1
|
Carrascosa AJ, García-Gutiérrez MS, Saldaña R, Manzanares J. Additive antinociceptive action of intrathecal anandamide reuptake inhibitor and morphine in the management of post-incisional pain in rats. Biomed Pharmacother 2024; 177:117054. [PMID: 38943991 DOI: 10.1016/j.biopha.2024.117054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024] Open
Abstract
Spinal opioids have mixed efficacy and their adverse effects force treatment cessation of postoperative pain. Consequently, there is an ongoing search for new therapeutic strategies. Here, we evaluated the analgesic efficacy of intrathecal UCM707, an anandamide reuptake inhibitor, and morphine combination. Firstly, we assessed the effects of morphine (1, 5 and 10 μg), UCM707 (75 μg) and its combination in the hot plate. Then, morphine + UCM707 at sub-effective doses was evaluated in a rat post-incisional pain model. In addition, μ-, CB1r-, CB2r- and TRPV1-antagonists were pre-administered before the combination. Activation of μ-opioid and CB1r, and Cnr1, Cnr2, Oprm1 and TRPV1 expressions were evaluated in the lumbar sacra and periaqueductal grey by [35 S]-GTPγS binding autoradiography and qPCR studies. In the hot plate, morphine (1 μg) and UCM707 (75 μg) induced a more robust analgesic effect than each drug alone. Morphine plus UCM707 did not modify μ-opioid nor CB1 receptor function in the PAG or LS. Cnr1 and TRPV1 expression increased in the lumbar sacra (LS). Morphine plus UCM707 significantly reduced post-incisional pain at 1 and 4 days after surgery. Cnr1, Cnr2 and TRPV1 expressions increased in the LS. Blockade of μ-opioid receptor reduced combination effects on days 1 and 4. CB1r- and CB2r-antagonism reduced morphine + UCM707 effects on days 1 and 4, respectively. CB1r and TRPV1-antagonism improved their antinociceptive effects on day 4. These results revealed a synergistic/additive analgesic effect of UCM707 and morphine combination controlling postincisional pain. CB1r, CB2r and TRPV1 contribute differently as central sensitization occurs.
Collapse
MESH Headings
- Animals
- Morphine/pharmacology
- Morphine/administration & dosage
- Male
- Pain, Postoperative/drug therapy
- Pain, Postoperative/metabolism
- Endocannabinoids/metabolism
- Injections, Spinal
- Rats
- Arachidonic Acids/pharmacology
- Arachidonic Acids/administration & dosage
- Polyunsaturated Alkamides/pharmacology
- Polyunsaturated Alkamides/administration & dosage
- Drug Synergism
- Analgesics/pharmacology
- Analgesics/administration & dosage
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Receptors, Opioid, mu/metabolism
- TRPV Cation Channels/metabolism
- Rats, Wistar
- Drug Therapy, Combination
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Antonio J Carrascosa
- Department of Anesthesiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María S García-Gutiérrez
- Instituto de Neurociencias, Campus de San Juan, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Raquel Saldaña
- Department of Anesthesiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Campus de San Juan, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
2
|
Ötvös F, Szűcs E, Urai Á, Köteles I, Szabó PT, Varga ZK, Gombos D, Hosztafi S, Benyhe S. Synthesis and biochemical evaluation of 17-N-beta-aminoalkyl-4,5α-epoxynormorphinans. Sci Rep 2023; 13:20305. [PMID: 37985681 PMCID: PMC10660610 DOI: 10.1038/s41598-023-46317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Opiate alkaloids and their synthetic derivatives are still widely used in pain management, drug addiction, and abuse. To avoid serious side effects, compounds with properly designed pharmacological profiles at the opioid receptor subtypes are long needed. Here a series of 17-N-substituted derivatives of normorphine and noroxymorphone analogues with five- and six-membered ring substituents have been synthesized for structure-activity study. Some compounds showed nanomolar affinity to MOR, DOR and KOR in in vitro competition binding experiments with selective agonists [3H]DAMGO, [3H]Ile5,6-deltorphin II and [3H]HS665, respectively. Pharmacological characterization of the compounds in G-protein signaling was determined by [35S]GTPγS binding assays. The normorphine analogues showed higher affinity to KOR compared to MOR and DOR, while most of the noroxymorphone derivatives did not bind to KOR. The presence of 14-OH substituent resulted in a shift in the pharmacological profiles in the agonist > partial agonist > antagonist direction compared to the parent compounds. A molecular docking-based in silico method was also applied to estimate the pharmacological profile of the compounds. Docking energies and the patterns of the interacting receptor atoms, obtained with experimentally determined active and inactive states of MOR, were used to explain the observed pharmacological features of the compounds.
Collapse
Affiliation(s)
- Ferenc Ötvös
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
| | - Edina Szűcs
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Ákos Urai
- Institute of Pharmaceutical Chemistry, Semmelweis Medical University, Hőgyes Endre Utca 9, 1092, Budapest, Hungary
| | - István Köteles
- Institute of Pharmaceutical Chemistry, Semmelweis Medical University, Hőgyes Endre Utca 9, 1092, Budapest, Hungary
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 19, 41390, Göteborg, Sweden
| | - Pál T Szabó
- Research Centre for Natural Sciences, MS Metabolomics Research Laboratory, Magyar Tudósok Krt. 2, 1117, Budapest, Hungary
| | - Zsuzsanna Katalin Varga
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Theoretical Medical Doctoral School, Faculty of Medicine, University of Szeged, 6726, Szeged, Hungary
| | - Dávid Gombos
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Theoretical Medical Doctoral School, Faculty of Medicine, University of Szeged, 6726, Szeged, Hungary
| | - Sándor Hosztafi
- Institute of Pharmaceutical Chemistry, Semmelweis Medical University, Hőgyes Endre Utca 9, 1092, Budapest, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
| |
Collapse
|
3
|
Melin E, Andersson M, Gøtzsche CR, Wickham J, Huang Y, Szczygiel JA, Boender A, Christiansen SH, Pinborg L, Woldbye DPD, Kokaia M. Combinatorial gene therapy for epilepsy: Gene sequence positioning and AAV serotype influence expression and inhibitory effect on seizures. Gene Ther 2023; 30:649-658. [PMID: 37029201 PMCID: PMC10457185 DOI: 10.1038/s41434-023-00399-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
Gene therapy with AAV vectors carrying genes for neuropeptide Y and its receptor Y2 has been shown to inhibit seizures in multiple animal models of epilepsy. It is however unknown how the AAV serotype or the sequence order of these two transgenes in the expression cassette affects the actual parenchymal gene expression levels and the seizure-suppressant efficacy. To address these questions, we compared three viral vector serotypes (AAV1, AAV2 and AAV8) and two transgene sequence orders (NPY-IRES-Y2 and Y2-IRES-NPY) in a rat model of acutely induced seizures. Wistar male rats were injected bilaterally with viral vectors and 3 weeks later acute seizures were induced by a subcutaneous injection of kainate. The latency until 1st motor seizure, time spent in motor seizure and latency to status epilepticus were measured to evaluate the seizure-suppressing efficacy of these vectors compared to an empty cassette control vector. Based on the results, the effect of the AAV1-NPY-IRES-Y2 vector was further investigated by in vitro electrophysiology, and its ability to achieve transgene overexpression in resected human hippocampal tissue was evaluated. The AAV1-NPY-IRES-Y2 proved to be better to any other serotype or gene sequence considering both transgene expression and ability to suppress induced seizures in rats. The vector also demonstrated transgene-induced decrease of glutamate release from excitatory neuron terminals and significantly increased both NPY and Y2 expression in resected human hippocampal tissue from patients with drug-resistant temporal lobe epilepsy. These results validate the feasibility of NPY/Y2 receptor gene therapy as a therapeutic opportunity in focal epilepsies.
Collapse
Affiliation(s)
- Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden.
| | - My Andersson
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Casper R Gøtzsche
- CombiGene AB, Medicon Village, 2 Scheelevägen, 223 81, Lund, Sweden
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Jenny Wickham
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Yuzhe Huang
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Julia Alicja Szczygiel
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Arnie Boender
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Søren H Christiansen
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Lars Pinborg
- Department of Neurology and Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, DK-2100, Copenhagen, Denmark
| | - David P D Woldbye
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Merab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| |
Collapse
|
4
|
Dvorácskó S, Körmöczi T, Sija É, Bende B, Weiczner R, Varga T, Ilisz I, Institóris L, Kereszty ÉM, Tömböly C, Berkecz R. Focusing on the 5F-MDMB-PICA, 4F-MDMB-BICA synthetic cannabinoids and their primary metabolites in analytical and pharmacological aspects. Toxicol Appl Pharmacol 2023; 470:116548. [PMID: 37182749 DOI: 10.1016/j.taap.2023.116548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Nowadays, more and more new synthetic cannabinoids (SCs) appearing on the illicit market present challenges to analytical, forensic, and toxicology experts. For a better understanding of the physiological effect of SCs, the key issue is studying their metabolomic and psychoactive properties. In this study, our validated targeted reversed phase UHPLC-MS/MS method was used for determination of urinary concentration of 5F-MDMB-PICA, 4F-MDMB-BICA, and their primary metabolites. The liquid-liquid extraction procedure was applied for the enrichment of SCs.The pharmacological characterization of investigated SCs were studied by radioligand competition binding and ligand stimulated [35S]GTPγS binding assays. For 5F-MDMB-PICA and 4F-MDMB-BICA, the median urinary concentrations were 0.076 and 0.312 ng/mL. For primary metabolites, the concentration range was 0.029-881.02* ng/mL for 5F-MDMB-PICA-COOH, and 0.396-4579* ng/mL for 4F-MDMB-BICA-COOH. In the polydrug aspect, the 22 urine samples were verified to be abused with 6 illicit drugs. The affinity of the metabolites to CB1R significantly decreased compared to the parent ligands. In the GTPγS functional assay, both 5F-MDMB-PICA and 4F-MDMB-BICA were acting as full agonists, while the metabolites were found as weak inverse agonists. Additionally, the G-protein stimulatory effects of the full agonist 5F-MDMB-PICA and 4F-MDMB-BICA were reduced by metabolites. These results strongly indicate the dose-dependent CB1R-mediated weak inverse agonist effects of the two butanoic acid metabolites. The obtained high concentration of main urinary metabolites of 5F-MDMB-PICA and 4F-MDMB-BICA confirmed the relevance of their routine analysis in forensic and toxicological practices. Based on in vitro binding assays, the metabolites presumably might cause a lower psychoactive effect than parent compounds.
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, Hungary; Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 8, Szeged, Hungary
| | - Tímea Körmöczi
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged Somogyi, utca 4., Szeged, Hungary
| | - Éva Sija
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40., Szeged, Hungary
| | - Balázs Bende
- Department of Dermatology and Allergology, Albert Szent-Györgyi Health Center, H-6720 Szeged, Korányi fasor 6., Szeged, Hungary
| | - Roland Weiczner
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40., Szeged, Hungary
| | - Tibor Varga
- Drug Laboratory Szeged, Drug Investigation Department, Hungarian Institute for Forensic Sciences, Kossuth Lajos sgt. 22-24, Szeged, Hungary
| | - István Ilisz
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged Somogyi, utca 4., Szeged, Hungary
| | - László Institóris
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40., Szeged, Hungary
| | - Éva M Kereszty
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40., Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged Somogyi, utca 4., Szeged, Hungary.
| |
Collapse
|
5
|
Kozsurek M, Király K, Gyimesi K, Lukácsi E, Fekete C, Gereben B, Mohácsik P, Helyes Z, Bölcskei K, Tékus V, Pap K, Szűcs E, Benyhe S, Imre T, Szabó P, Gajtkó A, Holló K, Puskár Z. Unique, Specific CART Receptor-Independent Regulatory Mechanism of CART(55-102) Peptide in Spinal Nociceptive Transmission and Its Relation to Dipeptidyl-Peptidase 4 (DDP4). Int J Mol Sci 2023; 24:ijms24020918. [PMID: 36674439 PMCID: PMC9865214 DOI: 10.3390/ijms24020918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are involved in several physiological and pathological processes, but their mechanism of action is unrevealed due to the lack of identified receptor(s). We provided evidence for the antihyperalgesic effect of CART(55-102) by inhibiting dipeptidyl-peptidase 4 (DPP4) in astrocytes and consequently reducing neuroinflammation in the rat spinal dorsal horn in a carrageenan-evoked inflammation model. Both naturally occurring CART(55-102) and CART(62-102) peptides are present in the spinal cord. CART(55-102) is not involved in acute nociception but regulates spinal pain transmission during peripheral inflammation. While the full-length peptide with a globular motif contributes to hyperalgesia, its N-terminal inhibits this process. Although the anti-hyperalgesic effects of CART(55-102), CART(55-76), and CART(62-76) are blocked by opioid receptor antagonists in our inflammatory models, but not in neuropathic Seltzer model, none of them bind to any opioid or G-protein coupled receptors. DPP4 interacts with Toll-like receptor 4 (TLR4) signalling in spinal astrocytes and enhances the TLR4-induced expression of interleukin-6 and tumour necrosis factor alpha contributing to inflammatory pain. Depending on the state of inflammation, CART(55-102) is processed in the spinal cord, resulting in the generation of biologically active isoleucine-proline-isoleucine (IPI) tripeptide, which inhibits DPP4, leading to significantly decreased glia-derived cytokine production and hyperalgesia.
Collapse
Affiliation(s)
- Márk Kozsurek
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Klára Gyimesi
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
- Department of Anaesthesiology, Uzsoki Hospital, H-1145 Budapest, Hungary
| | - Erika Lukácsi
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Balázs Gereben
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| | - Petra Mohácsik
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Chronic Pain Research Group, Eötvös Loránd Research Network, H-7624 Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Károly Pap
- Department of Orthopaedics and Traumatology, Uzsoki Hospital, H-1145 Budapest, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Tímea Imre
- MS Metabolomics Laboratory, Instrumentation Centre, Research Centre for Natural Sciences, Eötvös Loránd Research Network, H-1117 Budapest, Hungary
| | - Pál Szabó
- MS Metabolomics Laboratory, Instrumentation Centre, Research Centre for Natural Sciences, Eötvös Loránd Research Network, H-1117 Budapest, Hungary
| | - Andrea Gajtkó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Holló
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zita Puskár
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
6
|
Gabaglio M, Prini P, Zamberletti E, Rubino T, Parolaro D. Assay of GTPγS Binding in Autoradiography. Methods Mol Biol 2023; 2576:181-188. [PMID: 36152186 DOI: 10.1007/978-1-0716-2728-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Autoradiography of radiolabeled GTPγS ([35S]GTPγS) binding is a relevant technique to study the function of G protein-coupled receptors (GPCRs) ex vivo. Here, we describe the protocol for such a method, suitable for investigating CB1 receptor functionality in tissue slices from rodent brains.
Collapse
Affiliation(s)
- Marina Gabaglio
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, (VA), Italy
| | - Pamela Prini
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, (VA), Italy
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, (VA), Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, (VA), Italy.
| | | |
Collapse
|
7
|
Stefanucci A, Della Valle A, Scioli G, Marinaccio L, Pieretti S, Minosi P, Szucs E, Benyhe S, Masci D, Tanguturi P, Chou K, Barlow D, Houseknecht K, Streicher JM, Mollica A. Discovery of κ Opioid Receptor (KOR)-Selective d-Tetrapeptides with Improved In Vivo Antinociceptive Effect after Peripheral Administration. ACS Med Chem Lett 2022; 13:1707-1714. [PMID: 36385929 PMCID: PMC9661715 DOI: 10.1021/acsmedchemlett.2c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Peripherally active tetrapeptides as selective κ opioid receptor (KOR) agonists have been prepared in good overall yields and high purity following solid-phase peptide synthesis via Fmoc protection strategy. Structural modifications at the first and second position of the lead compound FF(d-Nle)R-NH2 (FE200041) were contemplated with aromatic side chains containing d-amino acids, such as (d)-pF-Phe, (d)-mF-Phe, (d)-oF-Phe, which led to highly selective and efficacious KOR agonists endowed with strong antinociceptive activity in vivo following intravenous (i.v.) and subcutaneous (s.c.) administration in the tail flick and formalin tests. These results suggest potential clinical applications in the treatment of neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Alice Della Valle
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giuseppe Scioli
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Lorenza Marinaccio
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Stefano Pieretti
- Istituto
Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Minosi
- Istituto
Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Edina Szucs
- Institute
of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - Sandor Benyhe
- Institute
of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - Domiziana Masci
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | | | - Kerry Chou
- Department
of Pharmacology, College of Medicine, University
of Arizona, Tucson, Arizona 85724, United States
| | - Deborah Barlow
- Department
of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States
| | - Karen Houseknecht
- Department
of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States
| | - John M. Streicher
- Department
of Pharmacology, College of Medicine, University
of Arizona, Tucson, Arizona 85724, United States
| | - Adriano Mollica
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
8
|
The Role of a Natural Amphibian Skin-Based Peptide, Ranatensin, in Pancreatic Cancers Expressing Dopamine D2 Receptors. Cancers (Basel) 2022; 14:cancers14225535. [PMID: 36428628 PMCID: PMC9688159 DOI: 10.3390/cancers14225535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Despite the progress in early diagnostic and available treatments, pancreatic cancer remains one of the deadliest cancers. Therefore, there is an urgent need for novel anticancer agents with a good safety profile, particularly in terms of possible side-effects. Recently dopaminergic receptors have been widely studied as they were proven to play an important role in cancer progression. Although various synthetic compounds are known for their interactions with the dopaminergic system, peptides have recently made a great comeback. This is because peptides are relatively safe, easy to correct in terms of the improvement of their physicochemical and biological properties, and easy to predict. This paper aims to evaluate the anticancer activity of a naturally existing peptide-ranatensin, toward three different pancreatic cancer cell lines. Additionally, since there is no sufficient information confirming the exact character of the interaction between ranatensin and dopaminergic receptors, we provide, for the first time, binding properties of the compound to such receptors.
Collapse
|
9
|
Interaction of clozapine with metformin in a schizophrenia rat model. Sci Rep 2021; 11:16862. [PMID: 34413440 PMCID: PMC8376983 DOI: 10.1038/s41598-021-96478-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
The low efficacy of antipsychotic drugs (e.g., clozapine) for negative symptoms and cognitive impairment has led to the introduction of adjuvant therapies. Because previous data suggest the procognitive potential of the antidiabetic drug metformin, this study aimed to assess the effects of chronic clozapine and metformin oral administration (alone and in combination) on locomotor and exploratory activities and cognitive function in a reward-based test in control and a schizophrenia-like animal model (Wisket rats). As impaired dopamine D1 receptor (D1R) function might play a role in the cognitive dysfunctions observed in patients with schizophrenia, the second goal of this study was to determine the brain-region-specific D1R-mediated signaling, ligand binding, and mRNA expression. None of the treatments affected the behavior of the control animals significantly; however, the combination treatment enhanced D1R binding and activation in the cerebral cortex. The Wisket rats exhibited impaired motivation, attention, and cognitive function, as well as a lower level of cortical D1R binding, signaling, and gene expression. Clozapine caused further deterioration of the behavioral parameters, without a significant effect on the D1R system. Metformin blunted the clozapine-induced impairments, and, similarly to that observed in the control animals, increased the functional activity of D1R. This study highlights the beneficial effects of metformin (at the behavioral and cellular levels) in blunting clozapine-induced adverse effects.
Collapse
|
10
|
Selective MOR activity of DAPEA and Endomorphin-2 analogues containing a (R)-γ-Freidinger lactam in position two. Bioorg Chem 2021; 115:105219. [PMID: 34343741 DOI: 10.1016/j.bioorg.2021.105219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/17/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022]
Abstract
The use of α-amino-γ lactam of Freidinger (Agl) may serve as an impressive method to increase the biological stability of peptides and an appropriate tool to elucidate their structure-activity relationships. The endomorphin-2 (EM-2) and [D-Ala2, des-Leu5] enkephalin amide (DAPEA) are two linear opioid tetrapeptides agonists of MOR and MOR/DOR respectively. Herein, we investigated the influence of the incorporation of (R/S)-Agl in position 2 and 3 on the biological profile of the aforementioned products in vitro and in vivo. Receptor radiolabeled displacement and functional assays were used to measure in vitro the binding affinity and receptors activation of the novel analogues. The mouse tail flick and formalin tests allowed to observe their antinociceptive effect in vivo. Data revealed that peptide A2D was able to selectively bind and activate MOR with a potent antinociceptive effect after intracerebroventricular (i.c.v.) administration, performing better than the parent compounds EM-2 and DAPEA. Molecular docking calculations helped us to understand the key role exerted by the Freidinger Agl moiety in A2D for the interaction with the MOR binding pocket.
Collapse
|
11
|
Caffeine - treat or trigger? Disparate behavioral and long-term dopaminergic changes in control and schizophrenia-like Wisket rats. Physiol Behav 2021; 236:113410. [PMID: 33819453 DOI: 10.1016/j.physbeh.2021.113410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022]
Abstract
The influence of caffeine on behavioral functions in both healthy and schizophrenic subjects is controversial. Here we aimed to reveal the effects of repeated caffeine pre- and post-training treatments on motor and exploratory activities and cognitive functions in a reward-based test (Ambitus) along with a brain region-specific dopamine D2 receptor profile in control and schizophrenia-like WISKET model rats. In the control animals, pre-treatment caused temporary enhancement in motor activity, while permanent improvement in learning function was detected in the WISKET animals. Post-treatment produced significant impairments in both groups. Caffeine caused short-lasting hyperactivity followed by a rebound in the inactive phase determined in undisturbed circumstance. Caffeine treatment substantially enhanced the dopamine D2 receptor mediated G-protein activation in the prefrontal cortex and olfactory bulb of both groups, while it increased in the dorsal striatum and cerebral cortex only in the WISKET animals. Caffeine enhanced the maximal binding capacity in the hippocampus and cerebral cortex of WISKET animals, but it decreased in the prefrontal cortex of the control animals. Regarding the dopamine D2 receptor mRNA expression, caffeine treatment caused significant enhancement in the prefrontal cortex of WISKET animals, while it increased the hippocampal dopamine D2 receptor protein amount in both groups. This study highlights the disparate effects of caffeine pre- versus post-training treatments on behavioral parameters in both control and schizophrenia-like animals and the prolonged changes in the dopaminergic system. It is supposed that the delayed depressive effects of caffeine might be compensated by frequent coffee intake, as observed in schizophrenic patients.
Collapse
|
12
|
Functional approaches to the study of G-protein-coupled receptors in postmortem brain tissue: [ 35S]GTPγS binding assays combined with immunoprecipitation. Pharmacol Rep 2021; 73:1079-1095. [PMID: 33876404 DOI: 10.1007/s43440-021-00253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
G-protein-coupled receptors (GPCRs) have an enormous biochemical importance as they bind to diverse extracellular ligands and regulate a variety of physiological and pathological responses. G-protein activation measures the functional consequence of receptor occupancy at one of the earliest receptor-mediated events. Receptor coupling to G-proteins promotes the GDP/GTP exchange on Gα subunits. Thus, modulation of the binding of the poorly hydrolysable GTP analog [35S]GTPγS to the Gα-protein subunit can be used as a functional approach to quantify GPCR interaction with agonist, antagonist or inverse agonist drugs. In order to determine receptor-mediated selective activation of the different Gα-proteins, [35S]GTPγS binding assays combined with immunodetection by specific antibodies have been developed and applied to physiological and pathological brain conditions. Currently, immunoprecipitation with magnetic beads and scintillation proximity assays are the most habitual techniques for this purpose. The present review summarizes the different procedures, advantages and limitations of the [35S]GTPγS binding assays combined with selective Gα-protein sequestration methods. Experience of functional coupling of several GPCRs to different Gα-proteins and recommendations for optimal performance in brain membranes are described. One of the biggest opportunities opened by these techniques is that they enable evaluation of biased agonism in the native tissue, which results in high interest in drug discovery. The available results derived from application of these functional methodologies to study GPCR dysfunctions in neuro-psychiatric disorders are also described. In conclusion, [35S]GTPγS binding combined with antibody-mediated immunodetection represents an useful method to separately evaluate the functional activity of drugs acting on GPCRs over each Gα-protein subtype.
Collapse
|
13
|
Abrimian A, Kraft T, Pan YX. Endogenous Opioid Peptides and Alternatively Spliced Mu Opioid Receptor Seven Transmembrane Carboxyl-Terminal Variants. Int J Mol Sci 2021; 22:3779. [PMID: 33917474 PMCID: PMC8038826 DOI: 10.3390/ijms22073779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022] Open
Abstract
There exist three main types of endogenous opioid peptides, enkephalins, dynorphins and β-endorphin, all of which are derived from their precursors. These endogenous opioid peptides act through opioid receptors, including mu opioid receptor (MOR), delta opioid receptor (DOR) and kappa opioid receptor (KOR), and play important roles not only in analgesia, but also many other biological processes such as reward, stress response, feeding and emotion. The MOR gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, generating multiple splice variants or isoforms. One type of these splice variants, the full-length 7 transmembrane (TM) Carboxyl (C)-terminal variants, has the same receptor structures but contains different intracellular C-terminal tails. The pharmacological functions of several endogenous opioid peptides through the mouse, rat and human OPRM1 7TM C-terminal variants have been considerably investigated together with various mu opioid ligands. The current review focuses on the studies of these endogenous opioid peptides and summarizes the results from early pharmacological studies, including receptor binding affinity and G protein activation, and recent studies of β-arrestin2 recruitment and biased signaling, aiming to provide new insights into the mechanisms and functions of endogenous opioid peptides, which are mediated through the OPRM1 7TM C-terminal splice variants.
Collapse
Affiliation(s)
| | | | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (A.A.); (T.K.)
| |
Collapse
|
14
|
Burgos-Aguilar C, Ferris MJ, Sexton LL, Sun H, Xiao R, Chen R, Childers SR, Howlett AC. Metabotropic glutamate 2,3 receptor stimulation desensitizes agonist activation of G-protein signaling and alters transcription regulators in mesocorticolimbic brain regions. Synapse 2021; 75:e22190. [PMID: 33025628 PMCID: PMC8552243 DOI: 10.1002/syn.22190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/26/2020] [Accepted: 09/06/2020] [Indexed: 01/07/2023]
Abstract
Metabotropic glutamate (mGlu) receptors are regulators of glutamate release and targets for development of therapies for hyperactive glutamatergic signaling. However, the effects of long-term stimulation of mGlu receptors on cellular signaling in the brain have not been described. This study investigated the effects of 2-day and 14-day osmotic mini-pump administration of the mGlu2,3 agonist LY379268 (3.0 mg kg-1 day-1 ) to rats on receptor-mediated G-protein activation and signaling in mesocorticolimbic regions in rat brain sections. A significant reduction in LY379268-stimulated [35 S]GTPγS binding was observed in the 14-day group in some cortical regions, prefrontal cortex, nucleus accumbens, and ventral pallidum. The 14-day LY379268 treatment group exhibited mGlu2 mRNA levels significantly lower in hippocampus, nucleus accumbens, caudate, and ventral pallidum. In both 2-day and 14-day treatment groups immunodetectable phosphorylated cAMP Response Element-Binding protein (CREB) was significantly reduced across all brain regions. In the 2-day group, we observed significantly lower immunodetectable CREB protein across all brain regions, which was subsequently increased in the 14-day group but failed to achieve control values. Neither immunodetectable extracellular signal-regulated kinase (ERK) protein nor phosphorylated ERK from 2-day or 14-day treatment groups differed significantly from control across all brain regions. However, the ratio of phosphorylated ERK to total ERK protein was significantly greater in the 14-day treatment group compared with the control. These results identify compensatory changes to mGlu2,3 signal transduction in rat brains after chronic systemic administration of agonist, which could be predictive of the mechanism of action in human pharmacotherapies.
Collapse
Affiliation(s)
- Carolina Burgos-Aguilar
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Mark J. Ferris
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Lacey L. Sexton
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Haiguo Sun
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Ruoyu Xiao
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Rong Chen
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Steven R. Childers
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Allyn C. Howlett
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
15
|
Grönbladh A, Hallberg M. GTPγS-Autoradiography for Studies of Opioid Receptor Functionality. Methods Mol Biol 2021; 2201:109-116. [PMID: 32975793 DOI: 10.1007/978-1-0716-0884-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The opioid receptors have been an interesting target for the drug industry for decades. These receptors were pharmacologically characterized in the 1970s and several drugs and peptides have emerged over the years. In 2012, the crystal structures were also demonstrated, with new data on the receptor sites, and thus new possibilities will appear. The role of opioids in the brain has attracted considerable interest in several diseases, especially pain and drug dependence. The opioid receptors are G-protein-coupled receptors (GPCR ) that are Gi coupled which make them suitable for studying the receptor functionality. The [35S]GTP γS autoradiography assay is a good option that has the benefit of generating both anatomical and functional data in the area of interest. It is based on the first step of the signaling mechanism of GPCRs. When a ligand binds to the receptor GTP will replace GDP on the a-subunit of the G-protein, leading to a dissociation of the βγ-subunit. These subunits will start a cascade of second messengers and subsequently a physiological response.
Collapse
Affiliation(s)
- Alfhild Grönbladh
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden
| | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Nazarian A, Negus SS, Martin TJ. Factors mediating pain-related risk for opioid use disorder. Neuropharmacology 2021; 186:108476. [PMID: 33524407 PMCID: PMC7954943 DOI: 10.1016/j.neuropharm.2021.108476] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 01/23/2021] [Indexed: 12/23/2022]
Abstract
Pain is a complex experience with far-reaching organismal influences ranging from biological factors to those that are psychological and social. Such influences can serve as pain-related risk factors that represent susceptibilities to opioid use disorder. This review evaluates various pain-related risk factors to form a consensus on those that facilitate opioid abuse. Epidemiological findings represent a high degree of co-occurrence between chronic pain and opioid use disorder that is, in part, driven by an increase in the availability of opioid analgesics and the diversion of their use in a non-medical context. Brain imaging studies in individuals with chronic pain that use/abuse opioids suggest abuse-related mechanisms that are rooted within mesocorticolimbic processing. Preclinical studies suggest that pain states have a limited impact on increasing the rewarding effects of opioids. Indeed, many findings indicate a reduction in the rewarding and reinforcing effects of opioids during pain states. An increase in opioid use may be facilitated by an increase in the availability of opioids and a decrease in access to non-opioid reinforcers that require mobility or social interaction. Moreover, chronic pain and substance abuse conditions are known to impair cognitive function, resulting in deficits in attention and decision making that may promote opioid abuse. A better understanding of pain-related risk factors can improve our knowledge in the development of OUD in persons with pain conditions and can help identify appropriate treatment strategies. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'.
Collapse
Affiliation(s)
- Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Thomas J Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
17
|
Pharmacological Evidence on Augmented Antiallodynia Following Systemic Co-Treatment with GlyT-1 and GlyT-2 Inhibitors in Rat Neuropathic Pain Model. Int J Mol Sci 2021; 22:ijms22052479. [PMID: 33804568 PMCID: PMC7957511 DOI: 10.3390/ijms22052479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
The limited effect of current medications on neuropathic pain (NP) has initiated large efforts to develop effective treatments. Animal studies showed that glycine transporter (GlyT) inhibitors are promising analgesics in NP, though concerns regarding adverse effects were raised. We aimed to study NFPS and Org-25543, GlyT-1 and GlyT-2 inhibitors, respectively and their combination in rat mononeuropathic pain evoked by partial sciatic nerve ligation. Cerebrospinal fluid (CSF) glycine content was also determined by capillary electrophoresis. Subcutaneous (s.c.) 4 mg/kg NFPS or Org-25543 showed analgesia following acute administration (30-60 min). Small doses of each compound failed to produce antiallodynia up to 180 min after the acute administration. However, NFPS (1 mg/kg) produced antiallodynia after four days of treatment. Co-treatment with subanalgesic doses of NFPS (1 mg/kg) and Org-25543 (2 mg/kg) produced analgesia at 60 min and thereafter meanwhile increased significantly the CSF glycine content. This combination alleviated NP without affecting motor function. Test compounds failed to activate G-proteins in spinal cord. To the best of our knowledge for the first time we demonstrated augmented analgesia by combining GlyT-1 and 2 inhibitors. Increased CSF glycine content supports involvement of glycinergic system. Combining selective GlyT inhibitors or developing non-selective GlyT inhibitors might have therapeutic value in NP.
Collapse
|
18
|
Keegan BM, Dreitzler AL, Sexton T, Beveridge TJR, Smith HR, Miller MD, Blough BE, Porrino LJ, Childers SR, Howlett AC. Chronic phenmetrazine treatment promotes D 2 dopaminergic and α2-adrenergic receptor desensitization and alters phosphorylation of signaling proteins and local cerebral glucose metabolism in the rat brain. Brain Res 2021; 1761:147387. [PMID: 33631209 PMCID: PMC8552242 DOI: 10.1016/j.brainres.2021.147387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
Phenmetrazine (PHEN) is a putative treatment for cocaine and psychostimulant recidivism; however, neurochemical changes underlying its activity have not been fully elucidated. We sought to characterize brain homeostatic adaptations to chronic PHEN, specifically on functional brain activity (local cerebral glucose utilization), G-Protein Coupled Receptor-stimulated G-protein activation, and phosphorylation of ERK1/2Thr202/Tyr204, GSK3βTyr216, and DARPP-32Thr34. Male Sprague-Dawley rats were implanted with sub-cutaneous minipumps delivering either saline (vehicle), acute (2-day) or chronic (14-day) low dose (25 mg/kg/day) or high dose (50 mg/kg/day) PHEN. Acute administration of high dose PHEN increased local cerebral glucose utilization measured by 2-[14C]-deoxyglucose uptake in basal ganglia and motor-related regions of the rat brain. However, chronically treated animals developed tolerance to these effects. To identify the neurochemical changes associated with PHEN's activity, we performed [35S]GTPγS binding assays on unfixed and immunohistochemistry on fixed coronal brain sections. Chronic PHEN treatment dose-dependently attenuated D2 dopamine and α2-adrenergic, but not 5-HT1A, receptor-mediated G-protein activation. Two distinct patterns of effects on pERK1/2 and pDARPP-32 were observed: 1) chronic low dose PHEN decreased pERK1/2, and also significantly increased pDARPP-32 levels in some regions; 2) acute and chronic PHEN increased pERK1/2, but chronic high dose PHEN treatment tended to decrease pDARPP-32. Chronic low dose, but not high dose, PHEN significantly reduced pGSK3β levels in several regions. Our study provides definitive evidence that extended length PHEN dosage schedules elicit distinct modes of neuronal acclimatization in cellular signaling. These pharmacodynamic modifications should be considered in drug development for chronic use.
Collapse
Affiliation(s)
- Bradley M Keegan
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Annie L Dreitzler
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Tammy Sexton
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Thomas J R Beveridge
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Hilary R Smith
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Mack D Miller
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| | - Linda J Porrino
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Steven R Childers
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Allyn C Howlett
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
19
|
Szűcs E, Ducza E, Büki A, Kekesi G, Benyhe S, Horvath G. Characterization of dopamine D2 receptor binding, expression and signaling in different brain regions of control and schizophrenia-model Wisket rats. Brain Res 2020; 1748:147074. [DOI: 10.1016/j.brainres.2020.147074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
|
20
|
Liao K, Niu F, Hu G, Yang L, Dallon B, Villarreal D, Buch S. Morphine-mediated release of miR-138 in astrocyte-derived extracellular vesicles promotes microglial activation. J Extracell Vesicles 2020; 10:e12027. [PMID: 33304479 PMCID: PMC7710131 DOI: 10.1002/jev2.12027] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/20/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Opioids, such as morphine, are the mainstay for the management of postsurgical pain. Over the last decade there has been a dramatic increase in deaths related to opioid overdose. While opioid abuse has been shown to result in increased neuroinflammation, mechanism(s) underlying this process, remain less understood. In recent years, microRNAs have emerged as key mediators of gene expression regulating both paracrine signaling and cellular crosstalk. MiRNAs constitute the extracellular vesicle (EV) cargo and can shuttle from the donor to the recipient cells. Exposure of human primary astrocytes to morphine resulted in induction and release of miR-138 in the EVs isolated from conditioned media of cultured astrocytes. Released EVs were, in turn, taken up by the microglia, leading to activation of these latter cells. Interestingly, activation of microglia involved binding of the GUUGUGU motif of miR138 to the endosomal toll like receptor (TLR)7, leading, in turn, to cellular activation. These findings were further corroborated in vivo in wildtype mice wherein morphine administration resulted in increased microglial activation in the thalamus. In TLR7-/- mice on the other hand, morphine failed to induce microglial activation. These findings have ramifications for the development of EV-loaded anti-miRNAs as therapeutics for alleviating neuroinflammation in opioids abusers.
Collapse
Affiliation(s)
- Ke Liao
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Fang Niu
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Guoku Hu
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Lu Yang
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Blake Dallon
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Delaney Villarreal
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shilpa Buch
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
21
|
Dripps IJ, Chen R, Shafer AM, Livingston KE, Disney A, Husbands SM, Traynor JR, Rice KC, Jutkiewicz EM. Pharmacological Properties of δ-Opioid Receptor-Mediated Behaviors: Agonist Efficacy and Receptor Reserve. J Pharmacol Exp Ther 2020; 374:319-330. [PMID: 32467352 PMCID: PMC7372918 DOI: 10.1124/jpet.119.262717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
δ-Opioid receptor (δ-receptor) agonists produce antihyperalgesia, antidepressant-like effects, and convulsions in animals. However, the role of agonist efficacy in generating different δ-receptor-mediated behaviors has not been thoroughly investigated. To this end, efficacy requirements for δ-receptor-mediated antihyperalgesia, antidepressant-like effects, and convulsions were evaluated by comparing the effects of the partial agonist BU48 and the full agonist SNC80 and changes in the potency of SNC80 after δ-receptor elimination. Antihyperalgesia was measured in a nitroglycerin-induced thermal hyperalgesia assay. An antidepressant-like effect was evaluated in the forced swim test. Mice were observed for convulsions after treatment with SNC80 or the δ-opioid receptor partial agonist BU48. Ligand-induced G protein activation was measured by [35S]guanosine 5'-O-[γ-thio]triphosphate binding in mouse forebrain tissue, and δ-receptor number was measured by [3H]D-Pen2,5-enkephalin saturation binding. BU48 produced antidepressant-like effects and convulsions but antagonized SNC80-induced antihyperalgesia and G protein activation. The potency of SNC80 was shifted to the right in δ-receptor heterozygous knockout mice and naltrindole-5'-isothiocyanate-treated mice, and the magnitude of potency shift differed across assays, with the largest shift occurring in the thermal hyperalgesia assay, followed by the forced swim test and then convulsion observation. Naltrindole antagonized these SNC80-induced behaviors with similar potencies, suggesting that these effects are mediated by the same type of δ-receptor. These data suggest that δ-receptor-mediated behaviors display a rank order of efficacy requirement, with antihyperalgesia having the highest requirement, followed by antidepressant-like effects and then convulsions. These findings further our understanding of the pharmacological mechanisms mediating the in vivo effects of δ-opioid receptor agonists. SIGNIFICANCE STATEMENT: δ-Opioid receptor (δ-receptor) agonists produce antihyperalgesia, antidepressant-like effects, and convulsions in animal models. This study evaluates pharmacological properties, specifically the role of agonist efficacy and receptor reserve, underlying these δ-receptor-mediated behaviors. These data suggest that δ-receptor-mediated behaviors display a rank order of efficacy requirement, with antihyperalgesia having the highest requirement, followed by antidepressant-like effects and then convulsions.
Collapse
Affiliation(s)
- Isaac J Dripps
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (I.J.D., R.C., A.M.S., K.E.L., J.R.T., E.M.J.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (A.D., S.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Ruizhuo Chen
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (I.J.D., R.C., A.M.S., K.E.L., J.R.T., E.M.J.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (A.D., S.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Amanda M Shafer
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (I.J.D., R.C., A.M.S., K.E.L., J.R.T., E.M.J.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (A.D., S.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Kathryn E Livingston
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (I.J.D., R.C., A.M.S., K.E.L., J.R.T., E.M.J.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (A.D., S.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Alexander Disney
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (I.J.D., R.C., A.M.S., K.E.L., J.R.T., E.M.J.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (A.D., S.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Stephen M Husbands
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (I.J.D., R.C., A.M.S., K.E.L., J.R.T., E.M.J.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (A.D., S.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - John R Traynor
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (I.J.D., R.C., A.M.S., K.E.L., J.R.T., E.M.J.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (A.D., S.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Kenner C Rice
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (I.J.D., R.C., A.M.S., K.E.L., J.R.T., E.M.J.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (A.D., S.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Emily M Jutkiewicz
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (I.J.D., R.C., A.M.S., K.E.L., J.R.T., E.M.J.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (A.D., S.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| |
Collapse
|
22
|
Llorca-Torralba M, Pilar-Cuéllar F, da Silva Borges G, Mico JA, Berrocoso E. Opioid receptors mRNAs expression and opioids agonist-dependent G-protein activation in the rat brain following neuropathy. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109857. [PMID: 31904442 DOI: 10.1016/j.pnpbp.2019.109857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
Potent opioid-based therapies are often unsuccessful in promoting satisfactory analgesia in neuropathic pain. Moreover, the side effects associated with opioid therapy are still manifested in neuropathy-like diseases, including tolerance, abuse, addiction and hyperalgesia, although the mechanisms underlying these effects remain unclear. Studies in the spinal cord and periphery indicate that neuropathy alters the expression of mu-[MOP], delta-[DOP] or kappa-[KOP] opioid receptors, interfering with their activity. However, there is no consensus as to the supraspinal opioidergic modulation provoked by neuropathy, the structures where the sensory and affective-related pain components are processed. In this study we explored the effect of chronic constriction of the sciatic nerve (CCI) over 7 and 30 days (CCI-7d and CCI-30d, respectively) on MOP, DOP and KOP mRNAs expression, using in situ hybridization, and the efficacy of G-protein stimulation by DAMGO, DPDPE and U-69593 (MOP, DOP and KOP specific agonists, respectively), using [35S]GTPγS binding, within opioid-sensitive brain structures. After CCI-7d, CCI-30d or both, opioid receptor mRNAs expression was altered throughout the brain: MOP - in the paracentral/centrolateral thalamic nuclei, ventral posteromedial thalamic nuclei, superior olivary complex, parabrachial nucleus [PB] and posterodorsal tegmental nucleus; DOP - in the somatosensory cortex [SSC], ventral tegmental area, caudate putamen [CPu], nucleus accumbens [NAcc], raphe magnus [RMg] and PB; and KOP - in the locus coeruleus. Agonist-stimulated [35S]GTPγS binding was altered following CCI: MOP - CPu and RMg; DOP - prefrontal cortex [PFC], SSC, RMg and NAcc; and KOP - PFC and SSC. Thus, this study shows that several opioidergic circuits in the brain are recruited and modified following neuropathy.
Collapse
Affiliation(s)
- Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Fuencisla Pilar-Cuéllar
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | | | - Juan A Mico
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Esther Berrocoso
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain.
| |
Collapse
|
23
|
High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online 2020; 22:6. [PMID: 32190011 PMCID: PMC7073015 DOI: 10.1186/s12575-020-00118-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Serine hydrolases (SHs) are a functionally diverse family of enzymes playing pivotal roles in health and disease and have emerged as important therapeutic targets in many clinical conditions. Activity-based protein profiling (ABPP) using fluorophosphonate (FP) probes has been a powerful chemoproteomic approach in studies unveiling roles of SHs in various biological systems. ABPP utilizes cell/tissue proteomes and features the FP-warhead, linked to a fluorescent reporter for in-gel fluorescence imaging or a biotin tag for streptavidin enrichment and LC-MS/MS-based target identification. Existing ABPP approaches characterize global SH activity based on mobility in gel or MS-based target identification and cannot reveal the identity of the cell-type responsible for an individual SH activity originating from complex proteomes. Results Here, by using an activity probe with broad reactivity towards the SH family, we advance the ABPP methodology to glioma brain cryosections, enabling for the first time high-resolution confocal fluorescence imaging of global SH activity in the tumor microenvironment. Tumor-associated cell types were identified by extensive immunohistochemistry on activity probe-labeled sections. Tissue-ABPP indicated heightened SH activity in glioma vs. normal brain and unveiled activity hotspots originating from tumor-associated neutrophils (TANs), rather than tumor-associated macrophages (TAMs). Thorough optimization and validation was provided by parallel gel-based ABPP combined with LC-MS/MS-based target verification. Conclusions Our study advances the ABPP methodology to tissue sections, enabling high-resolution confocal fluorescence imaging of global SH activity in anatomically preserved complex native cellular environment. To achieve global portrait of SH activity throughout the section, a probe with broad reactivity towards the SH family members was employed. As ABPP requires no a priori knowledge of the identity of the target, we envisage no imaginable reason why the presently described approach would not work for sections regardless of species and tissue source.
Collapse
|
24
|
Szűcs E, Stefanucci A, Dimmito MP, Zádor F, Pieretti S, Zengin G, Vécsei L, Benyhe S, Nalli M, Mollica A. Discovery of Kynurenines Containing Oligopeptides as Potent Opioid Receptor Agonists. Biomolecules 2020; 10:biom10020284. [PMID: 32059524 PMCID: PMC7072329 DOI: 10.3390/biom10020284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Kynurenine (kyn) and kynurenic acid (kyna) are well-defined metabolites of tryptophan catabolism collectively known as "kynurenines", which exert regulatory functions in host-microbiome signaling, immune cell response, and neuronal excitability. Kynurenine containing peptides endowed with opioid receptor activity have been isolated from natural organisms; thus, in this work, novel opioid peptide analogs incorporating L-kynurenine (L-kyn) and kynurenic acid (kyna) in place of native amino acids have been designed and synthesized with the aim to investigate the biological effect of these modifications. The kyna-containing peptide (KA1) binds selectively the m-opioid receptor with a Ki = 1.08 ± 0.26 (selectivity ratio m/d/k = 1:514:10000), while the L-kyn-containing peptide (K6) shows a mixed binding affinity for m, d, and k-opioid receptors, with efficacy and potency (Emax = 209.7 + 3.4%; LogEC50 = -5.984 + 0.054) higher than those of the reference compound DAMGO. This novel oligopeptide exhibits a strong antinociceptive effect after i.c.v. and s.c. administrations in in vivo tests, according to good stability in human plasma (t1/2 = 47 min).
Collapse
Affiliation(s)
- Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary; (E.S.); (F.Z.); (S.B.)
- Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dómtér 10, H-6720 Szeged, Hungary
| | - Azzurra Stefanucci
- Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (M.P.D.); (A.M.)
- Correspondence:
| | - Marilisa Pia Dimmito
- Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (M.P.D.); (A.M.)
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary; (E.S.); (F.Z.); (S.B.)
| | - Stefano Pieretti
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42250 Konya, Turkey;
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary; (E.S.); (F.Z.); (S.B.)
| | - Marianna Nalli
- Laboratory affiliated with the Institute Pasteur Italy-Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy;
| | - Adriano Mollica
- Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (M.P.D.); (A.M.)
| |
Collapse
|
25
|
Dvorácskó S, Keresztes A, Mollica A, Stefanucci A, Macedonio G, Pieretti S, Zádor F, Walter FR, Deli MA, Kékesi G, Bánki L, Tuboly G, Horváth G, Tömböly C. Preparation of bivalent agonists for targeting the mu opioid and cannabinoid receptors. Eur J Med Chem 2019; 178:571-588. [PMID: 31220675 DOI: 10.1016/j.ejmech.2019.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 11/17/2022]
Abstract
In order to obtain novel pharmacological tools and to investigate a multitargeting analgesic strategy, the CB1 and CB2 cannabinoid receptor agonist JWH-018 was conjugated with the opiate analgesic oxycodone or with an enkephalin related tetrapeptide. The opioid and cannabinoid pharmacophores were coupled via spacers of different length and chemical structure. In vitro radioligand binding experiments confirmed that the resulting bivalent compounds bound both to the opioid and to the cannabinoid receptors with moderate to high affinity. The highest affinity bivalent derivatives 11 and 19 exhibited agonist properties in [35S]GTPγS binding assays. These compounds activated MOR and CB (11 mainly CB2, whereas 19 mainly CB1) receptor-mediated signaling, as it was revealed by experiments using receptor specific antagonists. In rats both 11 and 19 exhibited antiallodynic effect similar to the parent drugs in 20 μg dose at spinal level. These results support the strategy of multitargeting G-protein coupled receptors to develop lead compounds with antinociceptive properties.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Enkephalins/chemistry
- Enkephalins/pharmacology
- Indoles/chemistry
- Indoles/pharmacology
- Mice
- Molecular Structure
- Naphthalenes/chemistry
- Naphthalenes/pharmacology
- Oxycodone/chemistry
- Oxycodone/pharmacology
- Rats
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- A Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Attila Keresztes
- A Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Giorgia Macedonio
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Stefano Pieretti
- Istituto Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei Farmaci, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ferenc Zádor
- Laboratory of Opioid Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary
| | - Gabriella Kékesi
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720, Szeged, Dóm tér 10., Hungary
| | - László Bánki
- Department of Traumatology, Faculty of Medicine, University of Szeged, 6725, Szeged, Semmelweis u. 6., Hungary
| | - Gábor Tuboly
- Department of Neurology, Faculty of Medicine, University of Szeged, 6725, Szeged, Semmelweis u. 6., Hungary
| | - Gyöngyi Horváth
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720, Szeged, Dóm tér 10., Hungary
| | - Csaba Tömböly
- A Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., 6726, Szeged, Hungary.
| |
Collapse
|
26
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
27
|
Balogh M, Zádor F, Zádori ZS, Shaqura M, Király K, Mohammadzadeh A, Varga B, Lázár B, Mousa SA, Hosztafi S, Riba P, Benyhe S, Gyires K, Schäfer M, Fürst S, Al-Khrasani M. Efficacy-Based Perspective to Overcome Reduced Opioid Analgesia of Advanced Painful Diabetic Neuropathy in Rats. Front Pharmacol 2019; 10:347. [PMID: 31024314 PMCID: PMC6465774 DOI: 10.3389/fphar.2019.00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Reduction of the opioid analgesia in diabetic neuropathic pain (DNP) results from μ-opioid receptor (MOR) reserve reduction. Herein, we examined the antinociceptive and antiallodynic actions of a novel opioid agonist 14-O-methymorphine-6-O-sulfate (14-O-MeM6SU), fentanyl and morphine in rats with streptozocin-evoked DNP of 9–12 weeks following their systemic administration. The antinociceptive dose-response curve of morphine but not of 14-O-MeM6SU or fentanyl showed a significant right-shift in diabetic compared to non-diabetic rats. Only 14-O-MeM6SU produced antiallodynic effects in doses matching antinociceptive doses obtained in non-diabetic rats. Co-administered naloxone methiodide (NAL-M), a peripherally acting opioid receptor antagonist failed to alter the antiallodynic effect of test compounds, indicating the contribution of central opioid receptors. Reduction in spinal MOR binding sites and loss in MOR immunoreactivity of nerve terminals in the spinal cord and dorsal root ganglia in diabetic rats were observed. G-protein coupling assay revealed low efficacy character for morphine and high efficacy character for 14-O-MeM6SU or fentanyl at spinal or supraspinal levels (Emax values). Furthermore, at the spinal level only 14-O-MeM6SU showed equal efficacy in G-protein activation in tissues of diabetic- and non-diabetic animals. Altogether, the reduction of spinal opioid receptors concomitant with reduced analgesic effect of morphine may be circumvented by using high efficacy opioids, which provide superior analgesia over morphine. In conclusion, the reduction in the analgesic action of opioids in DNP might be a consequence of MOR reduction, particularly in the spinal cord. Therefore, developing opioids of high efficacy might provide analgesia exceeding that of currently available opioids.
Collapse
Affiliation(s)
- Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Berlin, Germany
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Bence Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Bernadette Lázár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Shaaban A Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Berlin, Germany
| | - Sándor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Berlin, Germany
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Llorca-Torralba M, Pilar-Cuéllar F, Bravo L, Bruzos-Cidon C, Torrecilla M, Mico JA, Ugedo L, Garro-Martínez E, Berrocoso E. Opioid Activity in the Locus Coeruleus Is Modulated by Chronic Neuropathic Pain. Mol Neurobiol 2018; 56:4135-4150. [PMID: 30284123 DOI: 10.1007/s12035-018-1361-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022]
Abstract
Pain affects both sensory and emotional aversive responses, often provoking depression and anxiety-related conditions when it becomes chronic. As the opioid receptors in the locus coeruleus (LC) have been implicated in pain, stress responses, and opioid drug effects, we explored the modifications to LC opioid neurotransmission in a chronic constriction injury (CCI) model of short- and long-term neuropathic pain (7 and 30 days after nerve injury). No significant changes were found after short-term CCI, yet after 30 days, CCI provoked an up-regulation of cAMP (cyclic 5'-adenosine monophosphate), pCREB (phosphorylated cAMP response element binding protein), protein kinase A, tyrosine hydroxylase, and electrical activity in the LC, as well as enhanced c-Fos expression. Acute mu opioid receptor desensitization was more intense in these animals, measured as the decline of the peak current caused by [Met5]-enkephalin and the reduction of forskolin-stimulated cAMP produced in response to DAMGO. Sustained morphine treatment did not markedly modify certain LC parameters in CCI-30d animals, such as [Met5]-enkephalin-induced potassium outward currents or burst activity and c-Fos rebound after naloxone precipitation, which may limit the development of some typical opioid drug-related adaptations. However, other phenomena were impaired by long-term CCI, including the reduction in forskolin-stimulated cAMP accumulation by DAMGO after naloxone precipitation in morphine dependent animals. Overall, this study suggests that long-term CCI leads to changes at the LC level that may contribute to the anxiodepressive phenotype that develops in these animals. Furthermore, opioid drugs produce complex adaptations in the LC in this model of chronic neuropathic pain.
Collapse
Affiliation(s)
- Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, 21, 11009, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Fuencisla Pilar-Cuéllar
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011, Santander, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, 21, 11009, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Bruzos-Cidon
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - María Torrecilla
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Juan A Mico
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, 21, 11009, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Emilio Garro-Martínez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011, Santander, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, 21, 11009, Cádiz, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, 11510, Cádiz, Spain.
| |
Collapse
|
29
|
Dadam F, Zádor F, Caeiro X, Szűcs E, Erdei AI, Samavati R, Gáspár R, Borsodi A, Vivas L. The effect of increased NaCl intake on rat brain endogenous μ-opioid receptor signalling. J Neuroendocrinol 2018; 30:e12585. [PMID: 29486102 DOI: 10.1111/jne.12585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/20/2023]
Abstract
Numerous studies demonstrate the significant role of central β-endorphin and its receptor, the μ-opioid receptor (MOR), in sodium intake regulation. The present study aimed to investigate the possible relationship between chronic high-NaCl intake and brain endogenous MOR functioning. We examined whether short-term (4 days) obligatory salt intake (2% NaCl solution) in rats induces changes in MOR mRNA expression, G-protein activity and MOR binding capacity in brain regions involved in salt intake regulation. Plasma osmolality and electrolyte concentrations after sodium overload and the initial and final body weight of the animals were also examined. After 4 days of obligatory hypertonic sodium chloride intake, there was clearly no difference in MOR mRNA expression and G-protein activity in the median preoptic nucleus (MnPO). In the brainstem, MOR binding capacity also remained unaltered, although the maximal efficacy of MOR G-protein significantly increased. Finally, no significant alterations were observed in plasma osmolality and electrolyte concentrations. Interestingly, animals that received sodium gained significantly less weight than control animals. In conclusion, we found no significant alterations in the MnPO and brainstem in the number of available cell surface MORs or de novo syntheses of MOR after hypertonic sodium intake. The increased MOR G-protein activity following acute sodium overconsumption may participate in the maintenance of normal blood pressure levels and/or in enhancing sodium taste aversion and sodium overload-induced anorexia.
Collapse
Affiliation(s)
- F Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - F Zádor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - X Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - E Szűcs
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - A I Erdei
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - R Samavati
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - R Gáspár
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - A Borsodi
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
30
|
Varaschin RK, Allen NA, Rosenberg MJ, Valenzuela CF, Savage DD. Prenatal Alcohol Exposure Increases Histamine H 3 Receptor-Mediated Inhibition of Glutamatergic Neurotransmission in Rat Dentate Gyrus. Alcohol Clin Exp Res 2018; 42:295-305. [PMID: 29315624 PMCID: PMC5785429 DOI: 10.1111/acer.13574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/28/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND We have reported that prenatal alcohol exposure (PAE)-induced deficits in dentate gyrus, long-term potentiation (LTP), and memory are ameliorated by the histamine H3 receptor inverse agonist ABT-239. Curiously, ABT-239 did not enhance LTP or memory in control offspring. Here, we initiated an investigation of how PAE alters histaminergic neurotransmission in the dentate gyrus and other brain regions employing combined radiohistochemical and electrophysiological approaches in vitro to examine histamine H3 receptor number and function. METHODS Long-Evans rat dams voluntarily consumed either a 0% or 5% ethanol solution 4 hours each day throughout gestation. This pattern of drinking, which produces a mean peak maternal serum ethanol concentration of 60.8 ± 5.8 mg/dl, did not affect maternal weight gain, litter size, or offspring birthweight. RESULTS Radiohistochemical studies in adult offspring revealed that specific [3 H]-A349821 binding to histamine H3 receptors was not different in PAE rats compared to controls. However, H3 receptor-mediated Gi /Go protein-effector coupling, as measured by methimepip-stimulated [35 S]-GTPγS binding, was significantly increased in cerebral cortex, cerebellum, and dentate gyrus of PAE rats compared to control. A LIGAND analysis of detailed methimepip concentration-response curves in dentate gyrus indicated that PAE significantly elevates receptor-effector coupling by a lower affinity H3 receptor population without significantly altering the affinities of H3 receptor subpopulations. In agreement with the [35 S]-GTPγS studies, a similar range of methimepip concentrations also inhibited electrically evoked field excitatory postsynaptic potential responses and increased paired-pulse ratio, a measure of decreased glutamate release, to a significantly greater extent in dentate gyrus slices from PAE rats than in controls. CONCLUSIONS These results suggest that a PAE-induced elevation in H3 receptor-mediated inhibition of glutamate release from perforant path terminals as 1 mechanism contributing the LTP deficits previously observed in the dentate gyrus of PAE rats, as well as providing a mechanistic basis for the efficacy of H3 receptor inverse agonists for ameliorating these deficits.
Collapse
Affiliation(s)
- Rafael K Varaschin
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - Nyika A Allen
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - Martina J Rosenberg
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| | - Daniel D Savage
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131
| |
Collapse
|
31
|
Gabaglio M, Prini P, Zamberletti E, Rubino T, Parolaro D. Assay of GTPγS Binding in Autoradiography. Methods Mol Biol 2017; 1412:95-101. [PMID: 27245895 DOI: 10.1007/978-1-4939-3539-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Autoradiography of radiolabeled GTPγS ([(35)S]GTPγS) binding is a relevant method to study the function of G protein-coupled receptors (GPCRs), in tissue sections. Here, we describe the protocol for such a binding autoradiography, suitable to investigate the functionality of CB1 receptor in tissue slices from rodent brain.
Collapse
Affiliation(s)
- Marina Gabaglio
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, 21052, Busto Arsizio (VA), Italy
| | - Pamela Prini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, 21052, Busto Arsizio (VA), Italy
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, 21052, Busto Arsizio (VA), Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, 21052, Busto Arsizio (VA), Italy
| | - Daniela Parolaro
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, 21052, Busto Arsizio (VA), Italy. .,Fondazione Zardi-Gori, via Cossa 1, Milano, Italy.
| |
Collapse
|
32
|
Zádor F, Balogh M, Váradi A, Zádori ZS, Király K, Szűcs E, Varga B, Lázár B, Hosztafi S, Riba P, Benyhe S, Fürst S, Al-Khrasani M. 14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity. Eur J Pharmacol 2017; 814:264-273. [PMID: 28864212 DOI: 10.1016/j.ejphar.2017.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022]
Abstract
14-O-methyl (14-O-Me) group in morphine-6-O-sulfate (M6SU) or oxymorphone has been reported to be essential for enhanced affinity, potency and antinociceptive effect of these opioids. Herein we report on the pharmacological properties (potency, affinity and efficacy) of the new compound, 14-O-methylmorphine (14-O-MeM) in in vitro. Additionally, we also investigated the antinociceptive effect of the novel compound, as well as its inhibitory action on gastrointestinal transit in in vivo. The potency and efficacy of test compound were measured by [35S]GTPγS binding, isolated mouse vas deferens (MVD) and rat vas deferens (RVD) assays. The affinity of 14-O-MeM for opioid receptors was assessed by radioligand binding and MVD assays. The antinociceptive and gastrointestinal effects of the novel compound were evaluated in the rat tail-flick test and charcoal meal test, respectively. Morphine, DAMGO, Ile5,6 deltorphin II, deltorphin II and U-69593 were used as reference compounds. 14-O-MeM showed higher efficacy (Emax) and potency (EC50) than morphine in MVD, RVD or [35S]GTPγS binding. In addition, 14-O-MeM compared to morphine showed higher affinity for μ-opioid receptor (MOR). In vivo, in rat tail-flick test 14-O-MeM proved to be stronger antinociceptive agent than morphine after peripheral or central administration. Additionally, both compounds inhibited the gastrointestinal peristalsis. However, when the antinociceptive and antitransit doses for each test compound are compared, 14-O-MeM proved to have slightly more favorable pharmacological profile. Our results affirm that 14-O-MeM, an opioid of high efficacy and affinity for MOR can be considered as a novel analgesic agent of potential clinical value.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H- 6726 Szeged, Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - András Váradi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u., 9. H-1092 Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H- 6726 Szeged, Hungary
| | - Bence Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Bernadette Lázár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Sándor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u., 9. H-1092 Budapest, Hungary
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H- 6726 Szeged, Hungary
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary.
| |
Collapse
|
33
|
Palacios JM, Mengod G. Receptor visualization and the atomic bomb. A historical account of the development of the chemical neuroanatomy of receptors for neurotransmitters and drugs during the Cold War. J Chem Neuroanat 2017; 88:76-112. [PMID: 28755996 DOI: 10.1016/j.jchemneu.2017.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/24/2023]
Abstract
This is a historical account of how receptors for neurotransmitters and drugs got to be seen at the regional, cellular, and subcellular levels in brain, in the years going from the end of the World War II until the collapse of the Soviet Union, the Cold War (1945-1991). The realization in the US of the problem of mental health care, as a consequence of the results of medical evaluation for military service during the war, let the US Government to act creating among other things the National Institute for Mental Health (NIMH). Coincident with that, new drug treatments for these disorders were introduced. War science also created an important number of tools and instruments, such as the radioisotopes, that played a significant role in the development of our story. The scientific context was marked by the development of Biochemistry, Molecular Biology and the introduction in the early 80's of the DNA recombinant technologies. The concepts of chemical neurotransmission in the brain and of receptors for drugs and transmitters, although proposed before the war, where not generally accepted. Neurotransmitters were identified and the mechanisms of biosynthesis, storage, release and termination of action by mechanisms such as reuptake, elucidated. Furthermore, the synapse was seen with the electron microscope and more important for our account, neurons and their processes visualized in the brain first by fluorescence histochemistry, then using radioisotopes and autoradiography, and later by immunohistochemistry (IHC), originating the Chemical Neuroanatomy. The concept of chemical neurotransmission evolved from the amines, expanded to excitatory and inhibitory amino acids, then to neuropeptides and finally to gases and other "atypical" neurotransmitters. In addition, coexpression of more than one transmitter in a neuron, changed the initial ideas of neurotransmission. The concept of receptors for these and other messengers underwent a significant evolution from an abstract chemical concept to their physical reality as gene products. Important steps were the introduction in the 70's of radioligand binding techniques and the cloning of receptor genes in the 80's. Receptors were first visualized using radioligands and autoradiography, and analyzed with the newly developed computer-assisted image analysis systems. Using Positron Emission Tomography transmitters and receptors were visualized in living human brain. The cloning of receptor genes allowed the use of in situ hybridization histochemistry and immunohistochemistry to visualize with the light and electron microscopes the receptor mRNAs and proteins. The results showed the wide heterogeneity of receptors and the diversity of mode of signal transmission, synaptic and extra-synaptic, again radically modifying the early views of neurotransmission. During the entire period the interplay between basic science and Psychopharmacology and Psychiatry generated different transmitter or receptor-based theories of brain drug action. These concepts and technologies also changed the way new drugs were discovered and developed. At the end of the period, a number of declines in these theories, the use of certain tools and the ability to generate new diagnostics and treatments, the end of an era and the beginning of a new one in the research of how the brain functions.
Collapse
Affiliation(s)
| | - G Mengod
- IIBB-CSIC, IDIBAPS, CIBERNED, Barcelona, Spain
| |
Collapse
|
34
|
Zádor F, Király K, Váradi A, Balogh M, Fehér Á, Kocsis D, Erdei AI, Lackó E, Zádori ZS, Hosztafi S, Noszál B, Riba P, Benyhe S, Fürst S, Al-Khrasani M. New opioid receptor antagonist: Naltrexone-14-O-sulfate synthesis and pharmacology. Eur J Pharmacol 2017; 809:111-121. [PMID: 28502630 DOI: 10.1016/j.ejphar.2017.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 11/17/2022]
Abstract
Opioid antagonists, naloxone and naltrexone have long been used in clinical practice and research. In addition to their low selectivity, they easily pass through the blood-brain barrier. Quaternization of the amine group in these molecules, (e.g. methylnaltrexone) results in negligible CNS penetration. In addition, zwitterionic compounds have been reported to have limited CNS access. The current study, for the first time gives report on the synthesis and the in vitro [competition binding, G-protein activation, isolated mouse vas deferens (MVD) and mouse colon assay] pharmacology of the zwitterionic compound, naltrexone-14-O-sulfate. Naltrexone, naloxone, and its 14-O-sulfate analogue were used as reference compounds. In competition binding assays, naltrexone-14-O-sulfate showed lower affinity for µ, δ or κ opioid receptor than the parent molecule, naltrexone. However, the μ/κ opioid receptor selectivity ratio significantly improved, indicating better selectivity. Similar tendency was observed for naloxone-14-O-sulfate when compared to naloxone. Naltrexone-14-O-sulfate failed to activate [35S]GTPγS-binding but inhibit the activation evoked by opioid agonists (DAMGO, Ile5,6deltorphin II and U69593), similarly to the reference compounds. Schild plot constructed in MVD revealed that naltrexone-14-O-sulfate acts as a competitive antagonist. In mouse colon, naltrexone-14-O-sulfate antagonized the inhibitory effect of morphine with lower affinity compared to naltrexone and higher affinity when compared to naloxone or naloxone-14-O-sulfate. In vivo (mouse tail-flick test), subcutaneously injected naltrexone-14-O-sulfate antagonized morphine's antinociception in a dose-dependent manner, indicating it's CNS penetration, which was unexpected from such zwitter ionic structure. Future studies are needed to evaluate it's pharmacokinetic profile.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H- 6726 Szeged, Hungary.
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - András Váradi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u., 9., H-1092 Budapest, Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Ágnes Fehér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Dóra Kocsis
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H- 6726 Szeged, Hungary
| | - Anna I Erdei
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H- 6726 Szeged, Hungary
| | - Erzsébet Lackó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Sándor Hosztafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u., 9., H-1092 Budapest, Hungary
| | - Béla Noszál
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u., 9., H-1092 Budapest, Hungary
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H- 6726 Szeged, Hungary
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary.
| |
Collapse
|
35
|
Abstract
An agonist that acts through a single receptor can activate numerous signaling pathways. Recent studies have suggested that different ligands can differentially activate these pathways by stabilizing a limited range of receptor conformations, which in turn preferentially drive different downstream signaling cascades. This concept, termed "biased signaling" represents an exciting therapeutic opportunity to target specific pathways that elicit only desired effects, while avoiding undesired effects mediated by different signaling cascades. The cannabinoid receptors CB1 and CB2 each activate multiple pathways, and evidence is emerging for bias within these pathways. This review will summarize the current evidence for biased signaling through cannabinoid receptor subtypes CB1 and CB2.
Collapse
Affiliation(s)
- Mikkel Søes Ibsen
- Department of Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, New South Wales, Australia
| | - Michelle Glass
- Department of Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Monti L, Stefanucci A, Pieretti S, Marzoli F, Fidanza L, Mollica A, Mirzaie S, Carradori S, De Petrocellis L, Schiano Moriello A, Benyhe S, Zádor F, Szűcs E, Ötvös F, Erdei AI, Samavati R, Dvorácskó S, Tömböly C, Novellino E. Evaluation of the analgesic effect of 4-anilidopiperidine scaffold containing ureas and carbamates. J Enzyme Inhib Med Chem 2016; 31:1638-47. [DOI: 10.3109/14756366.2016.1160902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ludovica Monti
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, Rome, Italy,
| | | | - Stefano Pieretti
- Istituto Superiore di Sanità, Dipartimento del Farmaco, Rome, Italy,
| | - Francesca Marzoli
- Istituto Superiore di Sanità, Dipartimento del Farmaco, Rome, Italy,
| | - Lorenzo Fidanza
- Istituto Superiore di Sanità, Dipartimento del Farmaco, Rome, Italy,
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy,
| | - Sako Mirzaie
- Department of Biochemistry, Islamic Azad University, Sanandaj, Iran,
| | - Simone Carradori
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy,
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Naples, Italy,
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Naples, Italy,
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Anna I. Erdei
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Reza Samavati
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Szabolcs Dvorácskó
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Naples, Italy
| |
Collapse
|
37
|
Szűcs E, Büki A, Kékesi G, Horváth G, Benyhe S. Mu-Opioid (MOP) receptor mediated G-protein signaling is impaired in specific brain regions in a rat model of schizophrenia. Neurosci Lett 2016; 619:29-33. [PMID: 26946106 DOI: 10.1016/j.neulet.2016.02.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/16/2016] [Accepted: 02/29/2016] [Indexed: 12/20/2022]
Abstract
Schizophrenia is a complex mental health disorder. Clinical reports suggest that many patients with schizophrenia are less sensitive to pain than other individuals. Animal models do not interpret schizophrenia completely, but they can model a number of symptoms of the disease, including decreased pain sensitivities and increased pain thresholds of various modalities. Opioid receptors and endogenous opioid peptides have a substantial role in analgesia. In this biochemical study we investigated changes in the signaling properties of the mu-opioid (MOP) receptor in different brain regions, which are involved in the pain transmission, i.e., thalamus, olfactory bulb, prefrontal cortex and hippocampus. Our goal was to compare the transmembrane signaling mediated by MOP receptors in control rats and in a recently developed rat model of schizophrenia. Regulatory G-protein activation via MOP receptors were measured in [(35)S]GTPγS binding assays in the presence of a highly selective MOP receptor peptide agonist, DAMGO. It was found that the MOP receptor mediated activation of G-proteins was substantially lower in membranes prepared from the 'schizophrenic' model rats than in control animals. The potency of DAMGO to activate MOP receptor was also decreased in all brain regions studied. Taken together in our rat model of schizophrenia, MOP receptor mediated G-proteins have a reduced stimulatory activity compared to membrane preparations taken from control animals. The observed distinct changes of opioid receptor functions in different areas of the brain do not explain the augmented nociceptive threshold described in these animals.
Collapse
Affiliation(s)
- Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary
| | - Alexandra Büki
- Department of Physiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10., Hungary
| | - Gabriella Kékesi
- Department of Physiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10., Hungary
| | - Gyöngyi Horváth
- Department of Physiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10., Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary.
| |
Collapse
|
38
|
Hahn YK, Paris JJ, Lichtman AH, Hauser KF, Sim-Selley LJ, Selley DE, Knapp PE. Central HIV-1 Tat exposure elevates anxiety and fear conditioned responses of male mice concurrent with altered mu-opioid receptor-mediated G-protein activation and β-arrestin 2 activity in the forebrain. Neurobiol Dis 2016; 92:124-36. [PMID: 26845176 DOI: 10.1016/j.nbd.2016.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/31/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
Co-exposure to opiates and HIV/HIV proteins results in enhanced CNS morphological and behavioral deficits in HIV(+) individuals and in animal models. Opiates with abuse liability, such as heroin and morphine, bind preferentially to and have pharmacological actions through μ-opioid-receptors (MORs). The mechanisms underlying opiate-HIV interactions are not understood. Exposure to the HIV-1 transactivator of transcription (Tat) protein causes neurodegenerative outcomes that parallel many aspects of the human disease. We have also observed that in vivo exposure to Tat results in apparent changes in morphine efficacy, and thus have hypothesized that HIV proteins might alter MOR activation. To test our hypothesis, MOR-mediated G-protein activation was determined in neuroAIDS-relevant forebrain regions of transgenic mice with inducible CNS expression of HIV-1 Tat. G-protein activation was assessed by MOR agonist-stimulated [(35)S]guanosine-5'-O-(3-thio)triphosphate ([(35)S]GTPγS) autoradiography in brain sections, and in concentration-effect curves of MOR agonist-stimulated [(35)S]GTPγS binding in membranes isolated from specific brain regions. Comparative studies were done using the MOR-selective agonist DAMGO ([D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin) and a more clinically relevant agonist, morphine. Tat exposure reduced MOR-mediated G-protein activation in an agonist, time, and regionally dependent manner. Levels of the GPCR regulatory protein β-arrestin-2, which is involved in MOR desensitization, were found to be elevated in only one affected brain region, the amygdala; amygdalar β-arrestin-2 also showed a significantly increased association with MOR by co-immunoprecipitation, suggesting decreased availability of MOR. Interestingly, this correlated with changes in anxiety and fear-conditioned extinction, behaviors that have substantial amygdalar input. We propose that HIV-1 Tat alters the intrinsic capacity of MOR to signal in response to agonist binding, possibly via a mechanism involving altered expression and/or function of β-arrestin-2.
Collapse
Affiliation(s)
- Yun K Hahn
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0709, USA
| | - Jason J Paris
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0059, USA
| | - Kurt F Hauser
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0709, USA; Department of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0059, USA
| | - Laura J Sim-Selley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0059, USA
| | - Dana E Selley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0059, USA
| | - Pamela E Knapp
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0709, USA; Department of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0059, USA.
| |
Collapse
|
39
|
Moriarty O, Lang Y, Idrees Z, McGuire BE, Finn DP. Impaired cued and spatial learning performance and altered cannabinoid CB₁ receptor functionality in the substantia nigra in a rat model of diabetic neuropathy. Behav Brain Res 2016; 303:61-70. [PMID: 26774979 DOI: 10.1016/j.bbr.2016.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/06/2016] [Accepted: 01/10/2016] [Indexed: 12/25/2022]
Abstract
Diabetes, and associated diabetic neuropathic pain, impact negatively on cognitive function. However, the underlying mechanisms remain poorly understood. This study investigated neuropathic pain-related behaviour and cognitive function in the rat streptozotocin (STZ) model of diabetes, and assessed cannabinoid1 (CB1) receptor functionality in discrete brain regions. Male Lister-Hooded rats received STZ (60 mg/kgs.c.) or vehicle. Sensory responses were assessed in von Frey and Hargreaves tests. Cognitive, motor and sensorimotor functions were assessed using novel object recognition and Morris water maze tasks. CB1 receptor functionality was assessed by [(35)S]GTPγS (guanosine 5'-O-[gamma-thio]triphosphate) autoradiography. STZ treatment was associated with mechanical allodynia and thermal hypoalgesia. Novel object recognition was unaltered in diabetic rats. STZ treatment was associated with impaired performance in the Morris water maze acquisition phase, but there were no differences in memory retrieval in the probe trial. Stimulus-response learning in the water maze cued trial was also disrupted in STZ-treated rats, possibly indicating sensorimotor deficits. CB1 receptor agonist-stimulated [(35)S]GTPγS binding was attenuated in the substantia nigra of STZ-treated rats but unaltered in the hippocampus. In conclusion, STZ treatment as a model of diabetic neuropathy was associated with specific functional deficits in the Morris water maze, effects which may be related to altered CB1 receptor functionality in the substantia nigra.
Collapse
Affiliation(s)
- Orla Moriarty
- Pharmacology and Therapeutics, School of Medicine, Ireland; NCBES Neuroscience Centre, Ireland; Centre for Pain Research, Ireland
| | - Yvonne Lang
- Pharmacology and Therapeutics, School of Medicine, Ireland; NCBES Neuroscience Centre, Ireland; Centre for Pain Research, Ireland
| | - Zubair Idrees
- Department of Opthalmology, Galway University Hospital, Ireland
| | - Brian E McGuire
- School of Psychology, Ireland; NCBES Neuroscience Centre, Ireland; Centre for Pain Research, Ireland; Galway Diabetes Research Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Ireland; NCBES Neuroscience Centre, Ireland; Centre for Pain Research, Ireland; Galway Diabetes Research Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
40
|
Linge R, Jiménez-Sánchez L, Campa L, Pilar-Cuéllar F, Vidal R, Pazos A, Adell A, Díaz Á. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: role of 5-HT1A receptors. Neuropharmacology 2015; 103:16-26. [PMID: 26711860 DOI: 10.1016/j.neuropharm.2015.12.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023]
Abstract
Cannabidiol (CBD), the main non-psychotomimetic component of marihuana, exhibits anxiolytic-like properties in many behavioural tests, although its potential for treating major depression has been poorly explored. Moreover, the mechanism of action of CBD remains unclear. Herein, we have evaluated the effects of CBD following acute and chronic administration in the olfactory bulbectomy mouse model of depression (OBX), and investigated the underlying mechanism. For this purpose, we conducted behavioural (open field and sucrose preference tests) and neurochemical (microdialysis and autoradiography of 5-HT1A receptor functionality) studies following treatment with CBD. We also assayed the pharmacological antagonism of the effects of CBD to dissect out the mechanism of action. Our results demonstrate that CBD exerts fast and maintained antidepressant-like effects as evidenced by the reversal of the OBX-induced hyperactivity and anhedonia. In vivo microdialysis revealed that the administration of CBD significantly enhanced serotonin and glutamate levels in vmPFCx in a different manner depending on the emotional state and the duration of the treatment. The potentiating effect upon neurotransmitters levels occurring immediately after the first injection of CBD might underlie the fast antidepressant-like actions in OBX mice. Both antidepressant-like effect and enhanced cortical 5-HT/glutamate neurotransmission induced by CBD were prevented by 5-HT1A receptor blockade. Moreover, adaptive changes in pre- and post-synaptic 5-HT1A receptor functionality were also found after chronic CBD. In conclusion, our findings indicate that CBD could represent a novel fast antidepressant drug, via enhancing both serotonergic and glutamate cortical signalling through a 5-HT1A receptor-dependent mechanism.
Collapse
Affiliation(s)
- Raquel Linge
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Laura Jiménez-Sánchez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Leticia Campa
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Fuencisla Pilar-Cuéllar
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Rebeca Vidal
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Angel Pazos
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Albert Adell
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain; Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Álvaro Díaz
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
41
|
Bóta J, Hajagos-Tóth J, Ducza E, Samavati R, Borsodi A, Benyhe S, Gáspár R. The effects of female sexual hormones on the expression and function of α1A- and α1D-adrenoceptor subtypes in the late-pregnant rat myometrium. Eur J Pharmacol 2015; 769:177-84. [PMID: 26593425 DOI: 10.1016/j.ejphar.2015.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/04/2015] [Accepted: 11/12/2015] [Indexed: 02/02/2023]
Abstract
The aim of the study was to investigate the roles of α1-adrenoceptor subtypes in the last-day pregnant rat uterus in vitro by the administration of subtype-specific antagonists (the α1A-adrenoceptor antagonist WB 4101 and the α1D-adrenoceptor antagonist BMY 7378) after 17β-estradiol or progesterone pretreatment. In isolated organ bath studies, contractions were elicited with (-)-noradrenaline (10(-8)-10(-5)M) in the presence of propranolol (10(-5)M) and yohimbine (10(-6)M) in order to avoid β-, and α2-adrenergic action. The myometrial expressions of the α1-adrenoceptor subtypes were determined by means of the real time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting techniques. The activated G protein levels were investigated through radiolabelled GTP binding assays. Both 17β-estradiol and progesterone pretreatment changed the myometrial contracting effect of (-)-noradrenaline. In the presence of WB 4101, progesterone pretreatment decreased the (-)-noradrenaline-induced myometrial contraction. In the presence of BMY 7378, both the 17β-estradiol and the progesterone pretreatment reduced the effect of (-)-noradrenaline. The mRNA and protein expressions of the α1A-adrenoceptors were decreased after 17β-estradiol pretreatment. (-)-Noradrenaline increased the [(35)S]GTPγS binding of the α1-adrenoceptors, which was most markedly elevated by progesterone. Pertussis toxin inhibited the [(35)S]GTPγS binding-stimulating effect of (-)-noradrenaline, indicating the role of Gi proteins in the signal mechanisms. 17β-estradiol pretreatment blocks the expression of the α1A-adrenoceptors, whereas it does not influence the expression of the α1D-adrenoceptors. Progesterone pretreatment does not have any effect on the myometrial mRNA and protein expressions of the α1-adrenoceptors, but it alters the G protein coupling of these receptors, promoting a Gi-dependent pathway.
Collapse
Affiliation(s)
- Judit Bóta
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Judit Hajagos-Tóth
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Reza Samavati
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Anna Borsodi
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Róbert Gáspár
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
42
|
Martin TJ, Sexton T, Kim SA, Severino AL, Peters CM, Young LJ, Childers SR. Regional differences in mu and kappa opioid receptor G-protein activation in brain in male and female prairie voles. Neuroscience 2015; 311:422-9. [PMID: 26523979 DOI: 10.1016/j.neuroscience.2015.10.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022]
Abstract
Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins in signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [(35)S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brains by [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin (DAMGO) and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in the forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens (NAc) in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for NAc core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males.
Collapse
Affiliation(s)
- T J Martin
- Pain Mechanisms Laboratory, Department of Anesthesiology, Wake Forest University Health Sciences, Winston-Salem, NC, United States.
| | - T Sexton
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC, United States.
| | - S A Kim
- Pain Mechanisms Laboratory, Department of Anesthesiology, Wake Forest University Health Sciences, Winston-Salem, NC, United States.
| | - A L Severino
- Pain Mechanisms Laboratory, Department of Anesthesiology, Wake Forest University Health Sciences, Winston-Salem, NC, United States.
| | - C M Peters
- Pain Mechanisms Laboratory, Department of Anesthesiology, Wake Forest University Health Sciences, Winston-Salem, NC, United States.
| | - L J Young
- Silvio O. Conte Center for Oxytocin and Cognition, Center for Translational Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.
| | - S R Childers
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC, United States.
| |
Collapse
|
43
|
Elbrønd-Bek H, Gøtzsche CR, Skinbjerg M, Christensen DZ, Plenge P, Woldbye DPD. Visualization of Functional Neuropeptide Y Receptors in the Mouse Hippocampus and Neocortex Using [35S]GTPγS Binding. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9455-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Keegan BMT, Beveridge TJR, Pezor JJ, Xiao R, Sexton T, Childers SR, Howlett AC. Chronic baclofen desensitizes GABA(B)-mediated G-protein activation and stimulates phosphorylation of kinases in mesocorticolimbic rat brain. Neuropharmacology 2015; 95:492-502. [PMID: 25724082 PMCID: PMC4537290 DOI: 10.1016/j.neuropharm.2015.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/30/2014] [Accepted: 02/11/2015] [Indexed: 01/19/2023]
Abstract
The GABAB receptor is a therapeutic target for CNS and neuropathic disorders; however, few preclinical studies have explored effects of chronic stimulation. This study evaluated acute and chronic baclofen treatments on GABAB-activated G-proteins and signaling protein phosphorylation as indicators of GABAB signaling capacity. Brain sections from rats acutely administered baclofen (5 mg/kg, i.p.) showed no significant differences from controls in GABAB-stimulated GTPγS binding in any brain region, but displayed significantly greater phosphorylation/activation of focal adhesion kinase (pFAK(Tyr397)) in mesocorticolimbic regions (caudate putamen, cortex, hippocampus, thalamus) and elevated phosphorylated/activated glycogen synthase kinase 3-β (pGSK3β(Tyr216)) in the prefrontal cortex, cerebral cortex, caudate putamen, nucleus accumbens, thalamus, septum, and globus pallidus. In rats administered chronic baclofen (5 mg/kg, t.i.d. for five days), GABAB-stimulated GTPγS binding was significantly diminished in the prefrontal cortex, septum, amygdala, and parabrachial nucleus compared to controls. This effect was specific to GABAB receptors: there was no effect of chronic baclofen treatment on adenosine A1-stimulated GTPγS binding in any region. Chronically-treated rats also exhibited increases in pFAK(Tyr397) and pGSK3β(Tyr216) compared to controls, and displayed wide-spread elevations in phosphorylated dopamine- and cAMP-regulated phosphoprotein-32 (pDARPP-32(Thr34)) compared to acutely-treated or control rats. We postulate that those neuroadaptive effects of GABAB stimulation mediated by G-proteins and their sequelae correlate with tolerance to several of baclofen's effects, whereas sustained signaling via kinase cascades points to cross-talk between GABAB receptors and alternative mechanisms that are resistant to desensitization. Both desensitized and sustained signaling pathways should be considered in the development of pharmacotherapies targeting the GABA system.
Collapse
Affiliation(s)
- Bradley M T Keegan
- Center for the Neurobiology of Addiction Treatment, Winston-Salem, NC 27157, USA; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas J R Beveridge
- Center for the Neurobiology of Addiction Treatment, Winston-Salem, NC 27157, USA; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jeffrey J Pezor
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Chemistry, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Ruoyu Xiao
- Center for the Neurobiology of Addiction Treatment, Winston-Salem, NC 27157, USA; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Tammy Sexton
- Center for the Neurobiology of Addiction Treatment, Winston-Salem, NC 27157, USA; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Steven R Childers
- Center for the Neurobiology of Addiction Treatment, Winston-Salem, NC 27157, USA; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Allyn C Howlett
- Center for the Neurobiology of Addiction Treatment, Winston-Salem, NC 27157, USA; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
45
|
Lazenka MF, Tomarchio AJ, Lichtman AH, Greengard P, Flajolet M, Selley DE, Sim-Selley LJ. Role of Dopamine Type 1 Receptors and Dopamine- and cAMP-Regulated Phosphoprotein Mr 32 kDa in Δ9-Tetrahydrocannabinol-Mediated Induction of ΔFosB in the Mouse Forebrain. J Pharmacol Exp Ther 2015; 354:316-27. [PMID: 26099530 DOI: 10.1124/jpet.115.224428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
Δ(9)-Tetrahydrocannabinol (THC), the main psychoactive component of marijuana, produces motor and motivational effects via interactions with the dopaminergic system in the caudate-putamen and nucleus accumbens. However, the molecular events that underlie these interactions after THC treatment are not well understood. Our study shows that pretreatment with dopamine D1 receptor (D1R) antagonists before repeated administration of THC attenuated induction of Δ FBJ murine osteosarcoma viral oncogene homolog B (ΔFosB) in the nucleus accumbens, caudate-putamen, amygdala, and prefrontal cortex. Anatomical studies showed that repeated THC administration induced ΔFosB in D1R-containing striatal neurons. Dopamine signaling in the striatum involves phosphorylation-specific effects of the dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa (DARPP-32), which regulates protein kinase A signaling. Genetic deletion of DARPP-32 attenuated ΔFosB expression measured after acute, but not repeated, THC administration in both the caudate-putamen and nucleus accumbens. THC was then acutely or repeatedly administered to wild-type (WT) and DARPP-32 knockout (KO) mice, and in vivo responses were measured. DARPP-32 KO mice exhibited enhanced acute THC-mediated hypolocomotion and developed greater tolerance to this response relative to the WT mice. Agonist-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding showed that cannabinoid-stimulated G-protein activity did not differ between DARPP-32 KO and WT mice treated with vehicle or repeated THC. These results indicate that D1Rs play a major role in THC-mediated ΔFosB induction in the forebrain, whereas the role of DARPP-32 in THC-mediated ΔFosB induction and modulation of motor activity appears to be more complex.
Collapse
Affiliation(s)
- Matthew F Lazenka
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Aaron J Tomarchio
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Paul Greengard
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Marc Flajolet
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Dana E Selley
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| |
Collapse
|
46
|
Grönbladh A, Hallberg M. [(35)S]GTPγS autoradiography for studies of opioid receptor functionality. Methods Mol Biol 2015; 1230:169-76. [PMID: 25293324 DOI: 10.1007/978-1-4939-1708-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The opioid receptors have been an interesting target for the drug industry for decades. These receptors were pharmacologically characterized in the 1970s and several drugs and peptides have emerged over the years. In 2012, the crystal structures were also demonstrated, with new data on the receptor sites, and thus new possibilities will appear. The role of opioids in the brain has attracted considerable interest in several diseases, especially pain and drug dependence. The opioid receptors are G-protein-coupled receptors (GPCR) that are Gi-coupled which make them suitable for studying the receptor functionality. The [(35)S]GTPγS autoradiography assay is a good option that has the benefit of generating both anatomical and functional data in the area of interest. It is based on the first step of the signaling mechanism of GPCRs. When a ligand binds to the receptor GTP will replace GDP on the α-subunit of the G protein, leading to a dissociation of the βγ-subunit. These subunits will start a cascade of second messengers and subsequently a physiological response.
Collapse
Affiliation(s)
- Alfhild Grönbladh
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Beijer Laboratory, Uppsala University, 591, Uppsala, 751 24, Sweden
| | | |
Collapse
|
47
|
González de San Román E, Manuel I, Giralt MT, Chun J, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Ferrer I, Rodríguez-Puertas R. Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain. J Neurochem 2015; 134:471-85. [PMID: 25857358 DOI: 10.1111/jnc.13112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/02/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and LPA-evoked activities are abolished in MaLPA1 -null mice. The phospholipid precursors of LPA are localized by MALDI-IMS. The anatomical distribution of LPA precursors in rodent and human brain suggests a relationship with functional LPA1 receptors.
Collapse
Affiliation(s)
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - María Teresa Giralt
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
| | - Guillermo Estivill-Torrús
- UGC Intercentros de Neurociencias y UGC de Salud Mental, Instituto de Investigación Biomédica de Malaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Universidad de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Intercentros de Neurociencias y UGC de Salud Mental, Instituto de Investigación Biomédica de Malaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Universidad de Málaga, Spain
| | - Luis Javier Santín
- Departmento de Psicobiología y Metodología de las Ciencias del Comportamiento. Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad of Málaga, Málaga, Spain
| | - Isidro Ferrer
- Institute of Neuropathology, University Hospital Bellvitge, University of Barcelona, Ciberned, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
48
|
Deng L, Cornett BL, Mackie K, Hohmann AG. CB1 Knockout Mice Unveil Sustained CB2-Mediated Antiallodynic Effects of the Mixed CB1/CB2 Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain. Mol Pharmacol 2015; 88:64-74. [PMID: 25904556 DOI: 10.1124/mol.115.098483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/02/2023] Open
Abstract
Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated pharmacological effects in vivo. We evaluated antiallodynic effects, possible tolerance, and cannabimimetic effects (e.g., hypothermia, catalepsy, CB1-dependent withdrawal signs) after systemic CP55,940 treatment in a mouse model of toxic neuropathy produced by a chemotherapeutic agent, paclitaxel. The contribution of CB1 and CB2 receptors to in vivo actions of CP55,940 was evaluated using CB1 knockout (KO), CB2KO, and wild-type (WT) mice. Low-dose CP55,940 (0.3 mg/kg daily, i.p. ) suppressed paclitaxel-induced allodynia in WT and CB2KO mice, but not CB1KO mice. Low-dose CP55,940 also produced hypothermia and rimonabant-precipitated withdrawal in WT, but not CB1KO, mice. In WT mice, tolerance developed to CB1-mediated hypothermic effects of CP55,940 earlier than to antiallodynic effects. High-dose CP55,940 (10 mg/kg daily, i.p.) produced catalepsy in WT mice, which precluded determination of antiallodynic efficacy but produced sustained CB2-mediated suppression of paclitaxel-induced allodynia in CB1KO mice; these antiallodynic effects were blocked by the CB2 antagonist 6-iodopravadoline (AM630). High-dose CP55,940 did not produce hypothermia or rimonabant-precipitated withdrawal in CB1KO mice. Our results using the mixed CB1/CB2 agonist CP55,940 document that CB1 and CB2 receptor activations produce mechanistically distinct suppression of neuropathic pain. Our study highlights the therapeutic potential of targeting cannabinoid CB2 receptors to bypass unwanted central effects associated with CB1 receptor activation.
Collapse
Affiliation(s)
- Liting Deng
- Department of Molecular and Cellular Biochemistry (L.D.), Department of Psychological and Brain Sciences (L.D., B.L.C., K.M., A.G.H.), The Linda and Jack Gill Center for Biomolecular Science (L.D., B.L.C., K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Benjamin L Cornett
- Department of Molecular and Cellular Biochemistry (L.D.), Department of Psychological and Brain Sciences (L.D., B.L.C., K.M., A.G.H.), The Linda and Jack Gill Center for Biomolecular Science (L.D., B.L.C., K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Department of Molecular and Cellular Biochemistry (L.D.), Department of Psychological and Brain Sciences (L.D., B.L.C., K.M., A.G.H.), The Linda and Jack Gill Center for Biomolecular Science (L.D., B.L.C., K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Andrea G Hohmann
- Department of Molecular and Cellular Biochemistry (L.D.), Department of Psychological and Brain Sciences (L.D., B.L.C., K.M., A.G.H.), The Linda and Jack Gill Center for Biomolecular Science (L.D., B.L.C., K.M., A.G.H.), Indiana University, Bloomington, Indiana
| |
Collapse
|
49
|
Manuel I, Barreda-Gómez G, González de San Román E, Veloso A, Fernández JA, Giralt MT, Rodríguez-Puertas R. Neurotransmitter receptor localization: from autoradiography to imaging mass spectrometry. ACS Chem Neurosci 2015; 6:362-73. [PMID: 25648777 DOI: 10.1021/cn500281t] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Autoradiography is used to determine the anatomical distribution of biological molecules in human tissue and experimental animal models. This method is based on the analysis of the specific binding of radiolabeled compounds to locate neurotransmitter receptors or transporters in fresh frozen tissue slices. The anatomical resolution obtained by quantification of the radioligands has allowed the density of receptor proteins to be mapped over the last 40 years. The data yielded by autoradiography identify the receptors at their specific microscopic localization in the tissues and also in their native microenvironment, the intact cell membrane. Furthermore, in functional autoradiography, the effects of small molecules on the activity of G protein-coupled receptors are evaluated. More recently, autoradiography has been combined with membrane microarrays to improve the high-throughput screening of compounds. These technical advances have made autoradiography an essential analytical method for the progress of drug discovery. We include the future prospects and some preliminary results for imaging mass spectrometry (IMS) as a useful new method in pharmacodynamic and pharmacokinetic studies, complementing autoradiographic studies. IMS results could also be presented as density maps of molecules, proteins, and metabolites in tissue sections that can be identified, localized, and quantified, with the advantage of avoiding any labeling of marker molecules. The limitations and future developments of these techniques are discussed here.
Collapse
Affiliation(s)
| | - Gabriel Barreda-Gómez
- IMG Pharma Biotech S.L. Parque Tecnológico de Zamudio, Astondo Bidea, ed. Kabi 612, Módulo
5, 48160 Derio, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Low dosage of rimonabant leads to anxiolytic-like behavior via inhibiting expression levels and G-protein activity of kappa opioid receptors in a cannabinoid receptor independent manner. Neuropharmacology 2015; 89:298-307. [DOI: 10.1016/j.neuropharm.2014.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/19/2014] [Accepted: 10/04/2014] [Indexed: 12/15/2022]
|