1
|
Ashton AW, Dhanjal HK, Rossner B, Mahmood H, Patel VI, Nadim M, Lota M, Shahid F, Li Z, Joyce D, Pajkos M, Dosztányi Z, Jiao X, Pestell RG. Acetylation of nuclear receptors in health and disease: an update. FEBS J 2024; 291:217-236. [PMID: 36471658 DOI: 10.1111/febs.16695] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.
Collapse
Affiliation(s)
- Anthony W Ashton
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Benjamin Rossner
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Huma Mahmood
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Vivek I Patel
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Mohammad Nadim
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Manpreet Lota
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Farhan Shahid
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Zhiping Li
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Xuanmao Jiao
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - Richard G Pestell
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
- The Wistar Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
2
|
Liu C, Li R, Li Y, Lin X, Zhao K, Liu Q, Wang S, Yang X, Shi X, Ma Y, Pei C, Wang H, Bao W, Hui J, Yang T, Xu Z, Lai T, Berberoglu MA, Sahu SK, Esteban MA, Ma K, Fan G, Li Y, Liu S, Chen A, Xu X, Dong Z, Liu L. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis. Dev Cell 2022; 57:1284-1298.e5. [PMID: 35512701 DOI: 10.1016/j.devcel.2022.04.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/06/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023]
Abstract
A major challenge in understanding vertebrate embryogenesis is the lack of topographical transcriptomic information that can help correlate microenvironmental cues within the hierarchy of cell-fate decisions. Here, we employed Stereo-seq to profile 91 zebrafish embryo sections covering six critical time points during the first 24 h of development, obtaining a total of 152,977 spots at a resolution of 10 × 10 × 15 μm3 (close to cellular size) with spatial coordinates. Meanwhile, we identified spatial modules and co-varying genes for specific tissue organizations. By performing the integrated analysis of the Stereo-seq and scRNA-seq data from each time point, we reconstructed the spatially resolved developmental trajectories of cell-fate transitions and molecular changes during zebrafish embryogenesis. We further investigated the spatial distribution of ligand-receptor pairs and identified potentially important interactions during zebrafish embryo development. Our study constitutes a fundamental reference for further studies aiming to understand vertebrate development.
Collapse
Affiliation(s)
- Chang Liu
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China
| | - Rui Li
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China
| | - Young Li
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China
| | - Xiumei Lin
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China
| | - Kaichen Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qun Liu
- BGI-Shenzhen, Shenzhen 518083, China; BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Shuowen Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Brain Research Institute, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xueqian Yang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuyang Shi
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China
| | - Yuting Ma
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyu Pei
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wendai Bao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | - Tao Yang
- China National GeneBank, Shenzhen, Guangdong 518120, China
| | - Zhicheng Xu
- China National GeneBank, Shenzhen, Guangdong 518120, China
| | - Tingting Lai
- China National GeneBank, Shenzhen, Guangdong 518120, China
| | - Michael Arman Berberoglu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | - Miguel A Esteban
- BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China; Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Guangyi Fan
- BGI-Shenzhen, Shenzhen 518083, China; BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | | | - Shiping Liu
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China
| | - Ao Chen
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China.
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Brain Research Institute, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China.
| |
Collapse
|
3
|
Trümper V, von Knethen A, Preuß A, Ermilov E, Hackbarth S, Kuchler L, Gunne S, Schäfer A, Bornhütter T, Vereb G, Ujlaky-Nagy L, Brüne B, Röder B, Schindler M, Parnham MJ, Knape T. Flow cytometry-based FRET identifies binding intensities in PPARγ1 protein-protein interactions in living cells. Theranostics 2019; 9:5444-5463. [PMID: 31534496 PMCID: PMC6735382 DOI: 10.7150/thno.29367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 05/01/2019] [Indexed: 01/10/2023] Open
Abstract
PPARγ is a pharmacological target in inflammatory and metabolic diseases. Upon agonistic treatment or following antagonism, binding of co-factors is altered, which consequently affects PPARγ-dependent transactivation as well as its DNA-independent properties. Therefore, establishing techniques to characterize these interactions is an important issue in living cells. Methods: Using the FRET pair Clover/mRuby2, we set up a flow cytometry-based FRET assay by analyzing PPARγ1 binding to its heterodimerization partner RXRα. Analyses of PPARγ-reporter and co-localization studies by laser-scanning microscopy validated this system. Refining the system, we created a new readout to distinguish strong from weak interactions, focusing on PPARγ-binding to the co-repressor N-CoR2. Results: We observed high FRET in cells expressing Clover-PPARγ1 and mRuby2-RXRα, but no FRET when cells express a mRuby2-RXRα deletion mutant, lacking the PPARγ interaction domain. Focusing on the co-repressor N-CoR2, we identified in HEK293T cells the new splice variant N-CoR2-ΔID1-exon. Overexpressing this isoform tagged with mRuby2, revealed no binding to Clover-PPARγ1, nor in murine J774A.1 macrophages. In HEK293T cells, binding was even lower in comparison to N-CoR2 constructs in which domains established to mediate interaction with PPARγ binding are deleted. These data suggest a possible role of N-CoR2-ΔID1-exon as a dominant negative variant. Because binding to N-CoR2-mRuby2 was not altered following activation or antagonism of Clover-PPARγ1, we determined the effect of pharmacological treatment on FRET intensity. Therefore, we calculated flow cytometry-based FRET efficiencies based on our flow cytometry data. As with PPARγ antagonism, PPARγ agonist treatment did not prevent binding of N-CoR2. Conclusion: Our system allows the close determination of protein-protein interactions with a special focus on binding intensity, allowing this system to characterize the role of protein domains as well as the effect of pharmacological agents on protein-protein interactions.
Collapse
Affiliation(s)
- Verena Trümper
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Annegret Preuß
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Eugeny Ermilov
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Steffen Hackbarth
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Laura Kuchler
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Sandra Gunne
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Anne Schäfer
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Tobias Bornhütter
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Lázló Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Bernhard Brüne
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Beate Röder
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Michael Schindler
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Karls University Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen
| | - Michael J. Parnham
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Tilo Knape
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| |
Collapse
|
4
|
Abstract
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms in organisms from bacteria to animals. These periodic rhythms result from a complex interplay among clock components that are specific to the organism, but share molecular mechanisms across kingdoms. A full understanding of these processes requires detailed knowledge, not only of the biochemical properties of clock proteins and their interactions, but also of the three-dimensional structure of clockwork components. Posttranslational modifications and protein–protein interactions have become a recent focus, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. This review covers the structural aspects of circadian oscillators, and serves as a primer for this exciting realm of structural biology.
Collapse
Affiliation(s)
- Reena Saini
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Seth J Davis
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
5
|
Tomita T, Ieguchi K, Takita M, Tsukahara F, Yamada M, Egly JM, Maru Y. C1D is not directly involved in the repair of UV-damaged DNA but protects cells from oxidative stress by regulating gene expressions in human cell lines. J Biochem 2019; 164:415-426. [PMID: 30165670 DOI: 10.1093/jb/mvy069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/24/2018] [Indexed: 11/14/2022] Open
Abstract
A small nuclear protein, C1D, has roles in various cellular processes, transcription regulation, genome stability surveillance, DNA repair and RNA processing, all of which are required to maintain the host life cycles. In the previous report, C1D directly interacts with XPB, a component of the nucleotide excision repair complex, and C1D knockdown reduced cell survival of 27-1 cells, CHO derivative cells, after UV irradiation. To find out the role of C1D in UV-damaged cells, we used human cell lines with siRNA or shRNA to knockdown C1D. C1D knockdown reduced cell survival rates of LU99 and 786-O after UV irradiation, although C1D knockdown did not affect the efficiency of the nucleotide excision repair. Immunostaining data support that C1D is not directly involved in the DNA repair process in UV-damaged cells. However, H2O2 treatment reduced cell viability in LU99 and 786-O cells. We also found that C1D knockdown upregulated DDIT3 expression in LU99 cells and downregulated APEX1 in 786-O cells, suggesting that C1D functions as a co-repressor/activator. The data accounts for the reduction of cell survival rates upon UV irradiation.
Collapse
Affiliation(s)
- Takeshi Tomita
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| | - Katsuaki Ieguchi
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| | - Morichika Takita
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| | - Fujiko Tsukahara
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| | - Masayuki Yamada
- Center for Medical Education, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS/INSERM/UdS 1, rue Laurent Fries, BP163 F-67404 Illkirch Cedex, France
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| |
Collapse
|
6
|
The first genome-wide association study identifying new susceptibility loci for obstetric antiphospholipid syndrome. J Hum Genet 2017; 62:831-838. [DOI: 10.1038/jhg.2017.46] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 02/02/2023]
|
7
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Jackson RA, Wu JS, Chen ES. C1D family proteins in coordinating RNA processing, chromosome condensation and DNA damage response. Cell Div 2016; 11:2. [PMID: 27030795 PMCID: PMC4812661 DOI: 10.1186/s13008-016-0014-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/22/2016] [Indexed: 12/02/2022] Open
Abstract
Research on the involvement of C1D and its yeast homologues Rrp47 (S. cerevisiae) and Cti1 (S. pombe) in DNA damage repair and RNA processing has remained mutually exclusive, with most studies predominantly concentrating on Rrp47. This review will look to reconcile the functions of these proteins in their involvement with the RNA exosome, in the regulation of chromatin architecture, and in the repair of DNA double-strand breaks, focusing on non-homologous end joining and homologous recombination. We propose that C1D is situated in a central position to maintain genomic stability at highly transcribed gene loci by coordinating these processes through the timely recruitment of relevant regulatory factors. In the event that the damage is beyond repair, C1D induces apoptosis in a p53-dependent manner.
Collapse
Affiliation(s)
- Rebecca A Jackson
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Jocelyn Shumei Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore ; National University Health System (NUHS), Singapore, 119228 Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119228 Singapore
| |
Collapse
|
9
|
Aninye IO, Matsumoto S, Sidhaye AR, Wondisford FE. Circadian regulation of Tshb gene expression by Rev-Erbα (NR1D1) and nuclear corepressor 1 (NCOR1). J Biol Chem 2014; 289:17070-7. [PMID: 24794873 DOI: 10.1074/jbc.m114.569723] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormones (TH) are critical for development, growth, and metabolism. Circulating TH levels are tightly regulated by thyroid-stimulating hormone (TSH) secretion within the hypothalamic-pituitary-thyroid axis. Although circadian TSH secretion has been well documented, the mechanism of this observation remains unclear. Recently, the nuclear corepressor, NCOR1, has been postulated to regulate TSH expression, presumably by interacting with thyroid hormone receptors (THRs) bound to TSH subunit genes. We report herein the first in vitro study of NCOR1 regulation of TSH in a physiologically relevant cell system, the TαT1.1 mouse thyrotroph cell line. Knockdown of NCOR1 by shRNA adenovirus increased baseline Tshb mRNA levels compared with scrambled control, but surprisingly had no affect on the T3-mediated repression of this gene. Using ChIP, we show that NCOR1 enriches on the Tshb promoter at sites different from THR previously identified by our group. Furthermore, NCOR1 enrichment on Tshb is unaffected by T3 treatment. Given that NCOR1 does not target THR on Tshb, we hypothesized that NCOR1 targeted Rev-Erbα (NR1D1), an orphan nuclear receptor that is a potent repressor of gene transcription and regulator of metabolism and circadian rhythms. Using a serum shock technique, we synchronized TαT1.1 cells to study circadian gene expression. Post-synchronization, Tshb and Nr1d1 mRNA levels displayed oscillations that inversely correlated with each other. Furthermore, NR1D1 was enriched at the same locus as NCOR1 on Tshb. Therefore, we propose a model for Tshb regulation whereby NR1D1 and NCOR1 interact to regulate circadian expression of Tshb independent of TH negative regulation.
Collapse
Affiliation(s)
- Irene O Aninye
- From the Division of Metabolism, Departments of Pediatrics, Physiology, and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Shunichi Matsumoto
- From the Division of Metabolism, Departments of Pediatrics, Physiology, and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Aniket R Sidhaye
- From the Division of Metabolism, Departments of Pediatrics, Physiology, and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Fredric E Wondisford
- From the Division of Metabolism, Departments of Pediatrics, Physiology, and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
10
|
Puzianowska-Kuznicka M, Pawlik-Pachucka E, Owczarz M, Budzińska M, Polosak J. Small-molecule hormones: molecular mechanisms of action. Int J Endocrinol 2013; 2013:601246. [PMID: 23533406 PMCID: PMC3603355 DOI: 10.1155/2013/601246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/30/2012] [Accepted: 01/17/2013] [Indexed: 01/01/2023] Open
Abstract
Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30-60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes.
Collapse
Affiliation(s)
- Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
- *Monika Puzianowska-Kuznicka:
| | - Eliza Pawlik-Pachucka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Magdalena Owczarz
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Monika Budzińska
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Jacek Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Bartella V, Rizza P, Barone I, Zito D, Giordano F, Giordano C, Catalano S, Mauro L, Sisci D, Panno ML, Fuqua SAW, Andò S. Estrogen receptor beta binds Sp1 and recruits a corepressor complex to the estrogen receptor alpha gene promoter. Breast Cancer Res Treat 2012; 134:569-81. [PMID: 22622808 DOI: 10.1007/s10549-012-2090-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 02/06/2023]
Abstract
Human estrogen receptors alpha and beta are crucially involved in the regulation of mammary growth and development. Normal breast tissues display a relative higher expression of ER beta than ER alpha, which drastically changes during breast tumorogenesis. Thus, it is reasonable to suggest that a dysregulation of the two estrogen receptor subtypes may induce breast cancer development. However, the molecular mechanisms underlying the potential opposing roles played by the two estrogen receptors on tumor cell growth remain to be elucidated. In the present study, we have demonstrated that ER beta overexpression in breast cancer cells decreases cell proliferation and down-regulates ER alpha mRNA and protein content, along with a concomitant repression of estrogen-regulated genes. Transient transfection experiments, using a vector containing the human ER alpha promoter region, showed that elevated levels of ER beta down-regulated basal ER alpha promoter activity. Furthermore, site-directed mutagenesis and deletion analysis revealed that the proximal GC-rich motifs at -223 and -214 are critical for the ER beta-induced ER alpha down-regulation in breast cancer cells. This occurred through ER beta-Sp1 protein-protein interactions within the ER alpha promoter region and the recruitment of a corepressor complex containing the nuclear receptor corepressor NCoR, accompanied by hypoacetylation of histone H4 and displacement of RNA-polymerase II. Silencing of NCoR gene expression by RNA interference reversed the down-regulatory effects of ER beta on ER alpha gene expression and cell proliferation. Our results provide evidence for a novel mechanism by which overexpression of ER beta through NCoR is able to down regulate ER alpha gene expression, thus blocking ER alpha's driving role on breast cancer cell growth.
Collapse
Affiliation(s)
- V Bartella
- Department of Pharmaco-Biology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mengeling BJ, Goodson ML, Bourguet W, Privalsky ML. SMRTε, a corepressor variant, interacts with a restricted subset of nuclear receptors, including the retinoic acid receptors α and β. Mol Cell Endocrinol 2012; 351:306-16. [PMID: 22266197 PMCID: PMC3288673 DOI: 10.1016/j.mce.2012.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/19/2011] [Accepted: 01/04/2012] [Indexed: 11/30/2022]
Abstract
The SMRT and NCoR corepressors bind to, and mediate transcriptional repression by, many nuclear receptors. Both SMRT and NCoR are expressed by alternative mRNA splicing, generating a series of structurally and functionally distinct corepressor "variants". We report that a splice variant of SMRT, SMRTε, recognizes a restricted subset of nuclear receptors. Unlike the other corepressor variants characterized, SMRTε possesses only a single receptor interaction domain (RID) and exhibits an unusual specificity for a subset of nuclear receptors that includes the retinoic acid receptors (RARs). The ability of the single RID in SMRTε to efficiently interact with RARs appears to be enhanced by a recently recognized β-strand/β-strand interaction between corepressor and receptor. We suggest that alternative mRNA splicing of corepressors can restrict their function to specific nuclear receptor partnerships, and we propose that this may serve to customize the transcriptional repression properties of different cell types for different biological purposes.
Collapse
Affiliation(s)
- Brenda J. Mengeling
- Department of Microbiology, One Shields Avenues, University of California at Davis, Davis, California USA 95616
| | - Michael L. Goodson
- Department of Microbiology, One Shields Avenues, University of California at Davis, Davis, California USA 95616
| | - William Bourguet
- Centre de Biochimie Structurale, INSERM, 29 rue de Navacelles, F-34090 Montpellier Cedex, France
| | - Martin L. Privalsky
- Department of Microbiology, One Shields Avenues, University of California at Davis, Davis, California USA 95616
| |
Collapse
|
13
|
Sjakste N, Bielskiene K, Bagdoniene L, Labeikyte D, Gutcaits A, Vassetzky Y, Sjakste T. Tightly bound to DNA proteins: Possible universal substrates for intranuclear processes. Gene 2012; 492:54-64. [PMID: 22001404 DOI: 10.1016/j.gene.2011.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 01/05/2023]
Affiliation(s)
- N Sjakste
- Faculty of Medicine, University of Latvia, Šarlotes 1a, LV1001, Riga, Latvia
| | | | | | | | | | | | | |
Collapse
|
14
|
Lubas M, Chlebowski A, Dziembowski A, Jensen TH. Biochemistry and Function of RNA Exosomes. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:1-30. [DOI: 10.1016/b978-0-12-404740-2.00001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Mosch K, Franz H, Soeroes S, Singh PB, Fischle W. HP1 recruits activity-dependent neuroprotective protein to H3K9me3 marked pericentromeric heterochromatin for silencing of major satellite repeats. PLoS One 2011; 6:e15894. [PMID: 21267468 PMCID: PMC3022755 DOI: 10.1371/journal.pone.0015894] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 11/29/2010] [Indexed: 11/19/2022] Open
Abstract
H3 lysine 9 trimethylation (H3K9me3) is a histone posttranslational modification (PTM) that has emerged as hallmark of pericentromeric heterochromatin. This constitutive chromatin domain is composed of repetitive DNA elements, whose transcription is differentially regulated. Mammalian cells contain three HP1 proteins, HP1α, HP1β and HP1γ These have been shown to bind to H3K9me3 and are thought to mediate the effects of this histone PTM. However, the mechanisms of HP1 chromatin regulation and the exact functional role at pericentromeric heterochromatin are still unclear. Here, we identify activity-dependent neuroprotective protein (ADNP) as an H3K9me3 associated factor. We show that ADNP does not bind H3K9me3 directly, but that interaction is mediated by all three HP1 isoforms in vitro. However, in cells ADNP localization to areas of pericentromeric heterochromatin is only dependent on HP1α and HP1β. Besides a PGVLL sequence patch we uncovered an ARKS motif within the ADNP homeodomain involved in HP1 dependent H3K9me3 association and localization to pericentromeric heterochromatin. While knockdown of ADNP had no effect on HP1 distribution and heterochromatic histone and DNA modifications, we found ADNP silencing major satellite repeats. Our results identify a novel factor in the translation of H3K9me3 at pericentromeric heterochromatin that regulates transcription.
Collapse
Affiliation(s)
- Kerstin Mosch
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henriette Franz
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Szabolcs Soeroes
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Prim B. Singh
- Division of Immunoepigenetics, Research Center Borstel, Borstel, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail:
| |
Collapse
|
16
|
Abstract
The Sas10/C1D domain is found in a small group of eukaryotic proteins that have functions in RNA processing events, translational control and DNA repair mechanisms. The domain is predicted to be alpha-helical in nature and comprises approx. 80 amino acid residues. Whereas the Sas10/C1D domain has yet to be functionally characterized, available results suggest that this domain forms a binding surface for specific interactions with other proteins and can concomitantly interact with RNA or DNA. This property of the Sas10/C1D domain may facilitate this family of proteins to dock other proteins on to nucleic acid substrates.
Collapse
|
17
|
Structure of Rev-erbalpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction. Nat Struct Mol Biol 2010; 17:808-14. [PMID: 20581824 PMCID: PMC3719173 DOI: 10.1038/nsmb.1860] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/20/2010] [Indexed: 01/07/2023]
Abstract
Repression of gene transcription by the nuclear receptor Rev-erbalpha plays an integral role in the core molecular circadian clock. We report the crystal structure of a nuclear receptor-co-repressor (N-CoR) interaction domain 1 (ID1) peptide bound to truncated human Rev-erbalpha ligand-binding domain (LBD). The ID1 peptide forms an unprecedented antiparallel beta-sheet with Rev-erbalpha, as well as an alpha-helix similar to that seen in nuclear receptor ID2 crystal structures but out of register by four residues. Comparison with the structure of Rev-erbbeta bound to heme indicates that ID1 peptide and heme induce substantially different conformational changes in the LBD. Although heme is involved in Rev-erb repression, the structure suggests that Rev-erbalpha could also mediate repression via ID1 binding in the absence of heme. The previously uncharacterized secondary structure induced by ID1 peptide binding advances our understanding of nuclear receptor-co-repressor interactions.
Collapse
|
18
|
Krusiński T, Ożyhar A, Dobryszycki P. Dual FRET assay for detecting receptor protein interaction with DNA. Nucleic Acids Res 2010; 38:e108. [PMID: 20139421 PMCID: PMC2875001 DOI: 10.1093/nar/gkq049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 01/15/2010] [Accepted: 01/18/2010] [Indexed: 01/17/2023] Open
Abstract
We present here a new assay that is based on the idea of the molecular beacon. This assay makes it possible to investigate two proteins interacting with DNA at two binding sites that are close to each other. The effectiveness of the test depends on the exclusive binding of three DNA fragments in the presence of two proteins, and the monitoring of the process depends upon observing the quenching of two independent fluorescence donors. As a model we used the components of the heterodimeric ecdysteroid receptor proteins ultraspiracle (Usp) and ecdysone receptor (EcR) from Drosophila melanogaster and a response element from the promoter of the hsp27 gene. The response element consists of two binding sites (half-sites) for the DNA binding domains (DBDs). We have shown that protein-protein interactions mediate cooperative binding of the ecdysteroid receptor DBDs to a hsp27(pal) response element. The analysis of the microscopic dissociation constants obtained with the DMB led to the conclusion that there was increased affinity of UspDBD to the 5' half-site in the presence of EcRDBD when the 3' half-site was occupied, and increased affinity of EcRDBD to the 3' half-site when the 5' half-site was occupied.
Collapse
Affiliation(s)
| | | | - Piotr Dobryszycki
- Wroclaw University of Technology, Faculty of Chemistry, Division of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
19
|
Yin L, Wu N, Lazar MA. Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. NUCLEAR RECEPTOR SIGNALING 2010; 8:e001. [PMID: 20414452 PMCID: PMC2858265 DOI: 10.1621/nrs.08001] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 02/24/2010] [Indexed: 12/22/2022]
Abstract
Nuclear receptor Rev-erbα (NR1D1), previously considered to be an orphan nuclear receptor, is a receptor for heme, which promotes transcriptional repression via recruitment of the NCoR-HDAC3 corepressor complex. Rev-erbα gene regulation is circadian, and Rev-erbα comprises a critical negative limb of the core circadian clock by directly repressing the expression of the positive clock component, Bmal1. Rev-erbα also regulates the metabolic gene pathway, thus serving as a heme sensor for coordination of circadian and metabolic pathways.
Collapse
Affiliation(s)
- Lei Yin
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
20
|
Abstract
Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T(3) via transcriptional regulation. Two TR genes, alpha and beta, encode four T(3)-binding receptor isoforms (alpha1, beta1, beta2, and beta3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T(3), transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T(3) target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T(3)-dependent manner. In the absence of T(3), corepressors act to repress the basal transcriptional activity, whereas in the presence of T(3), coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRbeta gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T(3). Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin alphavbeta3 that activates ERK1/2 and culminate in local membrane actions on ion transport systems, such as the Na(+)/H(+) exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T(4) is an agonist at the plasma membrane without conversion to T(3). Tetraiodothyroacetic acid is a T(4) analog that inhibits the actions of T(4) and T(3) at the integrin, including angiogenesis and tumor cell proliferation. T(3) can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin alphavbeta3. Downstream consequences of phosphatidylinositol 3-kinase activation by T(3) include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T(3) and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T(4) and rT(3), but not T(3), is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRalpha1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton.
Collapse
Affiliation(s)
- Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
21
|
Butler JS, Mitchell P. Rrp6, Rrp47 and Cofactors of the Nuclear Exosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:91-104. [DOI: 10.1007/978-1-4419-7841-7_8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Auger AP, Jessen HM. Corepressors, nuclear receptors, and epigenetic factors on DNA: a tail of repression. Psychoneuroendocrinology 2009; 34 Suppl 1:S39-47. [PMID: 19545950 PMCID: PMC3133443 DOI: 10.1016/j.psyneuen.2009.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/05/2009] [Accepted: 05/19/2009] [Indexed: 12/24/2022]
Abstract
The differential exposure to circulating steroid hormones during brain development can have lasting consequences on brain function and behavior; therefore, the tight control of steroid hormone action within the developing brain is necessary for the expression of appropriate sex-typical behavior patterns later in life. The restricted control of steroid hormone action at the level of the DNA can be accomplished through the recruitment of coregulatory complexes. Nuclear receptor action can either be enhanced by the recruitment of coactivator complexes or suppressed by the formation of corepressor complexes. Alternatively, the regulation of nuclear receptor-mediated gene transcription in the developing brain may involve a dynamic process of coactivator and corepressor function on DNA. It is likely that understanding how different combinations of coregulatory matrixes assembly on DNA will lead to further understanding of heterogeneous responses to nuclear receptor activation. We will discuss how coregulators influence gene transcription and repression, the role of chromatin-binding factors in the regulation of gene transcription, and their potential impact on brain development.
Collapse
Affiliation(s)
- Anthony P Auger
- Psychology Department, 1202 West Johnson Street, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
23
|
Banman SL, McFie PJ, Wilson HL, Roesler WJ. Nuclear redistribution of TCERG1 is required for its ability to inhibit the transcriptional and anti-proliferative activities of C/EBPα. J Cell Biochem 2009; 109:140-51. [DOI: 10.1002/jcb.22391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Wu N, Yin L, Hanniman EA, Joshi S, Lazar MA. Negative feedback maintenance of heme homeostasis by its receptor, Rev-erbalpha. Genes Dev 2009; 23:2201-9. [PMID: 19710360 DOI: 10.1101/gad.1825809] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracellular heme levels must be tightly regulated to maintain proper mitochondrial respiration while minimizing toxicity, but the homeostatic mechanisms are not well understood. Here we report a novel negative feedback mechanism whereby the nuclear heme receptor Rev-erbalpha tightly controls the level of its own ligand. Heme binding to Rev-erbalpha recruits the NCoR/histone deacetylase 3 (HDAC3) corepressor complex to repress the transcription of the coactivator PGC-1alpha, a potent inducer of heme synthesis. Depletion of Rev-erbalpha derepresses PGC-1alpha, resulting in increased heme levels. Conversely, increased Rev-erbalpha reduces intracellular heme, and impairs mitochondrial respiration in a heme-dependent manner. Consistent with this bioenergetic impairment, overexpression of Rev-erbalpha dramatically inhibits cell growth due to a cell cycle arrest. Thus, Rev-erbalpha modulates the synthesis of its own ligand in a negative feedback pathway that maintains heme levels and regulates cellular energy metabolism.
Collapse
Affiliation(s)
- Nan Wu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
25
|
Rambaud J, Triqueneaux G, Masse I, Staels B, Laudet V, Benoit G. Rev-erbalpha2 mRNA encodes a stable protein with a potential role in circadian clock regulation. Mol Endocrinol 2009; 23:630-9. [PMID: 19228794 DOI: 10.1210/me.2008-0395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Circadian rhythms are observed in nearly all aspects of physiology and behavior. In mammals, such biological rhythms are supported by a complex network of self-sustained transcriptional loops and posttranslational modifications, which regulate timely controlled production and degradation of critical factors on a 24-h basis. Among these factors, the orphan nuclear receptor rev-erbalpha plays an essential role by linking together positive and negative regulatory loops. As an essential part of the circadian core clock mechanism, REV-ERBalpha expression shows a precisely scheduled oscillation reflecting the tight control of its production and degradation. In previous studies, we identified two alternative transcripts encoding two protein variants referred to as REV-ERBalpha1 and -alpha2. Interestingly, recent work identified structural elements present only in REV-ERBalpha1 that controls its turnover and thereby influences circadian oscillations. In the present work, we comparatively analyze the two variants and show that REV-ERBalpha2 exhibits a half-life incompatible with a circadian function, suggesting that this variant exerts different biological functions. However, our comparative study clearly indicates undistinguishable DNA-binding properties and transcriptional repression activity as well as a similar regulation mechanism. The only consistent difference appears to be the relative expression level of the two transcripts, rev-erbalpha1 being one to 100 times more expressed than alpha2 depending on tissue and circadian time. Taking this finding into consideration, we reassessed REV-ERBalpha2 turnover and were able to show that this variant exhibits a reduced half-life when coexpressed with REV-ERBalpha1. We propose that the relative expression levels of the two REV-ERBalpha variants fine-tune the circadian period length by regulating REV-ERBalpha half-life.
Collapse
Affiliation(s)
- Juliette Rambaud
- Molecular Zoology Group, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | |
Collapse
|
26
|
Bertrand S, Thisse B, Tavares R, Sachs L, Chaumot A, Bardet PL, Escrivà H, Duffraisse M, Marchand O, Safi R, Thisse C, Laudet V. Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression. PLoS Genet 2008; 3:e188. [PMID: 17997606 PMCID: PMC2065881 DOI: 10.1371/journal.pgen.0030188] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/11/2007] [Indexed: 11/19/2022] Open
Abstract
Nuclear receptors (NRs) are transcription factors that are implicated in several biological processes such as embryonic development, homeostasis, and metabolic diseases. To study the role of NRs in development, it is critically important to know when and where individual genes are expressed. Although systematic expression studies using reverse transcriptase PCR and/or DNA microarrays have been performed in classical model systems such as Drosophila and mouse, no systematic atlas describing NR involvement during embryonic development on a global scale has been assembled. Adopting a systems biology approach, we conducted a systematic analysis of the dynamic spatiotemporal expression of all NR genes as well as their main transcriptional coregulators during zebrafish development (101 genes) using whole-mount in situ hybridization. This extensive dataset establishes overlapping expression patterns among NRs and coregulators, indicating hierarchical transcriptional networks. This complete developmental profiling provides an unprecedented examination of expression of NRs during embryogenesis, uncovering their potential function during central nervous system and retina formation. Moreover, our study reveals that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Finally, further evolutionary analyses of this global resource led us to propose that neofunctionalization of duplicated genes occurs at the levels of both protein sequence and RNA expression patterns. Altogether, this expression database of NRs provides novel routes for leading investigation into the biological function of each individual NR as well as for the study of their combinatorial regulatory circuitry within the superfamily. NRs are key molecules controlling development, metabolism, and reproduction in metazoans. Since NRs are implicated in many human diseases such as cancer, metabolic syndrome, and hormone resistance, they are important pharmaceutical targets and are under intense scrutiny to better understand their biological functions. In the present study, we determined the expression patterns of all NR genes as well as their main transcriptional coregulators during zebrafish development. We used zebrafish because the transparency of its embryo allows us to perform whole-mount in situ hybridization from early development to late organogenesis. This complete developmental profiling offers an unprecedented view of NR expression during embryogenesis, uncovering their potential function during central nervous system and retina formation. We observed that in contrast to NR genes, only a few coregulators exhibit a restricted expression pattern, suggesting that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Lastly, by evolutionary analysis of expression pattern divergence of duplicated genes, we observed that neofunctionalization occurs at the levels of both protein sequence and mRNA expression patterns. Taken together, our data provide the starting point for functional analysis of an entire gene family during development and call for the study of the intersection between metabolism and development.
Collapse
Affiliation(s)
- Stéphanie Bertrand
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Bernard Thisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP 10142, 67404 Illkirch, CU de Strasbourg, France
| | - Raquel Tavares
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Laurent Sachs
- CNRS UMR 5166, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, CP32, Paris, France
| | | | - Pierre-Luc Bardet
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Héctor Escrivà
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Maryline Duffraisse
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Oriane Marchand
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Rachid Safi
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Christine Thisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP 10142, 67404 Illkirch, CU de Strasbourg, France
| | - Vincent Laudet
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Abstract
Lethal 3 malignant brain tumor 1 (L3MBTL1), a homolog of the Drosophila polycomb tumor suppressor l(3)mbt, contains three tandem MBT repeats (3xMBT) that are critical for transcriptional repression. We recently reported that the 3xMBT repeats interact with mono- and dimethylated lysines in the amino termini of histones H4 and H1b to promote methylation-dependent chromatin compaction. Using a series of histone peptides, we now show that the recognition of mono- and dimethylated lysines in histones H3, H4 and H1.4 (but not their trimethylated or unmodified counterparts) by 3xMBT occurs in the context of a basic environment, requiring a conserved aspartic acid (D355) in the second MBT repeat. Despite the broad range of in vitro binding, the chromatin association of L3MBTL1 mirrors the progressive accumulation of H4K20 monomethylation during the cell cycle. Furthermore, transcriptional repression by L3MBTL1 is enhanced by the H4K20 monomethyltransferase PR-SET7 (to which it binds) but not SUV420H1 (an H4K20 trimethylase) or G9a (an H3K9 dimethylase) and knockdown of PR-SET7 decreases H4K20me1 levels and the chromatin association of L3MBTL1. Our studies identify the importance of H4K20 monomethylation and of PR-SET7 for L3MBTL1 function.
Collapse
|
28
|
He B, Feng Q, Mukherjee A, Lonard DM, DeMayo FJ, Katzenellenbogen BS, Lydon JP, O'Malley BW. A repressive role for prohibitin in estrogen signaling. Mol Endocrinol 2008; 22:344-60. [PMID: 17932104 PMCID: PMC2234581 DOI: 10.1210/me.2007-0400] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 10/01/2007] [Indexed: 12/21/2022] Open
Abstract
Nuclear receptor-mediated gene expression is regulated by corepressors and coactivators. In this study we demonstrate that prohibitin (PHB), a potential tumor suppressor, functions as a potent transcriptional corepressor for estrogen receptor alpha (ERalpha). Overexpression of PHB inhibits ERalpha transcriptional activity, whereas depletion of endogenous PHB increases the expression of ERalpha target genes in MCF-7 breast cancer cells. Chromatin immunoprecipitation experiments demonstrate that PHB is associated with the estrogen-regulated pS2 promoter in the absence of hormone and dissociates after estradiol treatment. We demonstrate that PHB interacts with the repressor of estrogen receptor activity (REA), a protein related to PHB, to form heteromers and enhance the protein stability of both corepressors. Interestingly, the corepressor activity of PHB is cross-squelched by the coexpression of REA (and vice versa), suggesting that PHB and REA repress transcription only when they are not paired. We further demonstrate that coiled-coil domains located in the middle of PHB and REA are responsible for their heteromerization, stabilization, and cross-squelching actions. Finally, ablation of PHB function in the mouse results in early embryonic lethality, whereas mice heterozygous for the PHB null allele exhibit a hyperproliferative mammary gland phenotype. Our results indicate that PHB functions as a transcriptional corepressor for ERalpha in vitro and in vivo, and that its heteromerization with REA acts as a novel mechanism to limit its corepressor activity.
Collapse
Affiliation(s)
- Bin He
- Department of Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Known histone deacetylases (HDACs) are divided into different classes, and HDAC3 belongs to Class I. Through forming multiprotein complexes with the corepressors SMRT and N-CoR, HDAC3 regulates the transcription of a plethora of genes. A growing list of nonhistone substrates extends the role of HDAC3 beyond transcriptional repression. Here, we review data on the composition, regulation and mechanism of action of the SMRT/N-CoR-HDAC3 complexes and provide several examples of nontranscriptional functions, to illustrate the wide variety of physiological processes affected by this deacetylase. Furthermore, we discuss the implication of HDAC3 in cancer, focusing on leukemia. We conclude with some thoughts about the potential therapeutic efficacies of HDAC3 activity modulation.
Collapse
Affiliation(s)
- P Karagianni
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 2007; 58:798-836. [PMID: 17132856 DOI: 10.1124/pr.58.4.10] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Half of the members of the nuclear receptors superfamily are so-called "orphan" receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.
Collapse
Affiliation(s)
- Gérard Benoit
- Unité Mixte de Recherche 5161 du Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique 1237, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Agez L, Laurent V, Pévet P, Masson-Pévet M, Gauer F. Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience 2006; 144:522-30. [PMID: 17067745 DOI: 10.1016/j.neuroscience.2006.09.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/15/2006] [Accepted: 09/20/2006] [Indexed: 11/25/2022]
Abstract
The pineal hormone melatonin nocturnal synthesis feeds back on the suprachiasmatic nuclei (SCN), the central circadian clock. Indeed, daily melatonin injections in free-running rats resynchronize their locomotor activity to 24 h. However, the molecular mechanisms underlying this chronobiotic effect of the hormone are poorly understood. The endogenous circadian machinery involves positive and negative transcriptional feedback loops implicating different genes (particularly period (Per) 1-3, Clock, Bmal1, cryptochrome (Cry) 1-2). While CLOCK:BMAL1 heterodimer activates the rhythmic transcription of per and cry genes, the PER and CRY proteins inhibit the CLOCK:BMAL1 complex. In previous studies, we observed that the immediate resetting effect of a melatonin injection at the end of the subjective day on the SCN circadian activity did not directly involve the above-mentioned clock genes. Recently, nuclear orphan receptors (NORs) have been presented as functional links between the regulatory loops of the molecular clock. These NORs bind to a retinoic acid receptor-related orphan receptor response element (RORE) domain and activate (RORalpha) or repress (REV-ERBalpha) bmal1 expression. In this study, we investigated whether melatonin exerts its chronobiotic effects through transcriptional regulation of these transcription factors. We monitored roralpha, rorbeta and rev-erbalpha messenger RNA (mRNA) expression levels by quantitative in situ hybridization, up to 36 h following a melatonin injection at circadian time (CT) 11.5. Results clearly showed that, while roralpha was not affected by melatonin, the hormone partially prevented the decrease of the rorbeta mRNA expression observed in control animals during the first hours following the injection. The major result is that the rev-erbalpha mRNA expression rhythm was 1.3+/-0.8-h phase-advanced in melatonin-treated animals during the first subjective night following the melatonin administration. Moreover, the bmal1 mRNA expression was 1.9+/-0.9-h phase-shifted in the second subjective night following the melatonin injection. These results clearly suggest that the NOR genes could be the link between the chronobiotic action of melatonin and the core of the molecular circadian clock.
Collapse
Affiliation(s)
- L Agez
- Institut des Neurosciences Cellulaires et Intégratives, Département de Neurobiologie des Rythmes, CNRS UMR 7168-LC2, IFR 37 Neurosciences, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
32
|
Lord-Grignon J, Abdouh M, Bernier G. Identification of genes expressed in retinal progenitor/stem cell colonies isolated from the ocular ciliary body of adult mice. Gene Expr Patterns 2006; 6:992-9. [PMID: 16765103 DOI: 10.1016/j.modgep.2006.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 04/11/2006] [Accepted: 04/13/2006] [Indexed: 11/15/2022]
Abstract
Rare pigmented cells showing retinal stem cell characteristics have been identified in the ocular ciliary body (CB) of adult mammals. In vitro, these cells were reported to clonally proliferate and generate pigmented sphere colonies (PSC) containing multipotent retinal progenitor-like cells. Because these cells may have important clinical applications and because their embryonic origin is unclear, we have analyzed their local environment and gene expression profile. We found that transcription factors Pax6, Six3, and Rx, all involved in early eye morphogenesis, were expressed in the CB of adult mice. By sequencing a PSC cDNA library, we found that PSC expressed at high levels transcripts involved in the control of redox metabolism and cellular proliferation. PSC also expressed the retinal transcription factor Six6, which expression was not detected in the CB epithelium. By in situ hybridization screen, we found that Palmdelphin (Palm), Hmga2, and a novel transcript were expressed in the central nervous system of early embryos. Palm expression delineated the pigmented epithelium of the future CB and the developing myotome. Hmga2 was expressed in the ventricular zone of the telencephalon, the developing retinal ciliary margin and lens. Several genes expressed in PSC were also expressed in the nasal anlagen. Taken together, our study reveals that PSC isolated from the ocular CB express genes involved in the control of embryonic development, retinal identity, redox metabolism, and cellular proliferation.
Collapse
Affiliation(s)
- Julie Lord-Grignon
- Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montreal, Canada H1T 2M4
| | | | | |
Collapse
|
33
|
Sunn K, Eisman J, Gardiner E, Jans D. FRAP analysis of nucleocytoplasmic dynamics of the vitamin D receptor splice variant VDRB1: preferential targeting to nuclear speckles. Biochem J 2005; 388:509-14. [PMID: 15689185 PMCID: PMC1138958 DOI: 10.1042/bj20042040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the key components of the cellular nuclear transport machinery have largely been characterized through extensive efforts in recent years, in vivo measurements of the kinetics of nuclear protein import/export are patently few. The present study applies the approach of FRAP (fluorescence recovery after photobleaching) to examine the nucleocytoplasmic flux of a novel human VDRB1 (vitamin D receptor B1) isoform in living cells. Through an N-terminal extension containing a consensus nuclear targeting sequence, VDRB1 is capable of localizing in nuclear speckles adjacent to SC-35 (35 kDa splicing component)-containing speckles as well as in the nucleoplasm, dependent on ligand. Investigation of VDRB1 nucleocytoplasmic transport using FRAP indicates for the first time that the VDRB1 has a serum-modulated, active nuclear import mechanism. There is no evidence of an efficient, active export mechanism for VDRB1, probably as a result of nuclear retention. VDRB1 nuclear import in the absence of serum occurred more rapidly and to a greater extent to nuclear speckles compared with import to other nuclear sites. This preferential transport from the cytoplasm to and accumulation within nuclear speckles is consistent with the idea that the latter represent dynamic centres of VDRB1 interaction with other nuclear proteins. The results are consistent with the existence of specialized pathways to target proteins to nuclear subdomains.
Collapse
Affiliation(s)
- Kathryn L. Sunn
- *Bone and Mineral Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- †Nuclear Signalling Laboratory, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, P.O. Box 334, Canberra, ACT 2601, Australia
| | - John A. Eisman
- *Bone and Mineral Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Edith M. Gardiner
- *Bone and Mineral Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - David A. Jans
- †Nuclear Signalling Laboratory, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, P.O. Box 334, Canberra, ACT 2601, Australia
- ‡Department for Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
- To whom correspondence should be addressed, at Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Box 13D, Monash University, Clayton, VIC 3168, Australia (email )
| |
Collapse
|
34
|
Lee JA, Suh DC, Kang JE, Kim MH, Park H, Lee MN, Kim JM, Jeon BN, Roh HE, Yu MY, Choi KY, Kim KY, Hur MW. Transcriptional Activity of Sp1 Is Regulated by Molecular Interactions between the Zinc Finger DNA Binding Domain and the Inhibitory Domain with Corepressors, and This Interaction Is Modulated by MEK. J Biol Chem 2005; 280:28061-71. [PMID: 15878880 DOI: 10.1074/jbc.m414134200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sp1 activates the transcription of many cellular and viral genes with the GC-box in either the proximal promoter or the enhancer. Sp1 is composed of several functional domains, such as the inhibitory domain (ID), two serine/threonine-rich domains, two glutamine-rich domains, three C2H2-type zinc finger DNA binding domains (ZFDBD), and a C-terminal D domain. The ZDDBD is the most highly conserved domain among the Sp-family transcription factors and plays a critical role in GC-box recognition. In this study, we investigated the protein-protein interactions occurring at the Sp1ZFDBD and the Sp1ID, and the molecular mechanisms controlling the interaction. Our results found that Sp1ZFDBD and Sp1ID repressed transcription once they were targeted to the proximal promoter of the pGal4 UAS reporter fusion gene system, suggesting molecular interaction with the repressor molecules. Indeed, mammalian two-hybrid assays, GST fusion protein pull-down assays, and co-immunoprecipitation assays showed that Sp1ZFDBD and Sp1ID are able to interact with corepressor proteins such as SMRT, NcoR, and BCoR. The molecular interactions appear to be regulated by MAP kinase/Erk kinase kinase (MEK). The molecular interactions between Sp1ID and the corepressor might explain the role of Sp1 as a repressor under certain circumstances. The siRNA-induced degradation of the corepressors resulted in an up-regulation of Sp1-dependent transcription. The cellular context of the corepressors and the regulation of molecular interaction between corepressors and Sp1ZFDBD or Sp1ID might be important in controlling Sp1 activity.
Collapse
Affiliation(s)
- Jung-Ahn Lee
- Department of Biochemistry and Molecular Biology, BK21 Project for Medical Science, Institute of Genetic Science, Yonsei University School of Medicine, 134, ShinChon-Dong, SeoDaeMoon-Ku, Seoul, 120-752
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Laitinen S, Fontaine C, Fruchart JC, Staels B. The role of the orphan nuclear receptor Rev-Erb alpha in adipocyte differentiation and function. Biochimie 2005; 87:21-5. [PMID: 15733732 DOI: 10.1016/j.biochi.2004.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 12/20/2004] [Indexed: 01/22/2023]
Abstract
Lipid and carbohydrate homeostasis in higher organisms is governed by an integrated system that has a capacity to rapidly respond to metabolic changes. Numerous signals reciprocally convey information about body fat status from the periphery to central nervous system in the attempt to maintain body weight nearly stable throughout life. The role of adipocyte in energy homeostasis extends its function as a simple energy storage cell. Indeed, adipose tissue not only secretes fatty acids, but is also an active endocrine and paracrine organ due to the production of secreted proteins and lipid indicators collectively called adipokines. These observations have spurred interest in the identification of the transcriptional and other regulatory pathways of adipocyte differentiation. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPAR gamma) (NR1C3) and members of the CCAAT enhancer-binding protein (C/EBP) family are central mediators controlling adipocyte differentiation and function. Rev-erb alpha (NR1D1) is an orphan nuclear receptor encoded on the opposite strand of the thyroid receptor alpha gene. Rev-erb alpha acts as a negative regulator of transcription binding to the same response element than another orphan nuclear receptor, ROR alpha. Rev-erb alpha is highly expressed in adipose tissue, skeletal muscle, heart, liver and brain. Rev-erb alpha expression increases during adipocyte differentiation of 3T3-L1 cells and is induced by PPAR gamma activation in both 3T3-L1 cells in vitro and in rat adipose tissue in vivo via a direct repeat (DR2) in the Rev-erb alpha promoter. Ectopic expression of Rev-erb alpha potentiates the adipocyte differentiation in 3T3-L1 cells. Recent results in vascular smooth muscle cells (VSMCs) indicate that Rev-erb alpha also controls inflammation by regulating NF-kappa B responsive genes, such as IL-6 and COX-2. Future studies on a potential role of Rev-erb alpha on glucose homeostasis and/or inflammation control are thus warranted.
Collapse
Affiliation(s)
- S Laitinen
- UR545 Inserm, Institut Pasteur de Lille, and Faculté de Pharmacie, Université de Lille II, 1, rue du Pr Calmette, 59019 Lille, France
| | | | | | | |
Collapse
|
36
|
Park SE, Xu J, Frolova A, Liao L, O'Malley BW, Katzenellenbogen BS. Genetic deletion of the repressor of estrogen receptor activity (REA) enhances the response to estrogen in target tissues in vivo. Mol Cell Biol 2005; 25:1989-99. [PMID: 15713652 PMCID: PMC549370 DOI: 10.1128/mcb.25.5.1989-1999.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We previously identified a coregulator, repressor of estrogen receptor activity (REA), that directly interacts with estrogen receptor (ER) and represses ER transcriptional activity. Decreasing the intracellular level of REA by using small interfering RNA knockdown or antisense RNA approaches in cells in culture resulted in a significant increase in the level of up-regulation of estrogen-stimulated genes. To elucidate the functional activities of REA in vivo, we have used targeted disruption to delete the REA gene in mice. The targeting vector eliminated, by homologous recombination, the REA exon sequences encoding amino acids 12 to 201, which are required for REA repressive activity and for interaction with ER. The viability of heterozygous animals was similar to that of the wild type, whereas homozygous animals did not develop, suggesting a crucial role for REA in early development. Female, but not male, heterozygous animals had an increased body weight relative to age-matched wild-type animals beginning after puberty. REA mRNA and protein levels in uteri of heterozygous animals were half that of the wild type, and studies with heterozygous animals revealed a greater uterine weight gain and epithelial hyperproliferation in response to estradiol (E2) and a substantially greater stimulation by E2 of a number of estrogen up-regulated genes in the uterus. Even more dramatic in REA heterozygous animals was the loss of down regulation by E2 of genes in the uterus that are normally repressed by estrogen in wild-type animals. Mouse embryo fibroblasts derived from heterozygous embryos also displayed a greater transcriptional response to E2. These studies demonstrate that REA is a significant modulator of estrogen responsiveness in vivo: it normally restrains estrogen actions, moderating ER stimulation and enhancing ER repression of E2-regulated genes.
Collapse
Affiliation(s)
- Seong-Eun Park
- University of Illinois, Department of Molecular and Integrative Physiology, 524 Burrill Hall, 407 South Goodwin Ave., Urbana, IL 61801-3704, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Gene silencing is an essential transcriptional regulatory process. Co-repressors mediate gene repression through their recruitment by DNA bound transcriptional silencer proteins. Co-repressors repress gene expression through several mechanisms, mostly investigated on the level of chromatin. Lack or aberrant gene silencing is associated with many defects both on cellular and organismic level. Several human diseases are based on dysregulated co-repressor binding to transcriptional silencers indicating that co-repressor recruitment and the strength of gene silencing must be under strict control. In line with that gene silencing is important for animal development, cellular proliferation and transformation. Co-repressors play also a major role in the treatment of hormone-dependent growing cancers, such as for breast and prostate cancer therapy. The molecular basis of anti-hormone therapy lies in the recruitment of co-repressors to the estrogen or androgen receptors, respectively, which leads to their inactivation and to inhibition of cancer growth. The molecular mechanisms of selected topics are summarized here.
Collapse
Affiliation(s)
- Aria Baniahmad
- Institute of Human Genetics and Anthropology, Medical Department, Friedrich-Schiller-University, 07740 Jena, Germany.
| |
Collapse
|
38
|
Transcriptional repression by the thyroid hormone receptor: function of corepressor complexes. ACTA ACUST UNITED AC 2004. [DOI: 10.1097/01.med.0000137761.03533.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Gross M, Yang R, Top I, Gasper C, Shuai K. PIASy-mediated repression of the androgen receptor is independent of sumoylation. Oncogene 2004; 23:3059-66. [PMID: 14981544 DOI: 10.1038/sj.onc.1207443] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PIASy, a member of the protein inhibitor of activated STAT (PIAS) family, represses the transcriptional activity of the androgen receptor (AR). In this report, we investigate the mechanism of PIASy-mediated repression of AR. We show that AR binds to the RING-finger like domain of PIASy. PIASy contains two transcriptional repression domains, RD1 and RD2. RD1, but not RD2, is required for PIASy-mediated repression of AR. We show that the RD1 domain binds HDAC1 and HDAC2 and that HDAC activity is required for PIASy-mediated AR repression. PIAS proteins possess small ubiquitin-related modifier (SUMO) E3 ligase activity. Conjugation of SUMO-1 to AR has been implicated in the regulation of AR activity. We examine if the SUMO ligase activity of PIASy is required for PIASy to repress AR. We show that a mutant PIASy, defective in promoting sumoylation, retains the ability to repress AR transcription. In addition, mutation of all the known sumoylation acceptor sites of AR does not affect the transrepression activity of PIASy on AR. Our results suggest that PIASy may repress AR by recruiting histone deacetylases, independent of its SUMO ligase activity.
Collapse
Affiliation(s)
- Mitchell Gross
- Division of Hematology-Oncology, Department of Medicine, University of California, 11-934 Factor Bldg, 10833 Le Conte Avenue, Los Angeles, CA 90095-1678, USA
| | | | | | | | | |
Collapse
|
40
|
Schwab K, Patterson LT, Aronow BJ, Luckas R, Liang HC, Potter SS. A catalogue of gene expression in the developing kidney. Kidney Int 2004; 64:1588-604. [PMID: 14531791 DOI: 10.1046/j.1523-1755.2003.00276.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although many genes with important function in kidney morphogenesis have been described, it is clear that many more remain to be discovered. Microarrays allow a more global analysis of the genetic basis of kidney organogenesis. METHODS In this study, Affymetrix U74Av2 microarrays, with over 12,000 genes represented, were used in conjunction with robust target microamplification techniques to define the gene expression profiles of the developing mouse kidney. RESULTS Microdissected murine ureteric bud and metanephric mesenchyme as well as total kidneys at embryonic day E11.5, E12.5, E13.5, E16.5, and adult were examined. This work identified, for example, 3847 genes expressed in the E12.5 kidney. Stringent comparison of the E12.5 versus adult recognized 428 genes with significantly elevated expression in the embryonic kidney. These genes fell into several functional categories, including transcription factor, growth factor, signal transduction, cell cycle, and others. In contrast, surprisingly few differences were found in the gene expression profiles of the ureteric bud and metanephric mesenchyme, with many of the differences clearly associated with the more epithelial character of the bud. In situ hybridizations were used to confirm and extend microarray-predicted expression patterns in the developing kidney. For three genes, Cdrap, Tgfbi, and Col15a1, we observed strikingly similar expression in the developing kidneys and lungs, which both undergo branching morphogenesis. CONCLUSION The results provide a gene discovery function, identifying large numbers of genes not previously associated with kidney development. This study extends developing kidney microarray analysis to the powerful genetic system of the mouse and establishes a baseline for future examination of the many available mutants. This work creates a catalogue of the gene expression states of the developing mouse kidney and its microdissected subcomponents.
Collapse
Affiliation(s)
- Kristopher Schwab
- Division of Developmental Biology, Division of Nephrology, Children's Hospital Research Foundation, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
41
|
Chen ES, Sutani T, Yanagida M. Cti1/C1D interacts with condensin SMC hinge and supports the DNA repair function of condensin. Proc Natl Acad Sci U S A 2004; 101:8078-83. [PMID: 15148393 PMCID: PMC419560 DOI: 10.1073/pnas.0307976101] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Condensin is a conserved five-subunit complex containing two SMC (structural maintenance of chromosomes) and three non-SMC subunits and plays a major role in mitotic chromosome condensation. Condensin also acts in interphase and is required for DNA repair and replication checkpoint control. We attempted to study the function of the condensin in greater detail by means of the isolation of interacting proteins with the two-hybrid system. Using the hinge domain of Cut3/SMC4 as bait, we found one Cut three-interacting (Cti) 14-kDa nuclear protein, Cti1. GST pull-down assay and immunoprecipitation supported physical interaction between Cti1 and condensin. Cti1 is similar to human C1D, which associates tightly with genomic DNA and functions to activate DNA protein kinase. SpC1D is essential for viability. The null mutant could germinate but arrest after replication, indicating that it is required for interphase growth. Importantly, an elevated dosage of spC1D suppressed the temperature, UV irradiation, and hydroxyurea sensitivity of the mutant of Cnd2, a non-SMC subunit of condensin. Upon exposure to hydroxyurea, spC1D accumulated on the nuclear chromatin, and the fraction of spC1D that was chromatin-bound increased. Cti1 is the first example of the protein that interacts with the hinge domain of SMC. Cti1 may have a supporting role for the DNA repair function of condensin.
Collapse
Affiliation(s)
- Ee Sin Chen
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
42
|
Abstract
Nuclear receptors (also known as nuclear hormone receptors) are hormone-regulated transcription factors that control many important physiological and developmental processes in animals and humans. Defects in receptor function result in disease. The diverse biological roles of these receptors reflect their surprisingly versatile transcriptional properties, with many receptors possessing the ability to both repress and activate target gene expression. These bipolar transcriptional properties are mediated through the interactions of the receptors with two distinct classes of auxiliary proteins: corepressors and coactivators. This review focuses on how corepressors work together with nuclear receptors to repress gene transcription in the normal organism and on the aberrations in this process that lead to neoplasia and endocrine disorders. The actions of coactivators and the contributions of the same corepressors to the functions of nonreceptor transcription factors are also touched on.
Collapse
Affiliation(s)
- Martin L Privalsky
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
43
|
Abstract
The thyroid hormone receptors (TR) are able to bind DNA and to repress transcription in the absence of thyroid hormone. This repression function is an important feature of TRs as aberrant silencing can lead to severe diseases and developmental abnormalities. TR utilizes different mechanisms to achieve repression of target genes including the recruitment of cofactors called corepressors and interference with the basal transcriptional machinery. Recent studies have revealed an important role of chromatin in TR silencing involving different histone modifications and the responsible enzymes. Furthermore, the transcriptional properties of TR depend on the type of the TR DNA-binding elements. This review will focus on the molecular basis of gene silencing by TR and diseases caused by aberrant functioning.
Collapse
Affiliation(s)
- Maren Eckey
- Genetic Institute, Justus-Liebig-University, Heinrich-Buff-Ring 58-62, D-35392 Giessen, Germany
| | | | | |
Collapse
|
44
|
Abstract
Retinoids regulate gene transcription by binding to the nuclear receptors, the retinoic acid (RA) receptors (RARs), and the retinoid X receptors (RXRs). RARs and RXRs are ligand-activated transcription factors for the regulation of RA-responsive genes. The actions of RARs and RXRs on gene transcription require a highly coordinated interaction with a large number of coactivators and corepressors. This review focuses on our current understanding of these coregulators known to act in concert with RARs and RXRs. The mechanisms of action of these coregulators are beginning to be uncovered and include the modification of chromatin and the recruitment of basal transcription factors. Challenges remain to understand the specificity of action of RARs and RXRs and the formation of specific transcription complexes consisting of the receptors, coregulators, and other unknown factors.
Collapse
Affiliation(s)
- Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
45
|
Ishizuka T, Lazar MA. The N-CoR/histone deacetylase 3 complex is required for repression by thyroid hormone receptor. Mol Cell Biol 2003; 23:5122-31. [PMID: 12861000 PMCID: PMC165720 DOI: 10.1128/mcb.23.15.5122-5131.2003] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 04/15/2003] [Accepted: 05/15/2003] [Indexed: 11/20/2022] Open
Abstract
Nuclear receptor corepressors (N-CoR) and silencing mediator for retinoid and thyroid receptors (SMRT) have both been implicated in thyroid hormone receptor (TR)-mediated repression. Here we show that endogenous N-CoR, TBL1, and histone deacetylase 3 (HDAC3), but not HDAC1, -2, or -4, are recruited to a stably integrated reporter gene repressed by unliganded TR as well as the orphan receptor RevErb. Unliganded TR also recruits this complex to a transiently transfected reporter, and transcriptional repression is associated with local histone deacetylation that is reversed by the presence of thyroid hormone. Knockdown of N-CoR using small interfering RNAs markedly reduces repression by the TR ligand binding domain in human 293T cells, whereas knockdown of SMRT has little effect. RevErb repression appears to involve both corepressors in this system. Knockdown of HDAC3 markedly reduces repression by both TR and RevErb, while knockdown of HDAC1 or 2 has more modest, partly nonspecific effects. Thus, HDAC3 is critical for repression by multiple nuclear receptors and the N-CoR HDAC3 complex plays a unique and necessary role in TR-mediated gene repression in human 293T cells.
Collapse
Affiliation(s)
- Takahiro Ishizuka
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
46
|
Lazar MA. Nuclear receptor corepressors. NUCLEAR RECEPTOR SIGNALING 2003; 1:e001. [PMID: 16604174 PMCID: PMC1402229 DOI: 10.1621/nrs.01001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2003] [Accepted: 06/05/2003] [Indexed: 11/20/2022]
Abstract
The ability of NR LBDs to transfer repression function to a heterologous DNA binding domain, and the cross-squelching of repression by untethered LBDs, has suggested that repression is mediated by interactions with putative cellular corepressor proteins. The yeast-two hybrid screen for protein interactors has proven to be the key to the isolation and characterization of corepressors. This short review will focus on N-CoR and SMRT.
Collapse
Affiliation(s)
- Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Penn Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Mishra SK, Mazumdar A, Vadlamudi RK, Li F, Wang RA, Yu W, Jordan VC, Santen RJ, Kumar R. MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-alpha transactivation functions. J Biol Chem 2003; 278:19209-19. [PMID: 12639951 DOI: 10.1074/jbc.m301968200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional activity of estrogen receptor-alpha (ER-alpha) is modified by coactivators, corepressors, and chromatin remodeling complexes. We have previously shown that the metastasis-associated protein-1 (MTA1), a component of histone deacetylase and nucleosome remodeling complexes, represses ER-driven transcription by recruiting histone deacetylases to the estrogen receptor element (ERE)-containing target gene chromatin in breast cancer cells. Using a yeast two-hybrid screening to clone MTA1-interacting proteins, we identified a previously uncharacterized molecule, which we named as MTA1-interacting coactivator (MICoA). Our findings suggest that estrogen signaling promotes nuclear translocation of MICoA and that MICoA interacts with MTA1 both in vitro and in vivo. MICoA binds to the C-terminal region of MTA1, whereas MTA1 binds to the N-terminal MICoA containing one nuclear receptor interaction LSRLL motif. We showed that MICoA is an ER coactivator, cooperates with other ER coactivators, stimulates ER-transactivation functions, and associates with the endogenous ER and its target gene promoter chromatin. MTA1 also repressed MICoA-mediated stimulation of ERE-mediated transcription in the presence of ER and ER variants with naturally occurring mutations, such as D351Y and K303R, and that it interfered with the association of MICoA with the ER-target gene chromatin. Because chromatin is a highly dynamic structure and because MTA1 and MICoA could be detected within the same complex, these findings suggest that MTA1 and MICoA might transmodulate functions of each other and any potential deregulation of MTA1 is likely to contribute to the functional inactivation of the ER pathway, presumably by derecruitment of MICoA from ER target promoter chromatin.
Collapse
Affiliation(s)
- Sandip K Mishra
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dostert A, Heinzel T. DNA-dependent cofactor selectivity of the glucocorticoid receptor. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2003:279-95. [PMID: 12355721 DOI: 10.1007/978-3-662-04660-9_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- A Dostert
- Chemotherapeutisches Forschungsinstitut, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60594 Frankfurt/Main, Germany.
| | | |
Collapse
|
49
|
Jordan VC. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 1. Receptor interactions. J Med Chem 2003; 46:883-908. [PMID: 12620065 DOI: 10.1021/jm020449y] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V Craig Jordan
- Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine of Northwestern University, 303 East Chicago Avenue, MS N505, Chicago, Illinois 60611, USA
| |
Collapse
|
50
|
Yang Y, Wang X, Dong T, Kim E, Lin WJ, Chang C. Identification of a novel testicular orphan receptor-4 (TR4)-associated protein as repressor for the selective suppression of TR4-mediated transactivation. J Biol Chem 2003; 278:7709-17. [PMID: 12486131 DOI: 10.1074/jbc.m207116200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although many co-activators have been identified for various nuclear receptors, relatively fewer co-repressors have been isolated and characterized. Here we report the identification of a novel testicular orphan nuclear receptor-4 (TR4)-associated protein (TRA16) that is mainly localized in the nucleus of cells as a repressor to suppress TR4-mediated transactivation. The suppression of TR4-mediated transactivation is selective because TRA16 shows only a slight influence on the transactivation of androgen receptor, glucocorticoid receptor, and progesterone receptor. Sequence analysis shows that TRA16 is a novel gene with 139 amino acids in an open reading frame with a molecular mass of 16 kDa, which did not match any published gene sequences. Mammalian two-hybrid system and co-immunoprecipitation assays both demonstrate that TRA16 can interact strongly with TR4. The electrophoretic mobility shift assay suggests that TRA16 may suppress TR4-mediated transactivation via decreased binding between the TR4 protein and the TR4 response element on the target gene(s). Furthermore, TRA16 can also block the interaction between TR4 and TR4 ligand-binding domain through interacting with TR4-DNA-binding and ligand-binding domains. These unique suppression mechanisms suggest that TRA16 may function as a novel repressor to selectively suppress the TR4-mediated transactivation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- COS Cells
- Cell Nucleus/metabolism
- Cells, Cultured
- DNA, Complementary/metabolism
- Gene Library
- Genes, Reporter
- Humans
- Immunohistochemistry
- Male
- Mice
- Microscopy, Fluorescence
- Molecular Sequence Data
- Nuclear Proteins/chemistry
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Receptors, Androgen/metabolism
- Receptors, Glucocorticoid/metabolism
- Receptors, Progesterone/metabolism
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/metabolism
- Testis/metabolism
- Tissue Distribution
- Transcriptional Activation
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Yue Yang
- George Whipple Laboratory for Cancer Research Department of Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|