1
|
Ma Z, Tian Y, Wang Y, Wang C, Wang J, Fan C. A Lateral Line Specific Mucin Involved in Cupula Growth and Vibration Detection in Zebrafish. Int J Mol Sci 2025; 26:708. [PMID: 39859421 PMCID: PMC11765562 DOI: 10.3390/ijms26020708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The lateral line system in fish is crucial for detecting water flow, which facilitates various behaviors such as prey detection, predator avoidance, and rheotaxis. The cupula, a gelatinous structure overlaying the hair cells in neuromasts, plays a key role in transmitting mechanical stimuli to hair cells. However, the molecular composition of the cupula matrix remains poorly understood. In this study, we found that Mucin-5AC, a novel family of mucin proteins, composed of 2-27 cysteine-rich domains, presents in cartilaginous and bony fishes. Using in situ hybridization and transgenic reporter assays, we demonstrated that zebrafish muc5AC is specifically expressed in the support cells of neuromasts. Knockdown of muc5AC via antisense morpholino resulted in shorter cupulae in zebrafish lateral line. Additionally, we generated zebrafish muc5AC mutants using CRISPR/Cas9 and found that cupulae in muc5AC mutants were significantly shorter than that in wild-types, but the hair cell number in neuromasts was not changed obviously. Furthermore, muc5AC mutant zebrafish larvae displayed compromised sensitivity to vibration stimuli compared to wild-type larvae. This study provides the first evidence linking the muc5AC gene to cupula development and vibration detection in zebrafish. Our findings suggest that Mucin-5AC is likely a critical component of the cupula matrix, offering an important clue to the molecular composition of the lateral line cupula in fish.
Collapse
Affiliation(s)
- Ziyue Ma
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai 201306, China; (Z.M.); (Y.T.); (Y.W.); (C.W.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yixuan Tian
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai 201306, China; (Z.M.); (Y.T.); (Y.W.); (C.W.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yingying Wang
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai 201306, China; (Z.M.); (Y.T.); (Y.W.); (C.W.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Chenghao Wang
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai 201306, China; (Z.M.); (Y.T.); (Y.W.); (C.W.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Wang
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai 201306, China; (Z.M.); (Y.T.); (Y.W.); (C.W.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chunxin Fan
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai 201306, China; (Z.M.); (Y.T.); (Y.W.); (C.W.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lingang New Area, Shanghai 201306, China
| |
Collapse
|
2
|
Arai Y, Nishio SY, Goto S, Kobayashi Y, Honkura Y, Ganaha A, Ishikawa K, Oka SI, Futagawa H, Okami M, Takada F, Nagai K, Esaki T, Okano T, Ohta Y, Masuda S, Egusa K, Teraoka M, Sugahara K, Usami SI. Novel OTOG Variants and Clinical Features of Hearing Loss in a Large Japanese Cohort. Genes (Basel) 2025; 16:60. [PMID: 39858607 PMCID: PMC11765236 DOI: 10.3390/genes16010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The OTOG gene is responsible for autosomal recessive non-syndromic sensorineural hearing loss and is assigned as DFNB18B. To date, 44 causative OTOG variants have been reported to cause non-syndromic hearing loss. However, the detailed clinical features for OTOG-associated hearing loss remain unclear. METHODS In this study, we analyzed 7065 patients with non-syndromic hearing loss (mean age 26.4 ± 22.9 years, 2988 male, 3855 female, and 222 without gender information) using massively parallel DNA sequencing for 158 target deafness genes. We identified the patients with biallelic OTOG variants and summarized the clinical characteristics. RESULTS Among the 7065 patients, we identified 14 possibly disease-causing OTOG variants in 26 probands, with 13 of the 14 variants regarded as novel. Patients with OTOG-associated hearing loss mostly showed congenital or childhood-onset hearing loss. They were considered to show non-progressive, mild-to-moderate hearing loss. There were no symptoms that accompanied the hearing loss in OTOG-associated hearing loss patients. CONCLUSIONS We confirmed non-progressive, mild-to-moderate hearing loss as the clinical characteristics of OTOG-associated hearing loss. These findings will contribute to a better understanding of the clinical features of OTOG-associated HL and will be useful in clinical practice.
Collapse
Affiliation(s)
- Yasuhiro Arai
- Department of Otorhinolaryngology-Head and Neck Surgery, Yokohama City University School of Medicine, Yokohama 236-0004, Japan;
| | - Shin-ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Shinichi Goto
- Department of Otorhinolaryngology Head and Neck Surgery, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan;
| | - Yumiko Kobayashi
- Department of Otorhinolaryngology and Head and Neck Surgery, Iwate Medical University, Morioka 028-3694, Japan;
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, Sendai 980-8575, Japan;
| | - Akira Ganaha
- Department of Otorhinolaryngology, International University of Health and Welfare, Narita Hospital, Narita 286-0124, Japan;
| | - Kotaro Ishikawa
- Department of Otolaryngology, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan;
| | - Shin-ichiro Oka
- Department of Otorhinolaryngology, International University of Health and Welfare, Mita Hospital, Tokyo 108-8329, Japan;
| | - Hiroshi Futagawa
- Department of Medical Genetics, Tokyo Metropolitan Children’s Medical Center, Tokyo 183-8561, Japan
| | - Mayuri Okami
- Department of Otorhinolaryngology, Tokai University School of Medicine, Isehara 259-1193, Japan;
| | - Fumio Takada
- Department of Medical Genetics and Genomics, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan;
| | - Kyoko Nagai
- TAKASAKI Ear Nose and Throat Clinic, Takasaki 370-0031, Japan;
| | - Tomoko Esaki
- Department of Otolaryngology, Aichi Children’s Health and Medical Center, Obu 474-8710, Japan;
| | - Takayuki Okano
- Department of Otolaryngology, Fujita Health University Bantane Hospital, Nagoya 454-8509, Japan;
| | - Yumi Ohta
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan;
| | - Shin Masuda
- Department of Pediatric Rehabilitation, Hiroshima Prefectural Hospital, Hiroshima 734-8530, Japan;
| | - Kentaro Egusa
- Department of Otorhinolaryngology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima 730-8518, Japan;
| | - Masato Teraoka
- Department of Otolaryngology, Head and Neck Surgery, Ehime University Graduate School of Medicine, Toon 791-0295, Japan;
| | - Kazuma Sugahara
- Department of Otolaryngology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan;
| | - Shin-ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| |
Collapse
|
3
|
Niazi A, Kim JA, Kim DK, Lu D, Sterin I, Park J, Park S. Microvilli control the morphogenesis of the tectorial membrane extracellular matrix. Dev Cell 2024:S1534-5807(24)00693-2. [PMID: 39657673 DOI: 10.1016/j.devcel.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The apical extracellular matrix (aECM), organized by polarized epithelial cells, exhibits complex structures. The tectorial membrane (TM), an aECM in the cochlea mediating auditory transduction, exhibits highly ordered domain-specific architecture. α-Tectorin (TECTA), a glycosylphosphatidylinositol (GPI)-anchored ECM protein, is essential for TM organization. Here, we identified that α-tectorin is released by distinct modes: proteolytic shedding by TMPRSS2 and GPI-anchor-dependent release from the microvillus tip in mice. In the medial/limbal domain, proteolytically shed α-tectorin forms dense fibers. In contrast, in the lateral/body domain, where supporting cells exhibit dense microvilli, shedding restricts α-tectorin to the microvillus tip, compartmentalizing collagen-binding sites. Tip-localized α-tectorin is released in a GPI-anchor-dependent manner to form collagen-crosslinking fibers, maintaining the spacing and parallel organization of collagen fibrils. Overall, these distinct release modes of α-tectorin determine domain-specific organization, with the microvillus coordinating release modes along its membrane to assemble the higher-order ECM architecture.
Collapse
Affiliation(s)
- Ava Niazi
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA; Neuroscience Program, University of Utah, Salt Lake City, UT, USA
| | - Ju Ang Kim
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Dong-Kyu Kim
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Di Lu
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Igal Sterin
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Joosang Park
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Sungjin Park
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Kaur N, Arora K, Radhakrishnan P, Narayanan DL, Shukla A. Intragenic homozygous duplication in HEPACAM is associated with megalencephalic leukoencephalopathy with subcortical cysts type 2A. Neurogenetics 2024; 25:85-91. [PMID: 38280046 DOI: 10.1007/s10048-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024]
Abstract
Disease-causing variants in HEPACAM are associated with megalencephalic leukoencephalopathy with subcortical cysts 2A (MLC2A, MIM# 613,925, autosomal recessive), and megalencephalic leukoencephalopathy with subcortical cysts 2B, remitting, with or without impaired intellectual development (MLC2B, MIM# 613,926, autosomal dominant). These disorders are characterised by macrocephaly, seizures, motor delay, cognitive impairment, ataxia, and spasticity. Brain magnetic resonance imaging (MRI) in these individuals shows swollen cerebral hemispheric white matter and subcortical cysts, mainly in the frontal and temporal regions. To date, 45 individuals from 39 families are reported with biallelic and heterozygous variants in HEPACAM, causing MLC2A and MLC2B, respectively. A 9-year-old male presented with developmental delay, gait abnormalities, seizures, macrocephaly, dysarthria, spasticity, and hyperreflexia. MRI revealed subcortical cysts with diffuse cerebral white matter involvement. Whole-exome sequencing (WES) in the proband did not reveal any clinically relevant single nucleotide variants. However, copy number variation analysis from the WES data of the proband revealed a copy number of 4 for exons 3 and 4 of HEPACAM. Validation and segregation were done by quantitative PCR which confirmed the homozygous duplication of these exons in the proband and carrier status in both parents. To the best of our knowledge, this is the first report of an intragenic duplication in HEPACAM causing MLC2A.
Collapse
Affiliation(s)
- Namanpreet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Khyati Arora
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- DBT-Wellcome Trust India Alliance Early Career Clinical and Public Health Research Fellow, Hyderabad, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
5
|
Parra-Perez AM, Gallego-Martinez A, Lopez-Escamez JA. An overload of missense variants in the OTOG gene may drive a higher prevalence of familial Meniere disease in the European population. Hum Genet 2024; 143:423-435. [PMID: 38519595 PMCID: PMC11043142 DOI: 10.1007/s00439-024-02643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/14/2024] [Indexed: 03/25/2024]
Abstract
Meniere disease is a complex inner ear disorder with significant familial aggregation. A differential prevalence of familial MD (FMD) has been reported, being 9-10% in Europeans compared to 6% in East Asians. A broad genetic heterogeneity in FMD has been described, OTOG being the most common mutated gene, with a compound heterozygous recessive inheritance. We hypothesize that an OTOG-related founder effect may explain the higher prevalence of FMD in the European population. Therefore, the present study aimed to compare the allele frequency (AF) and distribution of OTOG rare variants across different populations. For this purpose, the coding regions with high constraint (low density of rare variants) were retrieved in the OTOG coding sequence in Non-Finnish European (NFE).. Missense variants (AF < 0.01) were selected from a 100 FMD patient cohort, and their population AF was annotated using gnomAD v2.1. A linkage analysis was performed, and odds ratios were calculated to compare AF between NFE and other populations. Thirteen rare missense variants were observed in 13 FMD patients, with 2 variants (rs61978648 and rs61736002) shared by 5 individuals and another variant (rs117315845) shared by two individuals. The results confirm the observed enrichment of OTOG rare missense variants in FMD. Furthermore, eight variants were enriched in the NFE population, and six of them were in constrained regions. Structural modeling predicts five missense variants that could alter the otogelin stability. We conclude that several variants reported in FMD are in constraint regions, and they may have a founder effect and explain the burden of FMD in the European population.
Collapse
Affiliation(s)
- Alberto M Parra-Perez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER),, Madrid, Spain
- Faculty of Medicine and Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, The University of Sydney, 10 Westbourne St, Sydney, NSW, Australia
| | - Alvaro Gallego-Martinez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER),, Madrid, Spain
- Faculty of Medicine and Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, The University of Sydney, 10 Westbourne St, Sydney, NSW, Australia
| | - Jose A Lopez-Escamez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER),, Madrid, Spain.
- Faculty of Medicine and Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, The University of Sydney, 10 Westbourne St, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
7
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
8
|
Abstract
Orchestration of protein production and degradation and the regulation of protein lifetimes play a central role in many basic biological processes. Nearly all mammalian proteins are replenished by protein turnover in waves of synthesis and degradation. Protein lifetimes in vivo are typically measured in days, but a small number of extremely long-lived proteins (ELLPs) persist for months or even years. ELLPs are rare in all tissues but are enriched in tissues containing terminally differentiated post-mitotic cells and extracellular matrix. Consistently, emerging evidence suggests that the cochlea may be particularly enriched in ELLPs. Damage to ELLPs in specialized cell types, such as crystallin in the lens cells of the eye, causes organ failure such as cataracts. Similarly, damage to cochlear ELLPs is likely to occur with many insults, including acoustic overstimulation, drugs, anoxia, and antibiotics, and may play an underappreciated role in hearing loss. Furthermore, hampered protein degradation may contribute to acquired hearing loss. In this review, I highlight our knowledge of the lifetimes of cochlear proteins with an emphasis on ELLPs and the potential contribution that impaired cochlear protein degradation has on acquired hearing loss and the emerging relevance of ELLPs.
Collapse
Affiliation(s)
- Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
9
|
Maudoux A, Vitry S, El-Amraoui A. Vestibular Deficits in Deafness: Clinical Presentation, Animal Modeling, and Treatment Solutions. Front Neurol 2022; 13:816534. [PMID: 35444606 PMCID: PMC9013928 DOI: 10.3389/fneur.2022.816534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The inner ear is responsible for both hearing and balance. These functions are dependent on the correct functioning of mechanosensitive hair cells, which convert sound- and motion-induced stimuli into electrical signals conveyed to the brain. During evolution of the inner ear, the major changes occurred in the hearing organ, whereas the structure of the vestibular organs remained constant in all vertebrates over the same period. Vestibular deficits are highly prevalent in humans, due to multiple intersecting causes: genetics, environmental factors, ototoxic drugs, infections and aging. Studies of deafness genes associated with balance deficits and their corresponding animal models have shed light on the development and function of these two sensory systems. Bilateral vestibular deficits often impair individual postural control, gaze stabilization, locomotion and spatial orientation. The resulting dizziness, vertigo, and/or falls (frequent in elderly populations) greatly affect patient quality of life. In the absence of treatment, prosthetic devices, such as vestibular implants, providing information about the direction, amplitude and velocity of body movements, are being developed and have given promising results in animal models and humans. Novel methods and techniques have led to major progress in gene therapies targeting the inner ear (gene supplementation and gene editing), 3D inner ear organoids and reprograming protocols for generating hair cell-like cells. These rapid advances in multiscale approaches covering basic research, clinical diagnostics and therapies are fostering interdisciplinary research to develop personalized treatments for vestibular disorders.
Collapse
Affiliation(s)
- Audrey Maudoux
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
- Center for Balance Evaluation in Children (EFEE), Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert-Debré University Hospital, Paris, France
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
10
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
11
|
Roman-Naranjo P, Gallego-Martinez A, Soto-Varela A, Aran I, Moleon MDC, Espinosa-Sanchez JM, Amor-Dorado JC, Batuecas-Caletrio A, Perez-Vazquez P, Lopez-Escamez JA. Burden of Rare Variants in the OTOG Gene in Familial Meniere's Disease. Ear Hear 2021; 41:1598-1605. [PMID: 33136635 DOI: 10.1097/aud.0000000000000878] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Meniere's disease (MD) is a rare inner ear disorder characterized by sensorineural hearing loss, episodic vertigo, and tinnitus. Familial MD has been reported in 6 to 9% of sporadic cases, and few genes including FAM136A, DTNA, PRKCB, SEMA3D, and DPT have been involved in single families, suggesting genetic heterogeneity. In this study, the authors recruited 46 families with MD to search for relevant candidate genes for hearing loss in familial MD. DESIGN Exome sequencing data from MD patients were analyzed to search for rare variants in hearing loss genes in a case-control study. A total of 109 patients with MD (73 familial cases and 36 early-onset sporadic patients) diagnosed according to the diagnostic criteria defined by the Barany Society were recruited in 11 hospitals. The allelic frequencies of rare variants in hearing loss genes were calculated in individuals with familial MD. A single rare variant analysis and a gene burden analysis (GBA) were conducted in the dataset selecting 1 patient from each family. Allelic frequencies from European and Spanish reference datasets were used as controls. RESULTS A total of 5136 single-nucleotide variants in hearing loss genes were considered for single rare variant analysis in familial MD cases, but only 1 heterozygous likely pathogenic variant in the OTOG gene (rs552304627) was found in 2 unrelated families. The gene burden analysis found an enrichment of rare missense variants in the OTOG gene in familial MD. So, 15 of 46 families (33%) showed at least 1 rare missense variant in the OTOG gene, suggesting a key role in familial MD. CONCLUSIONS The authors found an enrichment of multiplex rare missense variants in the OTOG gene in familial MD. This finding supports OTOG as a relevant gene in familial MD and set the groundwork for genetic testing in MD.
Collapse
Affiliation(s)
- Pablo Roman-Naranjo
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Andrés Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Ismael Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain
| | - Maria Del Carmen Moleon
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Juan Manuel Espinosa-Sanchez
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Angel Batuecas-Caletrio
- Department of Otolaryngology, Hospital Universitario Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Paz Perez-Vazquez
- Department of Otorhinolaryngology, Hospital Universitario de Cabueñes, Gijón, Spain
| | - Jose Antonio Lopez-Escamez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Department of Surgery, Division of Otolaryngology, Universidad de Granada, Granada, Spain
| |
Collapse
|
12
|
Schade-Mann T, Münkner S, Eckrich T, Engel J. Calcium signaling in interdental cells during the critical developmental period of the mouse cochlea. Hear Res 2020; 389:107913. [PMID: 32120242 DOI: 10.1016/j.heares.2020.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 11/18/2022]
Abstract
The tectorial membrane (TM), a complex acellular structure that covers part of the organ of Corti and excites outer hair cells, is required for normal hearing. It consists of collagen fibrils and various glycoproteins, which are synthesized in embryonic and postnatal development by different cochlear cell types including the interdental cells (IDCs). At its modiolar side, the TM is fixed to the apical surfaces of IDCs, which form the covering epithelium of the spiral limbus. We performed confocal membrane imaging and Ca2+ imaging in IDCs of the developing mouse cochlea from birth to postnatal day 18 (P18). Using the fluorescent membrane markers FM 4-64 and CellMask™ Deep Red on explanted whole-mount cochlear epithelium, we identified the morphology of IDCs at different z-levels of the spiral limbus. Ca2+ imaging of Fluo-8 AM-loaded cochlear epithelia revealed spontaneous intracellular Ca2+ transients in IDCs at P0/1, P4/5, and P18. Their relative frequency was lowest on P0/1, increased by a factor of 12.5 on P4/5 and decreased to twice the initial value on P18. At all three ages, stimulation of IDCs with the trinucleotides ATP and UTP at 1 and 10 μM elicited Ca2+ transients of varying amplitude and shape. Before the onset of hearing, IDCs responded with robust Ca2+ oscillations. At P18, after the onset of hearing, ATP stimulation either caused Ca2+ oscillations or an initial Ca2+ peak followed by a plateau while the UTP response was unchanged from that at pre-hearing stage. Parameters of spontaneous and nucleotide-evoked Ca2+ transients such as amplitude, decay time and duration were markedly reduced during cochlear development, whereas the kinetics of the Ca2+ rise did not show relevant changes. Whether low-frequency spontaneous Ca2+ transients are necessary for the formation and maintenance of the tectorial membrane e.g. by regulating gene transcription needs to be elucidated in further studies.
Collapse
Affiliation(s)
- Thore Schade-Mann
- Dept. of Biophysics & CIPMM, Hearing Research, Saarland University, Homburg, Germany; Department of Otolaryngology, Head and Neck Surgery, Tübingen University Medical Centre, Germany
| | - Stefan Münkner
- Dept. of Biophysics & CIPMM, Hearing Research, Saarland University, Homburg, Germany
| | - Tobias Eckrich
- Dept. of Biophysics & CIPMM, Hearing Research, Saarland University, Homburg, Germany
| | - Jutta Engel
- Dept. of Biophysics & CIPMM, Hearing Research, Saarland University, Homburg, Germany.
| |
Collapse
|
13
|
Otogelin, otogelin-like, and stereocilin form links connecting outer hair cell stereocilia to each other and the tectorial membrane. Proc Natl Acad Sci U S A 2019; 116:25948-25957. [PMID: 31776257 DOI: 10.1073/pnas.1902781116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The function of outer hair cells (OHCs), the mechanical actuators of the cochlea, involves the anchoring of their tallest stereocilia in the tectorial membrane (TM), an acellular structure overlying the sensory epithelium. Otogelin and otogelin-like are TM proteins related to secreted epithelial mucins. Defects in either cause the DFNB18B and DFNB84B genetic forms of deafness, respectively, both characterized by congenital mild-to-moderate hearing impairment. We show here that mutant mice lacking otogelin or otogelin-like have a marked OHC dysfunction, with almost no acoustic distortion products despite the persistence of some mechanoelectrical transduction. In both mutants, these cells lack the horizontal top connectors, which are fibrous links joining adjacent stereocilia, and the TM-attachment crowns coupling the tallest stereocilia to the TM. These defects are consistent with the previously unrecognized presence of otogelin and otogelin-like in the OHC hair bundle. The defective hair bundle cohesiveness and the absence of stereociliary imprints in the TM observed in these mice have also been observed in mutant mice lacking stereocilin, a model of the DFNB16 genetic form of deafness, also characterized by congenital mild-to-moderate hearing impairment. We show that the localizations of stereocilin, otogelin, and otogelin-like in the hair bundle are interdependent, indicating that these proteins interact to form the horizontal top connectors and the TM-attachment crowns. We therefore suggest that these 2 OHC-specific structures have shared mechanical properties mediating reaction forces to sound-induced shearing motion and contributing to the coordinated displacement of stereocilia.
Collapse
|
14
|
Ehrlich DE, Schoppik D. A primal role for the vestibular sense in the development of coordinated locomotion. eLife 2019; 8:e45839. [PMID: 31591962 PMCID: PMC6783269 DOI: 10.7554/elife.45839] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Mature locomotion requires that animal nervous systems coordinate distinct groups of muscles. The pressures that guide the development of coordination are not well understood. To understand how and why coordination might emerge, we measured the kinematics of spontaneous vertical locomotion across early development in zebrafish (Danio rerio) . We found that zebrafish used their pectoral fins and bodies synergistically during upwards swims. As larvae developed, they changed the way they coordinated fin and body movements, allowing them to climb with increasingly stable postures. This fin-body synergy was absent in vestibular mutants, suggesting sensed imbalance promotes coordinated movements. Similarly, synergies were systematically altered following cerebellar lesions, identifying a neural substrate regulating fin-body coordination. Together these findings link the vestibular sense to the maturation of coordinated locomotion. Developing zebrafish improve postural stability by changing fin-body coordination. We therefore propose that the development of coordinated locomotion is regulated by vestibular sensation.
Collapse
Affiliation(s)
- David E Ehrlich
- Department of OtolaryngologyNew York University School of MedicineNew YorkUnited States
- Department of Neuroscience & PhysiologyNew York University School of MedicineNew YorkUnited States
- Neuroscience InstituteNew York University School of MedicineNew YorkUnited States
| | - David Schoppik
- Department of OtolaryngologyNew York University School of MedicineNew YorkUnited States
- Department of Neuroscience & PhysiologyNew York University School of MedicineNew YorkUnited States
- Neuroscience InstituteNew York University School of MedicineNew YorkUnited States
| |
Collapse
|
15
|
Donner I, Katainen R, Kaasinen E, Aavikko M, Sipilä LJ, Pukkala E, Aaltonen LA. Candidate susceptibility variants in angioimmunoblastic T-cell lymphoma. Fam Cancer 2019; 18:113-119. [PMID: 30097855 DOI: 10.1007/s10689-018-0099-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of peripheral T-cell lymphoma with a poor prognosis: the 5-year survival rate is approximately 30%. Somatic driver mutations have been found in TET2, IDH2, DNMT3A, RHOA, FYN, PLCG1, and CD28, whereas germline susceptibility to AITL has to our knowledge not been studied. The homogenous Finnish population is well suited for studies on genetic predisposition. Here, we performed an exome-wide rare variant analysis in 23 AITL patients. No germline mutations were found in the driver genes, implying that they are not frequently involved in genetic AITL predisposition. Potentially pathogenic variants present in at least two patients and showing significant (p < 0.01) enrichment in our sample set were found in ten genes: POLK, PRKCB, ZNF676, PRRC2B, PCDHGB6, GNL3L, TTC36, OTOG, OSGEPL1, and RASSF9. The most significantly enriched variants, causing p.Lys469Ter in a splice variant of POLK and p.Pro588His in PRKCB, are intriguing candidates as Polk deficient mice display a spontaneous mutator phenotype, whereas PRKCB was recently shown to be somatically mutated in 33% of another peripheral T-cell lymphoma, adult T-cell lymphoma. If validated, our findings would provide new insight into the pathogenesis of AITL, as well as tools for early detection in susceptible individuals.
Collapse
Affiliation(s)
- Iikki Donner
- Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eevi Kaasinen
- Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mervi Aavikko
- Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lauri J Sipilä
- Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Pukkala
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland.,Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Kim BJ, Kim DK, Han JH, Oh J, Kim AR, Lee C, Kim NK, Park HR, Kim MY, Lee S, Lee S, Oh DY, Park WY, Park S, Choi BY. Clarification of glycosylphosphatidylinositol anchorage of OTOANCORIN and human OTOA variants associated with deafness. Hum Mutat 2019; 40:525-531. [PMID: 30740825 DOI: 10.1002/humu.23719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/23/2019] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Otoancorin (OTOA), encoded by OTOA, is required for the development of the tectorial membrane in the inner ear. Mutations in this gene cause nonsyndromic hearing loss (DFNB22). The molecular mechanisms underlying most DFNB22 remain poorly understood. Disruption of glycosylphosphatidylinositol (GPI) anchorage has been assumed to be the pathophysiology mandating experimental validation. From a Korean deaf family, we identified two trans OTOA variants (c.1320 + 5 G > C and p.Gln589ArgfsX55 [NM_144672.3]) . The pathogenic potential of c.1320 + 5 G > C was confirmed by a minigene splicing assay. To experimentally determine the GPI anchorage, wild-type (WT) and mutant OTOA harboring p.Gln589ArgfsX55 were expressed in HEK293T cells. The mutant OTOA with p.Gln589ArgfsX55 resulted in an uncontrolled release of OTOA into the medium in contrast with phosphatidylinositol-specific phospholipase C-induced controlled release of WT OTOA from the cell surface. Together, the results of this reverse translational study confirmed GPI-anchorage of OTOA and showed that downstream sequences from the 589th amino acid are critical for GPI-anchorage.
Collapse
Affiliation(s)
- Bong Jik Kim
- Department of Otolaryngology - Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, South Korea.,Department of Otorhinolaryngology - Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Dong-Kyu Kim
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jin Hee Han
- Department of Otorhinolaryngology - Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Jayoung Oh
- Department of Otorhinolaryngology - Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Ah Reum Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Nayoung Kd Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Hye-Rim Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Min Young Kim
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sejoon Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Seungmin Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Doo Yi Oh
- Department of Otorhinolaryngology - Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Sungjin Park
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah
| | - Byung Yoon Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| |
Collapse
|
17
|
DiStefano MT, Hemphill SE, Cushman BJ, Bowser MJ, Hynes E, Grant AR, Siegert RK, Oza AM, Gonzalez MA, Amr SS, Rehm HL, Abou Tayoun AN. Curating Clinically Relevant Transcripts for the Interpretation of Sequence Variants. J Mol Diagn 2018; 20:789-801. [PMID: 30096381 PMCID: PMC6204605 DOI: 10.1016/j.jmoldx.2018.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/20/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022] Open
Abstract
Variant interpretation depends on accurate annotations using biologically relevant transcripts. We have developed a systematic strategy for designating primary transcripts and have applied it to 109 hearing loss-associated genes that were divided into three categories. Category 1 genes (n = 38) had a single transcript; category 2 genes (n = 33) had multiple transcripts, but a single transcript was sufficient to represent all exons; and category 3 genes (n = 38) had multiple transcripts with unique exons. Transcripts were curated with respect to gene expression reported in the literature and the Genotype-Tissue Expression Project. In addition, high-frequency loss-of-function variants in the Genome Aggregation Database and disease-causing variants in ClinVar and the Human Gene Mutation Database across the 109 genes were queried. These data were used to classify exons as clinically significant, insignificant, or of uncertain significance. Interestingly, 6% of all exons, containing 124 reportedly disease-causing variants, were of uncertain significance. Finally, we used exon-level next-generation sequencing quality metrics generated at two clinical laboratories and identified a total of 43 technically challenging exons in 20 different genes that had inadequate coverage and/or homology issues that might lead to false-variant calls. We have demonstrated that transcript analysis plays a critical role in accurate clinical variant interpretation.
Collapse
Affiliation(s)
- Marina T DiStefano
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Sarah E Hemphill
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Brandon J Cushman
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Mark J Bowser
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Elizabeth Hynes
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Andrew R Grant
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Rebecca K Siegert
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Andrea M Oza
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Michael A Gonzalez
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sami S Amr
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Heidi L Rehm
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Medical and Population Genetics, The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Ahmad N Abou Tayoun
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Genetics Department, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.
| |
Collapse
|
18
|
Goodyear RJ, Richardson GP. Structure, Function, and Development of the Tectorial Membrane: An Extracellular Matrix Essential for Hearing. Curr Top Dev Biol 2018; 130:217-244. [PMID: 29853178 DOI: 10.1016/bs.ctdb.2018.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The tectorial membrane is an extracellular matrix that lies over the apical surface of the auditory epithelia in the inner ears of reptiles, birds, and mammals. Recent studies have shown it is composed of a small set of proteins, some of which are only produced at high levels in the ear and many of which are the products of genes that, when mutated, cause nonsyndromic forms of human hereditary deafness. Quite how the proteins of the tectorial membrane are assembled within the lumen of the inner ear to form a structure that is precisely regulated in its size and physical properties along the length of a tonotopically organized hearing organ is a question that remains to be fully answered. In this brief review we will summarize what is known thus far about the structure, protein composition, and function of the tectorial membrane in birds and mammals, describe how the tectorial membrane develops, and discuss major events that have occurred during the evolution of this extracellular matrix.
Collapse
Affiliation(s)
- Richard J Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
19
|
Functional characterization of the mucus barrier on the Xenopus tropicalis skin surface. Proc Natl Acad Sci U S A 2018; 115:726-731. [PMID: 29311327 PMCID: PMC5789918 DOI: 10.1073/pnas.1713539115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The production of mucus helps to trap pathogens, preventing their entry into the body, while it also acts as an interface for many important physiological events (e.g., gas and nutrient exchange). In mammalian models, a detailed study of mucus and its component parts is hindered by the difficulty in accessing these internally located tissues. The Xenopus tropicalis tadpole skin offers a complementary nonmammalian model system to study mucosal epithelia. Using this, we identify a mucin, similar to human mucins, that protects against infection. This system offers an experimentally tractable approach to study mucins and the mucus barrier and their role in conferring protection at mucosal surfaces. Mucosal surfaces represent critical routes for entry and exit of pathogens. As such, animals have evolved strategies to combat infection at these sites, in particular the production of mucus to prevent attachment and to promote subsequent movement of the mucus/microbe away from the underlying epithelial surface. Using biochemical, biophysical, and infection studies, we have investigated the host protective properties of the skin mucus barrier of the Xenopus tropicalis tadpole. Specifically, we have characterized the major structural component of the barrier and shown that it is a mucin glycoprotein (Otogelin-like or Otogl) with similar sequence, domain organization, and structural properties to human gel-forming mucins. This mucin forms the structural basis of a surface barrier (∼6 μm thick), which is depleted through knockdown of Otogl. Crucially, Otogl knockdown leads to susceptibility to infection by the opportunistic pathogen Aeromonas hydrophila. To more accurately reflect its structure, tissue localization, and function, we have renamed Otogl as Xenopus Skin Mucin, or MucXS. Our findings characterize an accessible and tractable model system to define mucus barrier function and host–microbe interactions.
Collapse
|
20
|
Jain RK, Pingle SK, Tumane RG, Thakkar LR, Jawade AA, Barapatre A, Trivedi M. Cochlear Proteins Associated with Noise-induced Hearing Loss: An Update. Indian J Occup Environ Med 2018; 22:60-73. [PMID: 30319226 PMCID: PMC6176698 DOI: 10.4103/ijoem.ijoem_43_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is one of the major occupational disease that has influence on the quality of life of mining workers. Several reports suggest NIHL is attributed to noise exposure at workplace and approximately 16% of hearing loss is due to it. NIHL occurs as a result of exposure to high-level noise (>85 dB) in the workplace. Noise disrupts proteins present in the micromachinery of the ear that is required for mechano-electric transduction of sound waves. High-level noise exposure can lead to hearing impairment owing to mechanical and metabolic exhaustion in cochlea, the major organ responsible for resilience of sound. Several key proteins of cochlea include tectorial membrane, inner hair cells, outer hair cells, and stereocilia are damaged due to high-level noise exposure. Numerous studies conducted in animals have shown cochlear proteins involvement in NIHL, but the pertinent literature remains limited in humans. Detection of proteins and pathways perturbed within the micromachinery of the ear after excessive sound induction leads toward the early identification of hearing loss. The situation insisted to present this review as an update on cochlear proteins associated with NIHL after an extensive literature search using several electronic databases which help to understand the pathophysiology of NIHL.
Collapse
Affiliation(s)
- Ruchika K Jain
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Shubhangi K Pingle
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Rajani G Tumane
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Lucky R Thakkar
- National Centre for Microbial Resources, National Centre for Cell Science, University of Pune Campus, Pune, Maharashtra, India
| | - Aruna A Jawade
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Anand Barapatre
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Minal Trivedi
- B. K. Birla College of Science, Arts & Commerce (Autonomous), Kalyan, Maharashtra, India
| |
Collapse
|
21
|
Goodyear RJ, Lu X, Deans MR, Richardson GP. A tectorin-based matrix and planar cell polarity genes are required for normal collagen-fibril orientation in the developing tectorial membrane. Development 2017; 144:3978-3989. [PMID: 28935705 PMCID: PMC5702074 DOI: 10.1242/dev.151696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
The tectorial membrane is an extracellular structure of the cochlea. It develops on the surface of the auditory epithelium and contains collagen fibrils embedded in a tectorin-based matrix. The collagen fibrils are oriented radially with an apically directed slant - a feature considered crucial for hearing. To determine how this pattern is generated, collagen-fibril formation was examined in mice lacking a tectorin-based matrix, epithelial cilia or the planar cell polarity genes Vangl2 and Ptk7 In wild-type mice, collagen-fibril bundles appear within a tectorin-based matrix at E15.5 and, as fibril number rapidly increases, become co-aligned and correctly oriented. Epithelial width measurements and data from Kif3acKO mice suggest, respectively, that radial stretch and cilia play little, if any, role in determining normal collagen-fibril orientation; however, evidence from tectorin-knockout mice indicates that confinement is important. PRICKLE2 distribution reveals the planar cell polarity axis in the underlying epithelium is organised along the length of the cochlea and, in mice in which this polarity is disrupted, the apically directed collagen offset is no longer observed. These results highlight the importance of the tectorin-based matrix and epithelial signals for precise collagen organisation in the tectorial membrane.
Collapse
Affiliation(s)
- Richard J Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22098, USA
| | - Michael R Deans
- Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
22
|
Delayed Otolith Development Does Not Impair Vestibular Circuit Formation in Zebrafish. J Assoc Res Otolaryngol 2017; 18:415-425. [PMID: 28332011 DOI: 10.1007/s10162-017-0617-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 10/19/2022] Open
Abstract
What is the role of normally patterned sensory signaling in development of vestibular circuits? For technical reasons, including the difficulty in depriving animals of vestibular inputs, this has been a challenging question to address. Here we take advantage of a vestibular-deficient zebrafish mutant, rock solo AN66 , in order to examine whether normal sensory input is required for formation of vestibular-driven postural circuitry. We show that the rock solo AN66 mutant is a splice site mutation in the secreted glycoprotein otogelin (otog), which we confirm through both whole genome sequencing and complementation with an otog early termination mutant. Using confocal microscopy, we find that elements of postural circuits are anatomically normal in rock solo AN66 mutants, including hair cells, vestibular ganglion neurons, and vestibulospinal neurons. Surprisingly, the balance and postural deficits that are readily apparent in younger larvae disappear around 2 weeks of age. We demonstrate that this behavioral recovery follows the delayed development of the anterior (utricular) otolith, which appears around 14 days post-fertilization (dpf), compared to 1 dpf in WT. These findings indicate that utricular signaling is not required for normal structural development of the inner ear and vestibular nucleus neurons. Furthermore, despite the otolith's developmental delay until well after postural behaviors normally appear, downstream circuits can drive righting reflexes within ∼1-2 days of its arrival, indicating that vestibular circuit wiring is not impaired by a delay in patterned activity. The functional recovery of postural behaviors may shed light on why humans with mutations in otog exhibit only subclinical vestibular deficits.
Collapse
|
23
|
Weigele J, Franz-Odendaal TA, Hilbig R. Formation of the inner ear during embryonic and larval development of the cichlid fish (Oreochromis mossambicus). Connect Tissue Res 2017; 58:172-195. [PMID: 27268076 DOI: 10.1080/03008207.2016.1198337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The vertebrate inner ear comprises mineralized elements, namely the otoliths (fishes) or the otoconia (mammals). These elements serve vestibular and auditory functions. The formation of otoconia and otoliths is described as a stepwise process, and in fish, it is generally divided into an aggregation of the otolith primordia from precursor particles and then a growth process that continues throughout life. RESULTS This study was undertaken to investigate the complex transition between these two steps. Therefore, we investigated the developmental profiles of several inner ear structural and calcium-binding proteins during the complete embryonic and larval development of the cichlid fish Oreochromis mossambicus in parallel with the morphology of inner ear and especially otoliths. We show that the formation of otoliths is a highly regulated temporal and spatial process which takes place throughout embryonic and larval development. CONCLUSIONS Based on our data we defined eight phases of otolith differentiation from the primordia to the mature otolith.
Collapse
Affiliation(s)
- Jochen Weigele
- a Zoological Institute , University of Stuttgart-Hohenheim , Stuttgart , Germany.,b Department of Biology , Mount Saint Vincent University , Halifax , Nova Scotia , Canada
| | | | - Reinhard Hilbig
- a Zoological Institute , University of Stuttgart-Hohenheim , Stuttgart , Germany
| |
Collapse
|
24
|
BODIPY-Conjugated Xyloside Primes Fluorescent Glycosaminoglycans in the Inner Ear of Opsanus tau. J Assoc Res Otolaryngol 2016; 17:525-540. [PMID: 27619213 DOI: 10.1007/s10162-016-0585-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022] Open
Abstract
We report on a new xyloside conjugated to BODIPY, BX and its utility to prime fluorescent glycosaminoglycans (BX-GAGs) within the inner ear in vivo. When BX is administered directly into the endolymphatic space of the oyster toadfish (Opsanus tau) inner ear, fluorescent BX-GAGs are primed and become visible in the sensory epithelia of the semicircular canals, utricle, and saccule. Confocal and 2-photon microscopy of vestibular organs fixed 4 h following BX treatment, reveal BX-GAGs constituting glycocalyces that envelop hair cell kinocilium, nerve fibers, and capillaries. In the presence of GAG-specific enzymes, the BX-GAG signals are diminished, suggesting that chondroitin sulfates are the primary GAGs primed by BX. Results are consistent with similar click-xylosides in CHO cell lines, where the xyloside enters the Golgi and preferentially initiates chondroitin sulfate B production. Introduction of BX produces a temporary block of hair cell mechanoelectrical transduction (MET) currents in the crista, reduction in background discharge rate of afferent neurons, and a reduction in sensitivity to physiological stimulation. A six-degree-of-freedom pharmacokinetic mathematical model has been applied to interpret the time course and spatial distribution of BX and BX-GAGs. Results demonstrate a new optical approach to study GAG biology in the inner ear, for tracking synthesis and localization in real time.
Collapse
|
25
|
Weigele J, Franz-Odendaal TA, Hilbig R. Not All Inner Ears are the Same: Otolith Matrix Proteins in the Inner Ear of Sub-Adult Cichlid Fish,Oreochromis Mossambicus, Reveal Insights Into the Biomineralization Process. Anat Rec (Hoboken) 2015; 299:234-45. [DOI: 10.1002/ar.23289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Jochen Weigele
- Zoological Institute, University of Stuttgart-Hohenheim; Garbenstrasse 30 Stuttgart 73734 Germany
- Department of Biology; Mount Saint Vincent University; 166 Bedford Highway Halifax Nova Scotia B3M 2J6 Canada
| | - Tamara A. Franz-Odendaal
- Department of Biology; Mount Saint Vincent University; 166 Bedford Highway Halifax Nova Scotia B3M 2J6 Canada
| | - Reinhard Hilbig
- Zoological Institute, University of Stuttgart-Hohenheim; Garbenstrasse 30 Stuttgart 73734 Germany
| |
Collapse
|
26
|
El Hakam Kamareddin C, Magnol L, Blanquet V. A new Otogelin ENU mouse model for autosomal-recessive nonsyndromic moderate hearing impairment. SPRINGERPLUS 2015; 4:730. [PMID: 26636018 PMCID: PMC4659790 DOI: 10.1186/s40064-015-1537-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023]
Abstract
Approximately 10 % of the population worldwide suffers from hearing loss (HL) and about 60 % of persons with early onset HL have hereditary hearing loss due to genetic mutations. Highly efficient mutagenesis in mice with the chemical mutagen, ethylnitrosourea (ENU), associated with relevant phenotypic tools represents a powerful approach in producing mouse models for hearing impairment. A benefit of this strategy is to generate alleles to form a series revealing the full spectrum of gene function in vivo. It can also mimic the range of human mutations and polymorphisms for HL. In the course of a genome ENU mutagenesis program, we selected a new mouse model for hearing defect based on a dysmorphological screen. We identified by gene mapping the mutation responsible for this phenotype and characterized it at the histological level of the inner ear and evaluated the vestibule by following the recommendations of the standard operating procedures, IMPReSS. We have identified and characterized a new recessive allele of the otogelin gene, Otogvbd/vbd, due to a homozygous one base pair substitution at the splice donor site of intron 29. This mutation leads to a frame-shift and a premature stop codon. We observed a decrease in the amount of sensory cells in the maculae of Otogvbd/vbd mice as well as an apparent drastically decreased density to almost absence of the otoconial membrane. Compared to Otogtm1Prs and twister, the two other existing otogelin alleles, the detailed analysis of Otogvbd/vbd revealed that these mice share some common behavioural characteristics either with Otogtm1Prs or twister whereas the fine vestibular phenotype and the hearing defect are different. Our results emphasize the importance of detecting and characterizing a new allele of a gene in order to get comprehensive information about the gene function.
Collapse
Affiliation(s)
- Carole El Hakam Kamareddin
- Univ. Limoges, INRA, UMR 1061, Unité de Génétique Moléculaire Animale, Faculté des Sciences et Techniques, 123, Avenue Albert Thomas, 87060 Limoges, France
| | - Laetitia Magnol
- Univ. Limoges, INRA, UMR 1061, Unité de Génétique Moléculaire Animale, Faculté des Sciences et Techniques, 123, Avenue Albert Thomas, 87060 Limoges, France
| | - Veronique Blanquet
- Univ. Limoges, INRA, UMR 1061, Unité de Génétique Moléculaire Animale, Faculté des Sciences et Techniques, 123, Avenue Albert Thomas, 87060 Limoges, France
| |
Collapse
|
27
|
Gu X, Sun S, Guo L, Lu X, Mei H, Lai C, Li H. Novel biallelic OTOGL mutations in a Chinese family with moderate non-syndromic sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2015; 79:817-820. [PMID: 25829320 DOI: 10.1016/j.ijporl.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Autosomal recessive non-syndromic hearing loss (DFNB) is a genetically heterogeneous disorder. So far, 55 pathogenic genes have been identified. In this study, we aim to characterize the clinical feature and the genetic cause of a Chinese DFNB family. METHODS Whole exome sequencing was performed on the proband. Co-segregation between the hearing loss phenotype and the potential causative mutations was verified in all family members by Sanger sequencing. RESULTS Audiologic profiles of the affected family members revealed a moderate hearing loss mainly affecting higher frequencies. Novel biallelic OTOGL mutations, c.6467C>A (p.Ser2156*) and c.6474dupA (p.Ser2159Metfs*2), were identified in this family segregating with the childhood onset DFNB. Both mutations were predicted to cause either nonsense mediated mRNA decay or premature terminations of protein synthesis. CONCLUSIONS We identified novel biallelic OTOGL mutations in a Chinese DFNB family. To the best of our knowledge, this is the first report of OTOGL mutations causing hearing loss in the East Asian population. Our finding enriched the mutation spectrum of OTOGL associated hearing loss.
Collapse
Affiliation(s)
- Xiaodong Gu
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Shan Sun
- Research Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Luo Guo
- Research Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Xiaoling Lu
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Honglin Mei
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Chuijin Lai
- Research Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China; Institute of Stem Cell and Regeneration Medicine, Institutions of Biomedical Science, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China.
| |
Collapse
|
28
|
Stooke-Vaughan GA, Obholzer ND, Baxendale S, Megason SG, Whitfield TT. Otolith tethering in the zebrafish otic vesicle requires Otogelin and α-Tectorin. Development 2015; 142:1137-45. [PMID: 25758224 PMCID: PMC4360185 DOI: 10.1242/dev.116632] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Otoliths are biomineralised structures important for balance and hearing in fish. Their counterparts in the mammalian inner ear, otoconia, have a primarily vestibular function. Otoliths and otoconia form over sensory maculae and are attached to the otolithic membrane, a gelatinous extracellular matrix that provides a physical coupling between the otolith and the underlying sensory epithelium. In this study, we have identified two proteins required for otolith tethering in the zebrafish ear, and propose that there are at least two stages to this process: seeding and maintenance. The initial seeding step, in which otolith precursor particles tether directly to the tips of hair cell kinocilia, fails to occur in the einstein (eis) mutant. The gene disrupted in eis is otogelin (otog); mutations in the human OTOG gene have recently been identified as causative for deafness and vestibular dysfunction (DFNB18B). At later larval stages, maintenance of otolith tethering to the saccular macula is dependent on tectorin alpha (tecta) function, which is disrupted in the rolling stones (rst) mutant. α-Tectorin (Tecta) is a major constituent of the tectorial membrane in the mammalian cochlea. Mutations in the human TECTA gene can cause either dominant (DFNA8/12) or recessive (DFNB21) forms of deafness. Our findings indicate that the composition of extracellular otic membranes is highly conserved between mammals and fish, reinforcing the view that the zebrafish is an excellent model system for the study of deafness and vestibular disease.
Collapse
Affiliation(s)
| | - Nikolaus D Obholzer
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Sarah Baxendale
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Tanya T Whitfield
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
29
|
Abstract
OBJECTIVES Recently, OTOG and OTOGL were identified as human deafness genes. Currently, only four families are known to have autosomal recessive hearing loss based on mutations in these genes. Because the two genes code for proteins (otogelin and otogelin-like) that are strikingly similar in structure and localization in the inner ear, this study is focused on characterizing and comparing the hearing loss caused by mutations in these genes. DESIGN To evaluate this type of hearing, an extensive set of audiometric and vestibular examinations was performed in the 13 patients from four families. RESULTS All families show a flat to downsloping configuration of the audiogram with mild to moderate sensorineural hearing loss. Speech recognition scores remain good (>90%). Hearing loss is not significantly different in the four families and the psychophysical test results also do not differ among the families. Vestibular examinations show evidence for vestibular hyporeflexia. CONCLUSION Because otogelin and otogelin-like are localized in the tectorial membrane, one could expect a cochlear conductive hearing loss, as was previously shown in DFNA13 (COL11A2) and DFNA8/12 (TECTA) patients. Results of psychophysical examinations, however, do not support this. Furthermore, the authors conclude that there are no phenotypic differences between hearing loss based on mutations in OTOG or OTOGL. This phenotype description will facilitate counseling of hearing loss caused by defects in either of these two genes.
Collapse
|
30
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014; 244:239-53. [PMID: 25255879 DOI: 10.1002/dvdy.24195] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
31
|
Loss of the tectorial membrane protein CEACAM16 enhances spontaneous, stimulus-frequency, and transiently evoked otoacoustic emissions. J Neurosci 2014; 34:10325-38. [PMID: 25080593 DOI: 10.1523/jneurosci.1256-14.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
α-Tectorin (TECTA), β-tectorin (TECTB), and carcinoembryonic antigen-related cell adhesion molecule 16 (CEACAM) are secreted glycoproteins that are present in the tectorial membrane (TM), an extracellular structure overlying the hearing organ of the inner ear, the organ of Corti. Previous studies have shown that TECTA and TECTB are both required for formation of the striated-sheet matrix within which collagen fibrils of the TM are imbedded and that CEACAM16 interacts with TECTA. To learn more about the structural and functional significance of CEACAM16, we created a Ceacam16-null mutant mouse. In the absence of CEACAM16, TECTB levels are reduced, a clearly defined striated-sheet matrix does not develop, and Hensen's stripe, a prominent feature in the basal two-thirds of the TM in WT mice, is absent. CEACAM16 is also shown to interact with TECTB, indicating that it may stabilize interactions between TECTA and TECTB. Although brain-stem evoked responses and distortion product otoacoustic emissions are, for most frequencies, normal in young mice lacking CEACAM16, stimulus-frequency and transiently evoked emissions are larger. We also observed spontaneous otoacoustic emissions (SOAEs) in 70% of the homozygous mice. This incidence is remarkable considering that <3% of WT controls have SOAEs. The predominance of SOAEs >15 kHz correlates with the loss of Hensen's stripe. Results from mice lacking CEACAM16 are consistent with the idea that the organ of Corti evolved to maximize the gain of the cochlear amplifier while preventing large oscillations. Changes in TM structure appear to influence the balance between energy generation and dissipation such that the system becomes unstable.
Collapse
|
32
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014. [PMID: 25255879 DOI: 10.1002/dvdy.24195(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
33
|
Genetics of auditory mechano-electrical transduction. Pflugers Arch 2014; 467:49-72. [PMID: 24957570 PMCID: PMC4281357 DOI: 10.1007/s00424-014-1552-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 12/29/2022]
Abstract
The hair bundles of cochlear hair cells play a central role in the auditory mechano-electrical transduction (MET) process. The identification of MET components and of associated molecular complexes by biochemical approaches is impeded by the very small number of hair cells within the cochlea. In contrast, human and mouse genetics have proven to be particularly powerful. The study of inherited forms of deafness led to the discovery of several essential proteins of the MET machinery, which are currently used as entry points to decipher the associated molecular networks. Notably, MET relies not only on the MET machinery but also on several elements ensuring the proper sound-induced oscillation of the hair bundle or the ionic environment necessary to drive the MET current. Here, we review the most significant advances in the molecular bases of the MET process that emerged from the genetics of hearing.
Collapse
|
34
|
Dubaissi E, Rousseau K, Lea R, Soto X, Nardeosingh S, Schweickert A, Amaya E, Thornton DJ, Papalopulu N. A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis. Development 2014; 141:1514-25. [PMID: 24598166 PMCID: PMC3957375 DOI: 10.1242/dev.102426] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/02/2014] [Indexed: 02/05/2023]
Abstract
The larval epidermis of Xenopus is a bilayered epithelium, which is an excellent model system for the study of the development and function of mucosal and mucociliary epithelia. Goblet cells develop in the outer layer while multiciliated cells and ionocytes sequentially intercalate from the inner to the outer layer. Here, we identify and characterise a fourth cell type, the small secretory cell (SSC). We show that the development of these cells is controlled by the transcription factor Foxa1 and that they intercalate into the outer layer of the epidermis relatively late, at the same time as embryonic hatching. Ultrastructural and molecular characterisation shows that these cells have an abundance of large apical secretory vesicles, which contain highly glycosylated material, positive for binding of the lectin, peanut agglutinin, and an antibody to the carbohydrate epitope, HNK-1. By specifically depleting SSCs, we show that these cells are crucial for protecting the embryo against bacterial infection. Mass spectrometry studies show that SSCs secrete a glycoprotein similar to Otogelin, which may form the structural component of a mucus-like protective layer, over the surface of the embryo, and several potential antimicrobial substances. Our study completes the characterisation of all the epidermal cell types in the early tadpole epidermis and reinforces the suitability of this system for the in vivo study of complex epithelia, including investigation of innate immune defences.
Collapse
Affiliation(s)
- Eamon Dubaissi
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Karine Rousseau
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Robert Lea
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- The Healing Foundation Centre, University of Manchester, Manchester M13 9PT, UK
| | - Ximena Soto
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Siddarth Nardeosingh
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Enrique Amaya
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- The Healing Foundation Centre, University of Manchester, Manchester M13 9PT, UK
| | - David J. Thornton
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
35
|
Legan PK, Goodyear RJ, Morín M, Mencia A, Pollard H, Olavarrieta L, Korchagina J, Modamio-Hoybjor S, Mayo F, Moreno F, Moreno-Pelayo MA, Richardson GP. Three deaf mice: mouse models for TECTA-based human hereditary deafness reveal domain-specific structural phenotypes in the tectorial membrane. Hum Mol Genet 2013; 23:2551-68. [PMID: 24363064 PMCID: PMC3990158 DOI: 10.1093/hmg/ddt646] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tecta is a modular, non-collagenous protein of the tectorial membrane (TM), an extracellular matrix of the cochlea essential for normal hearing. Missense mutations in Tecta cause dominant forms of non-syndromic deafness and a genotype-phenotype correlation has been reported in humans, with mutations in different Tecta domains causing mid- or high-frequency hearing impairments that are either stable or progressive. Three mutant mice were created as models for human Tecta mutations; the Tecta(L1820F,G1824D/+) mouse for zona pellucida (ZP) domain mutations causing stable mid-frequency hearing loss in a Belgian family, the Tecta(C1837G/+) mouse for a ZP-domain mutation underlying progressive mid-frequency hearing loss in a Spanish family and the Tecta(C1619S/+) mouse for a zonadhesin-like (ZA) domain mutation responsible for progressive, high-frequency hearing loss in a French family. Mutations in the ZP and ZA domains generate distinctly different changes in the structure of the TM. Auditory brainstem response thresholds in the 8-40 kHz range are elevated by 30-40 dB in the ZP-domain mutants, whilst those in the ZA-domain mutant are elevated by 20-30 dB. The phenotypes are stable and no evidence has been found for a progressive deterioration in TM structure or auditory function. Despite elevated auditory thresholds, the Tecta mutant mice all exhibit an enhanced tendency to have audiogenic seizures in response to white noise stimuli at low sound pressure levels (≤84 dB SPL), revealing a previously unrecognised consequence of Tecta mutations. These results, together with those from previous studies, establish an allelic series for Tecta unequivocally demonstrating an association between genotype and phenotype.
Collapse
Affiliation(s)
- P Kevin Legan
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vestibular system changes in sudden deafness with and without vertigo: a human temporal bone study. Otol Neurotol 2013; 33:1151-5. [PMID: 22872175 DOI: 10.1097/mao.0b013e3182635440] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the vestibular system changes in sudden deafness with vertigo (SDwV) and sudden deafness without vertigo (SDwoV) and the cause of persistent canal paresis (CP) in SDwV patients. STUDY DESIGN Retrospective study. MATERIALS AND METHODS Four temporal bones from the affected ear in 4 patients with unilateral sudden deafness (SD), 2 SDwV and 2 SDwoV, were selected. Four contralateral temporal bones with normal-hearing ears were defined as the control. Morphologic findings of the labyrinth, the number of Scarpa's ganglion cells, and the density of vestibular hair cells were investigated in all temporal bones. Clinical data and the results of vestibular tests of 11 patients with unilateral SD, as a separate group, also were investigated. RESULTS Atrophic change of the organ of Corti, tectorial membrane, and stria vascularis in cochlea, and deposits and atrophic otoconial membrane in vestibular sense organs were seen on affected ears more than control ears. The density of Type I hair cells seemed to decrease on the saccular macula and the posterior semicircular canal crista on affected ears, and there was no remarkable difference between SDwV and SDwoV. In 1 patient with SDwoV who died 10 months after the onset of SD, there were large amount of deposits on the cupula, the atrophied otoconial membrane was peeling off from the saccular macula, and the saccular membrane collapsed to the saccular macula in the affected ear. In the clinical data, all SDwV who were examined within 2 years from the onset had CP, and all SDwV had profound hearing loss. CONCLUSION There is no remarkable difference between SDwV and SDwoV in the number of Scarpa's ganglion cells and the density of vestibular hair cells. The damage of the extracellular superstructure is seen in SD with or without vertigo. The damage of extracellular superstructure is potentially one of the causes of persistent CP in patients with SD.
Collapse
|
37
|
A mouse model for human deafness DFNB22 reveals that hearing impairment is due to a loss of inner hair cell stimulation. Proc Natl Acad Sci U S A 2012; 109:19351-6. [PMID: 23129639 DOI: 10.1073/pnas.1210159109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The gene causative for the human nonsyndromic recessive form of deafness DFNB22 encodes otoancorin, a 120-kDa inner ear-specific protein that is expressed on the surface of the spiral limbus in the cochlea. Gene targeting in ES cells was used to create an EGFP knock-in, otoancorin KO (Otoa(EGFP/EGFP)) mouse. In the Otoa(EGFP/EGFP) mouse, the tectorial membrane (TM), a ribbon-like strip of ECM that is normally anchored by one edge to the spiral limbus and lies over the organ of Corti, retains its general form, and remains in close proximity to the organ of Corti, but is detached from the limbal surface. Measurements of cochlear microphonic potentials, distortion product otoacoustic emissions, and basilar membrane motion indicate that the TM remains functionally attached to the electromotile, sensorimotor outer hair cells of the organ of Corti, and that the amplification and frequency tuning of the basilar membrane responses to sounds are almost normal. The compound action potential masker tuning curves, a measure of the tuning of the sensory inner hair cells, are also sharply tuned, but the thresholds of the compound action potentials, a measure of inner hair cell sensitivity, are significantly elevated. These results indicate that the hearing loss in patients with Otoa mutations is caused by a defect in inner hair cell stimulation, and reveal the limbal attachment of the TM plays a critical role in this process.
Collapse
|
38
|
Schraders M, Ruiz-Palmero L, Kalay E, Oostrik J, del Castillo FJ, Sezgin O, Beynon AJ, Strom TM, Pennings RJE, Zazo Seco C, Oonk AMM, Kunst HPM, Domínguez-Ruiz M, García-Arumi AM, del Campo M, Villamar M, Hoefsloot LH, Moreno F, Admiraal RJC, del Castillo I, Kremer H. Mutations of the gene encoding otogelin are a cause of autosomal-recessive nonsyndromic moderate hearing impairment. Am J Hum Genet 2012; 91:883-9. [PMID: 23122587 DOI: 10.1016/j.ajhg.2012.09.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 09/07/2012] [Accepted: 09/21/2012] [Indexed: 12/13/2022] Open
Abstract
Already 40 genes have been identified for autosomal-recessive nonsyndromic hearing impairment (arNSHI); however, many more genes are still to be identified. In a Dutch family segregating arNSHI, homozygosity mapping revealed a 2.4 Mb homozygous region on chromosome 11 in p15.1-15.2, which partially overlapped with the previously described DFNB18 locus. However, no putative pathogenic variants were found in USH1C, the gene mutated in DFNB18 hearing impairment. The homozygous region contained 12 additional annotated genes including OTOG, the gene encoding otogelin, a component of the tectorial membrane. It is thought that otogelin contributes to the stability and strength of this membrane through interaction or stabilization of its constituent fibers. The murine orthologous gene was already known to cause hearing loss when defective. Analysis of OTOG in the Dutch family revealed a homozygous 1 bp deletion, c.5508delC, which leads to a shift in the reading frame and a premature stop codon, p.Ala1838ProfsX31. Further screening of 60 unrelated probands from Spanish arNSHI families detected compound heterozygous OTOG mutations in one family, c.6347C>T (p.Pro2116Leu) and c. 6559C>T (p.Arg2187X). The missense mutation p.Pro2116Leu affects a highly conserved residue in the fourth von Willebrand factor type D domain of otogelin. The subjects with OTOG mutations have a moderate hearing impairment, which can be associated with vestibular dysfunction. The flat to shallow "U" or slightly downsloping shaped audiograms closely resembled audiograms of individuals with recessive mutations in the gene encoding α-tectorin, another component of the tectorial membrane. This distinctive phenotype may represent a clue to orientate the molecular diagnosis.
Collapse
Affiliation(s)
- Margit Schraders
- Department of Otorhinolaryngology, Head and Neck Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sensorineural hearing loss. Am J Hum Genet 2012; 91:872-82. [PMID: 23122586 DOI: 10.1016/j.ajhg.2012.09.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/01/2012] [Accepted: 09/19/2012] [Indexed: 01/13/2023] Open
Abstract
Hereditary hearing loss is characterized by a high degree of genetic heterogeneity. Here we present OTOGL mutations, a homozygous one base pair deletion (c.1430 delT) causing a frameshift (p.Val477Glufs(∗)25) in a large consanguineous family and two compound heterozygous mutations, c.547C>T (p.Arg183(∗)) and c.5238+5G>A, in a nonconsanguineous family with moderate nonsyndromic sensorineural hearing loss. OTOGL maps to the DFNB84 locus at 12q21.31 and encodes otogelin-like, which has structural similarities to the epithelial-secreted mucin protein family. We demonstrate that Otogl is expressed in the inner ear of vertebrates with a transcription level that is high in embryonic, lower in neonatal, and much lower in adult stages. Otogelin-like is localized to the acellular membranes of the cochlea and the vestibular system and to a variety of inner ear cells located underneath these membranes. Knocking down of otogl with morpholinos in zebrafish leads to sensorineural hearing loss and anatomical changes in the inner ear, supporting that otogelin-like is essential for normal inner ear function. We propose that OTOGL mutations affect the production and/or function of acellular structures of the inner ear, which ultimately leads to sensorineural hearing loss.
Collapse
|
40
|
Kondo T, Suzuki M, Konomi U, Otsuka K, Inagaki T, Shimizu S, Ogawa Y. Changes in the cupula after disruption of the membranous labyrinth. Acta Otolaryngol 2012; 132:228-33. [PMID: 22201329 DOI: 10.3109/00016489.2011.635385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Various changes were observed in the cupula, including shrinkage and enlarged volume, following the disruption of the membranous labyrinth. Cupular change after membranous labyrinth disruption may be a pathology of vestibular disorders. OBJECTIVES To observe the morphological changes of the cupula after disruption of the membranous labyrinth and to compare the cupular changes with changes in the compound action potential (CAP) of the ampullary nerve. METHODS A labyrinthine injury model was created by puncturing the membranous labyrinth of bullfrogs. The cupula was observed from 3 to 17 days after the membrane puncture. The CAP in response to mechanical endolymphatic flow was recorded from the ampullary nerve. The correlation between cupular change and CAP positivity was evaluated using the authors' scale. RESULTS Various kinds of cupular changes including shrinkage were observed. Cupular change was more severe after a longer survival period. Large or elongated volume of the cupula was also observed, which was not observed in our previous study using gentamicin. The CAP could be recorded even when the cupular change was severe.
Collapse
Affiliation(s)
- Takahito Kondo
- Department of Otorhinolaryngology, Tokyo Medical University, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Zak M, Bress A, Pfister M, Blin N. Temporal expression pattern of Fkbp8 in rodent cochlea. Cell Physiol Biochem 2011; 28:1023-30. [PMID: 22178952 DOI: 10.1159/000335789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND FKBP8 is a multifunctional protein involved in many distinct processes like formation of central nervous system, viral RNA replication and inhibition of apoptosis. Fkbp8 expression was reported in different tissues, various cell lines and malignancies, in the latter displaying changes during carcinogenesis. Loss of Fkbp8 leads to substantial neurodegenerations during regular mouse development, thus hearing onset in mice could also potentially depend on Fkbp8 expression. Since Fkbp8 is crucial for patterning of neuronal function, we studied its expression during maturation of the rodent auditory function. METHODS Fkbp8 gene expression in rodent cochlear samples was studied by RT-PCR, qPCR, and western blot. Localization of Fkbp8 transcripts and protein was analyzed by in-situ hybridization and immunohistochemistry. RESULTS Studies of auditory organ demonstrate that Fkbp8 gene activity is increasing just before hearing onset and gradually decreasing after onset of hearing. Western blot analysis suggests substantial levels of Fkbp8 protein before hearing onset, and slow degradation after onset of hearing. The Fkbp8 mRNA is localized in spiral ganglion of cochlea but its distribution changes over time to the stria vascularis, a finding supported by immunohistochemistry staining. Additionally, in pre-hearing time Fkbp8-specific signal was also observed in the tectorial membrane, whose α- and β-Tectorin components show similar time-dependent expression of mRNA as Fkbp8. CONCLUSION These results indicate a temporal shift in expression of Fkbp8 which correlates with cochlear maturation, strongly suggesting a contribution of Fkbp8 to the onset of the rodent hearing processes.
Collapse
Affiliation(s)
- Magdalena Zak
- University of Tübingen, Institute of Human Genetics, Tübingen, Germany.
| | | | | | | |
Collapse
|
42
|
Degen J, Schütz M, Dicke N, Strenzke N, Jokwitz M, Moser T, Willecke K. Connexin32 can restore hearing in connexin26 deficient mice. Eur J Cell Biol 2011; 90:817-24. [PMID: 21813206 DOI: 10.1016/j.ejcb.2011.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 04/20/2011] [Accepted: 05/03/2011] [Indexed: 12/15/2022] Open
Abstract
Functional gap junction channels composed of certain connexin proteins are essential for the function of the cochlea. Homozygous deficiency in the Gjb2 (mice) or GJB2 (human) gene coding for connexin26 (Cx26) in the cochlea leads to hearing impairment in mice and humans, respectively. Here we have studied the functional equivalence of Cx26 and connexin32 (Cx32) isoforms in the cochlea. We analyzed a conditional mouse mutant in which the Gjb2 coding DNA was exchanged by LacZ DNA coding for the reporter protein beta-galactosidase. This allowed us to follow the unrestricted and cell type specific expression of Gjb2 promoter activity. After inner ear specific, Otogelin-Cre recombinase mediated deletion of the loxP-site-flanked LacZ coding DNA, transcription of the Gjb1 gene, coding for Cx32 was activated by the Gjb2 promoter. Interbreeding of these mice with conditional Gjb2 null mice resulted in animals in which Cx32 instead of Cx26 protein is expressed in the non-sensory epithelial network of the cochlea. When we analyzed the auditory function in these mice, we found that the expression of Cx32 protein is sufficient to support hearing in the absence of Cx26. Thus Cx32 can functionally replace Cx26 in the mouse cochlea resulting in almost normal hearing.
Collapse
Affiliation(s)
- Joachim Degen
- Institute of Genetics, University of Bonn, 53117 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Cell type-specific transcriptome analysis reveals a major role for Zeb1 and miR-200b in mouse inner ear morphogenesis. PLoS Genet 2011; 7:e1002309. [PMID: 21980309 PMCID: PMC3183091 DOI: 10.1371/journal.pgen.1002309] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/30/2011] [Indexed: 12/18/2022] Open
Abstract
Cellular heterogeneity hinders the extraction of functionally significant results and inference of regulatory networks from wide-scale expression profiles of complex mammalian organs. The mammalian inner ear consists of the auditory and vestibular systems that are each composed of hair cells, supporting cells, neurons, mesenchymal cells, other epithelial cells, and blood vessels. We developed a novel protocol to sort auditory and vestibular tissues of newborn mouse inner ears into their major cellular components. Transcriptome profiling of the sorted cells identified cell type-specific expression clusters. Computational analysis detected transcription factors and microRNAs that play key roles in determining cell identity in the inner ear. Specifically, our analysis revealed the role of the Zeb1/miR-200b pathway in establishing epithelial and mesenchymal identity in the inner ear. Furthermore, we detected a misregulation of the ZEB1 pathway in the inner ear of Twirler mice, which manifest, among other phenotypes, malformations of the auditory and vestibular labyrinth. The association of misregulation of the ZEB1/miR-200b pathway with auditory and vestibular defects in the Twirler mutant mice uncovers a novel mechanism underlying deafness and balance disorders. Our approach can be employed to decipher additional complex regulatory networks underlying other hearing and balance mouse mutants.
Collapse
|
44
|
Zhou YF, Eng ET, Nishida N, Lu C, Walz T, Springer TA. A pH-regulated dimeric bouquet in the structure of von Willebrand factor. EMBO J 2011; 30:4098-111. [PMID: 21857647 DOI: 10.1038/emboj.2011.297] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/20/2011] [Indexed: 12/20/2022] Open
Abstract
At the acidic pH of the trans-Golgi and Weibel-Palade bodies (WPBs), but not at the alkaline pH of secretion, the C-terminal ∼1350 residues of von Willebrand factor (VWF) zip up into an elongated, dimeric bouquet. Six small domains visualized here for the first time between the D4 and cystine-knot domains form a stem. The A2, A3, and D4 domains form a raceme with three pairs of opposed, large, flower-like domains. N-terminal VWF domains mediate helical tubule formation in WPBs and template N-terminal disulphide linkage between VWF dimers, to form ultralong VWF concatamers. The dimensions we measure in VWF at pH 6.2 and 7.4, and the distance between tubules in nascent WPB, suggest that dimeric bouquets are essential for correct VWF dimer incorporation into growing tubules and to prevent crosslinking between neighbouring tubules. Further insights into the structure of the domains and flexible segments in VWF provide an overall view of VWF structure important for understanding both the biogenesis of ultralong concatamers at acidic pH and flow-regulated changes in concatamer conformation in plasma at alkaline pH that trigger hemostasis.
Collapse
Affiliation(s)
- Yan-Feng Zhou
- Department of Pathology, Harvard Medical School, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
45
|
Xu Y, Zhang H, Yang H, Zhao X, Lovas S, Lundberg YYW. Expression, functional, and structural analysis of proteins critical for otoconia development. Dev Dyn 2011; 239:2659-73. [PMID: 20803598 DOI: 10.1002/dvdy.22405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Otoconia, developed during late gestation and perinatal stages, couple mechanic force to the sensory hair cells in the vestibule for motion detection and bodily balance. In the present work, we have investigated whether compensatory deposition of another protein(s) may have taken place to partially alleviate the detrimental effects of Oc90 deletion by analyzing a comprehensive list of plausible candidates, and have found a drastic increase in the deposition of Sparc-like 1 (aka Sc1 or hevin) in Oc90 null versus wt otoconia. We show that such up-regulation is specific to Sc1, and that stable transfection of Oc90 and Sc1 full-length expression constructs in NIH/3T3 cells indeed promotes matrix calcification. Analysis and modeling of Oc90 and Sc1 protein structures show common features that may be critical requirements for the otoconial matrix backbone protein. Such information will serve as the foundation for future regenerative purposes.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | | | | | | | | | |
Collapse
|
46
|
Mann ZF, Kelley MW. Development of tonotopy in the auditory periphery. Hear Res 2011; 276:2-15. [PMID: 21276841 DOI: 10.1016/j.heares.2011.01.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
Acoustic frequency analysis plays an essential role in sound perception, communication and behavior. The auditory systems of most vertebrates that perceive sounds in air are organized based on the separation of complex sounds into component frequencies. This process begins at the level of the auditory sensory epithelium where specific frequencies are distributed along the tonotopic axis of the mammalian cochlea or the avian/reptilian basilar papilla (BP). Mechanical and electrical mechanisms mediate this process, but the relative contribution of each mechanism differs between species. Developmentally, structural and physiological specializations related to the formation of a tonotopic axis form gradually over an extended period of time. While some aspects of tonotopy are evident at early stages of auditory development, mature frequency discrimination is typically not achieved until after the onset of hearing. Despite the importance of tonotopic organization, the factors that specify unique positional identities along the cochlea or basilar papilla are unknown. However, recent studies of developing systems, including the inner ear provide some clues regarding the signalling pathways that may be instructive for the formation of a tonotopic axis.
Collapse
Affiliation(s)
- Zoe F Mann
- Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
47
|
Thyroid hormone-responsive genes mediate otolith growth and development during flatfish metamorphosis. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:163-8. [DOI: 10.1016/j.cbpa.2010.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 11/16/2022]
|
48
|
Deans MR, Peterson JM, Wong GW. Mammalian Otolin: a multimeric glycoprotein specific to the inner ear that interacts with otoconial matrix protein Otoconin-90 and Cerebellin-1. PLoS One 2010; 5:e12765. [PMID: 20856818 PMCID: PMC2939893 DOI: 10.1371/journal.pone.0012765] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 08/23/2010] [Indexed: 01/29/2023] Open
Abstract
Background The mammalian otoconial membrane is a dense extracellular matrix containing bio-mineralized otoconia. This structure provides the mechanical stimulus necessary for hair cells of the vestibular maculae to respond to linear accelerations and gravity. In teleosts, Otolin is required for the proper anchoring of otolith crystals to the sensory maculae. Otoconia detachment and subsequent entrapment in the semicircular canals can result in benign paroxysmal positional vertigo (BPPV), a common form of vertigo for which the molecular basis is unknown. Several cDNAs encoding protein components of the mammalian otoconia and otoconial membrane have recently been identified, and mutations in these genes result in abnormal otoconia formation and balance deficits. Principal Findings Here we describe the cloning and characterization of mammalian Otolin, a protein constituent of otoconia and the otoconial membrane. Otolin is a secreted glycoprotein of ∼70 kDa, with a C-terminal globular domain that is homologous to the immune complement C1q, and contains extensive posttranslational modifications including hydroxylated prolines and glycosylated lysines. Like all C1q/TNF family members, Otolin multimerizes into higher order oligomeric complexes. The expression of otolin mRNA is restricted to the inner ear, and immunohistochemical analysis identified Otolin protein in support cells of the vestibular maculae and semi-circular canal cristae. Additionally, Otolin forms protein complexes with Cerebellin-1 and Otoconin-90, two protein constituents of the otoconia, when expressed in vitro. Otolin was also found in subsets of support cells and non-sensory cells of the cochlea, suggesting that Otolin is also a component of the tectorial membrane. Conclusion Given the importance of Otolin in lower organisms, the molecular cloning and biochemical characterization of the mammalian Otolin protein may lead to a better understanding of otoconial development and vestibular dysfunction.
Collapse
Affiliation(s)
- Michael R. Deans
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan M. Peterson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
49
|
Dror AA, Politi Y, Shahin H, Lenz DR, Dossena S, Nofziger C, Fuchs H, Hrabé de Angelis M, Paulmichl M, Weiner S, Avraham KB. Calcium oxalate stone formation in the inner ear as a result of an Slc26a4 mutation. J Biol Chem 2010; 285:21724-35. [PMID: 20442411 DOI: 10.1074/jbc.m110.120188] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium oxalate stone formation occurs under pathological conditions and accounts for more than 80% of all types of kidney stones. In the current study, we show for the first time that calcium oxalate stones are formed in the mouse inner ear of a genetic model for hearing loss and vestibular dysfunction in humans. The vestibular system within the inner ear is dependent on extracellular tiny calcium carbonate minerals for proper function. Thousands of these biominerals, known as otoconia, are associated with the utricle and saccule sensory maculae and are vital for mechanical stimulation of the sensory hair cells. We show that a missense mutation within the Slc26a4 gene abolishes the transport activity of its encoded protein, pendrin. As a consequence, dramatic changes in mineral composition, size, and shape occur within the utricle and saccule in a differential manner. Although abnormal giant carbonate minerals reside in the utricle at all ages, in the saccule, a gradual change in mineral composition leads to a formation of calcium oxalate in adult mice. By combining imaging and spectroscopy tools, we determined the profile of mineral composition and morphology at different time points. We propose a novel mechanism for the accumulation and aggregation of oxalate crystals in the inner ear.
Collapse
Affiliation(s)
- Amiel A Dror
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schraders M, Oostrik J, Huygen PL, Strom TM, van Wijk E, Kunst HP, Hoefsloot LH, Cremers CW, Admiraal RJ, Kremer H. Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction. Am J Hum Genet 2010; 86:604-10. [PMID: 20346435 DOI: 10.1016/j.ajhg.2010.02.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/02/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022] Open
Abstract
We identified overlapping homozygous regions within the DFNB84 locus in a nonconsanguineous Dutch family and a consanguineous Moroccan family with sensorineural autosomal-recessive nonsyndromic hearing impairment (arNSHI). The critical region of 3.17 Mb harbored the PTPRQ gene and mouse models with homozygous mutations in the orthologous gene display severe hearing loss. We show that the human PTPRQ gene was not completely annotated and that additional, alternatively spliced exons are present at the 5' end of the gene. Different PTPRQ isoforms are encoded with a varying number of fibronectin type 3 (FN3) domains, a transmembrane domain, and a phosphatase domain. Sequence analysis of the PTPRQ gene in members of the families revealed a nonsense mutation in the Dutch family and a missense mutation in the Moroccan family. The missense mutation is located in one of the FN3 domains. The nonsense mutation results in a truncated protein with only a small number of FN3 domains and no transmembrane or phosphatase domain. Hearing loss in the patients with PTPRQ mutations is likely to be congenital and moderate to profound and most severe in the family with the nonsense mutation. Progression of the hearing loss was observed in both families. The hearing loss is accompanied by vestibular dysfunction in all affected individuals. Although we show that PTPRQ is expressed in many tissues, no symptoms other than deafness were observed in the patients.
Collapse
|