1
|
Sowa MA, Sun H, Wang TT, Virginio VW, Schlamp F, El Bannoudi H, Cornwell M, Bash H, Izmirly PM, Belmont HM, Ruggles KV, Buyon JP, Voora D, Barrett TJ, Berger JS. Inhibiting the P2Y 12 Receptor in Megakaryocytes and Platelets Suppresses Interferon-Associated Responses. JACC Basic Transl Sci 2024; 9:1126-1140. [PMID: 39444926 PMCID: PMC11494392 DOI: 10.1016/j.jacbts.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 10/25/2024]
Abstract
The authors investigated the impact of antiplatelet therapy on the megakaryocyte (MK) and platelet transcriptome. RNA-sequencing was performed on MKs treated with aspirin or P2Y12 inhibitor, platelets from healthy volunteers receiving aspirin or P2Y12 inhibition, and platelets from patients with systemic lupus erythematosus (SLE). P2Y12 inhibition reduced gene expression and inflammatory pathways in MKs and platelets. In SLE, the interferon (IFN) pathway was elevated. In vitro experiments demonstrated the role of P2Y12 inhibition in reducing IFNα-induced platelet-leukocyte interactions and IFN signaling pathways. These results suggest that P2Y12 inhibition may have therapeutic potential for proinflammatory and autoimmune conditions like SLE.
Collapse
Affiliation(s)
- Marcin A. Sowa
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Haoyu Sun
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Tricia T. Wang
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Vitor W. Virginio
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Florencia Schlamp
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Hanane El Bannoudi
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA
| | - Hannah Bash
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Peter M. Izmirly
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - H. Michael Belmont
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Kelly V. Ruggles
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA
| | - Jill P. Buyon
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Deepak Voora
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, New York, New York, USA
- Department of Surgery, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Novobrantseva T, Manfra D, Ritter J, Razlog M, O’Nuallain B, Zafari M, Nowakowska D, Basinski S, Phennicie RT, Nguyen PA, Brehm MA, Sazinsky S, Feldman I. Preclinical Efficacy of VTX-0811: A Humanized First-in-Class PSGL-1 mAb Targeting TAMs to Suppress Tumor Growth. Cancers (Basel) 2024; 16:2778. [PMID: 39199551 PMCID: PMC11352552 DOI: 10.3390/cancers16162778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Omnipresent suppressive myeloid populations in the tumor microenvironment limit the efficacy of T-cell-directed immunotherapies, become more inhibitory after administration of T-cell checkpoint inhibitors, and are overall associated with worse survival of cancer patients. In early clinical trials, positive outcomes have been demonstrated for therapies aimed at repolarizing suppressive myeloid populations in the tumor microenvironment. We have previously described the key role of P-selectin glycoprotein ligand-1 (PSGL-1) in maintaining an inhibitory state of tumor-associated macrophages (TAMs), most of which express high levels of PSGL-1. Here we describe a novel, first-in-class humanized high-affinity monoclonal antibody VTX-0811 that repolarizes human macrophages from an M2-suppressive phenotype towards an M1 inflammatory phenotype, similar to siRNA-mediated knockdown of PSGL-1. VTX-0811 binds to PSGL-1 of human and cynomolgus macaque origins without inhibiting PSGL-1 interaction with P- and L-Selectins or VISTA. In multi-cellular assays and in patient-derived human tumor cultures, VTX-0811 leads to the induction of pro-inflammatory mediators. RNAseq data from VTX-0811 treated ex vivo tumor cultures and M2c macrophages show similar pathways being modulated, indicating that the mechanism of action translates from isolated macrophages to tumors. A chimeric version of VTX-0811, consisting of the parental murine antibody in a human IgG4 backbone, inhibits tumor growth in a humanized mouse model of cancer. VTX-0811 is exceptionally well tolerated in NHP toxicology assessment and is heading into clinical evaluation after successful IND clearance.
Collapse
Affiliation(s)
- Tatiana Novobrantseva
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Denise Manfra
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Jessica Ritter
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Maja Razlog
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Brian O’Nuallain
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Mohammad Zafari
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Dominika Nowakowska
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Sara Basinski
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Ryan T. Phennicie
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Phuong A. Nguyen
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Michael A. Brehm
- Diabetes Center of Excellence, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA;
| | - Stephen Sazinsky
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| | - Igor Feldman
- Verseau Therapeutics, 2000 Commonwealth Ave, Newton, MA 02466, USA; (D.M.); (J.R.); (M.R.); (B.O.); (M.Z.); (D.N.); (S.B.); (R.T.P.); (P.A.N.); (S.S.)
| |
Collapse
|
3
|
Monnens L. Weibel-Palade bodies: function and role in thrombotic thrombocytopenic purpura and in diarrhea phase of STEC-hemolytic uremic syndrome. Pediatr Nephrol 2024:10.1007/s00467-024-06440-3. [PMID: 38967838 DOI: 10.1007/s00467-024-06440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Vascular endothelial cells are equipped with numerous specialized granules called Weibel-Palade bodies (WPBs). They contain a cocktail of proteins that can be rapidly secreted (3-5 min) into the vascular lumen after an appropriate stimulus such as thrombin. These proteins are ready without synthesis. Von Willebrand factor (VWF) and P-selectin are the main constituents of WPBs. Upon stimulation, release of ultralarge VWF multimers occurs and assembles into VWF strings on the apical side of endothelium. The VWF A1 domain becomes exposed in a shear-dependent manner recruiting and activating platelets. VWF is able to recruit leukocytes via direct leukocyte binding or via the activated platelets promoting NETosis. Ultralarge VWF strings are ultimately cleaved into smaller pieces by the protease ADAMTS-13 preventing excessive platelet adhesion. Under carefully performed flowing conditions and adequate dose of Shiga toxins, the toxin induces the release of ultralarge VWF multimers from cultured endothelial cells. This basic information allows insight into the pathogenesis of thrombotic thrombocytopenic purpura (TTP) and of STEC-HUS in the diarrhea phase. In TTP, ADAMTS-13 activity is deficient and systemic aggregation of platelets will occur after a second trigger. In STEC-HUS, stimulated release of WPB components in the diarrhea phase of the disease can be presumed to be the first hit in the damage of Gb3 positive endothelial cells.
Collapse
Affiliation(s)
- Leo Monnens
- Department of Physiology, Radboud University Centre, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Li F, Xu L, Li C, Hu F, Su Y. Immunological role of Gas6/TAM signaling in hemostasis and thrombosis. Thromb Res 2024; 238:161-171. [PMID: 38723521 DOI: 10.1016/j.thromres.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
The immune system is an emerging regulator of hemostasis and thrombosis. The concept of immunothrombosis redefines the relationship between coagulation and immunomodulation, and the Gas6/Tyro3-Axl-MerTK (TAM) signaling pathway builds the bridge across them. During coagulation, Gas6/TAM signaling pathway not only activates platelets, but also promotes thrombosis through endothelial cells and vascular smooth muscle cells involved in inflammatory responses. Thrombosis appears to be a common result of a Gas6/TAM signaling pathway-mediated immune dysregulation. TAM TK and its ligands have been found to be involved in coagulation through the PI3K/AKT or JAK/STAT pathway in various systemic diseases, providing new perspectives in the understanding of immunothrombosis. Gas6/TAM signaling pathway serves as a breakthrough target for novel therapeutic strategies to improve disease management. Many preclinical and clinical studies of TAM receptor inhibitors are in process, confirming the pivotal role of Gas6/TAM signaling pathway in immunothrombosis. Therapeutics targeting the TAM receptor show potential both in anticoagulation management and immunotherapy. Here, we review the immunological functions of the Gas6/TAM signaling pathway in coagulation and its multiple mechanisms in diseases identified to date, and discuss the new clinical strategies that may generated by these roles.
Collapse
Affiliation(s)
- Fanshu Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; Peking University People's Hospital, Qingdao, China
| |
Collapse
|
5
|
Rabi LT, Valente DZ, de Souza Teixeira E, Peres KC, de Oliveira Almeida M, Bufalo NE, Ward LS. Potential new cancer biomarkers revealed by quantum chemistry associated with bioinformatics in the study of selectin polymorphisms. Heliyon 2024; 10:e28830. [PMID: 38586333 PMCID: PMC10998122 DOI: 10.1016/j.heliyon.2024.e28830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Understanding the complex mechanisms involved in diseases caused by or related to important genetic variants has led to the development of clinically useful biomarkers. However, the increasing number of described variants makes it difficult to identify variants worthy of investigation, and poses challenges to their validation. We combined publicly available datasets and open source robust bioinformatics tools with molecular quantum chemistry methods to investigate the involvement of selectins, important molecules in the cell adhesion process that play a fundamental role in the cancer metastasis process. We applied this strategy to investigate single nucleotide variants (SNPs) in the intronic and UTR regions and missense SNPs with amino acid changes in the SELL, SELP, SELE, and SELPLG genes. We then focused on thyroid cancer, seeking these SNPs potential to identify biomarkers for susceptibility, diagnosis, prognosis, and therapeutic targets. We demonstrated that SELL gene polymorphisms rs2229569, rs1131498, rs4987360, rs4987301 and rs2205849; SELE gene polymorphisms rs1534904 and rs5368; rs3917777, rs2205894 and rs2205893 of SELP gene; and rs7138370, rs7300972 and rs2228315 variants of SELPLG gene may produce important alterations in the DNA structure and consequent changes in the morphology and function of the corresponding proteins. In conclusion, we developed a strategy that may save valuable time and resources in future investigations, as we were able to provide a solid foundation for the selection of selectin gene variants that may become important biomarkers and deserve further investigation in cancer patients. Large-scale clinical studies in different ethnic populations and laboratory experiments are needed to validate our results.
Collapse
Affiliation(s)
- Larissa Teodoro Rabi
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- .Department of Biomedicine, Nossa Senhora do Patrocínio University Center (CEUNSP), Itu, SP, Brazil
- Institute of Health Sciences, Paulista University (UNIP), Campinas, SP, Brazil
| | - Davi Zanoni Valente
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| | - Elisangela de Souza Teixeira
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| | - Karina Colombera Peres
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- Department of Medicine, Max Planck University Center, Campinas, SP, Brazil
| | | | - Natassia Elena Bufalo
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- Department of Medicine, Max Planck University Center, Campinas, SP, Brazil
- Department of Medicine, São Leopoldo Mandic and Research Center, Campinas, SP, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| |
Collapse
|
6
|
Kral-Pointner JB, Haider P, Szabo PL, Salzmann M, Brekalo M, Schneider KH, Schrottmaier WC, Kaun C, Bleichert S, Kiss A, Sickha R, Hengstenberg C, Huber K, Brostjan C, Bergmeister H, Assinger A, Podesser BK, Wojta J, Hohensinner P. Reduced Monocyte and Neutrophil Infiltration and Activation by P-Selectin/CD62P Inhibition Enhances Thrombus Resolution in Mice. Arterioscler Thromb Vasc Biol 2024; 44:954-968. [PMID: 38385292 PMCID: PMC11020038 DOI: 10.1161/atvbaha.123.320016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Venous thromboembolism is a major health problem. After thrombus formation, its resolution is essential to re-establish blood flow, which is crucially mediated by infiltrating neutrophils and monocytes in concert with activated platelets and endothelial cells. Thus, we aimed to modulate leukocyte function during thrombus resolution post-thrombus formation by blocking P-selectin/CD62P-mediated cell interactions. METHODS Thrombosis was induced by inferior vena cava stenosis through ligation in mice. After 1 day, a P-selectin-blocking antibody or isotype control was administered and thrombus composition and resolution were analyzed. RESULTS Localizing neutrophils and macrophages in thrombotic lesions of wild-type mice revealed that these cells enter the thrombus and vessel wall from the caudal end. Neutrophils were predominantly present 1 day and monocytes/macrophages 3 days after vessel ligation. Blocking P-selectin reduced circulating platelet-neutrophil and platelet-Ly6Chigh monocyte aggregates near the thrombus, and diminished neutrophils and Ly6Chigh macrophages in the cranial thrombus part compared with isotype-treated controls. Depletion of neutrophils 1 day after thrombus initiation did not phenocopy P-selectin inhibition but led to larger thrombi compared with untreated controls. In vitro, P-selectin enhanced human leukocyte function as P-selectin-coated beads increased reactive oxygen species production by neutrophils and tissue factor expression of classical monocytes. Accordingly, P-selectin inhibition reduced oxidative burst in the thrombus and tissue factor expression in the adjacent vessel wall. Moreover, blocking P-selectin reduced thrombus density determined by scanning electron microscopy and increased urokinase-type plasminogen activator levels in the thrombus, which accelerated caudal fibrin degradation from day 3 to day 14. This accelerated thrombus resolution as thrombus volume declined more rapidly after blocking P-selectin. CONCLUSIONS Inhibition of P-selectin-dependent activation of monocytes and neutrophils accelerates venous thrombosis resolution due to reduced infiltration and activation of innate immune cells at the site of thrombus formation, which prevents early thrombus stabilization and facilitates fibrinolysis.
Collapse
Affiliation(s)
- Julia B. Kral-Pointner
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Division of Cardiology, Department of Internal Medicine II (J.B.K.-P., P. Haider, M.S., M.B., C.K., C.H., J.W.), Medical University of Vienna, Austria
| | - Patrick Haider
- Division of Cardiology, Department of Internal Medicine II (J.B.K.-P., P. Haider, M.S., M.B., C.K., C.H., J.W.), Medical University of Vienna, Austria
| | - Petra L. Szabo
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| | - Manuel Salzmann
- Division of Cardiology, Department of Internal Medicine II (J.B.K.-P., P. Haider, M.S., M.B., C.K., C.H., J.W.), Medical University of Vienna, Austria
| | - Mira Brekalo
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| | - Karl H. Schneider
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| | - Waltraud C. Schrottmaier
- Institute for Vascular Biology and Thrombosis Research (W.C.S., A.A.), Medical University of Vienna, Austria
| | - Christoph Kaun
- Division of Cardiology, Department of Internal Medicine II (J.B.K.-P., P. Haider, M.S., M.B., C.K., C.H., J.W.), Medical University of Vienna, Austria
| | - Sonja Bleichert
- Division of Vascular Surgery, Department of General Surgery (S.B., C.B.), Medical University of Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| | - Romana Sickha
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II (J.B.K.-P., P. Haider, M.S., M.B., C.K., C.H., J.W.), Medical University of Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria (K.H.)
- Medical Faculty, Sigmund Freud University, Vienna, Austria (K.H.)
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery (S.B., C.B.), Medical University of Vienna, Austria
| | - Helga Bergmeister
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| | - Alice Assinger
- Institute for Vascular Biology and Thrombosis Research (W.C.S., A.A.), Medical University of Vienna, Austria
| | - Bruno K. Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Division of Cardiology, Department of Internal Medicine II (J.B.K.-P., P. Haider, M.S., M.B., C.K., C.H., J.W.), Medical University of Vienna, Austria
| | - Philipp Hohensinner
- Ludwig Boltzmann Institute for Cardiovascular Research (J.B.K.-P., P.L.S., K.H.S., A.K., R.S., K.H., H.B., B.K.P., J.W., P. Hohensinner), Medical University of Vienna, Austria
- Centre for Biomedical Research and Translational Surgery (P.L.S., K.H.S., A.K., H.B., B.K.P., P. Hohensinner), Medical University of Vienna, Austria
| |
Collapse
|
7
|
Jin C, Li X, Luo Y, Zhang C, Zuo D. Associations between pan-immune-inflammation value and abdominal aortic calcification: a cross-sectional study. Front Immunol 2024; 15:1370516. [PMID: 38605946 PMCID: PMC11007162 DOI: 10.3389/fimmu.2024.1370516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background Abdominal aortic calcification (AAC) pathogenesis is intricately linked with inflammation. The pan-immune-inflammation value (PIV) emerges as a potential biomarker, offering reflection into systemic inflammatory states and assisting in the prognosis of diverse diseases. This research aimed to explore the association between PIV and AAC. Methods Employing data from the National Health and Nutrition Examination Survey (NHANES), this cross-sectional analysis harnessed weighted multivariable regression models to ascertain the relationship between PIV and AAC. Trend tests probed the evolving relationship among PIV quartiles and AAC. The study also incorporated subgroup analysis and interaction tests to determine associations within specific subpopulations. Additionally, the least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression were used for characteristics selection to construct prediction model. Nomograms were used for visualization. The receiver operator characteristic (ROC) curve, calibration plot and decision curve analysis were applied for evaluate the predictive performance. Results From the cohort of 3,047 participants, a distinct positive correlation was observed between PIV and AAC. Subsequent to full adjustments, a 100-unit increment in PIV linked to an elevation of 0.055 points in the AAC score (β=0.055, 95% CI: 0.014-0.095). Categorizing PIV into quartiles revealed an ascending trend: as PIV quartiles increased, AAC scores surged (β values in Quartile 2, Quartile 3, and Quartile 4: 0.122, 0.437, and 0.658 respectively; P for trend <0.001). Concurrently, a marked rise in SAAC prevalence was noted (OR values for Quartile 2, Quartile 3, and Quartile 4: 1.635, 1.842, and 2.572 respectively; P for trend <0.01). Individuals aged 60 or above and those with a history of diabetes exhibited a heightened association. After characteristic selection, models for predicting AAC and SAAC were constructed respectively. The AUC of AAC model was 0.74 (95%CI=0.71-0.77) and the AUC of SAAC model was 0.84 (95%CI=0.80-0.87). According to the results of calibration plots and DCA, two models showed high accuracy and clinical benefit. Conclusion The research findings illuminate the potential correlation between elevated PIV and AAC presence. Our models indicate the potential utility of PIV combined with other simple predictors in the assessment and management of individuals with AAC.
Collapse
Affiliation(s)
- Chen Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xunjia Li
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Yuxiao Luo
- University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyu Zuo
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
- Department of Rehabilitation Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
8
|
Zelaya H, Grunz K, Nguyen TS, Habibi A, Witzler C, Reyda S, Gonzalez-Menendez I, Quintanilla-Martinez L, Bosmann M, Weiler H, Ruf W. Nucleic acid sensing promotes inflammatory monocyte migration through biased coagulation factor VIIa signaling. Blood 2024; 143:845-857. [PMID: 38096370 PMCID: PMC10940062 DOI: 10.1182/blood.2023021149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/30/2023] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Protease activated receptors (PARs) are cleaved by coagulation proteases and thereby connect hemostasis with innate immune responses. Signaling of the tissue factor (TF) complex with factor VIIa (FVIIa) via PAR2 stimulates extracellular signal-regulated kinase (ERK) activation and cancer cell migration, but functions of cell autonomous TF-FVIIa signaling in immune cells are unknown. Here, we show that myeloid cell expression of FVII but not of FX is crucial for inflammatory cell recruitment to the alveolar space after challenge with the double-stranded viral RNA mimic polyinosinic:polycytidylic acid [Poly(I:C)]. In line with these data, genetically modified mice completely resistant to PAR2 cleavage but not FXa-resistant PAR2-mutant mice are protected from lung inflammation. Poly(I:C)-stimulated migration of monocytes/macrophages is dependent on ERK activation and mitochondrial antiviral signaling (MAVS) but independent of toll-like receptor 3 (TLR3). Monocyte/macrophage-synthesized FVIIa cleaving PAR2 is required for integrin αMβ2-dependent migration on fibrinogen but not for integrin β1-dependent migration on fibronectin. To further dissect the downstream signaling pathway, we generated PAR2S365/T368A-mutant mice deficient in β-arrestin recruitment and ERK scaffolding. This mutation reduces cytosolic, but not nuclear ERK phosphorylation by Poly(I:C) stimulation, and prevents macrophage migration on fibrinogen but not fibronectin after stimulation with Poly(I:C) or CpG-B, a single-stranded DNA TLR9 agonist. In addition, PAR2S365/T368A-mutant mice display markedly reduced immune cell recruitment to the alveolar space after Poly(I:C) challenge. These results identify TF-FVIIa-PAR2-β-arrestin-biased signaling as a driver for lung infiltration in response to viral nucleic acids and suggest potential therapeutic interventions specifically targeting TF-VIIa signaling in thrombo-inflammation.
Collapse
Affiliation(s)
- Hortensia Zelaya
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- National Scientific and Technical Research Council (CONICET), Tucuman, Argentina
| | - Kristin Grunz
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - T. Son Nguyen
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Anxhela Habibi
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Claudius Witzler
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Pulmonary Center, Department of Medicine and Department of Pathology & Laboratory Medicine, Boston University, Boston, MA
| | | | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
| |
Collapse
|
9
|
Nevarez-Mejia J, Jin YP, Pickering H, Parmar R, Valenzuela NM, Sosa RA, Heidt S, Fishbein GA, Rozengurt E, Baldwin WM, Fairchild RL, Reed EF. Human leukocyte antigen class I antibody-activated endothelium promotes CD206+ M2 macrophage polarization and MMP9 secretion through TLR4 signaling and P-selectin in a model of antibody-mediated rejection and allograft vasculopathy. Am J Transplant 2024; 24:406-418. [PMID: 38379280 PMCID: PMC11110958 DOI: 10.1016/j.ajt.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 02/22/2024]
Abstract
HLA donor-specific antibodies (DSA) elicit alloimmune responses against the graft vasculature, leading to endothelial cell (EC) activation and monocyte infiltration during antibody-mediated rejection (AMR). AMR promotes chronic inflammation and remodeling, leading to thickening of the arterial intima termed transplant vasculopathy or cardiac allograft vasculopathy (CAV) in heart transplants. Intragraft-recipient macrophages serve as a diagnostic marker in AMR; however, their polarization and function remain unclear. In this study, we utilized an in vitro Transwell coculture system to explore the mechanisms of monocyte-to-macrophage polarization induced by HLA I DSA-activated ECs. Anti-HLA I (IgG or F(ab')2) antibody-activated ECs induced the polarization of M2 macrophages with increased CD206 expression and MMP9 secretion. However, inhibition of TLR4 signaling or PSGL-1-P-selectin interactions significantly decreased both CD206 and MMP9. Monocyte adherence to Fc-P-selectin coated plates induced M2 macrophages with increased CD206 and MMP9. Moreover, Fc-receptor and IgG interactions synergistically enhanced active-MMP9 in conjunction with P-selectin. Transcriptomic analysis of arteries from DSA+CAV+ rejected cardiac allografts and multiplex-immunofluorescent staining illustrated the expression of CD68+CD206+CD163+MMP9+ M2 macrophages within the neointima of CAV-affected lesions. These findings reveal a novel mechanism linking HLA I antibody-activated endothelium to the generation of M2 macrophages which secrete vascular remodeling proteins contributing to AMR and CAV pathogenesis.
Collapse
Affiliation(s)
- Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Rajesh Parmar
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, California, USA
| | - William M Baldwin
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, Ohio, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
10
|
Li DY, Li YM, Lv DY, Deng T, Zeng X, You L, Pang QY, Li Y, Zhu BM. Enhanced interaction between genome-edited mesenchymal stem cells and platelets improves wound healing in mice. J Tissue Eng 2024; 15:20417314241268917. [PMID: 39329066 PMCID: PMC11425747 DOI: 10.1177/20417314241268917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired wound healing poses a significant burden on the healthcare system and patients. Stem cell therapy has demonstrated promising potential in the treatment of wounds. However, its clinical application is hindered by the low efficiency of cell homing. In this study, we successfully integrated P-selectin glycoprotein ligand-1 (PSGL-1) into the genome of human adipose-derived mesenchymal stem cells (ADSCs) using a Cas9-AAV6-based genome editing tool platform. Our findings revealed that PSGL-1 knock-in enhanced the binding of ADSCs to platelets and their adhesion to the injured site. Moreover, the intravenous infusion of PSGL-1 -engineered ADSCs (KI-ADSCs) significantly improved the homing efficiency and residence rate at the site of skin lesions in mice. Mechanistically, PSGL-1 knock-in promotes the release of some therapeutic cytokines by activating the canonical WNT/β-catenin signaling pathway and accelerates the healing of wounds by promoting angiogenesis, re-epithelialization, and granulation tissue formation at the wound site. This study provides a novel strategy to simultaneously address the problem of poor migration and adhesion of mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
- De-Yong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan-Yi Lv
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Cunha J, Chan MV, Nkambule BB, Thibord F, Lachapelle A, Pashek RE, Vasan RS, Rong J, Benjamin EJ, Hamburg NM, Chen MH, Mitchell GF, Johnson AD. Trends among platelet function, arterial calcium, and vascular function measures. Platelets 2023; 34:2238835. [PMID: 37609998 PMCID: PMC10947606 DOI: 10.1080/09537104.2023.2238835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/26/2023] [Accepted: 07/14/2023] [Indexed: 08/24/2023]
Abstract
Arterial tonometry and vascular calcification measures are useful in cardiovascular disease (CVD) risk assessment. Prior studies found associations between tonometry measures, arterial calcium, and CVD risk. Activated platelets release angiopoietin-1 and other factors, which may connect vascular structure and platelet function. We analyzed arterial tonometry, platelet function, aortic, thoracic and coronary calcium, and thoracic and abdominal aorta diameters measured in the Framingham Heart Study Gen3/NOS/OMNI-2 cohorts (n = 3,429, 53.7% women, mean age 54.4 years ±9.3). Platelet reactivity in whole blood or platelet-rich plasma was assessed using 5 assays and 7 agonists. We analyzed linear mixed effects models with platelet reactivity phenotypes as outcomes, adjusting for CVD risk factors and family structure. Higher arterial calcium trended with higher platelet reactivity, whereas larger aortic diameters trended with lower platelet reactivity. Characteristic impedance (Zc) and central pulse pressure positively trended with various platelet traits, while pulse wave velocity and Zc negatively trended with collagen, ADP, and epinephrine traits. All results did not pass a stringent multiple test correction threshold (p < 2.22e-04). The diameter trends were consistent with lower shear environments invoking less platelet reactivity. The vessel calcium trends were consistent with subclinical atherosclerosis and platelet activation being inter-related.
Collapse
Affiliation(s)
- Jason Cunha
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Melissa V. Chan
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Bongani B. Nkambule
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Florian Thibord
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Amber Lachapelle
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Robin E. Pashek
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Ramachandran S. Vasan
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- Cardiology and Preventive Medicine Sections, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Evans Center for Interdisciplinary Biomedical Research, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Schools of Public Health and Medicine, Departments of Population Health and Medicine, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Jian Rong
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Emelia J. Benjamin
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- Cardiology and Preventive Medicine Sections, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Evans Center for Interdisciplinary Biomedical Research, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Naomi M. Hamburg
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Ming-Huei Chen
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | | | - Andrew D. Johnson
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| |
Collapse
|
12
|
Awamura T, Nakasone ES, Gangcuangco LM, Subia NT, Bali AJ, Chow DC, Shikuma CM, Park J. Platelet and HIV Interactions and Their Contribution to Non-AIDS Comorbidities. Biomolecules 2023; 13:1608. [PMID: 38002289 PMCID: PMC10669125 DOI: 10.3390/biom13111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Platelets are anucleate cytoplasmic cell fragments that circulate in the blood, where they are involved in regulating hemostasis. Beyond their normal physiologic role, platelets have emerged as versatile effectors of immune response. During an infection, cell surface receptors enable platelets to recognize viruses, resulting in their activation. Activated platelets release biologically active molecules that further trigger host immune responses to protect the body against infection. Their impact on the immune response is also associated with the recruitment of circulating leukocytes to the site of infection. They can also aggregate with leukocytes, including lymphocytes, monocytes, and neutrophils, to immobilize pathogens and prevent viral dissemination. Despite their host protective role, platelets have also been shown to be associated with various pathophysiological processes. In this review, we will summarize platelet and HIV interactions during infection. We will also highlight and discuss platelet and platelet-derived mediators, how they interact with immune cells, and the multifaceted responsibilities of platelets in HIV infection. Furthermore, we will give an overview of non-AIDS comorbidities linked to platelet dysfunction and the impact of antiretroviral therapy on platelet function.
Collapse
Affiliation(s)
- Thomas Awamura
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Elizabeth S. Nakasone
- University of Hawai‘i Cancer Center, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
- Department of Medicine, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
| | - Louie Mar Gangcuangco
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Natalie T. Subia
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Aeron-Justin Bali
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Dominic C. Chow
- Department of Medicine, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Cecilia M. Shikuma
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| |
Collapse
|
13
|
Ajanel A, Middleton EA. Alterations in the megakaryocyte transcriptome impacts platelet function in sepsis and COVID-19 infection. Thromb Res 2023; 231:247-254. [PMID: 37258336 PMCID: PMC10198739 DOI: 10.1016/j.thromres.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Platelets and their parent cell, the megakaryocyte (MK), are increasingly recognized for their roles during infection and inflammation. The MK residing in the bone marrow or arising from precursors trafficked to other organs for development go on to form platelets through thrombopoiesis. Infection, by direct and indirect mechanisms, can alter the transcriptional profile of MKs. The altered environment, whether mediated by inflammatory cytokines or other signaling mechanisms results in an altered platelet transcriptome. Platelets released into the circulation, in turn, interact with each other, circulating leukocytes and endothelial cells and contribute to the clearance of pathogens or the potentiation of pathophysiology through such mechanisms as immunothrombosis. In this article we hope to identify key contributions that explore the impact of an altered transcriptomic landscape during severe, systemic response to infection broadly defined as sepsis, and viral infections, including SARS-CoV2. We include current publications that outline the role of MKs from bone-marrow and extra-medullary sites as well as the circulating platelet. The underlying diseases result in thrombotic complications that exacerbate organ dysfunction and mortality. Understanding the impact of platelets on the pathophysiology of disease may drive therapeutic advances to improve the morbidity and mortality of these deadly afflictions.
Collapse
Affiliation(s)
- Abigail Ajanel
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Elizabeth A Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
Ling T, Liu J, Dong L, Liu J. The roles of P-selectin in cancer cachexia. Med Oncol 2023; 40:338. [PMID: 37870739 DOI: 10.1007/s12032-023-02207-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023]
Abstract
P-selectin, a cell adhesion molecule of the selectin family, is expressed on the surface of activated endothelial cells (ECs) and platelets. Binding of P-selectin to P-selectin glycoprotein ligand-1 (PSGL-1) supports the leukocytes capture and rolling on stimulated ECs and increases the aggregation of leukocytes and activated platelets. Cancer cachexia is a systemic inflammation disorder characterized by metabolic disturbances, reduced body weight, loss of appetite, fat depletion, and progressive muscle atrophy. Cachexia status is associated with increased pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), which activates ECs to release P-selectin. Single-nucleotide polymorphisms (SNPs) loci of P-selectin encoding gene SELP are associated with higher level of plasma P-selectin and increase the susceptibility to cachexia in cancer patients. Elevated P-selectin expression has been observed in the hypothalamus, liver, and gastrocnemius muscle in animal models with cancer cachexia. Increased P-selectin may cause excessive inflammatory processes, muscle atrophy, and blood hypercoagulation, thus facilitating the development of cancer cachexia. In this review, physiological functions of P-selectin and its potential roles in cancer cachexia have been summarized. We also discuss the therapeutic potential of P-selectin inhibitors for the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Tingting Ling
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, School of Clinical Medicine, Weifang Medical College, Weifang, 261053, China
| | - Jing Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Liang Dong
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China.
| |
Collapse
|
15
|
Xiu J, Lin X, Chen Q, Yu P, Lu J, Yang Y, Chen W, Bao K, Wang J, Zhu J, Zhang X, Pan Y, Tu J, Chen K, Chen L. The aggregate index of systemic inflammation (AISI): a novel predictor for hypertension. Front Cardiovasc Med 2023; 10:1163900. [PMID: 37265570 PMCID: PMC10229810 DOI: 10.3389/fcvm.2023.1163900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Objective Inflammation plays an important role in the pathophysiology of hypertension (HTN). Aggregate index of systemic inflammation (AISI), as a new inflammatory and prognostic marker has emerged recently. Our goal was to determine whether there was a relationship between HTN and AISI. Methods We analyzed patients with HTN from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. The primary end point was cardiovascular mortality. A total of 23,765 participants were divided into four groups according to the AISI quartile level. The association between AISI and cardiovascular mortality in patients with HTN was assessed by survival curves and Cox regression analyses based on NHANES recommended weights. Results High levels of AISI were significantly associated with cardiovascular mortality in patients with HTN. After full adjustment for confounders, there was no significant difference in the risk of cardiovascular mortality in Q2 and Q3 compared to Q1, while Q4 (HR: 1.91, 95% CI: 1.42-2.58; P < 0.001) had a higher risk of cardiovascular mortality compared to Q1. Results remained similar in subgroup analyses stratified by age (P for interaction = 0.568), gender (P for interaction = 0.059), and obesity (P for interaction = 0.289). Conclusions In adults with HTN, elevated AISI levels are significantly associated with an increased risk of cardiovascular mortality and may serve as an early warning parameter for poor prognosis.
Collapse
Affiliation(s)
- Jiaming Xiu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xueqin Lin
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qiansheng Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Pei Yu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Jin Lu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yanfang Yang
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Weihua Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Kunming Bao
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Junjie Wang
- Department of Cardiology, Fuzhou First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinlong Zhu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiaoying Zhang
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yuxiong Pan
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jiabin Tu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Kaihong Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Liling Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
16
|
Rolling CC, Barrett TJ, Berger JS. Platelet-monocyte aggregates: molecular mediators of thromboinflammation. Front Cardiovasc Med 2023; 10:960398. [PMID: 37255704 PMCID: PMC10225702 DOI: 10.3389/fcvm.2023.960398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Platelets, key facilitators of primary hemostasis and thrombosis, have emerged as crucial cellular mediators of innate immunity and inflammation. Exemplified by their ability to alter the phenotype and function of monocytes, activated platelets bind to circulating monocytes to form monocyte-platelet aggregates (MPA). The platelet-monocyte axis has emerged as a key mechanism connecting thrombosis and inflammation. MPA are elevated across the spectrum of inflammatory and autoimmune disorders, including cardiovascular disease, systemic lupus erythematosus (SLE), and COVID-19, and are positively associated with disease severity. These clinical disorders are all characterized by an increased risk of thromboembolic complications. Intriguingly, monocytes in contact with platelets become proinflammatory and procoagulant, highlighting that this interaction is a central element of thromboinflammation.
Collapse
Affiliation(s)
- Christina C. Rolling
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
17
|
Mongirdienė A, Liuizė A, Kašauskas A. Novel Knowledge about Molecular Mechanisms of Heparin-Induced Thrombocytopenia Type II and Treatment Targets. Int J Mol Sci 2023; 24:ijms24098217. [PMID: 37175923 PMCID: PMC10179321 DOI: 10.3390/ijms24098217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Heparin-induced thrombocytopenia type II (HIT II), as stated in the literature, occurs in about 3% of all patients and in 0.1-5% of surgical patients. Thrombosis develops in 20-64% of patients with HIT. The mortality rate in HIT II has not decreased using non-heparin treatment with anticoagulants such as argatroban and lepirudin. An improved understanding of the pathophysiology of HIT may help identify targeted therapies to prevent thrombosis without subjecting patients to the risk of intense anticoagulation. The review will summarize the current knowledge about the pathogenesis of HIT II, potential new therapeutic targets related to it, and new treatments being developed. HIT II pathogenesis involves multi-step immune-mediated pathways dependent on the ratio of PF4/heparin and platelet, monocyte, neutrophil, and endothelium activation. For years, only platelets were known to take part in HIT II development. A few years ago, specific receptors and signal-induced pathways in monocytes, neutrophils and endothelium were revealed. It had been shown that the cells that had become active realised different newly formed compounds (platelet-released TF, TNFα, NAP2, CXCL-7, ENA-78, platelet-derived microparticles; monocytes-TF-MPs; neutrophils-NETs), leading to additional cell activation and consequently thrombin generation, resulting in thrombosis. Knowledge about FcγIIa receptors on platelets, monocytes, neutrophils and FcγIIIa on endothelium, chemokine (CXCR-2), and PSGL-1 receptors on neutrophils could allow for the development of a new non-anticoagulant treatment for HIT II. IgG degradation, Syk kinase and NETosis inhibition are in the field of developing new treatment possibilities too. Accordingly, IdeS and DNases-related pathways should be investigated for better understanding of HIT pathogenesis and the possibilities of being the HIT II treatment targets.
Collapse
Affiliation(s)
- Aušra Mongirdienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Agnė Liuizė
- Medicine Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50103 Kaunas, Lithuania
| | - Artūras Kašauskas
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
18
|
Siudut J, Pudło J, Konieczyńska M, Polak M, Jawień J, Undas A. Therapy with high-dose statins reduces soluble P-selectin: The impact on plasma fibrin clot properties. Int J Cardiol 2023; 373:110-117. [PMID: 36410546 DOI: 10.1016/j.ijcard.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Studies on the effect of statins on platelets in patients with coronary artery disease (CAD) yielded inconsistent results. We sought to investigate whether high-dose statin therapy reduces plasma concentrations of soluble P-selectin (sP-selectin), a well-established platelet activation marker and if such changes can affect fibrin clot properties, which are unfavorably altered in CAD patients. METHODS We studied 130 consecutive patients with advanced CAD who did not achieve the target LDL cholesterol on statins. At baseline and after 6-12 months of treatment with atorvastatin 80 mg/day or rosuvastatin 40 mg/day, soluble plasma sP-selectin, along with plasma fibrin clot permeability (Ks), clot lysis time (CLT), thrombin generation and fibrinolysis proteins were determined. RESULTS Before high-intensity statin treatment, lower Ks and longer CLT values were associated with increased sP-selectin (β -0.27 [95% CI -0.44 to -0.10] and β 0.21 [95% CI 0.01 to 0.41]; both p < 0.05, respectively) also after adjustment for potential confounders. sP-selectin, alongside fibrin features and other variables at baseline showed no association with lipid profile. On high-dose statin therapy, there was 32% reduction in sP-selectin levels (p < 0.001). On-treatment change (Δ) in sP-selectin correlated with ΔKs and ΔCLT (r = -0.32, p < 0.001 and r = 0.22, p = 0.011, respectively), but not with cholesterol and C-reactive protein lowering. We did not observe any associations between post-treatment sP-selectin levels and lipids, fibrin clot properties or thrombin generation. CONCLUSIONS High-dose statin therapy reduces markedly sP-selectin levels in association with improved fibrin clot phenotype, which highlights the contribution of platelet-derived proteins to a prothrombotic state in hypercholesterolemia and statin-induced antithrombotic effects.
Collapse
Affiliation(s)
- Jakub Siudut
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; Krakow Center for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland
| | - Joanna Pudło
- Department of Diagnostics, John Paul II Hospital, Krakow, Poland
| | - Małgorzata Konieczyńska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; Department of Diagnostics, John Paul II Hospital, Krakow, Poland
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Institute of Public Health, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Jawień
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; Krakow Center for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
19
|
Rolling CC, Sowa MA, Wang TT, Cornwell M, Myndzar K, Schwartz T, El Bannoudi H, Buyon J, Barrett TJ, Berger JS. P2Y12 Inhibition Suppresses Proinflammatory Platelet-Monocyte Interactions. Thromb Haemost 2023; 123:231-244. [PMID: 36630990 PMCID: PMC11007758 DOI: 10.1055/s-0042-1758655] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Monocyte-platelet aggregates (MPAs) represent the crossroads between thrombosis and inflammation, and targeting this axis may suppress thromboinflammation. While antiplatelet therapy (APT) reduces platelet-platelet aggregation and thrombosis, its effects on MPA and platelet effector properties on monocytes are uncertain. OBJECTIVES To analyze the effect of platelets on monocyte activation and APT on MPA and platelet-induced monocyte activation. METHODS Agonist-stimulated whole blood was incubated in the presence of P-selectin, PSGL1, PAR1, P2Y12, GP IIb/IIIa, and COX-1 inhibitors and assessed for platelet and monocyte activity via flow cytometry. RNA-Seq of monocytes incubated with platelets was used to identify platelet-induced monocyte transcripts and was validated by RT-qPCR in monocyte-PR co-incubation ± APT. RESULTS Consistent with a proinflammatory platelet effector role, MPAs were increased in patients with COVID-19. RNA-Seq revealed a thromboinflammatory monocyte transcriptome upon incubation with platelets. Monocytes aggregated to platelets expressed higher CD40 and tissue factor than monocytes without platelets (p < 0.05 for each). Inhibition with P-selectin (85% reduction) and PSGL1 (87% reduction) led to a robust decrease in MPA. P2Y12 and PAR1 inhibition lowered MPA formation (30 and 21% reduction, p < 0.05, respectively) and decreased monocyte CD40 and TF expression, while GP IIb/IIIa and COX1 inhibition had no effect. Pretreatment of platelets with P2Y12 inhibitors reduced the expression of platelet-mediated monocyte transcription of proinflammatory SOCS3 and OSM. CONCLUSIONS: Platelets skew monocytes toward a proinflammatory phenotype. Among traditional APTs, P2Y12 inhibition attenuates platelet-induced monocyte activation.
Collapse
Affiliation(s)
- Christina C. Rolling
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
- University Medical Center Hamburg-Eppendorf, Department of Oncology and Hematology, Hamburg, Germany
| | - Marcin A. Sowa
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Tricia T. Wang
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - MacIntosh Cornwell
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Khrystyna Myndzar
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Tamar Schwartz
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Hanane El Bannoudi
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Jill Buyon
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
20
|
An Insight into Platelets at Older Age: Cellular and Clinical Perspectives. Subcell Biochem 2023; 102:343-363. [PMID: 36600139 DOI: 10.1007/978-3-031-21410-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Higher access to medical care, advanced diagnostic tools, and overall public health improvements have favored increased humans lifespan. With a growing proportion of older adults, the associated costs to care for ageing-associated conditions will continue to grow. This chapter highlights recent cellular and clinical evidence of platelets at an older age, from the hyperreactive phenotype associated with thrombosis to the well-known hallmarks of ageing identifiable in platelets and their potential functional implications on platelets at an older age. Therefore, it is imperative to understand platelets' molecular and cellular mechanisms during ageing in health and disease. New knowledge will favor the development of new ways to prevent some of the age-associated complications where platelets are key players.
Collapse
|
21
|
Zhang X, Zhang C, Ma Z, Zhang Y. Soluble P-selectin level in patients with cancer-associated venous and artery thromboembolism: a systematic review and meta-analysis. Arch Med Sci 2023; 19:274-282. [PMID: 36817657 PMCID: PMC9897104 DOI: 10.5114/aoms/159039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2013] [Indexed: 01/18/2023] Open
Affiliation(s)
- Xueli Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Shunyi District Hospital, Beijing, China
| | - Chen Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing, China
| | - Zhuo Ma
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuhui Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing, China
| |
Collapse
|
22
|
Shirasaki K, Minai K, Kawai M, Tanaka TD, Ogawa K, Inoue Y, Morimoto S, Nagoshi T, Ogawa T, Komukai K, Yoshimura M. Unique crosstalk between platelet and leukocyte counts during treatment for acute coronary syndrome: A retrospective observational study. Medicine (Baltimore) 2022; 101:e32439. [PMID: 36595999 PMCID: PMC9803419 DOI: 10.1097/md.0000000000032439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the pathophysiology of acute coronary syndrome (ACS), platelet (PLT) and neutrophil (Neu) crosstalk may be important for activating coagulation and inflammation. It has been speculated that PLTs and Neu may affect each other's cell counts; however, few studies have investigated this hypothesis. In this study, we measured changes in blood cell counts in 245 patients with ACS during treatment and investigated the mutual effects of each blood cell type. Path diagrams were drawn using structural equation modeling, and temporal changes in the count of each blood cell type and the relevance of these changes were analyzed. Throughout the treatment period, the numbers of all blood cell types (red blood cells [RBCs], leukocytes, and PLTs) were associated with each other before and after treatment. A detailed examination of the different cell types revealed that the PLT count at admission had a significant positive effect on the leukocyte (especially Neu) count after treatment. Conversely, the leukocyte (especially Neu) count at admission had a significant positive effect on the PLT count after treatment. During ACS, PLTs and leukocytes, especially Neu, stimulate each other to increase their numbers. The formation of a PLT-leukocyte complex may increase coagulation activity and inflammation, which can lead to a further increase in the counts of both blood cell types.
Collapse
Affiliation(s)
- Keisuke Shirasaki
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kosuke Minai
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- * Correspondence: Kosuke Minai, Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishi-shimbashi, Minato-ku, Tokyo, Japan (e-mail: )
| | - Makoto Kawai
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshikazu D. Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuo Ogawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasunori Inoue
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Satoshi Morimoto
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Ogawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kimiaki Komukai
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Golubeva MG. Role of P-Selectin in the Development of Hemostasis Disorders in COVID-19. BIOLOGY BULLETIN REVIEWS 2022. [PMCID: PMC9297276 DOI: 10.1134/s207908642204003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This is a review of data on the impact of COVID-19 on blood clotting. An important feature of the pathogenesis of severe acute respiratory syndrome caused by the SARS-Co-2 coronavirus is the risk of thrombotic complications including microvascular thrombosis, venous thromboembolism, and stroke. These thrombotic complications, like thrombocytopenia, are markers of the severe form of COVID-19 and are associated with multiple organ failure and increased mortality. One of the central mechanisms of this pathology is dysregulation of the adhesive protein P-selectin. The study of the mechanisms of changes in hemostasis and vascular pathology, and the role in these processes of biomarkers of thrombogenesis, and primarily of P-selectin of various origins (platelets, endothelial cells, and plasma), can bring some clarity to the understanding of the pathogenesis and therapy of COVID-19.
Collapse
Affiliation(s)
- M. G. Golubeva
- Department of Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
24
|
Purdy M, Obi A, Myers D, Wakefield T. P- and E- selectin in venous thrombosis and non-venous pathologies. J Thromb Haemost 2022; 20:1056-1066. [PMID: 35243742 PMCID: PMC9314977 DOI: 10.1111/jth.15689] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
Venous thromboembolism is a very common and costly health problem worldwide. Anticoagulant treatment for VTE is imperfect: all have the potential for significant bleeding, and none prevent the development of post thrombotic syndrome after deep vein thrombosis or chronic thromboembolic pulmonary hypertension after pulmonary embolism. For these reasons, alternate forms of therapy with improved efficacy and decreased bleeding are needed. Selectins are a family (P-selectin, E-selectin, L-selectin) of glycoproteins that facilitate and augment thrombosis, modulating neutrophil, monocyte, and platelet activity. P- and E-selectin have been investigated as potential biomarkers for thrombosis. Inhibition of P-selectin and E-selectin decrease thrombosis and vein wall fibrosis, with no increase in bleeding. Selectin inhibition is a promising avenue of future study as either a stand-alone treatment for VTE or as an adjunct to standard anticoagulation therapies.
Collapse
Affiliation(s)
- Megan Purdy
- University of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Andrea Obi
- Section of Vascular SurgeryDepartment of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel Myers
- Section of Vascular SurgeryDepartment of SurgeryUniversity of MichiganAnn ArborMichiganUSA
- Unit for Laboratory Animal Medicine and Section of Vascular SurgeryDepartment of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Thomas Wakefield
- Section of Vascular SurgeryDepartment of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
25
|
Yeini E, Satchi-Fainaro R. The role of P-selectin in cancer-associated thrombosis and beyond. Thromb Res 2022; 213 Suppl 1:S22-S28. [DOI: 10.1016/j.thromres.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 10/18/2022]
|
26
|
Abstract
BACKGROUND Blood platelets, due to shared biochemical and functional properties with presynaptic serotonergic neurons, constituted, over the years, an attractive peripheral biomarker of neuronal activity. Therefore, the literature strongly focused on the investigation of eventual structural and functional platelet abnormalities in neuropsychiatric disorders, particularly in depressive disorder. Given their impact in biological psychiatry, the goal of the present paper was to review and critically analyze studies exploring platelet activity, functionality, and morpho-structure in subjects with depressive disorder. METHODS According to the PRISMA guidelines, we performed a systematic review through the PubMed database up to March 2020 with the search terms: (1) platelets in depression [Title/Abstract]"; (2) "(platelets[Title]) AND depressive disorder[Title/Abstract]"; (3) "(Platelet[Title]) AND major depressive disorder[Title]"; (4) (platelets[Title]) AND depressed[Title]"; (5) (platelets[Title]) AND depressive episode[Title]"; (6) (platelets[Title]) AND major depression[Title]"; (7) platelet activation in depression[All fields]"; and (8) platelet reactivity in depression[All fields]." RESULTS After a detailed screening analysis and the application of specific selection criteria, we included in our review a total of 106 for qualitative synthesis. The studies were classified into various subparagraphs according to platelet characteristics analyzed: serotonergic system (5-HT2A receptors, SERT activity, and 5-HT content), adrenergic system, MAO activity, biomarkers of activation, responsivity, morphological changes, and other molecular pathways. CONCLUSIONS Despite the large amount of the literature examined, nonunivocal and, occasionally, conflicting results emerged. However, the findings on structural and metabolic alterations, modifications in the expression of specific proteins, changes in the aggregability, or in the responsivity to different pro-activating stimuli, may be suggestive of potential platelet dysfunctions in depressed subjects, which would result in a kind of hyperreactive state. This condition could potentially lead to an increased cardiovascular risk. In line with this hypothesis, we speculated that antidepressant treatments would seem to reduce this hyperreactivity while representing a potential tool for reducing cardiovascular risk in depressed patients and, maybe, in other neuropsychiatric conditions. However, the problem of the specificity of platelet biomarkers is still at issue and would deserve to be deepened in future studies.
Collapse
|
27
|
Popescu NI, Lupu C, Lupu F. Disseminated intravascular coagulation and its immune mechanisms. Blood 2022; 139:1973-1986. [PMID: 34428280 PMCID: PMC8972096 DOI: 10.1182/blood.2020007208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) is a syndrome triggered by infectious and noninfectious pathologies characterized by excessive generation of thrombin within the vasculature and widespread proteolytic conversion of fibrinogen. Despite diverse clinical manifestations ranging from thrombo-occlusive damage to bleeding diathesis, DIC etiology commonly involves excessive activation of blood coagulation and overlapping dysregulation of anticoagulants and fibrinolysis. Initiation of blood coagulation follows intravascular expression of tissue factor or activation of the contact pathway in response to pathogen-associated or host-derived, damage-associated molecular patterns. The process is further amplified through inflammatory and immunothrombotic mechanisms. Consumption of anticoagulants and disruption of endothelial homeostasis lower the regulatory control and disseminate microvascular thrombosis. Clinical DIC development in patients is associated with worsening morbidities and increased mortality, regardless of the underlying pathology; therefore, timely recognition of DIC is critical for reducing the pathologic burden. Due to the diversity of triggers and pathogenic mechanisms leading to DIC, diagnosis is based on algorithms that quantify hemostatic imbalance, thrombocytopenia, and fibrinogen conversion. Because current diagnosis primarily assesses overt consumptive coagulopathies, there is a critical need for better recognition of nonovert DIC and/or pre-DIC states. Therapeutic strategies for patients with DIC involve resolution of the eliciting triggers and supportive care for the hemostatic imbalance. Despite medical care, mortality in patients with DIC remains high, and new strategies, tailored to the underlying pathologic mechanisms, are needed.
Collapse
Affiliation(s)
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
- Department of Cell Biology
- Department of Pathology, and
- Department of Internal Medicine, Oklahoma University Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
28
|
Collier MEW, Ambrose AR, Goodall AH. Does hsa-miR-223-3p from platelet-derived extracellular vesicles regulate tissue factor expression in monocytic cells? Platelets 2022; 33:1031-1042. [PMID: 35132909 DOI: 10.1080/09537104.2022.2027903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Extracellular vesicles (EVs) released from activated platelets contain microRNAs, the most abundant of which is hsa-miR-223-3p. Endogenous hsa-miR-223-3p suppresses the expression of tissue factor (TF), the initiator of the extrinsic coagulation pathway, in endothelial cells. Monocytes can be induced to express TF to enhance coagulation, but the role of hsa-miR-223-3p in regulating monocyte TF remains unknown. This study examined whether hsa-miR-223-3p from platelet-derived EVs (pdEVs) affects TF expression in monocytes. THP-1 cells, differentiated into a monocyte-like phenotype with 1α,25-dihydroxyvitaminD3, were transfected with hsa-miR-223-3p mimic or control microRNA. Alternatively, THP-1 cells were incubated with pdEVs from PAR1-agonist peptide activated-platelets, as platelet releasate, or pdEVs isolated by ultracentrifugation. Transfection with hsa-miR-223-3p mimic resulted in significant reductions in TF protein, determined by western blotting and flow cytometry and reduced procoagulant activity, measured by a TF-specific factor Xa generation assay, compared to cells transfected with control microRNA. This reduction was reversed by co-transfection with hsa-miR-223-3p inhibitor, AntagomiR-223. Incubation of THP-1 cells with pdEVs also decreased TF expression; however, this was not reversed by AntagomiR-223. Taken together, monocyte TF expression is downregulated by hsa-miR-223-3p, but when transferred via pdEVs the effect was not reversed with Antagomir-223, suggesting other pdEV components may contribute to TF regulation.Abbreviations: Tissue factor (TF), Factor VII (FVII), activated Factor VII (FVIIa), Factor X (FX), activated Factor X (FXa), extracellular vesicles (EVs), microvesicles (MVs), platelet-derived extracellular vesicles (pdEVs), protease-activated receptor 1 agonist peptide (PAR1-AP), lipopolysaccharide (LPS), P-selectin glycoprotein ligand-1 (PSGL-1), Tris-Buffered Saline Tween (TBST), room temperature (RT)[Figure: see text].
Collapse
Affiliation(s)
- Mary E W Collier
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ashley R Ambrose
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
29
|
Papageorgiou L, Elalamy I, Vandreden P, Gerotziafas GT. Thrombotic and Hemorrhagic Issues Associated with Myeloproliferative Neoplasms. Clin Appl Thromb Hemost 2022; 28:10760296221097969. [PMID: 35733370 PMCID: PMC9234921 DOI: 10.1177/10760296221097969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Thrombotic and hemorrhagic complications are related to a significant rate of
morbidity and mortality in patients with myeloproliferative neoplasms (MPNs),
they are therefore called “thrombohemorrhagic” syndromes. Several clinical
factors, such as age and presence of cardiovascular comorbidities are
responsible for thrombotic complications. High blood counts, platelet
alterations, presence of JAK2 mutation and possibly of other CHIP mutations such
as TET2, DNMT3A, and ASXL1, procoagulant microparticles, NETs formation,
endothelial activation and neo-angiogenesis are some of the parameters
accounting for hypercoagulability in patients with myeloproliferative neoplasms.
Bleeding complications emerge as a result of platelet exhaustion. They can be
also linked to a functional deficiency of von Willebrand factor, when platelet
counts rise above 1000G/L. The mainstay of management consists on preventing
hemostatic complications, by antiplatelet and/or anticoagulant treatment and
myelosuppressive agents in high-risk patients.Circumstances related to a high
thrombohemorrhagic risk, such as pregnancy and the perioperative period, prompt
for specific management with regards to anticoagulation and myelosuppression
treatment type. In order to apply a patient-specific treatment strategy, there
is a need for a risk score assessment tool encompassing clinical parameters and
hemostasis biomarkers.
Collapse
Affiliation(s)
- Loula Papageorgiou
- Hrombosis Center, 432215Service d'Hématologie Biologique Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de Médecine Sorbonne Université, Paris, France.,Faculty of Medicine, Research Group "Cancer, Haemostasis and Angiogenesis", INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Sorbonne University, Paris, France
| | - Ismail Elalamy
- Hrombosis Center, 432215Service d'Hématologie Biologique Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de Médecine Sorbonne Université, Paris, France.,Faculty of Medicine, Research Group "Cancer, Haemostasis and Angiogenesis", INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Sorbonne University, Paris, France.,The First I.M. Sechenov Moscow State Medical University, Moscow, Russia
| | - Patrick Vandreden
- Faculty of Medicine, Research Group "Cancer, Haemostasis and Angiogenesis", INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Sorbonne University, Paris, France.,Clinical Research Department, Diagnostica Stago, Gennevilliers, France
| | - Grigoris T Gerotziafas
- Hrombosis Center, 432215Service d'Hématologie Biologique Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de Médecine Sorbonne Université, Paris, France.,Faculty of Medicine, Research Group "Cancer, Haemostasis and Angiogenesis", INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Sorbonne University, Paris, France
| |
Collapse
|
30
|
Violi F, Cammisotto V, Pignatelli P. Thrombosis in Covid-19 and non-Covid-19 pneumonia: role of platelets. Platelets 2021; 32:1009-1017. [PMID: 34097572 PMCID: PMC8204311 DOI: 10.1080/09537104.2021.1936478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/09/2023]
Abstract
Platelets may be a target of bacteria and viruses, which can directly or indirectly activate them so promoting thrombosis. In accordance with this, community-acquired pneumonia (CAP) is complicated by ischemia-related vascular disease (myocardial infarction and stroke) in roughly 10% of patients while the incidence of venous thrombosis is uncertain. In CAP platelet biosynthesis of TxA2 is augmented and associated with myocardial infarction; however, a cause-effect relationship is still unclear as unclear is if platelet activation promotes thrombosis or functional changes of coronary tree such vasospasm. Retrospective studies suggested a potential role of aspirin in reducing mortality but the impact on vascular disease is still unknown. Coronavirus disease 2019 (Covid-19) is complicated by thrombosis in roughly 20% of patients with an almost equivalent localization in arterial and venous circulation. Platelet activation seems to have a pivot role in the thrombotic process in Covid-19 as consistently evidenced by its involvement in promoting Tissue Factor up-regulation via leucocyte interaction. Until now, antiplatelet treatment has been scarcely considered for the treatment of Covid-19; interventional trials, however, are in progress to explore this issue. The aim of this review is 1) to compare the type of vascular diseases complicating CAP and Covid-19 2) to assess the different role of platelets in both diseases and 3) to discuss if antiplatelet treatment is potentially useful to improve clinical outcomes.
Collapse
Affiliation(s)
- Francesco Violi
- I Clinica Medica, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Specialty Paride Stefanini, Sapienza University of Rome, Rome, Italy
| | - Pasquale Pignatelli
- I Clinica Medica, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
31
|
La Rose AM, Bazioti V, Hoogerland JA, Svendsen AF, Groenen AG, van Faassen M, Rutten MGS, Kloosterhuis NJ, Dethmers-Ausema B, Nijland JH, Mithieux G, Rajas F, Kuipers F, Lukens MV, Soehnlein O, Oosterveer MH, Westerterp M. Hepatocyte-specific glucose-6-phosphatase deficiency disturbs platelet aggregation and decreases blood monocytes upon fasting-induced hypoglycemia. Mol Metab 2021; 53:101265. [PMID: 34091064 PMCID: PMC8243524 DOI: 10.1016/j.molmet.2021.101265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Glycogen storage disease type 1a (GSD Ia) is a rare inherited metabolic disorder caused by mutations in the glucose-6-phosphatase (G6PC1) gene. When untreated, GSD Ia leads to severe fasting-induced hypoglycemia. Although current intensive dietary management aims to prevent hypoglycemia, patients still experience hypoglycemic events. Poor glycemic control in GSD Ia is associated with hypertriglyceridemia, hepatocellular adenoma and carcinoma, and also with an increased bleeding tendency of unknown origin. METHODS To evaluate the effect of glycemic control on leukocyte levels and coagulation in GSD Ia, we employed hepatocyte-specific G6pc1 deficient (L-G6pc-/-) mice under fed or fasted conditions, to match good or poor glycemic control in GSD Ia, respectively. RESULTS We found that fasting-induced hypoglycemia in L-G6pc-/- mice decreased blood leukocytes, specifically proinflammatory Ly6Chi monocytes, compared to controls. Refeeding reversed this decrease. The decrease in Ly6Chi monocytes was accompanied by an increase in plasma corticosterone levels and was prevented by the glucocorticoid receptor antagonist mifepristone. Further, fasting-induced hypoglycemia in L-G6pc-/- mice prolonged bleeding time in the tail vein bleeding assay, with reversal by refeeding. This could not be explained by changes in coagulation factors V, VII, or VIII, or von Willebrand factor. While the prothrombin and activated partial thromboplastin time as well as total platelet counts were not affected by fasting-induced hypoglycemia in L-G6pc-/- mice, ADP-induced platelet aggregation was disturbed. CONCLUSIONS These studies reveal a relationship between fasting-induced hypoglycemia, decreased blood monocytes, and disturbed platelet aggregation in L-G6pc-/- mice. While disturbed platelet aggregation likely accounts for the bleeding phenotype in GSD Ia, elevated plasma corticosterone decreases the levels of proinflammatory monocytes. These studies highlight the necessity of maintaining good glycemic control in GSD Ia.
Collapse
Affiliation(s)
- Anouk M La Rose
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joanne A Hoogerland
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arthur F Svendsen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn G S Rutten
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bertien Dethmers-Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J Hendrik Nijland
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gilles Mithieux
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Fabienne Rajas
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Michaël V Lukens
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Oliver Soehnlein
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZBME), University of Münster, Münster, Germany; Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden
| | - Maaike H Oosterveer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
32
|
Izzi B, Gialluisi A, Gianfagna F, Orlandi S, De Curtis A, Magnacca S, Costanzo S, Di Castelnuovo A, Donati MB, de Gaetano G, Hoylaerts MF, Cerletti C, Iacoviello L. Platelet Distribution Width Is Associated with P-Selectin Dependent Platelet Function: Results from the Moli-Family Cohort Study. Cells 2021; 10:cells10102737. [PMID: 34685717 PMCID: PMC8535046 DOI: 10.3390/cells10102737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Defined as an index of platelet size heterogeneity, the platelet distribution width (PDW) is still a poorly characterized marker of platelet function in (sub)clinical disease. We presently validated PDW as a marker of P-selectin dependent platelet activation in the Moli-family cohort. Platelet-bound P-selectin and platelet/leukocyte mixed aggregates were measured by flow cytometry in freshly collected venous blood, both before and after in vitro platelet activation, and coagulation time was assessed in unstimulated and LPS- or TNFα-stimulated whole blood. Closure Times (CT) were measured in a Platelet Function Analyzer (PFA)-100. Multivariable linear mixed effect regression models (with age, sex and platelet count as fixed and family structure as random effect) revealed PDW to be negatively associated with platelet P-selectin, platelet/leukocyte aggregates and von Willebrand factor (VWF), and positively with PFA-100 CT, and LPS- and TNF-α-stimulated coagulation times. With the exception of VWF, all relationships were sex-independent. In contrast, no association was found between mean platelet volume (MPV) and these variables. PDW seems a simple, useful marker of ex vivo and in vitro P-selectin dependent platelet activation. Investigations of larger cohorts will define the usefulness of PDW as a risk predictor of thrombo-inflammatory conditions where activated platelets play a contributing role.
Collapse
Affiliation(s)
- Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (S.O.); (A.D.C.); (S.C.); (M.B.D.); (G.d.G.); (C.C.); (L.I.)
- Correspondence:
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (S.O.); (A.D.C.); (S.C.); (M.B.D.); (G.d.G.); (C.C.); (L.I.)
| | - Francesco Gianfagna
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
- Mediterranea Cardiocentro, 80133 Napoli, Italy; (S.M.); (A.D.C.)
| | - Sabatino Orlandi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (S.O.); (A.D.C.); (S.C.); (M.B.D.); (G.d.G.); (C.C.); (L.I.)
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (S.O.); (A.D.C.); (S.C.); (M.B.D.); (G.d.G.); (C.C.); (L.I.)
| | - Sara Magnacca
- Mediterranea Cardiocentro, 80133 Napoli, Italy; (S.M.); (A.D.C.)
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (S.O.); (A.D.C.); (S.C.); (M.B.D.); (G.d.G.); (C.C.); (L.I.)
| | | | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (S.O.); (A.D.C.); (S.C.); (M.B.D.); (G.d.G.); (C.C.); (L.I.)
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (S.O.); (A.D.C.); (S.C.); (M.B.D.); (G.d.G.); (C.C.); (L.I.)
| | - Marc F. Hoylaerts
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium;
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (S.O.); (A.D.C.); (S.C.); (M.B.D.); (G.d.G.); (C.C.); (L.I.)
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, 86077 Pozzilli, Italy; (A.G.); (S.O.); (A.D.C.); (S.C.); (M.B.D.); (G.d.G.); (C.C.); (L.I.)
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | | |
Collapse
|
33
|
Zaongo SD, Liu Y, Harypursat V, Song F, Xia H, Ma P, Chen Y. P-Selectin Glycoprotein Ligand 1: A Potential HIV-1 Therapeutic Target. Front Immunol 2021; 12:710121. [PMID: 34434194 PMCID: PMC8380821 DOI: 10.3389/fimmu.2021.710121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/28/2021] [Indexed: 01/21/2023] Open
Abstract
Antiretroviral therapy (ART), which is a life-long therapeutic option, remains the only currently effective clinical method to treat HIV-1 infection. However, ART may be toxic to vital organs including the liver, brain, heart, and kidneys, and may result in systemic complications. In this context, to consider HIV-1 restriction factors from the innate immune system to explore novel HIV therapeutics is likely to be a promising investigative strategy. In light of this, P-selectin glycoprotein ligand 1 (PSGL-1) has recently become the object of close scrutiny as a recognized cell adhesion molecule, and has become a major focus of academic study, as researchers believe that PSGL-1 may represent a novel area of interest in the research inquiry into the field of immune checkpoint inhibition. In this article, we review PSGL-1's structure and functions during infection and/or inflammation. We also outline a comprehensive review of its role and potential therapeutic utility during HIV-1 infection as published in contemporary academic literature.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.,Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yanqiu Liu
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Huan Xia
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
34
|
Thrombo-Inflammation: A Focus on NTPDase1/CD39. Cells 2021; 10:cells10092223. [PMID: 34571872 PMCID: PMC8469976 DOI: 10.3390/cells10092223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence for a link between inflammation and thrombosis. Following tissue injury, vascular endothelium becomes activated, losing its antithrombotic properties whereas inflammatory mediators build up a prothrombotic environment. Platelets are the first elements to be activated following endothelial damage; they participate in physiological haemostasis, but also in inflammatory and thrombotic events occurring in an injured tissue. While physiological haemostasis develops rapidly to prevent excessive blood loss in the endothelium activated by inflammation, hypoxia or by altered blood flow, thrombosis develops slowly. Activated platelets release the content of their granules, including ATP and ADP released from their dense granules. Ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39 dephosphorylates ATP to ADP and to AMP, which in turn, is hydrolysed to adenosine by ecto-5'-nucleotidase (CD73). NTPDase1/CD39 has emerged has an important molecule in the vasculature and on platelet surfaces; it limits thrombotic events and contributes to maintain the antithrombotic properties of endothelium. The aim of the present review is to provide an overview of platelets as cellular elements interfacing haemostasis and inflammation, with a particular focus on the emerging role of NTPDase1/CD39 in controlling both processes.
Collapse
|
35
|
Fard MB, Fard SB, Ramazi S, Atashi A, Eslamifar Z. Thrombosis in COVID-19 infection: Role of platelet activation-mediated immunity. Thromb J 2021; 19:59. [PMID: 34425822 PMCID: PMC8380864 DOI: 10.1186/s12959-021-00311-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/10/2021] [Indexed: 01/08/2023] Open
Abstract
Background Thrombosis plays an important role in the Coronavrus Disease 2019 (COVID-19) infection-related complications such as acute respiratory distress syndrome and myocardial infarction. Multiple factors such as oxygen demand injuries, endothelial cells injury related to infection, and plaque formation. Main body Platelets obtained from the patients may have severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, showing that the increased activation potential recommends platelet can be hyper-activated in severely ill SARS-CoV-2 cases. Platelets contain multiple receptors that interact with specific ligands. Pathogen’s receptors such as Toll-like receptors (TLRs), NOD-like receptor, C-type lectin receptor family, glycoprotein (GP) such as GPαIIbβ3 and GPIbα which allow pathogens to interact with platelets. Platelet TLRs and NOD2 are involved in platelet activation and thrombosis. Accordingly, TLRs are critical receptors that could recognize various endogenous damage-associated molecular patterns and exogenous pathogen-associated molecular patterns (PAMPs). TLRs are considered as important components in the activation of innate immunity response against pathogenic and non-pathogenic components like damaged tissues. TLRs-1,-2,-4,-6,-7 expression on or within platelets has been reported previously. Various PAMPs were indicated to be capable of binding to platelet-TLRs and inducing both the activation and promotion of downstream proinflammatory signaling cascade. Conclusion It is possible that the increased TLRs expression and TLR-mediated platelets activation during COVID-19 may enhance vascular and coronary thrombosis. It may be hypothesized using TLRs antagonist and monoclonal antibody against P-selectin, as the marker of leukocyte recruitment and platelet activation, besides viral therapy provide therapeutic advances in fighting against the thrombosis related complications in COVID-19.
Collapse
Affiliation(s)
| | | | - Shahin Ramazi
- Department of biophysics, faculty of biological sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem cell and tissue engineering research center, Shahroud university of medical sciences, Shahroud, Iran
| | | |
Collapse
|
36
|
Cao Y, Geng C, Li Y, Zhang Y. In situ Pulmonary Artery Thrombosis: A Previously Overlooked Disease. Front Pharmacol 2021; 12:671589. [PMID: 34305592 PMCID: PMC8296465 DOI: 10.3389/fphar.2021.671589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
Pulmonary thromboembolism (PTE) is the third leading cause of death in cardiovascular diseases. PTE is believed to be caused by thrombi detached from deep veins of lower extremities. The thrombi travel with systemic circulation to the lung and block pulmonary arteries, leading to sudden disruption of hemodynamics and blood gas exchange. However, this concept has recently been challenged by accumulating evidence demonstrating that de novo thrombosis may be formed in pulmonary arteries without deep venous thrombosis. On the other hand, chronic thromboembolic pulmonary hypertension (CTEPH), a subtype of pulmonary hypertension, could have different pathogenesis than traditional PTE. Therefore, this article summarized and compared the risk factors, the common and specific pathogenic mechanisms underlying PTE, in situ pulmonary artery thrombosis, and CTEPH at molecular and cellular levels, and suggested the therapeutic strategies to these diseases, aiming to facilitate understanding of pathogenesis, differential diagnosis, and precision therapeutics of the three pulmonary artery thrombotic diseases.
Collapse
Affiliation(s)
- Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Chao Geng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yahong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
37
|
The Prothrombotic State Associated with SARS-CoV-2 Infection: Pathophysiological Aspects. Mediterr J Hematol Infect Dis 2021; 13:e2021045. [PMID: 34276914 PMCID: PMC8265369 DOI: 10.4084/mjhid.2021.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023] Open
Abstract
Severe coronavirus disease-2019 (COVID-19) is frequently associated with microvascular thrombosis, especially in the lung, or macrovascular thrombosis, mainly venous thromboembolism, which significantly contributes to the disease mortality burden. COVID-19 patients also exhibit distinctive laboratory abnormalities that are compatible with a prothrombotic state. The key event underlying COVID-19-associated thrombotic complications is an excessive host inflammatory response to severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection generating multiple inflammatory mediators, mainly cytokines and complement activation products. The latter, along with the virus itself, the increased levels of angiotensin II and hypoxia, drive the major cellular changes promoting thrombosis, which include: (1) aberrant expression of tissue factor by activated alveolar epithelial cells, monocytes-macrophages and neutrophils, and production of other prothrombotic factors by activated endothelial cells (ECs) and platelets; (2) reduced expression of physiological anticoagulants by dysfunctional ECs, and (3) suppression of fibrinolysis by the endothelial overproduction of plasminogen activator inhibitor-1 and, likely, by heightened thrombin-mediated activation of thrombin-activatable fibrinolysis inhibitor. Moreover, upon activation or death, neutrophils and other cells release nuclear materials that are endowed with potent prothrombotic properties. The ensuing thrombosis significantly contributes to lung injury and, in most severe COVID-19 patients, to multiple organ dysfunction. Insights into the pathogenesis of COVID-19-associated thrombosis may have implications for the development of new diagnostic and therapeutic tools.
Collapse
|
38
|
Zhu D, Xu Z, Liu T, Li Y. Soluble P-selectin levels in patients with obstructive sleep apnea: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 2021; 278:4633-4644. [PMID: 33950356 DOI: 10.1007/s00405-021-06831-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Obstructive sleep apnea (OSA) patients are at increased risk for cardiovascular disease, stroke, atherosclerosis, hypertension, and venous thromboembolism. Elevated soluble P-selectin (sP-selectin) levels are also associated with increased risk of above diseases. But whether sP-selectin levels in OSA patients are higher than their counterparts remain unclear, since previous studies yielded inconsistent results. Therefore, a meta-analysis is warranted. METHODS PubMed, Embase, Cochrane Library, and Web of Science databases were searched for eligible studies. Studies were included if they reported sP-selectin levels of both OSA patients and non-OSA controls. Standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated to determine the effect sizes. RESULTS Nine eligible studies were finally evaluated. When all the studies were pooled, sP-selectin levels in OSA patients were significantly higher than that in controls (SMD = 0.54, 95% CI 0.29-0.78, I2 = 66%, p < 0.0001). In the subgroup analysis based on BMI matched groups, sP-selectin levels were significantly higher in OSA patients than that in controls (SMD = 0.52, 95% CI 0.27-0.76, I2 = 23%, p < 0.0001). In the subgroup analysis stratified by blood source, either serum sP-selectin levels or plasma sP-selectin levels in OSA patients were higher than that in controls. Moderate-to-severe OSA patients had significant higher sP-selectin levels (SMD = 0.80, 95% CI 0.45-1.15, I2 = 67%, p < 0.00001), while mild OSA patients showed no significant difference with controls. CONCLUSION The pooled results reveal that OSA patients have higher sP-selectin levels than non-OSA controls. This conclusion remains unaltered in all subgroups other than the subgroup of mild OSA patients. Additional studies are warranted to better identify the role of sP-selectin as a potential biomarker in OSA patients.
Collapse
Affiliation(s)
- Ding Zhu
- Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China.,Respiratory Group, Department of Endoscopy, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Zhibo Xu
- Department of Respiratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Tingting Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Yaqing Li
- Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China. .,Respiratory Group, Department of Endoscopy, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China. .,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310000, China. .,, 1 Banshan East Road, Hangzhou, China.
| |
Collapse
|
39
|
Hell L, Däullary T, Burghart V, Mauracher LM, Grilz E, Moser B, Kramer G, Schmid JA, Ay C, Pabinger I, Thaler J. Extracellular Vesicle-Associated Tissue Factor Activity in Prostate Cancer Patients with Disseminated Intravascular Coagulation. Cancers (Basel) 2021; 13:cancers13071487. [PMID: 33804899 PMCID: PMC8036918 DOI: 10.3390/cancers13071487] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Disseminated intravascular coagulation (DIC) may occur in patients with advanced prostate cancer. In the present study, we detected elevated extracellular vesicle (EV)-associated tissue factor (TF) activity in the plasma of prostate cancer patients with DIC compared with matched prostate cancer patients without DIC and healthy individuals. TF-exposing EVs from DIC patients were highly coagulant in a clotting assay. In in vitro co-culture experiments, EV-TF activity was increased by interactions between a TF-exposing prostate cancer cell line (DU145), peripheral blood mononuclear cells (PBMCs), and platelets. Data from this study contribute to the understanding of the pathogenesis of prostate cancer-related DIC. Abstract Patients with advanced prostate cancer may develop fulminant disseminated intravascular coagulation (DIC). Circulating extracellular vesicles (EVs)-exposing tissue factor (TF), the initiator of the coagulation cascade, may play an important role. We included 7 prostate cancer patients with DIC, 10 age- and stage-matched cancer controls without DIC, and 10 age-matched healthy male individuals. EV-TF activity was highly elevated in prostate cancer patients with DIC (11.40 pg/mL; range: 4.34–27.06) compared with prostate cancer patients without DIC (0.09 pg/mL; range: 0.00–0.30, p = 0.001) and healthy controls (0.18 pg/mL; range: 0.09–0.54; p = 0.001). Only EVs from patients with DIC reduced fibrin clot formation time of pooled plasma in a TF-dependent manner. Next, we performed in vitro co-culture experiments including EVs derived from a prostate cancer cell line with high (DU145) and low (LNCaP) TF expression, peripheral blood mononuclear cells (PBMCs), and platelets. Co-incubation of DU145 EVs with PBMCs and platelets significantly increased EV-TF activity in conditioned medium and induced TF activity on monocytes. No such effects were seen in co-culture experiments with LNCaP EVs. In conclusion, the findings indicate that elevated EV-TF activity plays a role in the development of prostate-cancer-related DIC and may result from interactions between tumor-derived EVs, monocytes, and platelets.
Collapse
Affiliation(s)
- Lena Hell
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (L.H.); (T.D.); (V.B.); (L.-M.M.); (E.G.); (C.A.); (I.P.)
| | - Thomas Däullary
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (L.H.); (T.D.); (V.B.); (L.-M.M.); (E.G.); (C.A.); (I.P.)
| | - Vanessa Burghart
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (L.H.); (T.D.); (V.B.); (L.-M.M.); (E.G.); (C.A.); (I.P.)
| | - Lisa-Marie Mauracher
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (L.H.); (T.D.); (V.B.); (L.-M.M.); (E.G.); (C.A.); (I.P.)
| | - Ella Grilz
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (L.H.); (T.D.); (V.B.); (L.-M.M.); (E.G.); (C.A.); (I.P.)
| | - Bernhard Moser
- Center for Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, 1090 Vienna, Austria; (B.M.); (J.A.S.)
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johannes A. Schmid
- Center for Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, 1090 Vienna, Austria; (B.M.); (J.A.S.)
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (L.H.); (T.D.); (V.B.); (L.-M.M.); (E.G.); (C.A.); (I.P.)
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (L.H.); (T.D.); (V.B.); (L.-M.M.); (E.G.); (C.A.); (I.P.)
| | - Johannes Thaler
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (L.H.); (T.D.); (V.B.); (L.-M.M.); (E.G.); (C.A.); (I.P.)
- Correspondence:
| |
Collapse
|
40
|
Wan J, Konings J, de Laat B, Hackeng TM, Roest M. Added Value of Blood Cells in Thrombin Generation Testing. Thromb Haemost 2021; 121:1574-1587. [PMID: 33742437 DOI: 10.1055/a-1450-8300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The capacity of blood to form thrombin is a critical determinant of coagulability. Plasma thrombin generation (TG), a test that probes the capacity of plasma to form thrombin, has improved our knowledge of the coagulation system and shows promising utility in coagulation management. Although plasma TG gives comprehensive insights into the function of pro- and anticoagulation drivers, it does not measure the role of blood cells in TG. In this literature review, we discuss currently available continuous TG tests that can reflect the involvement of blood cells in coagulation, in particular the fluorogenic assays that allow continuous measurement in platelet-rich plasma and whole blood. We also provide an overview about the influence of blood cells on blood coagulation, with emphasis on the direct influence of blood cells on TG. Platelets accelerate the initiation and velocity of TG by phosphatidylserine exposure, granule content release and surface receptor interaction with coagulation proteins. Erythrocytes are also major providers of phosphatidylserine, and erythrocyte membranes trigger contact activation. Furthermore, leukocytes and cancer cells may be important players in cell-mediated coagulation because, under certain conditions, they express tissue factor, release procoagulant components and can induce platelet activation. We argue that testing TG in the presence of blood cells may be useful to distinguish blood cell-related coagulation disorders. However, it should also be noted that these blood cell-dependent TG assays are not clinically validated. Further standardization and validation studies are needed to explore their clinical usefulness.
Collapse
Affiliation(s)
- Jun Wan
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Joke Konings
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Bas de Laat
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Mark Roest
- Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
41
|
Heparin-Induced Thrombocytopenia: A Review of New Concepts in Pathogenesis, Diagnosis, and Management. J Clin Med 2021; 10:jcm10040683. [PMID: 33578859 PMCID: PMC7916628 DOI: 10.3390/jcm10040683] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022] Open
Abstract
Knowledge on heparin-induced thrombocytopenia keeps increasing. Recent progress on diagnosis and management as well as several discoveries concerning its pathogenesis have been made. However, many aspects of heparin-induced thrombocytopenia remain partly unknown, and exact application of these new insights still need to be addressed. This article reviews the main new concepts in pathogenesis, diagnosis, and management of heparin-induced thrombocytopenia.
Collapse
|
42
|
Fu G, Deng M, Neal MD, Billiar TR, Scott MJ. Platelet-Monocyte Aggregates: Understanding Mechanisms and Functions in Sepsis. Shock 2021; 55:156-166. [PMID: 32694394 PMCID: PMC8008955 DOI: 10.1097/shk.0000000000001619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT Platelets have been shown to play an important immunomodulatory role in the pathogenesis of various diseases through their interactions with other immune and nonimmune cells. Sepsis is a major cause of death in the United States, and many of the mechanisms driving sepsis pathology are still unresolved. Monocytes have recently received increasing attention in sepsis pathogenesis, and multiple studies have associated increased levels of platelet-monocyte aggregates observed early in sepsis with clinical outcomes in sepsis patients. These findings suggest platelet-monocyte aggregates may be an important prognostic indicator. However, the mechanisms leading to platelet interaction and aggregation with monocytes, and the effects of aggregation during sepsis are still poorly defined. There are few studies that have really investigated functions of platelets and monocytes together, despite a large body of research showing separate functions of platelets and monocytes in inflammation and immune responses during sepsis. The goal of this review is to provide insights into what we do know about mechanisms and biological meanings of platelet-monocyte interactions, as well as some of the technical challenges and limitations involved in studying this important potential mechanism in sepsis pathogenesis. Improving our understanding of platelet and monocyte biology in sepsis may result in identification of novel targets that can be used to positively affect outcomes in sepsis.
Collapse
Affiliation(s)
- Guang Fu
- Department of General Surgery, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China (visiting scholar in Pittsburgh 2018-09/2020-09)
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Lee SJ, Yoon BR, Kim HY, Yoo SJ, Kang SW, Lee WW. Activated Platelets Convert CD14 +CD16 - Into CD14 +CD16 + Monocytes With Enhanced FcγR-Mediated Phagocytosis and Skewed M2 Polarization. Front Immunol 2021; 11:611133. [PMID: 33488616 PMCID: PMC7817612 DOI: 10.3389/fimmu.2020.611133] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Monocytes are important cellular effectors of innate immune defense. Human monocytes are heterogeneous and can be classified into three distinct subsets based on CD14 and CD16 expression. The expansion of intermediate CD14+CD16+ monocytes has been reported in chronic inflammatory diseases including rheumatoid arthritis (RA). However, the mechanism underlying induction of CD16 and its role in monocytes remains poorly understood. Here, we demonstrate that activated platelets are important for induction of CD16 on classical CD14+CD16- monocytes by soluble factors such as cytokines. Cytokine neutralization and signaling inhibition assays reveal that sequential involvement of platelet-derived TGF-β and monocyte-derived IL-6 contribute to CD16 induction on CD14+CD16- monocytes. Activated platelet-induced CD16 on monocytes participates in antibody-dependent cellular phagocytosis (ADCP) and its level is positively correlated with phagocytic activity. CD14+CD16- monocytes treated with activated platelets preferentially differentiate into M2 macrophages, likely the M2c subset expressing CD163 and MerTK. Lastly, the amount of sCD62P, a marker of activated platelets, is significantly elevated in plasma of RA patients and positively correlates with clinical parameters of RA. Our findings suggest an important role of activated platelets in modulating phenotypical and functional features of human monocytes. This knowledge increases understanding of the immunological role of CD14+CD16+ cells in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Su Jeong Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Bo Ruem Yoon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Hee Young Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea
| | - Su-Jin Yoo
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seong Wook Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea.,Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
44
|
Cañas CA, Cañas F, Bautista-Vargas M, Bonilla-Abadía F. Role of Tissue Factor in the Pathogenesis of COVID-19 and the Possible Ways to Inhibit It. Clin Appl Thromb Hemost 2021; 27:10760296211003983. [PMID: 33784877 PMCID: PMC8020089 DOI: 10.1177/10760296211003983] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 (Coronavirus Disease 2019) is a highly contagious infection and associated with high mortality rates, primarily in elderly; patients with heart failure; high blood pressure; diabetes mellitus; and those who are smokers. These conditions are associated to increase in the level of the pulmonary epithelium expression of angiotensin-converting enzyme 2 (ACE-2), which is a recognized receptor of the S protein of the causative agent SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Severe cases are manifested by parenchymal lung involvement with a significant inflammatory response and the development of microvascular thrombosis. Several factors have been involved in developing this prothrombotic state, including the inflammatory reaction itself with the participation of proinflammatory cytokines, endothelial dysfunction/endotheliitis, the presence of antiphospholipid antibodies, and possibly the tissue factor (TF) overexpression. ARS-Cov-19 ACE-2 down-regulation has been associated with an increase in angiotensin 2 (AT2). The action of proinflammatory cytokines, the increase in AT2 and the presence of antiphospholipid antibodies are known factors for TF activation and overexpression. It is very likely that the overexpression of TF in COVID-19 may be related to the pathogenesis of the disease, hence the importance of knowing the aspects related to this protein and the therapeutic strategies that can be derived. Different therapeutic strategies are being built to curb the expression of TF as a therapeutic target for various prothrombotic events; therefore, analyzing this treatment strategy for COVID-19-associated coagulopathy is rational. Medications such as celecoxib, cyclosporine or colchicine can impact on COVID-19, in addition to its anti-inflammatory effect, through inhibition of TF.
Collapse
Affiliation(s)
- Carlos A. Cañas
- Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
| | - Felipe Cañas
- Unit of Cardiology, Clínica Medellín, Medellín, Colombia
| | | | - Fabio Bonilla-Abadía
- Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
| |
Collapse
|
45
|
AMORUSO A, BALBO PE, PATRUCCO F, GAVELLI F, CASTELLO LM, BARDELLI C, NERI T, CELI A, FOCI V, FRESU LG, BRUNELLESCHI S. Monocyte-derived microparticles stimulate alveolar macrophages from patients with sarcoidosis: modulation by PPARγ. MINERVA BIOTECNOL 2021. [DOI: 10.23736/s1120-4826.20.02632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020; 136:1330-1341. [PMID: 32678428 PMCID: PMC7483437 DOI: 10.1182/blood.2020007252] [Citation(s) in RCA: 540] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent pathogen responsible for the coronavirus disease 2019 (COVID-19). Since its emergence, the novel coronavirus has rapidly achieved pandemic proportions causing remarkably increased morbidity and mortality around the world. A hypercoagulability state has been reported as a major pathologic event in COVID-19, and thromboembolic complications listed among life-threatening complications of the disease. Platelets are chief effector cells of hemostasis and pathological thrombosis. However, the participation of platelets in the pathogenesis of COVID-19 remains elusive. This report demonstrates that increased platelet activation and platelet-monocyte aggregate formation are observed in severe COVID-19 patients, but not in patients presenting mild COVID-19 syndrome. In addition, exposure to plasma from severe COVID-19 patients increased the activation of control platelets ex vivo. In our cohort of COVID-19 patients admitted to the intensive care unit, platelet-monocyte interaction was strongly associated with tissue factor (TF) expression by the monocytes. Platelet activation and monocyte TF expression were associated with markers of coagulation exacerbation as fibrinogen and D-dimers, and were increased in patients requiring invasive mechanical ventilation or patients who evolved with in-hospital mortality. Finally, platelets from severe COVID-19 patients were able to induce TF expression ex vivo in monocytes from healthy volunteers, a phenomenon that was inhibited by platelet P-selectin neutralization or integrin αIIb/β3 blocking with the aggregation inhibitor abciximab. Altogether, these data shed light on new pathological mechanisms involving platelet activation and platelet-dependent monocyte TF expression, which were associated with COVID-19 severity and mortality.
Collapse
|
47
|
Oral Bruton tyrosine kinase inhibitors block activation of the platelet Fc receptor CD32a (FcγRIIA): a new option in HIT? Blood Adv 2020; 3:4021-4033. [PMID: 31809536 DOI: 10.1182/bloodadvances.2019000617] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Activation of the platelet Fc-receptor CD32a (FcγRIIA) is an early and crucial step in the pathogenesis of heparin-induced thrombocytopenia type II (HIT) that has not been therapeutically targeted. Downstream FcγRIIA Bruton tyrosine kinase (BTK) is activated; however, its role in Fc receptor-induced platelet activation is unknown. We explored the potential to prevent FcγRIIA-induced platelet activation by BTK inhibitors (BTKi's) approved (ibrutinib, acalabrutinib) or in clinical trials (zanubrutinib [BGB-3111] and tirabrutinib [ONO/GS-4059]) for B-cell malignancies, or in trials for autoimmune diseases (evobrutinib, fenebrutinib [GDC-0853]). We found that all BTKi's blocked platelet activation in blood after FcγRIIA stimulation by antibody-mediated cross-linking (inducing platelet aggregation and secretion) or anti-CD9 antibody (inducing platelet aggregation only). The concentrations that inhibit 50% (IC50) of FcγRIIA cross-linking-induced platelet aggregation were for the irreversible BTKi's ibrutinib 0.08 µM, zanubrutinib 0.11 µM, acalabrutinib 0.38 µM, tirabrutinib 0.42 µM, evobrutinib 1.13 µM, and for the reversible BTKi fenebrutinib 0.011 µM. IC50 values for ibrutinib and acalabrutinib were four- to fivefold lower than the drug plasma concentrations in patients treated for B-cell malignancies. The BTKi's also suppressed adenosine triphosphate secretion, P-selectin expression, and platelet-neutrophil complex formation after FcγRIIA cross-linking. Moreover, platelet aggregation in donor blood stimulated by sera from HIT patients was blocked by BTKi's. A single oral intake of ibrutinib (280 mg) was sufficient for a rapid and sustained suppression of platelet FcγRIIA activation. Platelet aggregation by adenosine 5'-diphosphate, arachidonic acid, or thrombin receptor-activating peptide was not inhibited. Thus, irreversible and reversible BTKi's potently inhibit platelet activation by FcγRIIA in blood. This new rationale deserves testing in patients with HIT.
Collapse
|
48
|
Siess W, Hundelshausen PV, Lorenz R. Selective inhibition of thromboinflammation in COVID-19 by Btk inhibitors. Platelets 2020; 31:989-992. [PMID: 32892684 DOI: 10.1080/09537104.2020.1809647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wolfgang Siess
- Institute for Prevention of Cardiovascular Diseases, Ludwig-Maximilians University (LMU) , Munich, Germany
| | - Philipp Von Hundelshausen
- Institute for Prevention of Cardiovascular Diseases, Ludwig-Maximilians University (LMU) , Munich, Germany
| | - Reinhard Lorenz
- Institute for Prevention of Cardiovascular Diseases, Ludwig-Maximilians University (LMU) , Munich, Germany
| |
Collapse
|
49
|
Abstract
The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing global pandemic has presented a health emergency of unprecedented magnitude. Recent clinical data has highlighted that coronavirus disease 2019 (COVID-19) is associated with a significant risk of thrombotic complications ranging from microvascular thrombosis, venous thromboembolic disease, and stroke. Importantly, thrombotic complications are markers of severe COVID-19 and are associated with multiorgan failure and increased mortality. The evidence to date supports the concept that the thrombotic manifestations of severe COVID-19 are due to the ability of SARS-CoV-2 to invade endothelial cells via ACE-2 (angiotensin-converting enzyme 2), which is expressed on the endothelial cell surface. However, in patients with COVID-19 the subsequent endothelial inflammation, complement activation, thrombin generation, platelet, and leukocyte recruitment, and the initiation of innate and adaptive immune responses culminate in immunothrombosis, ultimately causing (micro)thrombotic complications, such as deep vein thrombosis, pulmonary embolism, and stroke. Accordingly, the activation of coagulation (eg, as measured with plasma D-dimer) and thrombocytopenia have emerged as prognostic markers in COVID-19. Given thrombotic complications are central determinants of the high mortality rate in COVID-19, strategies to prevent thrombosis are of critical importance. Several antithrombotic drugs have been proposed as potential therapies to prevent COVID-19-associated thrombosis, including heparin, FXII inhibitors, fibrinolytic drugs, nafamostat, and dipyridamole, many of which also possess pleiotropic anti-inflammatory or antiviral effects. The growing awareness and mechanistic understanding of the prothrombotic state of COVID-19 patients are driving efforts to more stringent diagnostic screening for thrombotic complications and to the early institution of antithrombotic drugs, for both the prevention and therapy of thrombotic complications. The shifting paradigm of diagnostic and treatment strategies holds significant promise to reduce the burden of thrombotic complications and ultimately improve the prognosis for patients with COVID-19.
Collapse
Affiliation(s)
- James D. McFadyen
- From the Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.D.M., H.S., K.P.)
- Clinical Hematology Department (J.D.M., H.S.), Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia (J.D.M., H.S., K.P.)
| | - Hannah Stevens
- From the Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.D.M., H.S., K.P.)
- Clinical Hematology Department (J.D.M., H.S.), Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia (J.D.M., H.S., K.P.)
| | - Karlheinz Peter
- Department of Cardiology (K.P.), Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia (J.D.M., H.S., K.P.)
| |
Collapse
|
50
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|