1
|
Malyukova A, Lahnalampi M, Falqués-Costa T, Pölönen P, Sipola M, Mehtonen J, Teppo S, Akopyan K, Viiliainen J, Lohi O, Hagström-Andersson AK, Heinäniemi M, Sangfelt O. Sequential drug treatment targeting cell cycle and cell fate regulatory programs blocks non-genetic cancer evolution in acute lymphoblastic leukemia. Genome Biol 2024; 25:143. [PMID: 38822412 PMCID: PMC11143599 DOI: 10.1186/s13059-024-03260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/26/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Targeted therapies exploiting vulnerabilities of cancer cells hold promise for improving patient outcome and reducing side-effects of chemotherapy. However, efficacy of precision therapies is limited in part because of tumor cell heterogeneity. A better mechanistic understanding of how drug effect is linked to cancer cell state diversity is crucial for identifying effective combination therapies that can prevent disease recurrence. RESULTS Here, we characterize the effect of G2/M checkpoint inhibition in acute lymphoblastic leukemia (ALL) and demonstrate that WEE1 targeted therapy impinges on cell fate decision regulatory circuits. We find the highest inhibition of recovery of proliferation in ALL cells with KMT2A-rearrangements. Single-cell RNA-seq and ATAC-seq of RS4;11 cells harboring KMT2A::AFF1, treated with the WEE1 inhibitor AZD1775, reveal diversification of cell states, with a fraction of cells exhibiting strong activation of p53-driven processes linked to apoptosis and senescence, and disruption of a core KMT2A-RUNX1-MYC regulatory network. In this cell state diversification induced by WEE1 inhibition, a subpopulation transitions to a drug tolerant cell state characterized by activation of transcription factors regulating pre-B cell fate, lipid metabolism, and pre-BCR signaling in a reversible manner. Sequential treatment with BCR-signaling inhibitors dasatinib, ibrutinib, or perturbing metabolism by fatostatin or AZD2014 effectively counteracts drug tolerance by inducing cell death and repressing stemness markers. CONCLUSIONS Collectively, our findings provide new insights into the tight connectivity of gene regulatory programs associated with cell cycle and cell fate regulation, and a rationale for sequential administration of WEE1 inhibitors with low toxicity inhibitors of pre-BCR signaling or metabolism.
Collapse
Affiliation(s)
- Alena Malyukova
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| | - Mari Lahnalampi
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ton Falqués-Costa
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Petri Pölönen
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Sipola
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Juha Mehtonen
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Susanna Teppo
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Johanna Viiliainen
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | | | - Merja Heinäniemi
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| |
Collapse
|
2
|
Cui H, Loftus KM, Noell CR, Solmaz SR. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay. J Vis Exp 2018. [PMID: 29782014 DOI: 10.3791/57674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry, State University of New York at Binghamton
| | - Kyle M Loftus
- Department of Chemistry, State University of New York at Binghamton
| | - Crystal R Noell
- Department of Chemistry, State University of New York at Binghamton
| | - Sozanne R Solmaz
- Department of Chemistry, State University of New York at Binghamton;
| |
Collapse
|
3
|
Li QQ, Hsu I, Sanford T, Railkar R, Balaji N, Sourbier C, Vocke C, Balaji KC, Agarwal PK. Protein kinase D inhibitor CRT0066101 suppresses bladder cancer growth in vitro and xenografts via blockade of the cell cycle at G2/M. Cell Mol Life Sci 2018; 75:939-963. [PMID: 29071385 PMCID: PMC7984729 DOI: 10.1007/s00018-017-2681-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/05/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
The protein kinase D (PKD) family of proteins are important regulators of tumor growth, development, and progression. CRT0066101, an inhibitor of PKD, has antitumor activity in multiple types of carcinomas. However, the effect and mechanism of CRT0066101 in bladder cancer are not understood. In the present study, we show that CRT0066101 suppressed the proliferation and migration of four bladder cancer cell lines in vitro. We also demonstrate that CRT0066101 blocked tumor growth in a mouse flank xenograft model of bladder cancer. To further assess the role of PKD in bladder carcinoma, we examined the three PKD isoforms and found that PKD2 was highly expressed in eight bladder cancer cell lines and in urothelial carcinoma tissues from the TCGA database, and that short hairpin RNA (shRNA)-mediated knockdown of PKD2 dramatically reduced bladder cancer growth and invasion in vitro and in vivo, suggesting that the effect of the compound in bladder cancer is mediated through inhibition of PKD2. This notion was corroborated by demonstrating that the levels of phospho-PKD2 were markedly decreased in CRT0066101-treated bladder tumor explants. Furthermore, our cell cycle analysis by flow cytometry revealed that CRT0066101 treatment or PKD2 silencing arrested bladder cancer cells at the G2/M phase, the arrest being accompanied by decreases in the levels of cyclin B1, CDK1 and phospho-CDK1 (Thr161) and increases in the levels of p27Kip1 and phospho-CDK1 (Thr14/Tyr15). Moreover, CRT0066101 downregulated the expression of Cdc25C, which dephosphorylates/activates CDK1, but enhanced the activity of the checkpoint kinase Chk1, which inhibits CDK1 by phosphorylating/inactivating Cdc25C. Finally, CRT0066101 was found to elevate the levels of Myt1, Wee1, phospho-Cdc25C (Ser216), Gadd45α, and 14-3-3 proteins, all of which reduce the CDK1-cyclin B1 complex activity. These novel findings suggest that CRT0066101 suppresses bladder cancer growth by inhibiting PKD2 through induction of G2/M cell cycle arrest, leading to the blockade of cell cycle progression.
Collapse
Affiliation(s)
- Qingdi Quentin Li
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Iawen Hsu
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas Sanford
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reema Railkar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Navin Balaji
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cathy Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - K C Balaji
- Wake Forest University School of Medicine, Winston Salem, NC, 27106, USA
| | - Piyush K Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Li QQ, Hao JJ, Zhang Z, Hsu I, Liu Y, Tao Z, Lewi K, Metwalli AR, Agarwal PK. Histone deacetylase inhibitor-induced cell death in bladder cancer is associated with chromatin modification and modifying protein expression: A proteomic approach. Int J Oncol 2016; 48:2591-607. [PMID: 27082124 PMCID: PMC4864178 DOI: 10.3892/ijo.2016.3478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/17/2016] [Indexed: 12/19/2022] Open
Abstract
The Cancer Genome Atlas (TCGA) project recently identified the importance of mutations in chromatin remodeling genes in human carcinomas. These findings imply that epigenetic modulators might have a therapeutic role in urothelial cancers. To exploit histone deacetylases (HDACs) as targets for cancer therapy, we investigated the HDAC inhibitors (HDACIs) romidepsin, trichostatin A, and vorinostat as potential chemotherapeutic agents for bladder cancer. We demonstrate that the three HDACIs suppressed cell growth and induced cell death in the bladder cancer cell line 5637. To identify potential mechanisms associated with the anti-proliferative and cytotoxic effects of the HDACIs, we used quantitative proteomics to determine the proteins potentially involved in these processes. Our proteome studies identified a total of 6003 unique proteins. Of these, 2472 proteins were upregulated and 2049 proteins were downregulated in response to HDACI exposure compared to the untreated controls (P<0.05). Bioinformatic analysis further revealed that those differentially expressed proteins were involved in multiple biological functions and enzyme-regulated pathways, including cell cycle progression, apoptosis, autophagy, free radical generation and DNA damage repair. HDACIs also altered the acetylation status of histones and non-histone proteins, as well as the levels of chromatin modification proteins, suggesting that HDACIs exert multiple cytotoxic actions in bladder cancer cells by inhibiting HDAC activity or altering the structure of chromatin. We conclude that HDACIs are effective in the inhibition of cell proliferation and the induction of apoptosis in the 5637 bladder cancer cells through multiple cell death-associated pathways. These observations support the notion that HDACIs provide new therapeutic options for bladder cancer treatment and thus warrant further preclinical exploration.
Collapse
Affiliation(s)
- Qingdi Quentin Li
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Zheng Zhang
- Poochon Scientific, Frederick, MD 21704, USA
| | - Iawen Hsu
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Liu
- Poochon Scientific, Frederick, MD 21704, USA
| | - Zhen Tao
- Poochon Scientific, Frederick, MD 21704, USA
| | - Keidren Lewi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam R Metwalli
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piyush K Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Jung HW, Park I, Ghil S. Cannabinoid receptor activation inhibits cell cycle progression by modulating 14-3-3β. Cell Mol Biol Lett 2014; 19:347-60. [PMID: 25002257 PMCID: PMC6275927 DOI: 10.2478/s11658-014-0200-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/01/2014] [Indexed: 11/20/2022] Open
Abstract
Cannabinoids display various pharmacological activities, including tumor regression, anti-inflammatory and neuroprotective effects. To investigate the molecular mechanisms underlying the pharmacological effects of cannabinoids, we used a yeast two-hybrid system to screen a mouse brain cDNA library for proteins interacting with type 1 cannabinoid receptor (CB1R). Using the intracellular loop 3 of CB1R as bait, we identified 14-3-3β as an interacting partner of CB1R and confirmed their interaction using affinity-binding assays. 14-3-3β has been reported to induce a cell cycle delay at the G2/M phase. We tested the effects of cannabinoids on cell cycle progression in HeLa cells synchronized using a double-thymidine block-and-release protocol and found an increase in the population of G2/M phase cells. We further found that CB1R activation augmented the interaction of 14-3-3β with Wee1 and Cdc25B, and promoted phosphorylation of Cdc2 at Tyr-15. These results suggest that cannabinoids induce cell cycle delay at the G2/M phase by activating 14-3-3β.
Collapse
Affiliation(s)
- Hye-Won Jung
- Department of Life Science, Kyonggi University, Suwon, 443-760 Republic of Korea
| | - Inae Park
- Department of Life Science, Kyonggi University, Suwon, 443-760 Republic of Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, 443-760 Republic of Korea
| |
Collapse
|
6
|
Vassilopoulos A, Tominaga Y, Kim HS, Lahusen T, Li B, Yu H, Gius D, Deng CX. WEE1 murine deficiency induces hyper-activation of APC/C and results in genomic instability and carcinogenesis. Oncogene 2014; 34:3023-35. [PMID: 25088202 DOI: 10.1038/onc.2014.239] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 12/23/2022]
Abstract
The tyrosine kinase WEE1 controls the timing of entry into mitosis in eukaryotes and its genetic deletion leads to pre-implantation lethality in mice. Here, we show that besides the premature mitotic entry phenotype, Wee1 mutant murine cells fail to complete mitosis properly and exhibit several additional defects that contribute to the deregulation of mitosis, allowing mutant cells to progress through mitosis at the expense of genomic integrity. WEE1 interacts with the anaphase promoting complex, functioning as a negative regulator, and the deletion of Wee1 results in hyper-activation of this complex. Mammary specific knockout mice overcome the DNA damage response pathway triggered by the mis-coordination of the cell cycle in mammary epithelial cells and heterozygote mice spontaneously develop mammary tumors. Thus, WEE1 functions as a haploinsufficient tumor suppressor that coordinates distinct cell division events to allow correct segregation of genetic information into daughter cells and maintain genome integrity.
Collapse
Affiliation(s)
- A Vassilopoulos
- 1] Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA [2] Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Y Tominaga
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - H-Seok Kim
- 1] Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA [2] Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - T Lahusen
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - B Li
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - H Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D Gius
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C-X Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Cell cycle: mechanisms of control and dysregulation in cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
8
|
Tuck C, Zhang T, Potapova T, Malumbres M, Novák B. Robust mitotic entry is ensured by a latching switch. Biol Open 2013; 2:924-31. [PMID: 24143279 PMCID: PMC3773339 DOI: 10.1242/bio.20135199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/17/2013] [Indexed: 01/25/2023] Open
Abstract
Cell cycle events are driven by Cyclin dependent kinases (CDKs) and by their counter-acting phosphatases. Activation of the Cdk1:Cyclin B complex during mitotic entry is controlled by the Wee1/Myt1 inhibitory kinases and by Cdc25 activatory phosphatase, which are themselves regulated by Cdk1:Cyclin B within two positive circuits. Impairing these two feedbacks with chemical inhibitors induces a transient entry into M phase referred to as mitotic collapse. The pathology of mitotic collapse reveals that the positive circuits play a significant role in maintaining the M phase state. To better understand the function of these feedback loops during G2/M transition, we propose a simple model for mitotic entry in mammalian cells including spatial control over Greatwall kinase phosphorylation. After parameter calibration, the model is able to recapture the complex and non-intuitive molecular dynamics reported by Potapova et al. (Potapova et al., 2011). Moreover, it predicts the temporal patterns of other mitotic regulators which have not yet been experimentally tested and suggests a general design principle of cell cycle control: latching switches buffer the cellular stresses which accompany cell cycle processes to ensure that the transitions are smooth and robust.
Collapse
Affiliation(s)
- Chloe Tuck
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry , South Parks Road, Oxford OX1 3QU , UK
| | | | | | | | | |
Collapse
|
9
|
Sensitization of lung cancer cells to cisplatin by β-elemene is mediated through blockade of cell cycle progression: antitumor efficacies of β-elemene and its synthetic analogs. Med Oncol 2013; 30:488. [PMID: 23397083 DOI: 10.1007/s12032-013-0488-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 01/30/2013] [Indexed: 01/15/2023]
Abstract
The development of effective agents for overcoming platinum chemoresistance in lung carcinoma continues to have high priority. We have demonstrated recently that β-elemene, a novel antitumor compound, enhances cisplatin activity by triggering lung cancer cell death via apoptosis. Here, we investigated whether β-elemene acts synergistically with cisplatin to inhibit non-small cell lung cancer (NSCLC) cell proliferation by blocking cell cycle progression. β-Elemene substantially increased the suppressive effect of cisplatin on cell growth and proliferation in the NSCLC cell lines H460 and A549. Furthermore, β-elemene augmented cisplatin in the cell cycle arrest of NSCLC cells at G(2)/M. This was associated with upregulated checkpoint kinase (CHK2) expression and reduced CDC2 activity (i.e., increased phosphorylation of CDC2 on Tyr-15 and decreased phosphorylation of CDC2 on Thr-161). Moreover, β-elemene and cisplatin in combination clearly decreased the protein levels of cyclin B1 and CDC25C and increased the levels of p21(Cip1/Waf1), p27(Kip1), and GADD45 in these cells, compared with the effects of either agent alone at the same concentration. These results suggest that the β-elemene-enhanced inhibitory effect of cisplatin on lung carcinoma cell proliferation is regulated by a CHK2-mediated CDC25C/CDC2/cyclin B1 signaling pathway and leads to the blockade of cell cycle progression at G(2)/M. A comparison of the cytotoxic efficacies of β-elemene and three synthetic analogs (β-elemenol, β-elemenal, and β-elemene fluoride) in the two lung cancer cell lines revealed that β-elemenol and β-elemene fluoride had the same antitumor efficacy as β-elemene, whereas β-elemenal was appreciably more potent than β-elemene. Thus, although all three synthetic analogs of β-elemene considerably suppressed NSCLC cell growth and proliferation, β-elemenal may have greater potential as an anticancer alternative to β-elemene in treating lung cancer and other tumors.
Collapse
|
10
|
Coulonval K, Kooken H, Roger PP. Coupling of T161 and T14 phosphorylations protects cyclin B-CDK1 from premature activation. Mol Biol Cell 2011; 22:3971-85. [PMID: 21900495 PMCID: PMC3204060 DOI: 10.1091/mbc.e11-02-0136] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 08/19/2011] [Accepted: 09/01/2011] [Indexed: 01/26/2023] Open
Abstract
Mitosis is triggered by the abrupt dephosphorylation of inhibitory Y15 and T14 residues of cyclin B1-bound cyclin-dependent kinase (CDK)1 that is also phosphorylated at T161 in its activation loop. The sequence of events leading to the accumulation of fully phosphorylated cyclin B1-CDK1 complexes remains unclear. Two-dimensional gel electrophoresis allowed us to determine whether T14, Y15, and T161 phosphorylations occur on same CDK1 molecules and to characterize the physiological occurrence of their seven phosphorylation combinations. Intriguingly, in cyclin B1-CDK1, the activating T161 phosphorylation never occurred without the T14 phosphorylation. This strict association could not be uncoupled by a substantial reduction of T14 phosphorylation in response to Myt1 knockdown, suggesting some causal relationship. However, T14 phosphorylation was not directly required for T161 phosphorylation, because Myt1 knockdown did uncouple these phosphorylations when leptomycin B prevented cyclin B1-CDK1 complexes from accumulating in cytoplasm. The coupling mechanism therefore depended on unperturbed cyclin B1-CDK1 traffic. The unexpected observation that the activating phosphorylation of cyclin B1-CDK1 was tightly coupled to its T14 phosphorylation, but not Y15 phosphorylation, suggests a mechanism that prevents premature activation by constitutively active CDK-activating kinase. This explained the opposite effects of reduced expression of Myt1 and Wee1, with only the latter inducing catastrophic mitoses.
Collapse
Affiliation(s)
- Katia Coulonval
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Hugues Kooken
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Pierre P. Roger
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
- WELBIO
| |
Collapse
|
11
|
Sørensen CS, Syljuåsen RG. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res 2011; 40:477-86. [PMID: 21937510 PMCID: PMC3258124 DOI: 10.1093/nar/gkr697] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mechanisms that preserve genome integrity are highly important during the normal life cycle of human cells. Loss of genome protective mechanisms can lead to the development of diseases such as cancer. Checkpoint kinases function in the cellular surveillance pathways that help cells to cope with DNA damage. Importantly, the checkpoint kinases ATR, CHK1 and WEE1 are not only activated in response to exogenous DNA damaging agents, but are active during normal S phase progression. Here, we review recent evidence that these checkpoint kinases are critical to avoid deleterious DNA breakage during DNA replication in normal, unperturbed cell cycle. Possible mechanisms how loss of these checkpoint kinases may cause DNA damage in S phase are discussed. We propose that the majority of DNA damage is induced as a consequence of deregulated CDK activity that forces unscheduled initiation of DNA replication. This could generate structures that are cleaved by DNA endonucleases leading to the formation of DNA double-strand breaks. Finally, we discuss how these S phase effects may impact on our understanding of cancer development following disruption of these checkpoint kinases, as well as on the potential of these kinases as targets for cancer treatment.
Collapse
Affiliation(s)
- Claus Storgaard Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| | | |
Collapse
|
12
|
Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Demuth T, Shumway SD, Mizuarai S, Hirai H, Maitra A, Hidalgo M. MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 2011; 17:2799-806. [PMID: 21389100 DOI: 10.1158/1078-0432.ccr-10-2580] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Investigate the efficacy and pharmacodynamic effects of MK-1775, a potent Wee1 inhibitor, in both monotherapy and in combination with gemcitabine (GEM) using a panel of p53-deficient and p53 wild-type human pancreatic cancer xenografts. EXPERIMENTAL DESIGN Nine individual patient-derived pancreatic cancer xenografts (6 with p53-deficient and 3 with p53 wild-type status) from the PancXenoBank collection at Johns Hopkins were treated with MK-1775, GEM, or GEM followed 24 hour later by MK-1775, for 4 weeks. Tumor growth rate/regressions were calculated on day 28. Target modulation was assessed by Western blotting and immunohistochemistry. RESULTS MK-1775 treatment led to the inhibition of Wee1 kinase and reduced inhibitory phosphorylation of its substrate Cdc2. MK-1775, when dosed with GEM, abrogated the checkpoint arrest to promote mitotic entry and facilitated tumor cell death as compared to control and GEM-treated tumors. MK-1775 monotherapy did not induce tumor regressions. However, the combination of GEM with MK-1775 produced robust antitumor activity and remarkably enhanced tumor regression response (4.01-fold) compared to GEM treatment in p53-deficient tumors. Tumor regrowth curves plotted after the drug treatment period suggest that the effect of the combination therapy is longer-lasting than that of GEM. None of the agents produced tumor regressions in p53 wild-type xenografts. CONCLUSIONS These results indicate that MK-1775 selectively synergizes with GEM to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts.
Collapse
Affiliation(s)
- N V Rajeshkumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The herpes simplex virus type 1 infected cell protein 22. Virol Sin 2010; 25:1-7. [PMID: 20960278 DOI: 10.1007/s12250-010-3080-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 07/16/2009] [Indexed: 10/19/2022] Open
Abstract
As one of the immediate-early (IE) proteins of herpes simplex virus type 1 (HSV-1), ICP22 is a multifunctional viral regulator that localizes in the nucleus of infected cells. It is required in experimental animal systems and some nonhuman cell lines, but not in Vero or HEp-2 cells. ICP22 is extensively phosphorylated by viral and cellular kinases and nucleotidylylated by casein kinase II. It has been shown to be required for efficient expression of early (E) genes and a subset of late (L) genes. ICP22, in conjunction with the UL13 kinase, mediates the phosphorylation of RNA polymerase II. Both ICP22 and UL13 are required for the activation of cdc2, the degradation of cyclins A and B and the acquisition of a new cdc2 partner, the UL42 DNA polymerase processivity factor. The cdc2-UL42 complex mediates postranscriptional modification of topoisomerase IIα in an ICP22-dependent manner to promote L gene expression. In addition, ICP22 interacts with cdk9 in a Us3 kinase dependent fashion to phosphorylate RNA polymerase II.
Collapse
|
14
|
c-Jun N-terminal kinase 1 phosphorylates Myt1 to prevent UVA-induced skin cancer. Mol Cell Biol 2009; 29:2168-80. [PMID: 19204086 DOI: 10.1128/mcb.01508-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) signaling pathway is known to mediate both survival and apoptosis of tumor cells. Although JNK1 and JNK2 have been shown to differentially regulate the development of skin cancer, the underlying mechanistic basis remains unclear. Here, we demonstrate that JNK1, but not JNK2, interacts with and phosphorylates Myt1 ex vivo and in vitro. UVA induces substantial apoptosis in JNK wild-type (JNK(+/+)) or JNK2-deficient (JNK2(-/-)) mouse embryonic fibroblasts but has no effect on JNK1-deficient (JNK1(-/-)) cells. In addition, UVA-induced caspase-3 cleavage and DNA fragmentation were suppressed by the knockdown of human Myt1 in skin cancer cells. JNK1 deficiency results in suppressed Myt1 phosphorylation and caspase-3 cleavage in skin exposed to UVA irradiation. In contrast, the absence of JNK2 induces Myt1 phosphorylation and caspase-3 cleavage in skin exposed to UVA. The overexpression of JNK1 with Myt1 promotes cellular apoptosis during the early embryonic development of Xenopus laevis, whereas the presence of JNK2 reduces the phenotype of Myt1-induced apoptotic cell death. Most importantly, JNK1(-/-) mice developed more UVA-induced papillomas than either JNK(+/+) or JNK2(-/-) mice, which was associated with suppressed Myt1 phosphorylation and decreased caspase-3 cleavage. Taken together, these data provide mechanistic insights into the distinct roles of the different JNK isoforms, specifically suggesting that the JNK1-mediated phosphorylation of Myt1 plays an important role in UVA-induced apoptosis and the prevention of skin carcinogenesis.
Collapse
|
15
|
Drosophila myt1 is the major cdk1 inhibitory kinase for wing imaginal disc development. Genetics 2008; 180:2123-33. [PMID: 18940789 DOI: 10.1534/genetics.108.093195] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitosis is triggered by activation of Cdk1, a cyclin-dependent kinase. Conserved checkpoint mechanisms normally inhibit Cdk1 by inhibitory phosphorylation during interphase, ensuring that DNA replication and repair is completed before cells begin mitosis. In metazoans, this regulatory mechanism is also used to coordinate cell division with critical developmental processes, such as cell invagination. Two types of Cdk1 inhibitory kinases have been found in metazoans. They differ in subcellular localization and Cdk1 target-site specificity: one (Wee1) being nuclear and the other (Myt1), membrane-associated and cytoplasmic. Drosophila has one representative of each: dMyt1 and dWee1. Although dWee1 and dMyt1 are not essential for zygotic viability, loss of both resulted in synthetic lethality, indicating that they are partially functionally redundant. Bristle defects in myt1 mutant adult flies prompted a phenotypic analysis that revealed cell-cycle defects, ectopic apoptosis, and abnormal responses to ionizing radiation in the myt1 mutant imaginal wing discs that give rise to these mechanosensory organs. Cdk1 inhibitory phosphorylation was also aberrant in these myt1 mutant imaginal wing discs, indicating that dMyt1 serves Cdk1 regulatory functions that are important both for normal cell-cycle progression and for coordinating mitosis with critical developmental processes.
Collapse
|
16
|
Martin NG, McAndrew PC, Eve PD, Garrett MD. Phosphorylation of cyclin dependent kinase 4 on tyrosine 17 is mediated by Src family kinases. FEBS J 2008; 275:3099-109. [PMID: 18479465 DOI: 10.1111/j.1742-4658.2008.06463.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclin dependent kinase 4 is a key regulator of the cell cycle and its activity is frequently deregulated in cancer. The activity of cyclin dependent kinase 4 is controlled by multiple mechanisms, including phosphorylation of tyrosine 17. This site is equivalent to tyrosine 15 of cyclin dependent kinase 1, which undergoes inhibitory phosphorylation by WEE1 and MYT1; however, the kinases that phosphorylate cyclin dependent kinase 4 on tyrosine 17 are still unknown. In the present study, we generated a phosphospecific antibody to the tyrosine 17-phosphorylated form of cyclin dependent kinase 4, and showed that this site is phosphorylated to a low level in asynchronously proliferating HCT116 cells. We purified tyrosine 17 kinases from HeLa cells and found that the Src family non-receptor tyrosine kinase C-YES contributes a large fraction of the tyrosine 17 kinase activity in HeLa lysates. C-YES also phosphorylated cyclin dependent kinase 4 when transfected into HCT116 cells, and treatment of cells with Src family kinase inhibitors blocked the tyrosine 17 phosphorylation of cyclin dependent kinase 4. Taken together, the results obtained in the present study provide the first evidence that Src family kinases, but not WEE1 or MYT1, phosphorylate cyclin dependent kinase 4 on tyrosine 17, and help to resolve how the phosphorylation of this site is regulated.
Collapse
Affiliation(s)
- Nicholas G Martin
- Centre for Cancer Therapeutics at The Institute of Cancer Research, Cancer Research UK, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey, UK
| | | | | | | |
Collapse
|
17
|
Nakajima H, Yonemura S, Murata M, Nakamura N, Piwnica-Worms H, Nishida E. Myt1 protein kinase is essential for Golgi and ER assembly during mitotic exit. ACTA ACUST UNITED AC 2008; 181:89-103. [PMID: 18378775 PMCID: PMC2287290 DOI: 10.1083/jcb.200708176] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myt1 was originally identified as an inhibitory kinase for Cdc2 (Cdk1), the master engine of mitosis, and has been thought to function, together with Wee1, as a negative regulator of mitotic entry. In this study, we report an unexpected finding that Myt1 is essential for Golgi and endoplasmic reticulum (ER) assembly during telophase in mammalian cells. Our analyses reveal that both cyclin B1 and cyclin B2 serve as targets of Myt1 for proper Golgi and ER assembly to occur. Thus, our results show that Myt1-mediated suppression of Cdc2 activity is not indispensable for the regulation of a broad range of mitotic events but is specifically required for the control of intracellular membrane dynamics during mitosis.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Kim SY, Ferrell JE. Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell 2007; 128:1133-45. [PMID: 17382882 DOI: 10.1016/j.cell.2007.01.039] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/28/2006] [Accepted: 01/31/2007] [Indexed: 01/22/2023]
Abstract
The mitotic regulators Wee1 and Cdk1 can inactivate each other through inhibitory phosphorylations. This double-negative feedback loop is part of a bistable trigger that makes the transition into mitosis abrupt and decisive. To generate a bistable response, some component of a double-negative feedback loop must exhibit an ultrasensitive response to its upstream regulator. Here, we experimentally demonstrate that Wee1 exhibits a highly ultrasensitive response to Cdk1. Several mechanisms can, in principle, give rise to ultrasensitivity, including zero-order effects, multisite phosphorylation, and competition mechanisms. We found that the ultrasensitivity in the inactivation of Wee1 arises mainly through two competition mechanisms: competition between two sets of phosphorylation sites in Wee1 and between Wee1 and other high-affinity Cdk1 targets. Based on these findings, we were able to reconstitute a highly ultrasensitive Wee1 response with purified components. Competition provides a simple way of generating the equivalent of a highly cooperative allosteric response.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Center for Clinical Sciences Research, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
19
|
Abstract
The Cdk1 inhibitor Wee1 is inactivated during mitotic entry by proteolysis, translational regulation, and transcriptional regulation. Wee1 is also regulated by posttranslational modifications, and here we have identified five phosphorylation sites in the N-terminal domain of embryonic Xenopus Wee1A through a combination of mutagenesis studies and matrix-assisted laser desorption ionization-time of flight mass spectrometry. All five sites conform to the Ser-Pro/Thr-Pro consensus for proline-directed kinases like Cdks. Three of the sites (Ser 38, Thr 53, and Ser 62) are required for the mitotic gel shift, and at least two of these sites (Ser 38 and Thr 53) regulate the proteolysis of Wee1A during interphase. The other two sites (Thr 104 and Thr 150) are primarily responsible for the mitotic inactivation of Wee1A. Alanine mutants of Thr 150 or Thr 104 had an increased capacity to inhibit mitotic entry in cyclin B-treated interphase extracts, and Thr 150 was found to be transiently phosphorylated just prior to nuclear envelope breakdown in cycling egg extracts. These findings establish the phosphorylation-dependent direct inactivation of Wee1A as a critical mechanism for the promotion of M-phase entry. These results also show that multisite phosphorylation cooperatively inactivates Wee1A and cooperatively promotes Wee1A proteolysis.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | | | | | | |
Collapse
|
20
|
Stanford JS, Ruderman JV. Changes in regulatory phosphorylation of Cdc25C Ser287 and Wee1 Ser549 during normal cell cycle progression and checkpoint arrests. Mol Biol Cell 2005; 16:5749-60. [PMID: 16195348 PMCID: PMC1289418 DOI: 10.1091/mbc.e05-06-0541] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Entry into mitosis is catalyzed by cdc2 kinase. Previous work identified the cdc2-activating phosphatase cdc25C and the cdc2-inhibitory kinase wee1 as targets of the incomplete replication-induced kinase Chk1. Further work led to the model that checkpoint kinases block mitotic entry by inhibiting cdc25C through phosphorylation on Ser287 and activating wee1 through phosphorylation on Ser549. However, almost all conclusions underlying this idea were drawn from work using recombinant proteins. Here, we report that in the early Xenopus egg cell cycles, phosphorylation of endogenous cdc25C Ser287 is normally high during interphase and shows no obvious increase after checkpoint activation. By contrast, endogenous wee1 Ser549 phosphorylation is low during interphase and increases after activation of either the DNA damage or replication checkpoints; this is accompanied by a slight increase in wee1 kinase activity. Blocking mitotic entry by adding the catalytic subunit of PKA also results in increased wee1 Ser549 phosphorylation and maintenance of cdc25C Ser287 phosphorylation. These results argue that in response to checkpoint activation, endogenous wee1 is indeed a critical responder that functions by repressing the cdc2-cdc25C positive feedback loop. Surprisingly, endogenous wee1 Ser549 phosphorylation is highest during mitosis just after the peak of cdc2 activity. Treatments that block inactivation of cdc2 result in further increases in wee1 Ser549 phosphorylation, suggesting a previously unsuspected role for wee1 in mitosis.
Collapse
|
21
|
Lin YM, Teng YN, Chung CL, Tsai WC, Lin YH, Lin JSN, Kuo PL. Decreased mRNA transcripts of M-phase promoting factor and its regulators in the testes of infertile men. Hum Reprod 2005; 21:138-44. [PMID: 16155078 DOI: 10.1093/humrep/dei285] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND M-phase promoting factor (MPF), which is comprised of Cyclin B and a catalytic subunit, Cdc2, is a key enzyme required for cells to enter M phase in both mitosis and meiosis. MPF activity is controlled by the stimulatory dephosphorylation of the Cdc25 family and the inhibitory phosphorylation of Wee1. We determined the levels of mRNA transcripts of MPF and its regulators in the testes of infertile men, and evaluated the relationship between the transcript levels and patients' testicular phenotypes and sperm retrieval results. METHODS AND RESULTS The mRNA transcript levels of CDC2, CCNB1, CCNB2, CDC25A, CDC25B, CDC25C and WEE1 in the testes of 37 azoospermic patients were examined by quantitative real-time polymerase chain reaction. Significant decreases in CDC2, CCNB1, CCNB2, CDC25A, CDC25C and WEE1 mRNA transcript levels were detected in patients with spermatogenic failure. CDC2 mRNA transcript levels correlated significantly with those of CCNB1 and CCNB2 mRNA. Significantly higher CDC2, CCNB1, CCNB2, CDC25C and WEE1 mRNA transcript levels were detected in 18 patients with successful sperm retrieval than in 11 patients with failed sperm retrieval. CONCLUSIONS We suggest that the decreased mRNA transcripts of MPF and its regulators play important roles in human spermatogenesis.
Collapse
Affiliation(s)
- Yung Ming Lin
- Department of Urology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
E-type cyclins (cyclin E1 and cyclin E2) are expressed during the late G1 phase of the cell cycle until the end of the S-phase. The activity of cyclin E is limiting for the passage of cells through the restriction point "R" which marks a "point of no return" for cells entering the division cycle from a resting state or passing from G1 into S-phase. Expression of cyclin E is regulated on the level of gene transcription mainly by members of the E2F trrnscription factor family and by its degradation via the proteasome pathway. Cyclin E binds and activates the kinase Cdk2 and by phosphorylating its substrates, the so-called "pocket proteins", the cyclic/Cdk2 complexes initiate a cascade of events that leads to the expression of S-phase specific genes. Aside from this specific function as a regulator of S-phase-entry, cyclin E plays a direct role in the initiation of DNA replication, the control of genomic stability, and the centrosome cycle. Surprisingly, recent studies have shown that the once thought essential cyclin E is dispensable for the development of higher eukaryotes and for the mitotic division of eukaryotic cells. Nevertheless, high level cyclin E expression has been associated with the initiation or progression of different human cancers, in particular breast cancer but also leukemia, lymphoma and others. Transgenic mouse models in which cyclin E is constitutively expressed develop malignant diseases, supporting the notion of cyclin E as a dominant onco-protein.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut für Zellbiologie (Tumorforschung) (IFZ), Universitätsklinikum Essen, Virchowstrasse 173, D-45122 Essen, Germany.
| | | |
Collapse
|
23
|
Yu Y, Chen B, Chen Z, Fan C, Han Y, Zhang J, He L, Ingram A, Kapoor A, Wang JH, Tang D. Identification of a novel Wee1 isoform. ACTA ACUST UNITED AC 2005; 1729:1-9. [PMID: 15804487 DOI: 10.1016/j.bbaexp.2005.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 02/11/2005] [Accepted: 02/14/2005] [Indexed: 11/18/2022]
Abstract
We have identified a novel isoform of Wee1 kinase (Wee1i), which uses Met215 of Wee1 as its initiation codon. RT-PCR, Western blot, and in situ hybridization verified wee1i expression in mammalian cells, rat brain, and rat thymus. Recombinant and partially purified Wee1i from rat thymus displayed kinase activity comparable to or higher than Wee1. The N-terminal 214 residues of Wee1 facilitate its ubiquitin-dependent degradation to trigger mitotic entry. Since Wee1i, lack of these 214 residues, it may evade this degradation and thus provide constitutive Wee1-like kinase activity to inhibit mitotic cell proliferation. Thus, Wee1i may play an important role in differentiation and in tumor suppression.
Collapse
Affiliation(s)
- Yaping Yu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mitra J, Enders GH. Cyclin A/Cdk2 complexes regulate activation of Cdk1 and Cdc25 phosphatases in human cells. Oncogene 2004; 23:3361-7. [PMID: 14767478 PMCID: PMC1924680 DOI: 10.1038/sj.onc.1207446] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitotic entry, a critical decision point for maintaining genetic stability, is governed by the cyclin B/Cyclin dependent kinase 1 (Cdc2) complex. In Xenopus oocytes and early embryos, accumulation of cyclin B activates Cdk1, which then phosphorylates and activates the positive regulator Cdc25 in an autocatalytic feedback loop. However, cyclin B levels do not increase as some human cells approach mitosis, and the key factors regulating Cdk1 activation in human cells are unknown. We report here that reducing cyclin A expression by RNA interference (RNAi) in primary human fibroblasts inhibited activation of Cdc25B and Cdc25C and dephosphorylation of Cdk1 on tyrosine (tyr) 15. These results were reproduced in U2-OS cells by inducing the expression of a dominant-negative (dn) mutant of Cdk2, the principal cyclin A binding partner. Cdk2-dn induction could inhibit Cdc25B activity and foster Cdk1 tyr phosphorylation within the S phase, temporally dissociating these events from Cdk1 activation at mitosis. In contrast, reducing Cdk1 expression delayed mitotic entry without markedly impairing Cdc25B or Cdc25C activity. These results suggest that cyclin A/Cdk2 complexes are key regulators of Cdc25 and Cdk1 activation in human cells. This pathway appears to be commonly deregulated in cancer.
Collapse
Affiliation(s)
- Jayashree Mitra
- Departments of Medicine and Genetics and Cancer Center, University of Pennsylvania, Philadelphia, PA 19104-6140, USA.
| | | |
Collapse
|
25
|
Chow JPH, Siu WY, Ho HTB, Ma KHT, Ho CC, Poon RYC. Differential contribution of inhibitory phosphorylation of CDC2 and CDK2 for unperturbed cell cycle control and DNA integrity checkpoints. J Biol Chem 2003; 278:40815-28. [PMID: 12912980 DOI: 10.1074/jbc.m306683200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inhibition of cyclin-dependent kinases (CDKs) by Thr14/Tyr15 phosphorylation is critical for normal cell cycle progression and is a converging event for several cell cycle checkpoints. In this study, we compared the relative contribution of inhibitory phosphorylation for cyclin A/B1-CDC2 and cyclin A/E-CDK2 complexes. We found that inhibitory phosphorylation plays a major role in the regulation of CDC2 but only a minor role for CDK2 during the unperturbed cell cycle of HeLa cells. The relative importance of inhibitory phosphorylation of CDC2 and CDK2 may reflect their distinct cellular functions. Despite this, expression of nonphosphorylation mutants of both CDC2 and CDK2 triggered unscheduled histone H3 phosphorylation early in the cell cycle and was cytotoxic. DNA damage by a radiomimetic drug or replication block by hydroxyurea stimulated a buildup of cyclin B1 but was accompanied by an increase of inhibitory phosphorylation of CDC2. After DNA damage and replication block, all cyclin-CDK pairs that control S phase and mitosis were to different degrees inhibited by phosphorylation. Ectopic expression of nonphosphorylated CDC2 stimulated DNA replication, histone H3 phosphorylation, and cell division even after DNA damage. Similarly, a nonphosphorylation mutant of CDK2, but not CDK4, disrupted the G2 DNA damage checkpoint. Finally, CDC25A, CDC25B, a dominant-negative CHK1, but not CDC25C or a dominant-negative WEE1, stimulated histone H3 phosphorylation after DNA damage. These data suggest differential contributions for the various regulators of Thr14/Tyr15 phosphorylation in normal cell cycle and during the DNA damage checkpoint.
Collapse
Affiliation(s)
- Jeremy P H Chow
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | | | | | | | | | |
Collapse
|
26
|
Park HJ, Lee SH, Chung H, Rhee YH, Lim BU, Ha SW, Griffin RJ, Lee HS, Song CW, Choi EK. Influence of environmental pH on G2-phase arrest caused by ionizing radiation. Radiat Res 2003; 159:86-93. [PMID: 12492371 DOI: 10.1667/0033-7587(2003)159[0086:ioepog]2.0.co;2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We investigated the effects of an acidic environment on the G2/M-phase arrest, apoptosis, clonogenic death, and changes in cyclin B1-CDC2 kinase activity caused by a 4-Gy irradiation in RKO.C human colorectal cancer cells in vitro. The time to reach peak G2/M-phase arrest after irradiation was delayed in pH 6.6 medium compared to that in pH 7.5 medium. Furthermore, the radiation-induced G2/M-phase arrest decayed more slowly in pH 6.6 medium than in pH 7.5 medium. Finally, there was less radiation-induced apoptosis and clonogenic cell death in pH 6.6 medium than in pH 7.5 medium. It appeared that the prolongation of G2-phase arrest after irradiation in the acidic environment allowed for greater repair of radiation-induced DNA damage, thereby decreasing the radiation-induced cell death. The prolongation of G2-phase arrest after irradiation in the acidic pH environment appeared to be related at least in part to a prolongation of the phosphorylation of CDC2, which inhibited cyclin B1-CDC2 kinase activity.
Collapse
Affiliation(s)
- Heon Joo Park
- Department of Microbiology, Inha University, College of Medicine, Inchon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Garner AP, Weston CR, Todd DE, Balmanno K, Cook SJ. Delta MEKK3:ER* activation induces a p38 alpha/beta 2-dependent cell cycle arrest at the G2 checkpoint. Oncogene 2002; 21:8089-104. [PMID: 12444545 DOI: 10.1038/sj.onc.1206000] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2002] [Revised: 08/27/2002] [Accepted: 08/29/2002] [Indexed: 11/09/2022]
Abstract
Whilst many studies have examined the role of the MAP Kinases in regulating the G1-->S transition, much less is known about the function of these pathways in regulating other cell cycle transitions. Stimulation of the conditional mutant Delta MEKK3:ER* in asynchronous hamster (CCl39) and rat (Rat-1) fibroblasts resulted in the strong activation of endogenous JNK and p38 but only a weak activation of ERK. Activation of Delta MEKK3:ER* inhibited cell proliferation through a combination of an initial G1 and G2 cell cycle arrest, followed by a delayed onset of apoptosis. When cells were synchronized in S phase with aphidicolin and then released, activation of Delta MEKK3:ER* resulted in the up-regulation of p21(CIP1) and a pronounced inhibition of cyclin A/CDK2 and cyclin B1/CDK1 kinase activity. Analysis of mitotic figures indicated that cells failed to enter mitosis, arresting late in G2. Delta MEKK3:ER*-mediated CDK inhibition and G2 arrest did not absolutely require p21(CIP1), since both events were observed in Rat-1 cells in which p21(CIP1) is transcriptionally silenced due to promoter methylation. Rather, CDK inhibition was associated with a down-regulation of cyclin A and B1 expression. Finally, application of the p38 inhibitor SB203580 partially restored cyclin B associated kinase activity and allowed cells to proceed through mitosis into the next G1 phase, suggesting that activation of the p38 alpha/beta 2 pathway can promote a G2 cell cycle arrest.
Collapse
Affiliation(s)
- Andrew P Garner
- Inositide Laboratory, Signalling Programme, The Babraham Institute, Babraham Hall, Cambridge CB2 4AT, UK
| | | | | | | | | |
Collapse
|
28
|
Li J, Wang Y, Sun Y, Lawrence TS. Wild-type TP53 inhibits G(2)-phase checkpoint abrogation and radiosensitization induced by PD0166285, a WEE1 kinase inhibitor. Radiat Res 2002; 157:322-30. [PMID: 11839095 DOI: 10.1667/0033-7587(2002)157[0322:wttigp]2.0.co;2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The WEE1 protein kinase carries out the inhibitory phosphorylation of CDC2 on tyrosine 15 (Tyr15), which is required for activation of the G(2)-phase checkpoint in response to DNA damage. PD0166285 is a newly identified WEE1 inhibitor and is a potential selective G(2)-phase checkpoint abrogator. To determine the role of TP53 in PD0166285-induced G(2)-phase checkpoint abrogation, human H1299 lung carcinoma cells expressing a temperature-sensitive TP53 were used. Upon exposure to gamma radiation, cells cultured under nonpermissive conditions (TP53 mutant conformation) underwent G(2)-phase arrest. However, under permissive conditions (TP53 wild-type conformation), PD0166285 greatly inhibited the accumulation of cells in G(2) phase. This abrogation was accompanied by a nearly complete blockage of Tyr15 phosphorylation of CDC2, an increased activity of CDC2 kinase, and an enhanced sensitivity to radiation. However, under permissive conditions (TP53 wild-type conformation), PD0166285 neither disrupted the G(2)-phase arrest nor increased cell death. The compound inhibited Tyr15 phosphorylation only partially and did not activate CDC2 kinase activity. To understand the potential mechanism(s) by which TP53 inhibits PD0166285-induced G(2)-phase checkpoint abrogation, two TP53 target proteins, 14-3-3rho and CDKN1A (also known as p21), that are known to be involved in G(2)-phase checkpoint control in other cell models were examined. It was found that 14-3-3rho was not expressed in H1299 cells, and that although CDKN1A did associate with CDC2 to form a complex, the level of CDKN1A associated with CDC2 was not increased in response to radiation or to PD0166285. The level of cyclin B1, required for CDC2 activity, was decreased in the presence of functional TP53. Thus inhibition of PD0166285-induced G(2)-phase checkpoint abrogation by TP53 was achieved at least in part through partial blockage of CDC2 dephosphorylation of Tyr15 and inhibition of cyclin B1 expression.
Collapse
Affiliation(s)
- Jun Li
- Department of Radiation Oncology, University of Michigan, Ann Arbor Michigan 48109, USA
| | | | | | | |
Collapse
|
29
|
Graves PR, Lovly CM, Uy GL, Piwnica-Worms H. Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene 2001; 20:1839-51. [PMID: 11313932 DOI: 10.1038/sj.onc.1204259] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2000] [Revised: 01/09/2001] [Accepted: 01/15/2001] [Indexed: 11/09/2022]
Abstract
Entry into mitosis requires activation of the Cdc2 protein kinase by the Cdc25C protein phosphatase. The interactions between Cdc2 and Cdc25C are negatively regulated throughout interphase and in response to G2 checkpoint activation. This is accomplished in part by maintaining the Cdc25 phosphatase in a phosphorylated form that binds 14-3-3 proteins. Here we report that 14-3-3 binding regulates the intracellular trafficking of Cdc25C. Although primarily cytoplasmic, Cdc25C accumulated in the nuclei of leptomycin B (LMB)-treated cells, indicating that Cdc25C is actively exported out of the nucleus. A mutant of Cdc25C that is unable to bind 14-3-3 was partially nuclear in the absence of LMB and its nuclear accumulation was greatly enhanced by LMB-treatment. A nuclear export signal (NES) was identified within the amino terminus of Cdc25C. Although mutation of the NES did not effect 14-3-3 binding, it did cause nuclear accumulation of Cdc25C. These results demonstrate that 14-3-3 binding is dispensable for the nuclear export of Cdc25C. However, complete nuclear accumulation of Cdc25C required loss of both NES function and 14-3-3 binding and this was accomplished both pharmacologically and by mutation. These findings suggest that the nuclear export of Cdc25C is mediated by an intrinsic NES and that 14-3-3 binding negatively regulates nuclear import.
Collapse
Affiliation(s)
- P R Graves
- Department of Cell Biology and Physiology, Washington University, School of Medicine, Box 8228, 660 S Euclid Ave, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
30
|
Sandhu C, Donovan J, Bhattacharya N, Stampfer M, Worland P, Slingerland J. Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells. Oncogene 2000; 19:5314-23. [PMID: 11103932 DOI: 10.1038/sj.onc.1203908] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replicative senescence may be an important tumor suppressive mechanism for human cells. We investigated the mechanism of cell cycle arrest at senescence in human mammary epithelial cells (HMECs) that have undergone a period of 'self-selection', and as a consequence exhibit diminished p16INK4A levels. As HMECs approached senescence, the proportion of cells with a 2N DNA content increased and that in S phase decreased progressively. Cyclin D1-cdk4, cyclin E-cdk2 and cyclin A-cdk2 activities were not abruptly inhibited, but rather diminished steadily with increasing population age. In contrast to observations in fibroblast, p21Cip1 was not increased at senescence in HMECs. There was no increase in p27Kip1 levels nor in KIP association with targets cdks. While p15INK4B and its binding to both cdk4 and cdk6 increased with increasing passage, some cyclin D1-bound cdk4 and cdk6 persisted in senescent cells, whose inhibition could not be attributed to p15INK4B. The inhibition of cyclin E-cdk2 in senescent HMECs was accompanied by increased inhibitory phosphorylation of cdk2, in association with a progressive loss of Cdc25A. Recombinant Cdc25A strongly reactivated cyclin E-cdk2 from senescent HMECs suggesting that reduction of Cdc25A contributes to cyclin E-cdk2 inhibition and G1 arrest at senescence. Although ectopic expression of Cdc25A failed to extend the lifespan of HMECs, the exogenous Cdc25A appeared to lack activity in these cells, since it neither shortened the G1-to-S phase interval nor activated cyclin E-cdk2. In contrast, in the breast cancer-derived MCF-7 line, Cdc25A overexpression increased both cyclin E-cdk2 activity and the S phase fraction. Thus, mechanisms leading to HMEC immortalization may involve not only the re-induction of Cdc25A expression, but also activation of this phosphatase.
Collapse
Affiliation(s)
- C Sandhu
- Cancer Research, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Nakanishi M, Ando H, Watanabe N, Kitamura K, Ito K, Okayama H, Miyamoto T, Agui T, Sasaki M. Identification and characterization of human Wee1B, a new member of the Wee1 family of Cdk-inhibitory kinases. Genes Cells 2000; 5:839-47. [PMID: 11029659 DOI: 10.1046/j.1365-2443.2000.00367.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND In eukaryotic cells, the kinase activity of the mitosis-promoting complex composed of cyclin B and Cdc2 (Cdk1) is negatively regulated by the phosphorylation of Cdk1 on threonine or tyrosine residues within its ATP binding domain. RESULTS We identified human Wee1B by searching a sequence database. The predicted human Wee1B protein comprises 561 amino acids. Northern blot analysis revealed that human Wee1B mRNA is particularly abundant in testis. Interestingly, RT-PCR using early embryos revealed that the Wee1B product was readily detectable at the mature oocyte, but abruptly disappeared at embryonic day 2.5, suggesting that the amount of Wee1B mRNA is dependent on the maternal expression. GFP-Wee1B showed a predominantly nuclear localization in HeLa cells. Human Wee1B was able to rescue the lethal phenotype of the fission yeast wee1-50Deltamik1 mutant, and over-expression of the human protein in these cells resulted in cell elongation as a result of arrest of the cell cycle at the G2-M transition. Recombinant Wee1B effectively phosphorylated cyclin B-associated Cdk1 on tyrosine-15, resulting in an inactivation of the kinase activity of Cdk1. CONCLUSION We identified human Wee1B as a novel Cdk1-inhibitory kinase. The identification of this new member of the Wee1 family suggests that inhibition of Cdk1 is mediated at multiple levels in mammals.
Collapse
Affiliation(s)
- M Nakanishi
- Department of Biochemistry, Center for Experimental Animal Science, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Petrocelli T, Slingerland J. UVB induced cell cycle checkpoints in an early stage human melanoma line, WM35. Oncogene 2000; 19:4480-90. [PMID: 11002421 DOI: 10.1038/sj.onc.1203808] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activation of cell cycle checkpoints in response to genotoxic stressors is essential for the maintenance of genomic integrity. Although most prior studies of cell cycle effects of UV irradiation have used UVC, this UV range does not penetrate the earth's atmosphere. Thus, we have investigated the mechanisms of ultraviolet B (UVB) irradiation-induced cell cycle arrest in a biologically relevant target cell type, the early stage human melanoma cell line, WM35. Irradiation of WM35 cells with UVB resulted in arrests throughout the cell cycle: at the G1/S transition, in S phase and in G2. G1 arrest was accompanied by increased association of p21 with cyclin E/cdk2 and cyclin A/cdk2, increased binding of p27 to cyclin E/cdk2 and inhibition of these kinases. A loss of Cdc25A expression was associated with an increased inhibitory phosphotyrosine content of cyclin E- and cyclin A-associated cdk2 and may also contribute to G1 arrest following UVB irradiation. The association of Cdc25A with 14-3-3 was increased by UVB. Reduced cyclin D1 protein and increased binding of p21 and p27 to cyclin D1/cdk4 complexes were also observed. The loss of cyclin D1 could not be attributed to inhibition of either MAPK or PI3K/PKB pathways, since both were activated by UVB. Cdc25B levels fell and the remaining protein showed an increased association with 14-3-3 in response to UVB. Losses in cyclin B1 expression and an increased binding of p21 to cyclin B1/cdk1 complexes also contributed to inhibition of this kinase activity, and G2/M arrest. Oncogene (2000) 19, 4480 - 4490.
Collapse
Affiliation(s)
- T Petrocelli
- Division of Cancer Biology Research, Toronto Sunnybrook Regional Cancer Centre, Sunnybrook and Women's College Health Sciences Centre and University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
33
|
Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O'Connor PM, Piwnica-Worms H. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 2000; 275:5600-5. [PMID: 10681541 DOI: 10.1074/jbc.275.8.5600] [Citation(s) in RCA: 414] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A checkpoint operating in the G(2) phase of the cell cycle prevents entry into mitosis in the presence of DNA damage. UCN-01, a protein kinase inhibitor currently undergoing clinical trials for cancer treatment, abrogates G(2) checkpoint function and sensitizes p53-defective cancer cells to DNA-damaging agents. In most species, the G(2) checkpoint prevents the Cdc25 phosphatase from removing inhibitory phosphate groups from the mitosis-promoting kinase Cdc2. This is accomplished by maintaining Cdc25 in a phosphorylated form that binds 14-3-3 proteins. The checkpoint kinases, Chk1 and Cds1, are proposed to regulate the interactions between human Cdc25C and 14-3-3 proteins by phosphorylating Cdc25C on serine 216. 14-3-3 proteins, in turn, function to keep Cdc25C out of the nucleus. Here we report that UCN-01 caused loss of both serine 216 phosphorylation and 14-3-3 binding to Cdc25C in DNA-damaged cells. In addition, UCN-01 potently inhibited the ability of Chk1 to phosphorylate Cdc25C in vitro. In contrast, Cds1 was refractory to inhibition by UCN-01 in vitro, and Cds1 was still phosphorylated in irradiated cells treated with UCN-01. Thus, neither Cds1 nor kinases upstream of Cds1, such as ataxia telangiectasia-mutated, are targets of UCN-01 action in vivo. Taken together our results identify the Chk1 kinase and the Cdc25C pathway as potential targets of G(2) checkpoint abrogation by UCN-01.
Collapse
Affiliation(s)
- P R Graves
- Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
The disappearance of cyclins A and B and the increase in activity of the G(2)/M-phase cellular kinase cdc2 in herpes simplex virus 1-infected cells require expression of the alpha22/U(S)1.5 and U(L)13 viral genes. J Virol 2000. [PMID: 10590085 DOI: 10.1128/jvi.74.1.8-15.2000] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In uninfected cells the G(2)/M transition is regulated by cyclin kinase complex containing cdc2 and, initially, cyclin A, followed by cyclin B. cdc2 is downregulated through phosphorylation by wee-1 and myt-1 and upregulated by cdc-25C phosphatase. We have examined the accumulation and activities of these proteins in cells infected with wild type and mutants of herpes simplex virus 1. The results were as follows. (i) Cyclin A and B levels were reduced beginning 4 h after infection and were undetectable at 12 to 16 h after infection. (ii) cdc2 protein also decreased in amount but was detectable at all times after infection. In addition, a fraction of cdc2 protein from infected cells exhibited altered electrophoretic mobility in denaturing gels. (iii) The levels of cdk7 or myt-1 proteins remained relatively constant throughout infection, whereas the level of wee-1 was significantly decreased. (iv) cdc-25C formed novel bands characterized by slower electrophoretic mobility that disappeared after treatment with phosphatase. In addition, one phosphatase-sensitive band reacted with MPM-2 antibody that recognizes a phosphoepitope phosphorylated exclusively in M phase. (v) cdc2 accumulating in infected cells exhibited kinase activity. The activity of cdc2 was higher in infected cell lysates than those of corresponding proteins present in lysates of mock-infected cells even though cyclins A and B were not detectable in lysates of infected cells. (vi) The decrease in the levels of cyclins A and B, the increase in activity of cdc2, and the hyperphosphorylation of cdc-25C were mediated by U(L)13 and alpha22/U(S)1.5 gene products. In light of its normal functions, the activated cdc2 kinase may play a role in the changes in the morphology of the infected cell. These results are consistent with the accruing evidence that herpes simplex virus scavenges the cell for useful cell cycle proteins and subverts them for its own use.
Collapse
|
35
|
Advani SJ, Brandimarti R, Weichselbaum RR, Roizman B. The disappearance of cyclins A and B and the increase in activity of the G(2)/M-phase cellular kinase cdc2 in herpes simplex virus 1-infected cells require expression of the alpha22/U(S)1.5 and U(L)13 viral genes. J Virol 2000; 74:8-15. [PMID: 10590085 PMCID: PMC111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
In uninfected cells the G(2)/M transition is regulated by cyclin kinase complex containing cdc2 and, initially, cyclin A, followed by cyclin B. cdc2 is downregulated through phosphorylation by wee-1 and myt-1 and upregulated by cdc-25C phosphatase. We have examined the accumulation and activities of these proteins in cells infected with wild type and mutants of herpes simplex virus 1. The results were as follows. (i) Cyclin A and B levels were reduced beginning 4 h after infection and were undetectable at 12 to 16 h after infection. (ii) cdc2 protein also decreased in amount but was detectable at all times after infection. In addition, a fraction of cdc2 protein from infected cells exhibited altered electrophoretic mobility in denaturing gels. (iii) The levels of cdk7 or myt-1 proteins remained relatively constant throughout infection, whereas the level of wee-1 was significantly decreased. (iv) cdc-25C formed novel bands characterized by slower electrophoretic mobility that disappeared after treatment with phosphatase. In addition, one phosphatase-sensitive band reacted with MPM-2 antibody that recognizes a phosphoepitope phosphorylated exclusively in M phase. (v) cdc2 accumulating in infected cells exhibited kinase activity. The activity of cdc2 was higher in infected cell lysates than those of corresponding proteins present in lysates of mock-infected cells even though cyclins A and B were not detectable in lysates of infected cells. (vi) The decrease in the levels of cyclins A and B, the increase in activity of cdc2, and the hyperphosphorylation of cdc-25C were mediated by U(L)13 and alpha22/U(S)1.5 gene products. In light of its normal functions, the activated cdc2 kinase may play a role in the changes in the morphology of the infected cell. These results are consistent with the accruing evidence that herpes simplex virus scavenges the cell for useful cell cycle proteins and subverts them for its own use.
Collapse
Affiliation(s)
- S J Advani
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
36
|
Zeng Y, Piwnica-Worms H. DNA damage and replication checkpoints in fission yeast require nuclear exclusion of the Cdc25 phosphatase via 14-3-3 binding. Mol Cell Biol 1999; 19:7410-9. [PMID: 10523629 PMCID: PMC84734 DOI: 10.1128/mcb.19.11.7410] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In fission yeast as well as in higher eukaryotic organisms, entry into mitosis is delayed in cells containing damaged or unreplicated DNA. This is accomplished in part by maintaining the Cdc25 phosphatase in a phosphorylated form that binds 14-3-3 proteins. In this study, we generated a mutant of fission yeast Cdc25 that is severely impaired in its ability to bind 14-3-3 proteins. Loss of both the DNA damage and replication checkpoints was observed in fission yeast cells expressing the 14-3-3 binding mutant. These findings indicate that 14-3-3 binding to Cdc25 is required for fission yeast cells to arrest their cell cycle in response to DNA damage and replication blocks. Furthermore, the 14-3-3 binding mutant localized almost exclusively to the nucleus, unlike wild-type Cdc25, which localized to both the cytoplasm and the nucleus. Nuclear accumulation of wild-type Cdc25 was observed when fission yeast cells were treated with leptomycin B, indicating that Cdc25 is actively exported from the nucleus. Nuclear exclusion of wild-type Cdc25 was observed upon overproduction of Rad 24, one of the two fission yeast 14-3-3 proteins, indicating that one function of Rad 24 is to keep Cdc25 out of the nucleus. In support of this conclusion, Rad 24 overproduction did not alter the nuclear location of the 14-3-3 binding mutant. These results indicate that 14-3-3 binding contributes to the nuclear exclusion of Cdc25 and that the nuclear exclusion of Cdc25 is required for a normal checkpoint response to both damaged and unreplicated DNA.
Collapse
Affiliation(s)
- Y Zeng
- Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | |
Collapse
|
37
|
Shulewitz MJ, Inouye CJ, Thorner J. Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:7123-37. [PMID: 10490648 PMCID: PMC84706 DOI: 10.1128/mcb.19.10.7123] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Successful mitosis requires faithful DNA replication, spindle assembly, chromosome segregation, and cell division. In the budding yeast Saccharomyces cerevisiae, the G(2)-to-M transition requires activation of Clb-bound forms of the protein kinase, Cdc28. These complexes are held in an inactive state via phosphorylation of Tyr19 in the ATP-binding loop of Cdc28 by the Swe1 protein kinase. The HSL1 and HSL7 gene products act as negative regulators of Swe1. Hsl1 is a large (1,518-residue) protein kinase with an N-terminal catalytic domain and a very long C-terminal extension. Hsl1 localizes to the incipient site of cytokinesis in the bud neck in a septin-dependent manner; however, the function of Hsl7 was not previously known. Using both indirect immunofluorescence with anti-Hsl7 antibodies and a fusion of Hsl7 to green fluorescent protein, we found that Hsl7 also localizes to the bud neck, congruent with the septin ring that faces the daughter cell. Both Swe1 and a segment of the C terminus of Hsl1 (which has no sequence counterpart in two Hsl1-related protein kinases, Gin4 and Kcc4) were identified as gene products that interact with Hsl7 in a two-hybrid screen of a random S. cerevisiae cDNA library. Hsl7 plus Swe1 and Hsl7 plus Hsl1 can be coimmunoprecipitated from extracts of cells overexpressing these proteins, confirming that Hsl7 physically associates with both partners. Also consistent with the two-hybrid results, Hsl7 coimmunoprecipitates with full-length Hsl1 less efficiently than with a C-terminal fragment of Hsl1. Moreover, Hsl7 does not localize to the bud neck in an hsl1Delta mutant, whereas Hsl1 is localized normally in an hsl7Delta mutant. Phosphorylation and ubiquitinylation of Swe1, preludes to its destruction, are severely reduced in cells lacking either Hsl1 or Hsl7 (or both), as judged by an electrophoretic mobility shift assay. Collectively, these data suggest that formation of the septin rings provides sites for docking Hsl1, exposing its C terminus and thereby permitting recruitment of Hsl7. Hsl7, in turn, presents its cargo of bound Swe1, allowing phosphorylation by Hsl1. Thus, Hsl1 and Hsl7 promote proper timing of cell cycle progression by coupling septin ring assembly to alleviation of Swe1-dependent inhibition of Cdc28. Furthermore, like septins and Hsl1, homologs of Hsl7 are found in fission yeast, flies, worms, and humans, suggesting that its function in this control mechanism may be conserved in all eukaryotes.
Collapse
Affiliation(s)
- M J Shulewitz
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | |
Collapse
|
38
|
Wells NJ, Watanabe N, Tokusumi T, Jiang W, Verdecia MA, Hunter T. The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G(2)/M progression. J Cell Sci 1999; 112 ( Pt 19):3361-71. [PMID: 10504341 DOI: 10.1242/jcs.112.19.3361] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of Cdc2, is the universal event controlling the onset of mitosis. In higher eukaryotes, Cdc2 activity is in part regulated by inhibitory phosphorylation of Thr14 and Tyr15, catalyzed by Wee1 and Myt1, which prevents catastrophic premature entry into mitosis. In this study we defined the function of Myt1 by overexpression studies in both S. pombe and a human osteosarcoma cell line. Similar to Wee1, overexpression of human Myt1 prevented entry into mitosis in both cell types; however, Myt1 catalytic activity was not essential for the cell cycle delay observed with human cells. Myt1 expression was restricted to proliferating cells. Furthermore, we detected no major decline in Myt1 protein abundance prior to the entry into mitosis, which coincides with the loss of Myt1 activity. We localized mitotic phosphoepitopes, recognized by the monoclonal antibody MPM-2, to the C-terminal domain of Myt1. The mitotic peptidyl-prolyl isomerase, Pin1, was able to associate with this domain in a phosphorylation-dependent manner. Truncation of the C-terminal domain of Myt1 prevented its ability to induce G(2)/M phase arrest in overexpression studies in human cells and dramatically reduced its ability to phosphorylate Cdc2 in vitro. We demonstrate that the C-terminal domain of Myt1 was required for recruitment of Cdc2, and we infer that this domain lies in the cytoplasm because it can interact with and is phosphorylated by Cdc2. In conclusion, we propose that Myt1 can negatively regulate Cdc2/cyclin B1 and inhibit G(2)/M progression by two means, both of which require the C-terminal domain; first, Myt1 can bind and sequester Cdc2/cyclin B1 in the cytoplasm preventing entry into the nucleus, and, second, it can phosphorylate associated Cdc2/cyclin B1 at Thr14 and Tyr15 thus inhibiting its catalytic activity.
Collapse
Affiliation(s)
- N J Wells
- Molecular Biology and Virology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kim SH, Li C, Maller JL. A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis. Dev Biol 1999; 212:381-91. [PMID: 10433828 DOI: 10.1006/dbio.1999.9361] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammalian cells the Cdc25 family of dual-specificity phosphatases has three distinct isoforms, termed A, B, and C, which are thought to play discrete roles in cell-cycle control. In this paper we report the cloning of Xenopus Cdc25A and demonstrate its developmental regulation and key role in embryonic cell-cycle control. Northern and Western blot analyses show that Cdc25A is absent in oocytes, and synthesis begins within 30 min after fertilization. The protein product is localized in the nucleus in interphase and accumulates continuously until the midblastula transition (MBT), after which it is degraded. Upon injection into newly fertilized eggs, wild-type Cdc25A shortened the cell cycle and accelerated the timing of cleavage, whereas embryos injected with phosphatase-dead Cdc25A displayed a dose-dependent increase in the length of the cell cycle and a slower rate of cleavage. In contrast, injection of the phosphatase-dead Cdc25C isoform had no effect. Western blotting with an antibody specific for phosphorylated tyr15 in Cdc2/Cdk2 revealed a cycle of phosphorylation/dephosphorylation in each cell cycle in control embryos, and in embryos injected with phosphatase-dead Cdc25A there was a twofold increase in the level of p-tyr in Cdc2/Cdk2. Consistent with this, the levels of cyclin B/Cdc2 and cyclin E/Cdk2 histone H1 kinase activity were both reduced by approximately 50% after phosphatase-dead Cdc25A injection. The phosphatase-dead Cdc25A could be recovered in a complex with both Cdks, suggesting that it acts in a dominant-negative fashion. These results indicate that periodic phosphorylation of Cdc2/Cdk2 on tyr15 occurs in each pre-MBT cell cycle, and dephosphorylation of Cdc2/Cdk2 by Cdc25A controls at least in part the length of the cell cycle and the timing of cleavage in pre-MBT embryos. The disappearance of Cdc25A after the MBT may underlie in part the lengthening of the cell cycle at that time.
Collapse
Affiliation(s)
- S H Kim
- Department of Pharmacology, University of Colorado School of Medicine, Denver, Colorado, 80262, USA
| | | | | |
Collapse
|
40
|
Liu F, Rothblum-Oviatt C, Ryan CE, Piwnica-Worms H. Overproduction of human Myt1 kinase induces a G2 cell cycle delay by interfering with the intracellular trafficking of Cdc2-cyclin B1 complexes. Mol Cell Biol 1999; 19:5113-23. [PMID: 10373560 PMCID: PMC84354 DOI: 10.1128/mcb.19.7.5113] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Myt1 protein kinase functions to negatively regulate Cdc2-cyclin B complexes by phosphorylating Cdc2 on threonine 14 and tyrosine 15. Throughout interphase, human Myt1 localizes to the endoplasmic reticulum and Golgi complex, whereas Cdc2-cyclin B1 complexes shuttle between the nucleus and the cytoplasm. Here we report that overproduction of either kinase-active or kinase-inactive forms of Myt1 blocked the nuclear-cytoplasmic shuttling of cyclin B1 and caused cells to delay in the G2 phase of the cell cycle. The COOH-terminal 63 amino acids of Myt1 were identified as a Cdc2-cyclin B1 interaction domain. Myt1 mutants lacking this domain no longer bound cyclin B1 and did not efficiently phosphorylate Cdc2-cyclin B1 complexes in vitro. In addition, cells overproducing mutant forms of Myt1 lacking the interaction domain exhibited normal trafficking of cyclin B1 and unperturbed cell cycle progression. These results suggest that the docking of Cdc2-cyclin B1 complexes to the COOH terminus of Myt1 facilitates the phosphorylation of Cdc2 by Myt1 and that overproduction of Myt1 perturbs cell cycle progression by sequestering Cdc2-cyclin B1 complexes in the cytoplasm.
Collapse
Affiliation(s)
- F Liu
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | | | | | |
Collapse
|
41
|
Studzinski GP, Harrison LE. Differentiation-related changes in the cell cycle traverse. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 189:1-58. [PMID: 10333577 DOI: 10.1016/s0074-7696(08)61384-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review examines recent developments relating to the interface between cell proliferation and differentiation. It is suggested that the mechanism responsible for this transition is more akin to a "dimmer" than to a "switch," that it is more useful to refer to early and late stages of differentiation rather than to "terminal" differentiation, and examples of the reversibility of differentiation are provided. An outline of the established paradigm of cell cycle regulation is followed by summaries of recent studies that suggest that this paradigm is overly simplified and should be interpreted in the context of different cell types. The role of inhibitors of cyclin-dependent kinases in differentiation is discussed, but the data are still inconclusive. An increasing interest in the changes in G2/M transition during differentiation is illustrated by examples of polyploidization during differentiation, such as megakaryocyte maturation. Although the retinoblastoma protein is currently maintaining its prominent role in control of proliferation and differentiation, it is anticipated that equally important regulators will be discovered and provide an explanation at the molecular level for the gradual transition from proliferation to differentiation.
Collapse
Affiliation(s)
- G P Studzinski
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry, New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|
42
|
Sun Y, Dilkes BP, Zhang C, Dante RA, Carneiro NP, Lowe KS, Jung R, Gordon-Kamm WJ, Larkins BA. Characterization of maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proc Natl Acad Sci U S A 1999; 96:4180-5. [PMID: 10097184 PMCID: PMC22441 DOI: 10.1073/pnas.96.7.4180] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the characterization of a maize Wee1 homologue and its expression in developing endosperm. Using a 0.8-kb cDNA from an expressed sequence tag project, we isolated a 1.6-kb cDNA (ZmWee1), which encodes a protein of 403 aa with a calculated molecular size of 45.6 kDa. The deduced amino acid sequence shows 50% identity to the protein kinase domain of human Wee1. Overexpression of ZmWee1 in Schizosaccharomyces pombe inhibited cell division and caused the cells to enlarge significantly. Recombinant ZmWee1 obtained from Escherichia coli is able to inhibit the activity of p13(suc1)-adsorbed cyclin-dependent kinase from maize. ZmWee1 is encoded by a single gene at a locus on the long arm of chromosome 4. RNA gel blots showed the ZmWee1 transcript is about 2.4 kb in length and that its abundance reaches a maximum 15 days after pollination in endosperm tissue. High levels of expression of ZmWee1 at this stage of endosperm development imply that ZmWee1 plays a role in endoreduplication. Our results show that control of cyclin-dependent kinase activity by Wee1 is conserved among eukaryotes, from fungi to animals and plants.
Collapse
Affiliation(s)
- Y Sun
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yu L, Orlandi L, Wang P, Orr MS, Senderowicz AM, Sausville EA, Silvestrini R, Watanabe N, Piwnica-Worms H, O'Connor PM. UCN-01 abrogates G2 arrest through a Cdc2-dependent pathway that is associated with inactivation of the Wee1Hu kinase and activation of the Cdc25C phosphatase. J Biol Chem 1998; 273:33455-64. [PMID: 9837924 DOI: 10.1074/jbc.273.50.33455] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that UCN-01, a potent protein kinase inhibitor currently in phase I clinical trials for cancer treatment, abrogates G2 arrest following DNA damage. Here we used murine FT210 cells, which contain temperature-sensitive Cdc2 mutations, to determine if UCN-01 abrogates G2 arrest through a Cdc2-dependent pathway. We report that UCN-01 cannot induce mitosis in DNA-damaged FT210 cells at the non-permissive temperature for Cdc2 function. Failure to abrogate G2 arrest was not due to UCN-01-inactivation at the elevated temperature because parental FM3A cells, which have wild-type Cdc2, were sensitive to UCN-01-induced G2 checkpoint abrogation. Having established that UCN-01 acted through Cdc2, we next assessed UCN-01's effect on the Cdc2-inhibitory kinase, Wee1Hu, and the Cdc2-activating phosphatase, Cdc25C. We found that Wee1Hu was indeed inactivated in UCN-01-treated cells, possibly just prior to Cdc2 activation and entry of DNA-damaged cells into mitosis. This inhibition appeared, however, to be a consequence of a further upstream action since in vitro studies revealed purified Wee1Hu was relatively resistant to UCN-01-inhibition. Consistent with such an upstream action, UCN-01 also promoted the hyperphosphorylation (activation) of Cdc25C in DNA-damaged cells. Our results suggest that UCN-01 abrogates G2 checkpoint function through inhibition of a kinase residing upstream of Cdc2, Wee1Hu, and Cdc25C, and that changes observed in these mitotic regulators are downstream consequences of UCN-01's actions.
Collapse
Affiliation(s)
- L Yu
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Scatena CD, Stewart ZA, Mays D, Tang LJ, Keefer CJ, Leach SD, Pietenpol JA. Mitotic phosphorylation of Bcl-2 during normal cell cycle progression and Taxol-induced growth arrest. J Biol Chem 1998; 273:30777-84. [PMID: 9804855 DOI: 10.1074/jbc.273.46.30777] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence that prolonged mitotic arrest initiates apoptosis; however, little is known about the signaling pathways involved. Several studies have associated deregulated Cdc2 activity with apoptosis. Herein, we report that the anti-apoptotic protein, Bcl-2, undergoes cell cycle-dependent phosphorylation during mitosis when there is elevated Cdc2 activity. We found that paclitaxel (Taxol(R)) treatment of epithelial tumor cells induced a prolonged mitotic arrest, elevated levels of mitotic kinase activity, hyperphosphorylation of Bcl-2, and subsequent cell death. The Taxol-induced Bcl-2 phosphorylation was dose-dependent. Furthermore, phosphorylated Bcl-2 remained complexed with Bax in Taxol-treated cells undergoing apoptosis. Immunoprecipitation experiments revealed a Bcl-2-associated kinase capable of phosphorylating histone H1 in vitro. However, the kinase was likely not cyclin B1/Cdc2, since cyclin B1/Cdc2 was not detectable in Bcl-2 immunoprecipitates, nor was recombinant Bcl-2 phosphorylated in vitro by cyclin B1/Cdc2. The results of this study further define a link between mitotic kinase activation and the apoptotic machinery in the cell. However, the role, if any, of prolonged Bcl-2 phosphorylation in Taxol-mediated apoptosis awaits further definition of Bcl-2 mechanism of action. Taxol may increase cellular susceptibility to apoptosis by amplifying the normal downstream events associated with mitotic kinase activation.
Collapse
Affiliation(s)
- C D Scatena
- Department of Biochemistry, and the Vanderbilt Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Biological scientists are eagerly confronting the challenge of understanding the regulatory mechanisms that control the cell division cycle in eukaryotes. New information will have major implications for the treatment of growth-related diseases and cancer in animals. In plants, cell division has a key role in root and shoot growth as well as in the development of vegetative storage organs and reproductive tissues such as flowers and seeds. Many of the strategies for crop improvement, especially those aimed at increasing yield, involve the manipulation of cell division. This review describes, in some detail, the current status of our understanding of the regulation of cell division in eukaryotes and especially in plants. It also features an outline of some preliminary attempts to exploit transgenesis for manipulation of plant cell division.
Collapse
Affiliation(s)
- M R Fowler
- Norman Borlaug Institute for Plant Science Research, De Montfort University, Scraptoft, Leicester, England
| | | | | | | | | |
Collapse
|
46
|
Brotherton DH, Dhanaraj V, Wick S, Brizuela L, Domaille PJ, Volyanik E, Xu X, Parisini E, Smith BO, Archer SJ, Serrano M, Brenner SL, Blundell TL, Laue ED. Crystal structure of the complex of the cyclin D-dependent kinase Cdk6 bound to the cell-cycle inhibitor p19INK4d. Nature 1998; 395:244-50. [PMID: 9751051 DOI: 10.1038/26164] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The crystal structure of the cyclin D-dependent kinase Cdk6 bound to the p19 INK4d protein has been determined at 1.9 A resolution. The results provide the first structural information for a cyclin D-dependent protein kinase and show how the INK4 family of CDK inhibitors bind. The structure indicates that the conformational changes induced by p19INK4d inhibit both productive binding of ATP and the cyclin-induced rearrangement of the kinase from an inactive to an active conformation. The structure also shows how binding of an INK4 inhibitor would prevent binding of p27Kip1, resulting in its redistribution to other CDKs. Identification of the critical residues involved in the interaction explains how mutations in Cdk4 and p16INK4a result in loss of kinase inhibition and cancer.
Collapse
Affiliation(s)
- D H Brotherton
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- M J Solomon
- Yale University School of Medicine, Department of Molecular Biophysics and Biochemistry, New Haven, Connecticut 06520-8024, USA.
| | | |
Collapse
|
48
|
Kim SO, Katz S, Pelech SL. Expression of second messenger- and cyclin-dependent protein kinases during postnatal development of rat heart. J Cell Biochem 1998; 69:506-21. [PMID: 9620176 DOI: 10.1002/(sici)1097-4644(19980615)69:4<506::aid-jcb11>3.0.co;2-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During early postnatal development, cardiomyocytes, which comprise about 80% of ventricular mass and volume, become phenotypically developed to facilitate their contractile functions and terminally differentiated to grow only in size but not in cell number. These changes are due to the expression of contractile proteins as well as the regulation of intracellular signal transduction proteins. In this study, the expression patterns of several protein kinases involved in various cardiac functions and cell-cycle control were analyzed by Western blotting of ventricular extracts from 1-, 10-, 20-, 50-, and 365-day-old rats. The expression level of cAMP-dependent protein kinase was slightly decreased (20%) over the first year, whereas no change was detected in cGMP-dependent protein kinase I. Calmodulin-dependent protein kinase II, which is involved in Ca2+ uptake into the sarcoplasmic reticulum, was increased as much as ten-fold. To the contrary, the expressions of protein kinase C-alpha and iota declined 77% with age. Cyclin-dependent protein kinases (CDKs) such as CDK1, CDK2, CDK4, and CDK5, which are required for cell-cycle progression, abruptly declined to almost undetectable levels after 10-20 days of age. In contrast, other CDK-related kinases, such as CDK8 or Kkialre, did not change significantly or increased up to 50% with age, respectively. Protein kinases implicated in CDK regulation such as CDK7 and Wee1 were either slightly increased in expression or did not change significantly. All of the proteins that were detected in ventricular extracts were also identified in isolated cardiac myocytes in equivalent amounts and analyzed for their relative expression in ten other adult rat tissues.
Collapse
Affiliation(s)
- S O Kim
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
49
|
Murakami MS, Vande Woude GF. Analysis of the early embryonic cell cycles of Xenopus; regulation of cell cycle length by Xe-wee1 and Mos. Development 1998; 125:237-48. [PMID: 9486797 DOI: 10.1242/dev.125.2.237] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Xenopus, cdc2 tyrosine phosphorylation is detected in the first 60–75 minute cell cycle but not in the next eleven cell cycles (cycles 2–12) which are only 30 minutes long. Here we report that the wee1/cdc25 ratio increases before the first mitotic interphase. We show that the Xe-wee1 protein is absent in stage VI oocytes and is expressed from meiosis II until gastrulation. A dominant negative form of Xe-wee1 (KM wee1) reduced the level cdc2 tyrosine phosphorylation and length of the first cycle. However, the ratio of wee1/cdc25 did not decrease after the first cycle and therefore did not explain the lack of cdc2 tyrosine phosphorylation in, nor the rapidity of, cycles 2–12. Furthermore, there was no evidence for a wee1/myt1 inhibitor in cycles 2–12. We examined the role of Mos in the first cycle because it is present during the first 20 minutes of this cycle. We arrested the rapid embryonic cell cycle (cycle 2 or 3) with Mos and restarted the cell cycle with calcium ionophore; the 30 minute cycle was converted into a 60 minute cycle, with cdc2 tyrosine phosphorylation. In addition, the injection of a non-degradable Mos (MBP-Mos) into the first cycle resulted in a dramatic elongation of this cycle (to 140 minutes). MBP-Mos did not delay DNA replication or the translation of cyclins A or B; it did, however, result in the marked accumulation of tyrosine phosphorylated cdc2. Thus, while the wee1/cdc25 ratio changes during development, these changes may not be responsible for the variety of cell cycles observed during early Xenopus embryogenesis. Our experiments indicate that Mos/MAPK can also contribute to cell cycle length.
Collapse
Affiliation(s)
- M S Murakami
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, MD 21702, USA
| | | |
Collapse
|
50
|
Comayras C, Tasca C, Pérès SY, Ducommun B, Oswald E, De Rycke J. Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G2/M transition by preventing cdc2 protein kinase dephosphorylation and activation. Infect Immun 1997; 65:5088-95. [PMID: 9393800 PMCID: PMC175733 DOI: 10.1128/iai.65.12.5088-5095.1997] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cytolethal distending toxins (CDT) constitute an emerging heterogeneous family of bacterial toxins whose common biological property is to inhibit the proliferation of cells in culture by blocking their cycle at G2/M phase. In this study, we investigated the molecular mechanisms underlying the block caused by CDT from Escherichia coli on synchronized HeLa cell cultures. To this end, we studied specifically the behavior of the two subunits of the complex that determines entry into mitosis, i.e., cyclin B1, the regulatory unit, and cdc2 protein kinase, the catalytic unit. We thus demonstrate that CDT causes cell accumulation in G2 and not in M, that it does not slow the progression of cells through S phase, and that it does not affect the normal increase of cyclin B1 from late S to G2. On the other hand, we show that CDT inhibits the kinase activity of cdc2 by preventing its dephosphorylation, an event which, in normal cells, triggers mitosis. This inhibitory activity was demonstrated for the three partially related CDTs so far described for E. coli. Moreover, we provide evidence that cells exposed to CDT during G2 and M phases are blocked only at the subsequent G2 phase. This observation means that the toxin triggers a mechanism of cell arrest that is initiated in S phase and therefore possibly related to the DNA damage checkpoint system.
Collapse
Affiliation(s)
- C Comayras
- Unité Associée de Microbiologie Moléculaire, Institut National de la Recherche Agronomique et Ecole Nationale Vétérinaire, Toulouse, France
| | | | | | | | | | | |
Collapse
|