montserrat Garcia-Closas
- Division of Genetics and Epidemiology, and Breakthrough Breast Cancer Centre, Institute for Cancer Research, London SM2 5NG, UK
| | - Mia M. Gaudet
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - J. Michael Gaziano
- Divisions of Preventive Medicine and Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Massachusetts Veterans Epidemiology Research and Information Center/VA Cooperative Studies Programs, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02130, USA
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria & Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Elizabeth M. Gillanders
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Edward L. Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Lynn Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Christopher A. Haiman
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Goran Hallmans
- Department of Public Health and Clinical Medicine/Nutritional Research, Umeå University, 901 87 Umeå, Sweden
| | - Susan E. Hankinson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Biostatistics and Epidemiology, University of Massachusetts School of Public Health and Health Sciences, Amherst, Massachusetts 01003, USA
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umeå University, 901 87 Umeå, Sweden
| | - Elizabeth A. Holly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California 94143, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 151-742, Republic of Korea
| | - Robert N. Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Chao A. Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - David J. Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Christoffer Johansen
- Oncology, Finsen Centre, Rigshospitalet, 2100 Copenhagen, Denmark
- Unit of Survivorship Research, The Danish Cancer Society Research Centre, 2100 Copenhagen, Denmark
| | - Kay-Tee Khaw
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Hee Nam Kim
- Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yeul Hong Kim
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul 151-742, Republic of Korea
| | - Young Tae Kim
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Alison P. Klein
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Robert Klein
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, USA
| | - Woon-Puay Koh
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore
| | - Laurence N. Kolonel
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Vittorio Krogh
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milano 20133, Italy
| | - Robert C. Kurtz
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Andrea LaCroix
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiaolin Liang
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Linda M. Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Dongxin Lin
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianjun Liu
- Department of Human Genetics, Genome Institute of Singapore 138672, Singapore
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, Maria Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Lingeng Lu
- Yale School of Public Health, New Haven, Connecticut 06510, USA
| | | | - Nuria Malats
- Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Keitaro Matsuo
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Lorna H. McNeill
- Department of Health Disparities Research, Division of OVP, Cancer Prevention and Population Sciences, and Center for Community-Engaged Translational Research, Duncan Family Institute, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Beatrice S. Melin
- Department of Radiation Sciences, Oncology, Umeå University, 901 87 Umeå, Sweden
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Lee Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sara H. Olson
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Irene Orlow
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jae Yong Park
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu 101, Republic of Korea
| | - Ana Patiño-Garcia
- Department of Pediatrics, University Clinic of Navarra, Universidad de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona 31080, Spain
| | - Beata Peplonska
- Nofer Institute of Occupational Medicine, Lodz 91-348, Poland
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Gloria M. Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Loreall Pooler
- University of Southern California, Los Angeles, California 90007, USA
| | - Jennifer Prescott
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - You-Lin Qiao
- Department of Epidemiology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Preetha Rajaraman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Francisco X. Real
- Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Elio Riboli
- Division of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Harvey A. Risch
- Yale School of Public Health, New Haven, Connecticut 06510, USA
| | - Benjamin Rodriguez-Santiago
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 28029, Spain
- Quantitative Genomic Medicine Laboratory, qGenomics, Barcelona 08003, Spain
| | - Avima M. Ruder
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio 45226, USA
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Fredrick Schumacher
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Ann G. Schwartz
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Kendra L. Schwartz
- Karmanos Cancer Institute and Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Adeline Seow
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore
| | - Veronica Wendy Setiawan
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Gianluca Severi
- Cancer Epidemiology Centre, Cancer Council Victoria & Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Human Genetics Foundation (HuGeF), Torino, 10126, Italy
| | - Hongbing Shen
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology, Nanjing Medical University School of Public Health, Nanjing 210029, China
| | - Xin Sheng
- University of Southern California, Los Angeles, California 90007, USA
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwanju 501-746, Republic of Korea
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Debra T. Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | - Victoria L. Stevens
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Rachael Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Daniel Stram
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Ze-Zhong Tang
- Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, China
| | - Philip R. Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Lauren R. Teras
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Geoffrey S. Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - David Van Den Berg
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Kala Visvanathan
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21218, USA
| | - Sholom Wacholder
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jiu-Cun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - William Wheeler
- Information Management Services Inc., Calverton, Maryland, 20904, USA
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - John K. Wiencke
- University of California San Francisco, San Francisco, California 94143, USA
| | - Brian M. Wolpin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Maria Pik Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chen Wu
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tangchun Wu
- Institute of Occupational Medicine and Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan 430400, China
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 515200, China
| | - Jay S. Wunder
- Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 515200, China
| | - Lucy Xia
- University of Southern California, Los Angeles, California 90007, USA
| | - Hannah P. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Pan-Chyr Yang
- Division of Urologic Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Krista A. Zanetti
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Anne Zeleniuch-Jacquotte
- New York University Cancer Institute, New York, New York 10016, USA
- Department of Population Health, New York University School of Medicine, New York, New York 10016, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110001, China
| | - Regina G. Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Luis A. Perez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 28029, Spain
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Margaret Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Michael C. Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
36
|
An overview of X inactivation based on species differences. Semin Cell Dev Biol 2016; 56:111-116. [PMID: 26805440 DOI: 10.1016/j.semcdb.2016.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 12/29/2022]
Abstract
X inactivation, a developmental process that takes place in early stages of mammalian embryogenesis, balances the sex difference in dosage of X-linked genes. Although all mammals use this form of dosage compensation, the details differ from one species to another because of variations in the staging of embryogenesis and evolutionary tinkering with the DNA blueprint for development. Such differences provide a broader view of the process than that afforded by a single species. My overview of X inactivation is based on these species variations.
Collapse
|
37
|
Lu X, Wang W, Ren W, Chai Z, Guo W, Chen R, Wang L, Zhao J, Lang Z, Fan Y, Zhao J, Zhang C. Genome-Wide Epigenetic Regulation of Gene Transcription in Maize Seeds. PLoS One 2015; 10:e0139582. [PMID: 26469520 PMCID: PMC4607434 DOI: 10.1371/journal.pone.0139582] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 09/15/2015] [Indexed: 11/21/2022] Open
Abstract
Background Epigenetic regulation is well recognized for its importance in gene expression in organisms. DNA methylation, an important epigenetic mark, has received enormous attention in recent years as it’s a key player in many biological processes. It remains unclear how DNA methylation contributes to gene transcription regulation in maize seeds. Here, we take advantage of recent technologies to examine the genome-wide association of DNA methylation with transcription of four types of DNA sequences, including protein-coding genes, pseudogenes, transposable elements, and repeats in maize embryo and endosperm, respectively. Results The methylation in CG, CHG and CHH contexts plays different roles in the control of gene expression. Methylation around the transcription start sites and transcription stop regions of protein-coding genes is negatively correlated, but in gene bodies positively correlated, to gene expression level. The upstream regions of protein-coding genes are enriched with 24-nt siRNAs and contain high levels of CHH methylation, which is correlated to gene expression level. The analysis of sequence content within CG, CHG, or CHH contexts reveals that only CHH methylation is affected by its local sequences, which is different from Arabidopsis. Conclusions In summary, we conclude that methylation-regulated transcription varies with the types of DNA sequences, sequence contexts or parts of a specific gene in maize seeds and differs from that in other plant species. Our study helps people better understand from a genome-wide viewpoint that how transcriptional expression is controlled by DNA methylation, one of the important factors influencing transcription, and how the methylation is associated with small RNAs.
Collapse
Affiliation(s)
- Xiaoduo Lu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weixuan Wang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Wen Ren
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhenguang Chai
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Wenzhu Guo
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Rumei Chen
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Lei Wang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Jun Zhao
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Zhihong Lang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Yunliu Fan
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Jiuran Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- * E-mail: (Jiuran Zhao); (CZ)
| | - Chunyi Zhang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
- * E-mail: (Jiuran Zhao); (CZ)
| |
Collapse
|
38
|
Bianco AM, Faletra F, Vozzi D, Girardelli M, Knowles A, Tommasini A, Zauli G, Marcuzzi A. Two‑gene mutation in a single patient: Biochemical and functional analysis for a correct interpretation of exome results. Mol Med Rep 2015; 12:6128-32. [PMID: 26300074 DOI: 10.3892/mmr.2015.4215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/23/2015] [Indexed: 11/05/2022] Open
Abstract
Next-generation sequencing (NGS) has generated a large amount of sequence data with the requirement of frequent critical revisions of reported mutations. This innovative tool has proved to be effective in detecting pathogenic mutations; however, it requires a certain degree of experience to identify incidental findings. In the present study, whole exome sequencing analysis was performed for the molecular diagnosis and correct genotype/phenotype correlation between parents and a patient presenting with an atypical phenotype. In addition, mevalonic acid quantification and frequency analysis of detected variants in public databases and X‑chromosome inactivation (XCI) studies on the patient's mother were performed. V377I as well as the S135L mutations were identified on the mevalonate kinase deficiency gene and the levels of mevalonic acid in the patient were 5,496 µg/ml. A D59G variation, reported in ESP6500 in two healthy individuals, was found on the Martin Probst syndrome gene (RAB40AL). Based on XCI studies on the patient's mother, it is likely that RAB40AL escapes XCI, while still remaining balanced. In conclusion, the results of the present study indicated that the Martin Probst syndrome is an X‑linked condition, which is probably not caused by RAB40AL mutations. Although NGS is a powerful tool to identify pathogenic mutations, the analysis of genetic data requires expert critical revision of all detected variants.
Collapse
Affiliation(s)
- Anna Monica Bianco
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health ‑ IRCCS 'Burlo Garofolo', Trieste, Trieste 34137, Italy
| | - Flavio Faletra
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health ‑ IRCCS 'Burlo Garofolo', Trieste, Trieste 34137, Italy
| | - Diego Vozzi
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health ‑ IRCCS 'Burlo Garofolo', Trieste, Trieste 34137, Italy
| | - Martina Girardelli
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health ‑ IRCCS 'Burlo Garofolo', Trieste, Trieste 34137, Italy
| | - Alessandra Knowles
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health ‑ IRCCS 'Burlo Garofolo', Trieste, Trieste 34137, Italy
| | - Alberto Tommasini
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health ‑ IRCCS 'Burlo Garofolo', Trieste, Trieste 34137, Italy
| | - Giorgio Zauli
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health ‑ IRCCS 'Burlo Garofolo', Trieste, Trieste 34137, Italy
| | - Annalisa Marcuzzi
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health ‑ IRCCS 'Burlo Garofolo', Trieste, Trieste 34137, Italy
| |
Collapse
|
39
|
Kaplow IM, MacIsaac JL, Mah SM, McEwen LM, Kobor MS, Fraser HB. A pooling-based approach to mapping genetic variants associated with DNA methylation. Genome Res 2015; 25:907-17. [PMID: 25910490 PMCID: PMC4448686 DOI: 10.1101/gr.183749.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/17/2015] [Indexed: 12/23/2022]
Abstract
DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many individuals is sequenced together in a single pool, resulting in a truly genome-wide map of DNA methylation. Compared to methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000 genetic variants associated with DNA methylation. We found that these variants are highly enriched for associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA, such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any species, without the need for individual-level genotype or methylation data.
Collapse
Affiliation(s)
- Irene M Kaplow
- Department of Computer Science, Stanford University, Stanford, California 94305, USA; Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sarah M Mah
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Lisa M McEwen
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
40
|
Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y, Cao L. DNA methylation, its mediators and genome integrity. Int J Biol Sci 2015; 11:604-17. [PMID: 25892967 PMCID: PMC4400391 DOI: 10.7150/ijbs.11218] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/02/2015] [Indexed: 12/18/2022] Open
Abstract
DNA methylation regulates many cellular processes, including embryonic development, transcription, chromatin structure, X-chromosome inactivation, genomic imprinting and chromosome stability. DNA methyltransferases establish and maintain the presence of 5-methylcytosine (5mC), and ten-eleven translocation cytosine dioxygenases (TETs) oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which can be removed by base excision repair (BER) proteins. Multiple forms of DNA methylation are recognised by methyl-CpG binding proteins (MeCPs), which play vital roles in chromatin-based transcriptional regulation, DNA repair and replication. Accordingly, defects in DNA methylation and its mediators may cause silencing of tumour suppressor genes and misregulation of multiple cell cycles, DNA repair and chromosome stability genes, and hence contribute to genome instability in various human diseases, including cancer. Thus, understanding functional genetic mutations and aberrant expression of these DNA methylation mediators is critical to deciphering the crosstalk between concurrent genetic and epigenetic alterations in specific cancer types and to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Huan Meng
- 1. Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China; ; 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Ying Cao
- 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Jinzhong Qin
- 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Xiaoyu Song
- 1. Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China
| | - Qing Zhang
- 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Yun Shi
- 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Liu Cao
- 1. Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China
| |
Collapse
|
41
|
Bonder MJ, Kasela S, Kals M, Tamm R, Lokk K, Barragan I, Buurman WA, Deelen P, Greve JW, Ivanov M, Rensen SS, van Vliet-Ostaptchouk JV, Wolfs MG, Fu J, Hofker MH, Wijmenga C, Zhernakova A, Ingelman-Sundberg M, Franke L, Milani L. Genetic and epigenetic regulation of gene expression in fetal and adult human livers. BMC Genomics 2014; 15:860. [PMID: 25282492 PMCID: PMC4287518 DOI: 10.1186/1471-2164-15-860] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/24/2014] [Indexed: 01/07/2023] Open
Abstract
Background The liver plays a central role in the maintenance of homeostasis and health in general. However, there is substantial inter-individual variation in hepatic gene expression, and although numerous genetic factors have been identified, less is known about the epigenetic factors. Results By analyzing the methylomes and transcriptomes of 14 fetal and 181 adult livers, we identified 657 differentially methylated genes with adult-specific expression, these genes were enriched for transcription factor binding sites of HNF1A and HNF4A. We also identified 1,000 genes specific to fetal liver, which were enriched for GATA1, STAT5A, STAT5B and YY1 binding sites. We saw strong liver-specific effects of single nucleotide polymorphisms on both methylation levels (28,447 unique CpG sites (meQTL)) and gene expression levels (526 unique genes (eQTL)), at a false discovery rate (FDR) < 0.05. Of the 526 unique eQTL associated genes, 293 correlated significantly not only with genetic variation but also with methylation levels. The tissue-specificities of these associations were analyzed in muscle, subcutaneous adipose tissue and visceral adipose tissue. We observed that meQTL were more stable between tissues than eQTL and a very strong tissue-specificity for the identified associations between CpG methylation and gene expression. Conclusions Our analyses generated a comprehensive resource of factors involved in the regulation of hepatic gene expression, and allowed us to estimate the proportion of variation in gene expression that could be attributed to genetic and epigenetic variation, both crucial to understanding differences in drug response and the etiology of liver diseases. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-860) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9700 RB Groningen, the Netherlands.
| | | |
Collapse
|
42
|
Pollema-Mays SL, Centeno MV, Apkarian AV, Martina M. Expression of DNA methyltransferases in adult dorsal root ganglia is cell-type specific and up regulated in a rodent model of neuropathic pain. Front Cell Neurosci 2014; 8:217. [PMID: 25152711 PMCID: PMC4126486 DOI: 10.3389/fncel.2014.00217] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 07/17/2014] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is associated with hyperexcitability and intrinsic firing of dorsal root ganglia (DRG) neurons. These phenotypical changes can be long lasting, potentially spanning the entire life of animal models, and depend on altered expression of numerous proteins, including many ion channels. Yet, how DRGs maintain long-term changes in protein expression in neuropathic conditions remains unclear. DNA methylation is a well-known mechanism of epigenetic control of gene expression and is achieved by the action of three enzymes: DNA methyltransferase (DNMT) 1, 3a, and 3b, which have been studied primarily during development. We first performed immunohistochemical analysis to assess whether these enzymes are expressed in adult rat DRGs (L4–5) and found that DNMT1 is expressed in both glia and neurons, DNMT3a is preferentially expressed in glia and DNMT3b is preferentially expressed in neurons. A rat model of neuropathic pain was then used to determine whether nerve injury may induce epigenetic changes in DRGs at multiple time points after pain onset. Real-time RT PCR analysis revealed robust and time-dependent changes in DNMT transcript expression in ipsilateral DRGs from spared nerve injury (SNI) but not sham rats. Interestingly, DNMT3b transcript showed a robust upregulation that appeared already 1 week after surgery and persisted at 4 weeks (our endpoint); in contrast, DNMT1 and DNMT3a transcripts showed only moderate upregulation that was transient and did not appear until the second week. We suggest that DNMT regulation in adult DRGs may be a contributor to the pain phenotype and merits further study.
Collapse
Affiliation(s)
- Sarah L Pollema-Mays
- Department of Physiology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Maria V Centeno
- Department of Physiology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - A V Apkarian
- Department of Physiology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Marco Martina
- Department of Physiology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| |
Collapse
|
43
|
Menafra R, Brinkman AB, Matarese F, Franci G, Bartels SJJ, Nguyen L, Shimbo T, Wade PA, Hubner NC, Stunnenberg HG. Genome-wide binding of MBD2 reveals strong preference for highly methylated loci. PLoS One 2014; 9:e99603. [PMID: 24927503 PMCID: PMC4057170 DOI: 10.1371/journal.pone.0099603] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/16/2014] [Indexed: 12/31/2022] Open
Abstract
MBD2 is a subunit of the NuRD complex that is postulated to mediate gene repression via recruitment of the complex to methylated DNA. In this study we adopted an MBD2 tagging-approach to study its genome wide binding characteristics. We show that in vivo MBD2 is mainly recruited to CpG island promoters that are highly methylated. Interestingly, MBD2 binds around 1 kb downstream of the transcription start site of a subset of ∼ 400 CpG island promoters that are characterized by the presence of active histone marks, RNA polymerase II (Pol2) and low to medium gene expression levels and H3K36me3 deposition. These tagged-MBD2 binding sites in MCF-7 show increased methylation in a cohort of primary breast cancers but not in normal breast samples, suggesting a putative role for MBD2 in breast cancer.
Collapse
Affiliation(s)
- Roberta Menafra
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Arie B. Brinkman
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Filomena Matarese
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Gianluigi Franci
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Stefanie J. J. Bartels
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Luan Nguyen
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Takashi Shimbo
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Paul A. Wade
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Nina C. Hubner
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Peeters SB, Cotton AM, Brown CJ. Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression. Bioessays 2014; 36:746-56. [PMID: 24913292 PMCID: PMC4143967 DOI: 10.1002/bies.201400032] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In humans over 15% of X-linked genes have been shown to ‘escape’ from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.
Collapse
Affiliation(s)
- Samantha B Peeters
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
45
|
Abstract
DNA methylation is one of the best characterized epigenetic modifications. In mammals it is involved in various biological processes including the silencing of transposable elements, regulation of gene expression, genomic imprinting, and X-chromosome inactivation. This article describes how DNA methylation serves as a cellular memory system and how it is dynamically regulated through the action of the DNA methyltransferase (DNMT) and ten eleven translocation (TET) enzymes. Its role in the regulation of gene expression, through its interplay with histone modifications, is also described, and its implication in human diseases discussed. The exciting areas of investigation that will likely become the focus of research in the coming years are outlined in the summary.
Collapse
Affiliation(s)
- En Li
- China Novartis Institutes for BioMedical Research, Pudong New Area, Shanghai 201203, China
| | | |
Collapse
|
46
|
Malan-Müller S, Seedat S, Hemmings SMJ. Understanding posttraumatic stress disorder: insights from the methylome. GENES BRAIN AND BEHAVIOR 2013; 13:52-68. [DOI: 10.1111/gbb.12102] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022]
Affiliation(s)
- S. Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences; Stellenbosch University; Tygerberg South Africa
| | - S. Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences; Stellenbosch University; Tygerberg South Africa
| | - S. M. J. Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences; Stellenbosch University; Tygerberg South Africa
| |
Collapse
|
47
|
Boyd-Kirkup JD, Green CD, Wu G, Wang D, Han JDJ. Epigenomics and the regulation of aging. Epigenomics 2013; 5:205-27. [PMID: 23566097 DOI: 10.2217/epi.13.5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is tempting to assume that a gradual accumulation of damage 'causes' an organism to age, but other biological processes present during the lifespan, whether 'programmed' or 'hijacked', could control the type and speed of aging. Theories of aging have classically focused on changes at the genomic level; however, individuals with similar genetic backgrounds can age very differently. Epigenetic modifications include DNA methylation, histone modifications and ncRNA. Environmental cues may be 'remembered' during lifespan through changes to the epigenome that affect the rate of aging. Changes to the epigenomic landscape are now known to associate with aging, but so far causal links to longevity are only beginning to be revealed. Nevertheless, it is becoming apparent that there is significant reciprocal regulation occurring between the epigenomic levels. Future work utilizing new technologies and techniques should build a clearer picture of the link between epigenomic changes and aging.
Collapse
Affiliation(s)
- Jerome D Boyd-Kirkup
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | | | | | | | | |
Collapse
|
48
|
Carén H, Pollard SM, Beck S. The good, the bad and the ugly: epigenetic mechanisms in glioblastoma. Mol Aspects Med 2013; 34:849-62. [PMID: 22771539 PMCID: PMC3714597 DOI: 10.1016/j.mam.2012.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
Abstract
Cell type-specific patterns of gene expression reflect epigenetic changes imposed through a particular developmental lineage as well as those triggered by environmental cues within adult tissues. There is great interest in elucidating the molecular basis and functional importance of epigenetic mechanisms in both normal physiology and disease - particularly in cancer, where abnormal '-omic' states are often observed. In this article we review recent progress in studies of epigenetic mechanisms in the most common primary adult brain cancer, glioblastoma multiforme. Three distinct areas are discussed. First, the evidence in support of ongoing 'normal' epigenetic processes associated with differentiation - as predicted by 'cancer stem cell' models of the disease. Second, identification of site-specific and global epigenetic abnormalities. Third, genetic disruptions directly within the core epigenetic machinery, exemplified by the recently identified mutations within isocitrate dehydrogenase genes IDH1/2 and variant histone genes H3.3/H3F3A. These constitute the 'good, the bad and the ugly' of epigenetic mechanisms in cancer.
Collapse
Affiliation(s)
- Helena Carén
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, United Kingdom
| | - Steven M. Pollard
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, United Kingdom
| | - Stephan Beck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
49
|
Quinlivan EP, Crider KS, Zhu JH, Maneval DR, Hao L, Li Z, Rasmussen SA, Berry RJ, Bailey LB. Hypomethylation of serum blood clot DNA, but not plasma EDTA-blood cell pellet DNA, from vitamin B12-deficient subjects. PLoS One 2013; 8:e65241. [PMID: 23785415 PMCID: PMC3681792 DOI: 10.1371/journal.pone.0065241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/22/2013] [Indexed: 12/20/2022] Open
Abstract
Vitamin B12, a co-factor in methyl-group transfer, is important in maintaining DNA (deoxycytidine) methylation. Using two independent assays we examined the effect of vitamin B12-deficiency (plasma vitamin B12<148 pmol/L) on DNA methylation in women of childbearing age. Coagulated blood clot DNA from vitamin B12-deficient women had significantly (p<0.001) lower percentage deoxycytidine methylation (3.23±0.66%; n = 248) and greater [3 H]methyl-acceptance (42,859±9,699 cpm; n = 17) than DNA from B12-replete women (4.44±0.18%; n = 128 and 26,049±2,814 cpm; n = 11) [correlation between assays: r = -0.8538; p<0.001; n = 28]. In contrast, uncoagulated EDTA-blood cell pellet DNA from vitamin B12-deficient and B12-replete women exhibited similar percentage methylation (4.45±0.15%; n = 77 vs. 4.47±0.15%; n = 47) and [3 H]methyl-acceptance (27,378±4,094 cpm; n = 17 vs. 26,610±2,292 cpm; n = 11). Therefore, in simultaneously collected paired blood samples, vitamin B12-deficiency was associated with decreased DNA methylation only in coagulated samples. These findings highlight the importance of sample collection methods in epigenetic studies, and the potential impact biological processes can have on DNA methylation during collection.
Collapse
Affiliation(s)
- Eoin P Quinlivan
- Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|