1
|
Elfeky M, Tsubota A, Shimozuru M, Tsubota T, Kimura K, Okamatsu-Ogura Y. Regulation of mitochondrial metabolism by hibernating bear serum: Insights into seasonal metabolic adaptations. Biochem Biophys Res Commun 2024; 736:150510. [PMID: 39121671 DOI: 10.1016/j.bbrc.2024.150510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Hibernating animals undergo a unique and reversible decrease in their whole-body metabolism, which is often accompanied by a suppression of mitochondrial respiration. However, the precise mechanisms underlying these seasonal shifts in mitochondrial metabolism remain unclear. In this study, the effect of the serum from active and hibernating Japanese black bears on mitochondrial respiration was assessed. Stromal-vascular cells were obtained from bear white adipose tissue and cultured with or without an adipocyte differentiation cocktail. When the oxygen consumption was measured in the presence of bear serum, the hibernating bear serum reduced maximal respiration by 15.5 % (p < 0.05) and spare respiratory capacity by 46.0 % (p < 0.01) in the differentiated adipocytes in comparison to the active bear serum. Similar reductions of 23.4 % (p = 0.06) and 40.6 % (p < 0.05) respectively were observed in undifferentiated cells, indicating the effect is cell type-independent. Blue native PAGE analysis revealed that hibernating bear serum suppressed cellular metabolism independently of the assembly of mitochondrial respiratory chain complexes. RNA-seq analysis identified 1094 differentially expressed genes (fold change>1.5, FDR<0.05) related to insulin signaling and glucose metabolism pathways. These findings suggest that the rapid alterations in mitochondrial metabolism during hibernation are likely induced by a combination of reduced insulin signaling and suppressed mitochondrial function, rather than changes in respiratory complex assembly.
Collapse
Affiliation(s)
- Mohamed Elfeky
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt.
| | - Ayumi Tsubota
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Michito Shimozuru
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
2
|
Abdullah MA, Kadhum FJ, Issa SS. Assessment of Liver Involvement in Patients With Type 2 Diabetes Mellitus in Basrah City, Iraq, Using FibroScan and Correlation With Risk Factors. Cureus 2024; 16:e65089. [PMID: 39171003 PMCID: PMC11337731 DOI: 10.7759/cureus.65089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases caused by the accumulation of fat in the liver, which can progress to fibrosis, cirrhosis, and primary liver cancer. Insulin resistance is a causative factor in the development of NAFLD. FibroScan, or transient elastography, is a noninvasive imaging technique for evaluating liver disease. Aim To use FibroScan for evaluating liver involvement in type 2 diabetes mellitus (T2DM) patients with some associated risk factors. Materials and methods A cross-sectional prospective study was conducted from February to August 2023 in the outpatient clinic of Basrah Gastroenterology and Hepatology Hospital. Data collection included demographic data, past medical history, and biochemical tests including fasting blood sugar (FBS), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lipid profile (consisting of low-density lipoprotein (LDL), high-density lipoprotein (HDL), serum triglycerides, and total cholesterol), then, patients underwent FibroScan examination. Results The study included 50 patients with T2DM, of whom 23 (46%) were male and 27 (54%) were female. The mean age of the studied population was 47.72 ± 8.31 years, with a range of 28-64 years. The mean BMI was 28.44 ± 4.24, with most patients being either overweight or obese. The fibrosis score was 4.74 ± 1.02 kPa (stage 0), while the mean steatosis score was 282.88 ± 44.99 (grade III). Diastolic blood pressure (BP), serum ALT, and serum HDL level were the variables that showed statistically significant differences when compared according to the stages of steatosis measured by FibroScan, with p-values of 0.016, 0.048, and 0.028, respectively. Conclusion Some risk factors associated with diabetes, such as dyslipidemia, liver enzymes, and BP, are highly associated with the development of steatosis rather than fibrosis.
Collapse
Affiliation(s)
- Muntadher A Abdullah
- College of Medicine, University of Basrah, Basrah Gastroenterology and Hepatology Hospital, Basrah, IRQ
| | | | - Sajjad S Issa
- Family Medicine, College of Nursing, University of Basra, Basrah, IRQ
| |
Collapse
|
3
|
Rasmi Y, Mohamed YA, Alipour S, Ahmed S, Abdelmajed SS. The role of miR-143/miR-145 in the development, diagnosis, and treatment of diabetes. J Diabetes Metab Disord 2024; 23:39-47. [PMID: 38932869 PMCID: PMC11196424 DOI: 10.1007/s40200-023-01317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 06/28/2024]
Abstract
Objectives Diabetes mellitus [DM], is a multifaceted metabolic disease, which has become a worldwide threat to human wellness. Over the past decades, an enormous amount of attention has been devoted to understanding how microRNAs [miRNAs], a class of small non-coding RNA regulators of gene expression at the post-transcriptional level, are tied to DM pathology. It has been demonstrated that miRNAs control insulin synthesis, secretion, and activity. This review aims to provide an evaluation of the use of miR-143 and miR-145 as biomarkers for the diagnosis and prognosis of diabetes. Methods The use of miR-143 and miR-145 as biomarkers for the diagnosis and prognosis of diabetes has been studied, and research that examined this link was sought after in the literature. In addition, we will discuss the cellular and molecular pathways of insulin secretion regulation by miR-143/145 expression and finally their role in diabetes. Results In the current review, we emphasize recent findings on the miR-143/145 expression profiles as novel DM biomarkers in clinical studies and animal models and highlight recent discoveries on the complex regulatory effect and functional role of miR-143/145 expression in DM. Conclusion A novel clinical treatment that alters the expression and activity of miR-143/miR-145 may be able to return cells to their natural state of glucose homeostasis, demonstrating the value of using comprehensive miRNA profiles to predict the beginning of diabetes. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01317-y.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Yara Ahmed Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts University [MSA], Giza, Egypt
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Salma Ahmed
- Faculty of Biotechnology, October University for Modern Sciences and Arts University [MSA], Giza, Egypt
| | - Samar Samir Abdelmajed
- Faculty of Dentistry- Medical Biochemistry and Genetics department, October University for Modern Sciences and Arts University [MSA], Giza, Egypt
| |
Collapse
|
4
|
Ye RZ, Montastier E, Frisch F, Noll C, Allard-Chamard H, Gévry N, Tchernof A, Carpentier AC. Adipocyte hypertrophy associates with in vivo postprandial fatty acid metabolism and adipose single-cell transcriptional dynamics. iScience 2024; 27:108692. [PMID: 38226167 PMCID: PMC10788217 DOI: 10.1016/j.isci.2023.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
Adipocyte hypertrophy is associated with metabolic complications independent of obesity. We aimed to determine: 1) the association between adipocyte size and postprandial fatty acid metabolism; 2) the potential mechanisms driving the obesity-independent, hypertrophy-associated dysmetabolism in vivo and at a single-cell resolution. Tracers with positron emission tomography were used to measure fatty acid metabolism in 40 men and women with normal or impaired glucose tolerance (NCT02808182), and single nuclei RNA-sequencing (snRNA-seq) to determine transcriptional dynamics of subcutaneous adipose tissue (AT) between individuals with AT hypertrophy vs. hyperplasia matched for sex, ethnicity, glucose-tolerance status, BMI, total and percent body fat, and waist circumference. Adipocyte size was associated with high postprandial total cardiac fatty acid uptake and higher visceral AT dietary fatty acid uptake, but lower lean tissue dietary fatty acid uptake. We found major shifts in cell transcriptomal dynamics with AT hypertrophy that were consistent with in vivo metabolic changes.
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Emilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugues Allard-Chamard
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - André Tchernof
- Québec Heart and Lung Research Institute, Laval University, Québec, QC G1V 4G5, Canada
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
5
|
Sarsani V, Brotman SM, Xianyong Y, Fernandes Silva L, Laakso M, Spracklen CN. A cross-ancestry genome-wide meta-analysis, fine-mapping, and gene prioritization approach to characterize the genetic architecture of adiponectin. HGG ADVANCES 2024; 5:100252. [PMID: 37859345 PMCID: PMC10652123 DOI: 10.1016/j.xhgg.2023.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
Previous genome-wide association studies (GWASs) for adiponectin, a complex trait linked to type 2 diabetes and obesity, identified >20 associated loci. However, most loci were identified in populations of European ancestry, and many of the target genes underlying the associations remain unknown. We conducted a cross-ancestry adiponectin GWAS meta-analysis in ≤46,434 individuals from the Metabolic Syndrome in Men (METSIM) cohort and the ADIPOGen and AGEN consortiums. We combined study-specific association summary statistics using a fixed-effects, inverse variance-weighted approach. We identified 22 loci associated with adiponectin (p < 5×10-8), including 15 known and seven previously unreported loci. Among individuals of European ancestry, Genome-wide Complex Traits Analysis joint conditional analysis (GCTA-COJO) identified 14 additional distinct signals at the ADIPOQ, CDH13, HCAR1, and ZNF664 loci. Leveraging the cross-ancestry data, FINEMAP + SuSiE identified 45 causal variants (PP > 0.9), which also exhibited potential pleiotropy for cardiometabolic traits. To prioritize target genes at associated loci, we propose a combinatorial likelihood scoring formalism (Gene Priority Score [GPScore]) based on measures derived from 11 gene prioritization strategies and the physical distance to the transcription start site. With GPScore, we prioritize the 30 most probable target genes underlying the adiponectin-associated variants in the cross-ancestry analysis, including well-known causal genes (e.g., ADIPOQ, CDH13) and additional genes (e.g., CSF1, RGS17). Functional association networks revealed complex interactions of prioritized genes, their functionally connected genes, and their underlying pathways centered around insulin and adiponectin signaling, indicating an essential role in regulating energy balance in the body, inflammation, coagulation, fibrinolysis, insulin resistance, and diabetes. Overall, our analyses identify and characterize adiponectin association signals and inform experimental interrogation of target genes for adiponectin.
Collapse
Affiliation(s)
- Vishal Sarsani
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sarah M Brotman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yin Xianyong
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Lillian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
6
|
Sadeghi A, Niknam M, Momeni-Moghaddam MA, Shabani M, Aria H, Bastin A, Teimouri M, Meshkani R, Akbari H. Crosstalk between autophagy and insulin resistance: evidence from different tissues. Eur J Med Res 2023; 28:456. [PMID: 37876013 PMCID: PMC10599071 DOI: 10.1186/s40001-023-01424-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Insulin is a critical hormone that promotes energy storage in various tissues, as well as anabolic functions. Insulin resistance significantly reduces these responses, resulting in pathological conditions, such as obesity and type 2 diabetes mellitus (T2DM). The management of insulin resistance requires better knowledge of its pathophysiological mechanisms to prevent secondary complications, such as cardiovascular diseases (CVDs). Recent evidence regarding the etiological mechanisms behind insulin resistance emphasizes the role of energy imbalance and neurohormonal dysregulation, both of which are closely regulated by autophagy. Autophagy is a conserved process that maintains homeostasis in cells. Accordingly, autophagy abnormalities have been linked to a variety of metabolic disorders, including insulin resistance, T2DM, obesity, and CVDs. Thus, there may be a link between autophagy and insulin resistance. Therefore, the interaction between autophagy and insulin function will be examined in this review, particularly in insulin-responsive tissues, such as adipose tissue, liver, and skeletal muscle.
Collapse
Affiliation(s)
- Asie Sadeghi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Niknam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Bastin
- Clinical Research Development Center "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Teimouri
- Department of Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Sakr HF, Sirasanagandla SR, Das S, Bima AI, Elsamanoudy AZ. Insulin Resistance and Hypertension: Mechanisms Involved and Modifying Factors for Effective Glucose Control. Biomedicines 2023; 11:2271. [PMID: 37626767 PMCID: PMC10452601 DOI: 10.3390/biomedicines11082271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Factors such as aging, an unhealthy lifestyle with decreased physical activity, snacking, a standard Western diet, and smoking contribute to raising blood pressure to a dangerous level, increasing the risk of coronary artery disease and heart failure. Atherosclerosis, or aging of the blood vessels, is a physiological process that has accelerated in the last decades by the overconsumption of carbohydrates as the primary sources of caloric intake, resulting in increased triglycerides and VLDL-cholesterol and insulin spikes. Classically, medications ranging from beta blockers to angiotensin II blockers and even calcium channel blockers were used alone or in combination with lifestyle modifications as management tools in modern medicine to control arterial blood pressure. However, it is not easy to control blood pressure or the associated complications. A low-carbohydrate, high-fat (LCHF) diet can reduce glucose and insulin spikes, improve insulin sensitivity, and lessen atherosclerosis risk factors. We reviewed articles describing the etiology of insulin resistance (IR) and its impact on arterial blood pressure from databases including PubMed, PubMed Central, and Google Scholar. We discuss how the LCHF diet is beneficial to maintaining arterial blood pressure at normal levels, slowing down the progression of atherosclerosis, and reducing the use of antihypertensive medications. The mechanisms involved in IR associated with hypertension are also highlighted.
Collapse
Affiliation(s)
- Hussein F. Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; (S.R.S.); (S.D.)
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; (S.R.S.); (S.D.)
| | - Abdulhadi I. Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.Z.E.)
| | - Ayman Z. Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.Z.E.)
| |
Collapse
|
8
|
Deng YH, Zhong DY, Li L, Li HJ, Ma RM. Study on the mechanism and molecular docking verification of Buyang Huanwu decoction in treating diabetic foot. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2023. [DOI: 10.4103/2311-8571.370108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
9
|
Lv F, Wang Y, Shan D, Guo S, Chen G, Jin L, Zheng W, Feng H, Zeng X, Zhang S, Zhang Y, Hu X, Xiao RP. Blocking MG53 S255 Phosphorylation Protects Diabetic Heart From Ischemic Injury. Circ Res 2022; 131:962-976. [PMID: 36337049 PMCID: PMC9770150 DOI: 10.1161/circresaha.122.321055] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND As an integral component of cell membrane repair machinery, MG53 (mitsugumin 53) is important for cardioprotection induced by ischemia preconditioning and postconditioning. However, it also impairs insulin signaling via its E3 ligase activity-mediated ubiquitination-dependent degradation of IR (insulin receptor) and IRS1 (insulin receptor substrate 1) and its myokine function-induced allosteric blockage of IR. Here, we sought to develop MG53 into a cardioprotection therapy by separating its detrimental metabolic effects from beneficial actions. METHODS Using immunoprecipitation-mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we investigated the role of MG53 phosphorylation at serine 255 (S255). In particular, utilizing recombinant proteins and gene knock-in approaches, we evaluated the potential therapeutic effect of MG53-S255A mutant in treating cardiac ischemia/reperfusion injury in diabetic mice. RESULTS We identified S255 phosphorylation as a prerequisite for MG53 E3 ligase activity. Furthermore, MG53S255 phosphorylation was mediated by GSK3β (glycogen synthase kinase 3 beta) and markedly elevated in the animal models with metabolic disorders. Thus, IR-IRS1-GSK3β-MG53 formed a vicious cycle in the pathogenesis of metabolic disorders where aberrant insulin signaling led to hyper-activation of GSK3β, which in turn, phosphorylated MG53 and enhanced its E3 ligase activity, and further impaired insulin sensitivity. Importantly, S255A mutant eliminated the E3 ligase activity while retained cell protective function of MG53. Consequently, the S255A mutant, but not the wild type MG53, protected the heart against ischemia/reperfusion injury in db/db mice with advanced diabetes, although both elicited cardioprotection in normal mice. Moreover, in S255A knock-in mice, S255A mutant also mitigated ischemia/reperfusion-induced myocardial damage in the diabetic setting. CONCLUSIONS S255 phosphorylation is a biased regulation of MG53 E3 ligase activity. The MG53-S255A mutant provides a promising approach for the treatment of acute myocardial injury, especially in patients with metabolic disorders.
Collapse
Affiliation(s)
- Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Yingfan Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Dan Shan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Sile Guo
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Gengjia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Wen Zheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Han Feng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Xiaohu Zeng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Shuo Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
- Peking-Tsinghua Center for Life Sciences, Beijing, China (R.-P.X.)
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China (R.-P.X.)
| |
Collapse
|
10
|
Szymczak-Pajor I, Miazek K, Selmi A, Balcerczyk A, Śliwińska A. The Action of Vitamin D in Adipose Tissue: Is There the Link between Vitamin D Deficiency and Adipose Tissue-Related Metabolic Disorders? Int J Mol Sci 2022; 23:956. [PMID: 35055140 PMCID: PMC8779075 DOI: 10.3390/ijms23020956] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue plays an important role in systemic metabolism via the secretion of adipocytokines and storing and releasing energy. In obesity, adipose tissue becomes dysfunctional and characterized by hypertrophied adipocytes, increased inflammation, hypoxia, and decreased angiogenesis. Although adipose tissue is one of the major stores of vitamin D, its deficiency is detective in obese subjects. In the presented review, we show how vitamin D regulates numerous processes in adipose tissue and how their dysregulation leads to metabolic disorders. The molecular response to vitamin D in adipose tissue affects not only energy metabolism and adipokine and anti-inflammatory cytokine production via the regulation of gene expression but also genes participating in antioxidant defense, adipocytes differentiation, and apoptosis. Thus, its deficiency disturbs adipocytokines secretion, metabolism, lipid storage, adipogenesis, thermogenesis, the regulation of inflammation, and oxidative stress balance. Restoring the proper functionality of adipose tissue in overweight or obese subjects is of particular importance in order to reduce the risk of developing obesity-related complications, such as cardiovascular diseases and diabetes. Taking into account the results of experimental studies, it seemed that vitamin D may be a remedy for adipose tissue dysfunction, but the results of the clinical trials are not consistent, as some of them show improvement and others no effect of this vitamin on metabolic and insulin resistance parameters. Therefore, further studies are required to evaluate the beneficial effects of vitamin D, especially in overweight and obese subjects, due to the presence of a volumetric dilution of this vitamin among them.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Krystian Miazek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 15 Wroblewskiego, 93-590 Lodz, Poland;
| | - Anna Selmi
- Department of Molecular Biophysics, University of Lodz, 141/143 Pomorska, 90-236 Lodz, Poland; (A.S.); (A.B.)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, 141/143 Pomorska, 90-236 Lodz, Poland; (A.S.); (A.B.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| |
Collapse
|
11
|
Atmodjo WL, Larasati YO, Jo J, Nufika R, Naomi S, Winoto I. Relationship Between Insulin-Receptor Substrate 1 and Langerhans' Islet in a Rat Model of Type 2 Diabetes Mellitus. In Vivo 2021; 35:291-297. [PMID: 33402476 DOI: 10.21873/invivo.12258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM In vivo studies on pathogenesis of type 2 diabetes mellitus (T2DM) have been reported, however, the relationship between insulin-receptor substrate 1 (IRS1) and the area of Langerhans' islets was unknown. Therefore, a correlation between both parameters was assessed. MATERIALS AND METHODS Diabetic groups were fed with a high-fat diet (HFD) and injected with three different doses of streptozotocin, namely 25, 35 and 45 mg/kg, and compared to a control group after 9 weeks. RESULTS Administration of HFD/streptozotocin increased the level of fasting blood glucose but reduced the level of IRS1 and the area of Langerhans' islets in diabetic groups. The coefficient of correlation between IRS1 and area of Langerhans' islets was 0.259 (p=0.232). In addition, the coefficient of correlation for fasting blood glucose with the area of Langerhans' islets and IRS1 was -0.520 (p=0.011) and -0.603 (p=0.002), respectively. CONCLUSION The reduction of IRS1 was weakly correlated with the destruction of Langerhans' islets, suggesting there is an intermediate step between both parameters.
Collapse
Affiliation(s)
- Wahyuni Lukita Atmodjo
- Department of Immunopathology, Mochtar Riady Institute for Nanotechnology, Tangerang, Indonesia; .,Department of Anatomy, Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia
| | - Young Othiwi Larasati
- Department of Immunopathology, Mochtar Riady Institute for Nanotechnology, Tangerang, Indonesia
| | - Juandy Jo
- Program of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang, Indonesia
| | - Riska Nufika
- Department of Immunopathology, Mochtar Riady Institute for Nanotechnology, Tangerang, Indonesia
| | - Steffi Naomi
- Department of Biomedicine, Indonesia International Institute for Life Science, Jakarta, Indonesia
| | - Imelda Winoto
- Department of Immunopathology, Mochtar Riady Institute for Nanotechnology, Tangerang, Indonesia
| |
Collapse
|
12
|
Elsayed AK, Vimalraj S, Nandakumar M, Abdelalim EM. Insulin resistance in diabetes: The promise of using induced pluripotent stem cell technology. World J Stem Cells 2021; 13:221-235. [PMID: 33815671 PMCID: PMC8006014 DOI: 10.4252/wjsc.v13.i3.221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/07/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) is associated with several metabolic disorders, including type 2 diabetes (T2D). The development of IR in insulin target tissues involves genetic and acquired factors. Persons at genetic risk for T2D tend to develop IR several years before glucose intolerance. Several rodent models for both IR and T2D are being used to study the disease pathogenesis; however, these models cannot recapitulate all the aspects of this complex disorder as seen in each individual. Human pluripotent stem cells (hPSCs) can overcome the hurdles faced with the classical mouse models for studying IR. Human induced pluripotent stem cells (hiPSCs) can be generated from the somatic cells of the patients without the need to destroy a human embryo. Therefore, patient-specific hiPSCs can generate cells genetically identical to IR individuals, which can help in distinguishing between genetic and acquired defects in insulin sensitivity. Combining the technologies of genome editing and hiPSCs may provide important information about the genetic factors underlying the development of different forms of IR. Further studies are required to fill the gaps in understanding the pathogenesis of IR and diabetes. In this review, we summarize the factors involved in the development of IR in the insulin-target tissues leading to diabetes. Also, we highlight the use of hPSCs to understand the mechanisms underlying the development of IR.
Collapse
Affiliation(s)
- Ahmed K Elsayed
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | | | - Manjula Nandakumar
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
13
|
Yingying Z, Yongji Y, Qiuting C, Rifang L, Zhuanping Z. has_circ_0071106 can be used as a diagnostic marker for type 2 diabetes. Int J Med Sci 2021; 18:2312-2320. [PMID: 33967607 PMCID: PMC8100644 DOI: 10.7150/ijms.52575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023] Open
Abstract
We explored has_circ_0071106 as a diagnostic marker for type 2 diabetes (T2DM) in south China, and predicted the functional mechanism of the target circRNA. A total of 107 T2DM patients and 107 healthy reference persons were included as the research objects. In the first stage, the circRNA microarray was used to detect the peripheral blood of 4 T2DM and 4 control groups to screen the differential expression profile of circRNA. In the second stage, four circRNAs were screened from the differential expression profiles of circRNA, and real-time polymerase chain reaction (Q-PCR) technology was used to verify the blood samples of 103 T2DM and 103 controls. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis in bioinformatics were used to predict the functional mechanism of target circRNA. Lastly,we found that has_circ_0071106 increase the risk of T2DM (OR=2.819 (95% CI: 1.415~5.616)). Thearea under the ROCcurve has_circ_0071106 was 0.690, the sensitivity was 62.1%, and the specificity was 69.9%. The function prediction results showed that has_circ_0071106 was involved in biological processes such as protein binding, gene transcription, and may be involved in the pathway of hsa-miR-29a-5p regulating diabetes, has_circ_0071106 may be used as a diagnostic marker for T2DM.
Collapse
Affiliation(s)
- Zheng Yingying
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yu Yongji
- The Second People's Hospital of Huadu District,Guangzhou 510320, China
| | - Cheng Qiuting
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Liao Rifang
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zeng Zhuanping
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| |
Collapse
|
14
|
Lee J, Walter MF, Korach KS, Noguchi CT. Erythropoietin reduces fat mass in female mice lacking estrogen receptor alpha. Mol Metab 2020; 45:101142. [PMID: 33309599 PMCID: PMC7809438 DOI: 10.1016/j.molmet.2020.101142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Erythropoietin (EPO), the cytokine required for erythropoiesis, contributes to metabolic regulation of fat mass and glycemic control. EPO treatment in mice on high-fat diets (HFD) improved glucose tolerance and decreased body weight gain via reduced fat mass in males and ovariectomized females. The decreased fat accumulation with EPO treatment during HFD in ovariectomized females was abrogated with estradiol supplementation, providing evidence for estrogen-related gender-specific EPO action in metabolic regulation. In this study, we examined the cross-talk between estrogen mediated through estrogen receptor α (ERα) and EPO for the regulation of glucose metabolism and fat mass accumulation. Methods Wild-type (WT) mice and mouse models with ERα knockout (ERα−/−) and targeted deletion of ERα in adipose tissue (ERαadipoKO) were used to examine EPO treatment during high-fat diet feeding and after diet-induced obesity. Results ERα−/− mice on HFD exhibited increased fat mass and glucose intolerance. EPO treatment on HFD reduced fat accumulation in male WT and ERα−/− mice and female ERα−/− mice but not female WT mice. EPO reduced HFD increase in adipocyte size in WT mice but not in mice with deletion of ERα independent of EPO-stimulated reduction in fat mass. EPO treatment also improved glucose and insulin tolerance significantly greater in female ERα−/− mice and female ERαadipoKO compared with WT controls. Increased metabolic activity by EPO was associated with browning of white adipocytes as shown by reductions in white fat-associated genes and induction of brown fat-specific uncoupling protein 1 (UCP1). Conclusions This study clearly identified the role of estrogen signaling in modifying EPO regulation of glucose metabolism and the sex-differential EPO effect on fat mass regulation. Cross-talk between EPO and estrogen was implicated for metabolic homeostasis and regulation of body mass in female mice. Erythropoietin regulates fat mass in male but not female mice on high-fat diets. Female estrogen receptor alpha deletion restores erythropoietin fat mass regulation. Estrogen receptor alpha deletion increases erythropoietin regulation of glucose tolerance. Erythropoietin reduced white fat-associated genes and increased uncoupling protein 1. Erythropoietin and estrogen cross-talk is implicated for metabolic homeostasis.
Collapse
Affiliation(s)
- Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary F Walter
- Clinical Laboratory Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Ganbold M, Ferdousi F, Arimura T, Tominaga K, Isoda H. New Amphiphilic Squalene Derivative Improves Metabolism of Adipocytes Differentiated From Diabetic Adipose-Derived Stem Cells and Prevents Excessive Lipogenesis. Front Cell Dev Biol 2020; 8:577259. [PMID: 33251210 PMCID: PMC7672044 DOI: 10.3389/fcell.2020.577259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Squalene (Sq) is a natural compound, found in various plant oils, algae, and larger quantity in deep-sea shark liver. It is also known as an intermediate of cholesterol synthesis in plants and animals including humans. Although evidences demonstrated its antioxidant, anticancer, hypolipidemic, and hepatoprotective and cardioprotective effects, its biological effects in cellular function might have been underestimated because of the water-insoluble property. To overcome this hydrophobicity, we synthesized new amphiphilic Sq derivative (HH-Sq). On the other hand, adipose-derived stem cells (ASCs) are a valuable source in regenerative medicine for its ease of accessibility and multilineage differentiation potential. Nevertheless, impaired cellular functions of ASCs derived from diabetic donor have still been debated controversially. In this study, we explored the effect of the HH-Sq in comparison to Sq on the adipocyte differentiation of ASCs obtained from subjects with type 2 diabetes. Gene expression profile by microarray analysis at 14 days of adipogenic differentiation revealed that HH-Sq induced more genes involved in intracellular signaling processes, whereas Sq activated more transmembrane receptor pathway-related genes. In addition, more important number of down-regulated and up-regulated genes by Sq and HH-Sq were not overlapped, suggesting the compounds might not only have difference in their chemical property but also potentially exert different biological effects. Both Sq and HH-Sq improved metabolism of adipocytes by enhancing genes associated with energy homeostasis and insulin sensitivity, SIRT1, PRKAA2, and IRS1. Interestingly, Sq increased significantly early adipogenic markers and lipogenic gene expression such as PPARG, SREBF1, and CEBPA, but not HH-Sq. As a consequence, smaller and fewer lipid droplet formation was observed in HH-Sq-treated adipocytes. Based on our findings, we report that both Sq and HH-Sq improved adipocyte metabolism, but only HH-Sq prevented excessive lipogenesis without abrogating adipocyte differentiation. The beneficial effect of HH-Sq provides an importance of synthesized derivatives from a natural compound with therapeutic potentials in the application of cell therapies.
Collapse
Affiliation(s)
- Munkhzul Ganbold
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, Japan
| | - Farhana Ferdousi
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, Japan.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Arimura
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, Japan
| | - Kenichi Tominaga
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, Japan
| | - Hiroko Isoda
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, Japan.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Sánchez-Sarasúa S, Ribes-Navarro A, Beltrán-Bretones MT, Sánchez-Pérez AM. AAV delivery of shRNA against IRS1 in GABAergic neurons in rat hippocampus impairs spatial memory in females and male rats. Brain Struct Funct 2020; 226:163-178. [PMID: 33245394 DOI: 10.1007/s00429-020-02155-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
Abstract
Brain insulin resistance is a major factor leading to impaired cognitive function and it is considered as the onset of Alzheimer´s disease. Insulin resistance is intimately linked to inflammatory conditions, many studies have revealed how pro-inflammatory cytokines lead to insulin resistance, by inhibiting IRS1 function. Thus, the dysfunction of insulin signaling is concomitant with inflammatory biomarkers. However, the specific effect of IRS1 impaired function in otherwise healthy brain has not been dissected out. So, we decided in our study, to study the specific role of IRS1 in the hippocampus, in the absence of comorbidities. To that end, shRNA against rat and human IRS1 was designed and tested in cultured HEK cells to evaluate mRNA levels and specificity. The best candidate sequence was encapsulated in an AAV vector (strain DJ8) under the control of the cytomegalovirus promoter and together with the green fluorescent protein gene as a reporter. AAV-CMV-shIRS1-EGFP and control AAV-CMV-EGFP were inoculated into the dorsal hippocampus of female and male Wistar rats. One month later, animals undertook a battery of behavioral paradigms evaluating spatial and social memory and anxiety. Our results suggest that females displayed increased susceptibility to AAV-shIRS1 in the novel recognition object paradigm; whereas both females and males show impaired performance in the T maze when infected with AAV-shIRS1 compared to control. Anxiety parameters were not affected by AAV-shIRS1 infection. We observed specific fluorescence within the hilum of the dentate gyrus, in immuno-characterized parvalbumin and somatostatin neurons. AAV DJ8 did not enter astrocytes. Intense green fibers were found in the fornix, mammillary bodies, and in the medial septum indicating that hippocampal efferent had been efficiently targeted by the AAV DJ8 infection. We observed that AAV-shIRS1 reduced significantly synaptophysin labeling in hippocampal-septal projections compared to controls. These results support that, small alterations in the insulin/IGF1 pathway in specific hippocampal circuitries can underlie alterations in synaptic plasticity and affect behavior, in the absence of inflammatory conditions.
Collapse
Affiliation(s)
| | - Alberto Ribes-Navarro
- Department of Medicine, Universitat Jaume I, Castellón, Spain.,Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | | | | |
Collapse
|
17
|
The Molecular Mechanisms by Which Vitamin D Prevents Insulin Resistance and Associated Disorders. Int J Mol Sci 2020; 21:ijms21186644. [PMID: 32932777 PMCID: PMC7554927 DOI: 10.3390/ijms21186644] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have shown that vitamin D deficiency is very common in modern societies and is perceived as an important risk factor in the development of insulin resistance and related diseases such as obesity and type 2 diabetes (T2DM). While it is generally accepted that vitamin D is a regulator of bone homeostasis, its ability to counteract insulin resistance is subject to debate. The goal of this communication is to review the molecular mechanism by which vitamin D reduces insulin resistance and related complications. The university library, PUBMED, and Google Scholar were searched to find relevant studies to be summarized in this review article. Insulin resistance is accompanied by chronic hyperglycaemia and inflammation. Recent studies have shown that vitamin D exhibits indirect antioxidative properties and participates in the maintenance of normal resting ROS level. Appealingly, vitamin D reduces inflammation and regulates Ca2+ level in many cell types. Therefore, the beneficial actions of vitamin D include diminished insulin resistance which is observed as an improvement of glucose and lipid metabolism in insulin-sensitive tissues.
Collapse
|
18
|
Lan S, Albinsson S. Regulation of IRS-1, insulin signaling and glucose uptake by miR-143/145 in vascular smooth muscle cells. Biochem Biophys Res Commun 2020; 529:119-125. [PMID: 32560812 DOI: 10.1016/j.bbrc.2020.05.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
Regulation of insulin signaling by microRNAs in smooth muscle cells may contribute to diabetic vascular disease. The two smooth muscle enriched miRNAs miR-143 and miR-145 have been reported to target mediators of insulin signaling in non-smooth muscle cells. In this study, we aimed to determine the importance of this regulation in vascular smooth muscle cells, where expression of miR-143/145 is much higher than in other cell types. Smooth muscle cells deficient of the miR-143/145 cluster were used, as well as smooth muscle cells transfected with mimics/inhibitors for either miR-143 or miR-145. We found that deletion of miR-143/145 in smooth muscle results in a dramatic upregulation IRS-1 expression and insulin signaling, and an increased insulin-induced glucose uptake. Furthermore, specific modulation of either miR-145 or miR-143 expression regulated specific targets (IRS-1, ORP8 and the IGF-1 receptor) in the insulin signaling pathway. Consequently, transient inhibition or overexpression of either miR-143 or miR-145 was sufficient to regulate insulin signaling in smooth muscle cells. In conclusion, the results of this study support an important role for both miR-143 and miR-145 in the regulation of insulin signaling and glucose uptake in vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Biological Transport, Active
- Cells, Cultured
- Glucose/metabolism
- Insulin/metabolism
- Insulin Receptor Substrate Proteins/metabolism
- Mice
- Mice, Knockout
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Receptor, IGF Type 1/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Susan Lan
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
19
|
Oleic Acid Protects Against Insulin Resistance by Regulating the Genes Related to the PI3K Signaling Pathway. J Clin Med 2020; 9:jcm9082615. [PMID: 32806641 PMCID: PMC7463472 DOI: 10.3390/jcm9082615] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The effects of different types of fatty acids on the gene expression of key players in the IRS1/PI3K signaling pathway have been poorly studied. MATERIAL AND METHODS We analyzed IRS1, p85α, and p110β mRNA expression and the fatty acid composition of phospholipids in visceral adipose tissue from patients with morbid obesity and from non-obese patients. Moreover, we analyzed the expression of those genes in visceral adipocytes incubated with oleic, linoleic, palmitic and dosahexaenoic acids. RESULTS We found a reduced IRS1 expression in patients with morbid obesity, independent of insulin resistance, and a reduced p110β expression in those with lower insulin resistance. A positive correlation was found between p85α and stearic acid, and between IRS1 and p110β with palmitic and dosahexaenoic acid. In contrast, a negative correlation was found between p85α and oleic acid, and between IRS1 and p110β with linoleic, arachidonic and adrenic acid. Incubation with palmitic acid decreased IRS1 expression. p85α was down-regulated after incubation with oleic and dosahexaenoic acid and up-regulated with palmitic acid. p110β expression was increased and decreased after incubation with oleic and palmitic acid, respectively. The ratio p85α/p110β was decreased by oleic and dosahexaenoic acid and increased by palmitic acid. CONCLUSIONS Our in vitro results suggest a detrimental role of palmitic acid on the expression of gene related to insulin signaling pathway, with oleic acid being the one with the higher and more beneficial effects. DHA had a slight beneficial effect. Fatty acid-induced regulation of genes related to the IRS1/PI3K pathway may be a novel mechanism by which fatty acids regulate insulin sensitivity in visceral adipocytes.
Collapse
|
20
|
Honkala SM, Motiani P, Kivelä R, Hemanthakumar KA, Tolvanen E, Motiani KK, Eskelinen JJ, Virtanen KA, Kemppainen J, Heiskanen MA, Löyttyniemi E, Nuutila P, Kalliokoski KK, Hannukainen JC. Exercise training improves adipose tissue metabolism and vasculature regardless of baseline glucose tolerance and sex. BMJ Open Diabetes Res Care 2020; 8:e000830. [PMID: 32816872 PMCID: PMC7437884 DOI: 10.1136/bmjdrc-2019-000830] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION We investigated the effects of a supervised progressive sprint interval training (SIT) and moderate-intensity continuous training (MICT) on adipocyte morphology and adipose tissue metabolism and function; we also tested whether the responses were similar regardless of baseline glucose tolerance and sex. RESEARCH DESIGN AND METHODS 26 insulin-resistant (IR) and 28 healthy participants were randomized into 2-week-long SIT (4-6×30 s at maximum effort) and MICT (40-60 min at 60% of maximal aerobic capacity (VO2peak)). Insulin-stimulated glucose uptake and fasting-free fatty acid uptake in visceral adipose tissue (VAT), abdominal and femoral subcutaneous adipose tissues (SATs) were quantified with positron emission tomography. Abdominal SAT biopsies were collected to determine adipocyte morphology, gene expression markers of lipolysis, glucose and lipid metabolism and inflammation. RESULTS Training increased glucose uptake in VAT (p<0.001) and femoral SAT (p<0.001) and decreased fatty acid uptake in VAT (p=0.01) irrespective of baseline glucose tolerance and sex. In IR participants, training increased adipose tissue vasculature and decreased CD36 and ANGPTL4 gene expression in abdominal SAT. SIT was superior in increasing VO2peak and VAT glucose uptake in the IR group, whereas MICT reduced VAT fatty acid uptake more than SIT. CONCLUSIONS Short-term training improves adipose tissue metabolism both in healthy and IR participants independently of the sex. Adipose tissue angiogenesis and gene expression was only significantly affected in IR participants.
Collapse
Affiliation(s)
| | | | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Erik Tolvanen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | | |
Collapse
|
21
|
Mugahid DA, Sengul TG, You X, Wang Y, Steil L, Bergmann N, Radke MH, Ofenbauer A, Gesell-Salazar M, Balogh A, Kempa S, Tursun B, Robbins CT, Völker U, Chen W, Nelson L, Gotthardt M. Proteomic and Transcriptomic Changes in Hibernating Grizzly Bears Reveal Metabolic and Signaling Pathways that Protect against Muscle Atrophy. Sci Rep 2019; 9:19976. [PMID: 31882638 PMCID: PMC6934745 DOI: 10.1038/s41598-019-56007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
Muscle atrophy is a physiological response to disuse and malnutrition, but hibernating bears are largely resistant to this phenomenon. Unlike other mammals, they efficiently reabsorb amino acids from urine, periodically activate muscle contraction, and their adipocytes differentially responds to insulin. The contribution of myocytes to the reduced atrophy remains largely unknown. Here we show how metabolism and atrophy signaling are regulated in skeletal muscle of hibernating grizzly bear. Metabolic modeling of proteomic changes suggests an autonomous increase of non-essential amino acids (NEAA) in muscle and treatment of differentiated myoblasts with NEAA is sufficient to induce hypertrophy. Our comparison of gene expression in hibernation versus muscle atrophy identified several genes differentially regulated during hibernation, including Pdk4 and Serpinf1. Their trophic effects extend to myoblasts from non-hibernating species (including C. elegans), as documented by a knockdown approach. Together, these changes reflect evolutionary favored adaptations that, once translated to the clinics, could help improve atrophy treatment.
Collapse
Affiliation(s)
- D A Mugahid
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - T G Sengul
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - X You
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Y Wang
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - L Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - N Bergmann
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - M H Radke
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - A Ofenbauer
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - M Gesell-Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - A Balogh
- Experimental and Clinical Research Center, Charité & Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - S Kempa
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - B Tursun
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - C T Robbins
- School of the Environment and School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - U Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - W Chen
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - L Nelson
- College of Veterinary Medicine and Department of Veterinary Clinical Science, Washington State University, Pullman, Washington, USA
| | - M Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany. .,Charité Universitätsmedizin Berlin, Berlin, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Frendo-Cumbo S, Jaldin-Fincati JR, Coyaud E, Laurent EMN, Townsend LK, Tan JMJ, Xavier RJ, Pillon NJ, Raught B, Wright DC, Brumell JH, Klip A. Deficiency of the autophagy gene ATG16L1 induces insulin resistance through KLHL9/KLHL13/CUL3-mediated IRS1 degradation. J Biol Chem 2019; 294:16172-16185. [PMID: 31515271 DOI: 10.1074/jbc.ra119.009110] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Connections between deficient autophagy and insulin resistance have emerged, however, the mechanism through which reduced autophagy impairs insulin-signaling remains unknown. We examined mouse embryonic fibroblasts lacking Atg16l1 (ATG16L1 KO mouse embryonic fibroblasts (MEFs)), an essential autophagy gene, and observed deficient insulin and insulin-like growth factor-1 signaling. ATG16L1 KO MEFs displayed reduced protein content of insulin receptor substrate-1 (IRS1), pivotal to insulin signaling, whereas IRS1myc overexpression recovered downstream insulin signaling. Endogenous IRS1 protein content and insulin signaling were restored in ATG16L1 KO mouse embryonic fibroblasts (MEF) upon proteasome inhibition. Through proximity-dependent biotin identification (BioID) and co-immunoprecipitation, we found that Kelch-like proteins KLHL9 and KLHL13, which together form an E3 ubiquitin (Ub) ligase complex with cullin 3 (CUL3), are novel IRS1 interactors. Expression of Klhl9 and Klhl13 was elevated in ATG16L1 KO MEFs and siRNA-mediated knockdown of Klhl9, Klhl13, or Cul3 recovered IRS1 expression. Moreover, Klhl13 and Cul3 knockdown increased insulin signaling. Notably, adipose tissue of high-fat fed mice displayed lower Atg16l1 mRNA expression and IRS1 protein content, and adipose tissue KLHL13 and CUL3 expression positively correlated to body mass index in humans. We propose that ATG16L1 deficiency evokes insulin resistance through induction of Klhl9 and Klhl13, which, in complex with Cul3, promote proteasomal IRS1 degradation.
Collapse
Affiliation(s)
- Scott Frendo-Cumbo
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Logan K Townsend
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Joel M J Tan
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Nicolas J Pillon
- Departments of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden 171 77
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David C Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - John Hunter Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,SickKids IBD Centre, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Amira Klip
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
23
|
Abstract
Diabetes and obesity are the two notorious metabolic disorders in today's world. Both diabetes and obesity are interlinked with each other and often referred to as 'Diabesity'. It is a complex and multi-organ failure disorder. Thus, many researches and tremendous efforts have been made toward prevention, treatment as well as early detection of diabesity. However, and still, there is a large gap in understanding the etiology as well as treatment of diabesity. Various animal models are also used to decipher the mechanism underlying diabesity. Among all the model organism, recently Drosophila melanogaster is gaining its importance to study diabetes, obesity, and other metabolic disorder. Various experimental methods like histological, biochemical, developmental, and behavioral assays are described in this study to detect diabetes as well as obesity in the fly model.
Collapse
Affiliation(s)
- Nibedita Nayak
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology , Rourkela , India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology , Rourkela , India
| |
Collapse
|
24
|
Lew KN, Starkweather A, Cong X, Judge M. A Mechanistic Model of Gut-Brain Axis Perturbation and High-Fat Diet Pathways to Gut Microbiome Homeostatic Disruption, Systemic Inflammation, and Type 2 Diabetes. Biol Res Nurs 2019; 21:384-399. [PMID: 31113222 DOI: 10.1177/1099800419849109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is a highly prevalent metabolic disease, affecting nearly 10% of the American population. Although the etiopathogenesis of T2D remains poorly understood, advances in DNA sequencing technologies have allowed for sophisticated interrogation of the human microbiome, providing insight into the role of the gut microbiome in the development and progression of T2D. An emerging body of research reveals that gut-brain axis (GBA) perturbations and a high-fat diet (HFD), along with other modifiable and nonmodifiable risk factors, contribute to gut microbiome homeostatic imbalance. Homeostatic imbalance or disruption increases gut wall permeability and facilitates translocation of endotoxins (lipopolysaccharides) into the circulation with resultant systemic inflammation. Chronic, low-grade systemic inflammation ensues with pro-inflammatory pathways activated, contributing to obesity, insulin resistance (IR), pancreatic β-cell decline, and, thereby, T2D. While GBA perturbations and HFD are implicated in provoking these conditions, prior mechanistic models have tended to examine HFD and GBA pathways exclusively without considering their shared pathways to T2D. Addressing this gap, this article proposes a mechanistic model informed by animal and human studies to advance scientific understanding of (1) modifiable and nonmodifiable risk factors for gut microbiome homeostatic disruption, (2) HFD and GBA pathways contributing to homeostatic disruption, and (3) shared GBA and HFD pro-inflammatory pathways to obesity, IR, β-cell decline, and T2D. The proposed mechanistic model, based on the extant literature, proposes a framework for studying the complex relationships of the gut microbiome to T2D to advance study in this promising area of research.
Collapse
Affiliation(s)
| | | | - Xiaomei Cong
- 1 School of Nursing, University of Connecticut, Storrs, CT, USA
| | - Michelle Judge
- 1 School of Nursing, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
25
|
Albustanji L, Perez GS, AlHarethi E, Aldiss P, Bloor I, Barreto-Medeiros JM, Budge H, Symonds ME, Dellschaft N. Housing Temperature Modulates the Impact of Diet-Induced Rise in Fat Mass on Adipose Tissue Before and During Pregnancy in Rats. Front Physiol 2019; 10:209. [PMID: 30894820 PMCID: PMC6414463 DOI: 10.3389/fphys.2019.00209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
Aim: To investigate whether housing temperature influences rat adiposity, and the extent it is modified by diet and/or pregnancy. Housing temperature impacts on brown adipose tissue, that possess a unique uncoupling protein (UCP) 1, which, when activated by reduced ambient temperature, enables rapid heat generation. Methods: We, therefore, examined whether the effects of dietary induced rise in fat mass on interscapular brown fat in female rats were dependent on housing temperature, and whether pregnancy further modulates the response. Four week old rats were either maintained at thermoneutrality (27°C) or at a “standard” cool temperature (20°C), and fed either a control or obesogenic (high in fat and sugar) diet until 10 weeks old. They were then either tissue sampled or mated with a male maintained under the same conditions. The remaining dams were tissue sampled at either 10 or 19 days gestation. Results: Diet had the greatest effect on fat mass at thermoneutrality although, by 19 days gestation, fat weight was similar between groups. Prior to mating, the abundance of UCP1 was higher at 20°C, but was similar between groups during pregnancy. UCP1 mRNA followed a similar pattern, with expression declining to a greater extent in the animals maintained at 20°C. Conclusion: Housing temperature has a marked influence on the effect of dietary induced rise in fat deposition that was modified through gestation. This maybe mediated by the reduction in UCP1 with housing at thermoneutrality prior to pregnancy and could subsequently impact on growth and development of the offspring.
Collapse
Affiliation(s)
- Layla Albustanji
- Early Life Research Unit, Division of Child Health, Obstetrics, and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Gabriela S Perez
- Early Life Research Unit, Division of Child Health, Obstetrics, and Gynaecology, University of Nottingham, Nottingham, United Kingdom.,Graduate Program of Food Nutrition and Health, Department of Food Science, School of Nutrition, Federal University of Bahia, Salvador, Brazil.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Enas AlHarethi
- Early Life Research Unit, Division of Child Health, Obstetrics, and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Peter Aldiss
- Early Life Research Unit, Division of Child Health, Obstetrics, and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Ian Bloor
- Early Life Research Unit, Division of Child Health, Obstetrics, and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Jairza M Barreto-Medeiros
- Graduate Program of Food Nutrition and Health, Department of Food Science, School of Nutrition, Federal University of Bahia, Salvador, Brazil.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Helen Budge
- Early Life Research Unit, Division of Child Health, Obstetrics, and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Michael E Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics, and Gynaecology, University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Neele Dellschaft
- Early Life Research Unit, Division of Child Health, Obstetrics, and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Guo Y, Guo C, Ha W, Ding Z. Carnosine improves diabetic retinopathy via the MAPK/ERK pathway. Exp Ther Med 2019; 17:2641-2647. [PMID: 30930967 PMCID: PMC6425270 DOI: 10.3892/etm.2019.7223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common causes of blindness in developed countries. Due to its asymptomatic onset and progressive disease course, DR is typically diagnosed at a late stage when treatment options are limited and therefore often results in irreversible blindness. Studies have demonstrated that carnosine may prevent and treat DR. In a previous study, the positive effect of carnosine on DR was determined and it was revealed that there may be an association between carnosine and the mitogen-activated protein kinase (MAPK)/extracellular signal related kinase (ERK) signaling pathway. To assess the interaction between carnosine and the MAPK/ERK signaling pathway, changes in PKC, ERK and p-ERK expression was assessed in diabetic rats following treatment with carnosine, PD98059 or U46619 via reverse transcription-quantitative polymerase chain reaction and western blotting. The results demonstrated that the expression of ERK and p-ERK were significantly suppressed following treatment with carnosine, but no significant effect on the expression of PKC was identified, which indicates that suppressing the activation of the MAPK/ERK signaling pathway may serve an important role in carnosine-induced DR prevention and treatment.
Collapse
Affiliation(s)
- Yong Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Chenjun Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Wenjing Ha
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhenhua Ding
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
27
|
Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U. Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity. Physiol Rev 2019; 98:1911-1941. [PMID: 30067159 DOI: 10.1152/physrev.00034.2017] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The subcutaneous adipose tissue (SAT) is the largest and best storage site for excess lipids. However, it has a limited ability to expand by recruiting and/or differentiating available precursor cells. When inadequate, this leads to a hypertrophic expansion of the cells with increased inflammation, insulin resistance, and a dysfunctional prolipolytic tissue. Epi-/genetic factors regulate SAT adipogenesis and genetic predisposition for type 2 diabetes is associated with markers of an impaired SAT adipogenesis and development of hypertrophic obesity also in nonobese individuals. We here review mechanisms for the adipose precursor cells to enter adipogenesis, emphasizing the role of bone morphogenetic protein-4 (BMP-4) and its endogenous antagonist gremlin-1, which is increased in hypertrophic SAT in humans. Gremlin-1 is a secreted and a likely important mechanism for the impaired SAT adipogenesis in hypertrophic obesity. Transiently increasing BMP-4 enhances adipogenic commitment of the precursor cells while maintained BMP-4 signaling during differentiation induces a beige/brown oxidative phenotype in both human and murine adipose cells. Adipose tissue growth and development also requires increased angiogenesis, and BMP-4, as a proangiogenic molecule, may also be an important feedback regulator of this. Hypertrophic obesity is also associated with increased lipolysis. Reduced lipid storage and increased release of FFA by hypertrophic SAT are important mechanisms for the accumulation of ectopic fat in the liver and other places promoting insulin resistance. Taken together, the limited expansion and storage capacity of SAT is a major driver of the obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Ann Hammarstedt
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Silvia Gogg
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Shahram Hedjazifar
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Annika Nerstedt
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Ulf Smith
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
28
|
Morigny P, Houssier M, Mairal A, Ghilain C, Mouisel E, Benhamed F, Masri B, Recazens E, Denechaud PD, Tavernier G, Caspar-Bauguil S, Virtue S, Sramkova V, Monbrun L, Mazars A, Zanoun M, Guilmeau S, Barquissau V, Beuzelin D, Bonnel S, Marques M, Monge-Roffarello B, Lefort C, Fielding B, Sulpice T, Astrup A, Payrastre B, Bertrand-Michel J, Meugnier E, Ligat L, Lopez F, Guillou H, Ling C, Holm C, Rabasa-Lhoret R, Saris WHM, Stich V, Arner P, Rydén M, Moro C, Viguerie N, Harms M, Hallén S, Vidal-Puig A, Vidal H, Postic C, Langin D. Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nat Metab 2019; 1:133-146. [PMID: 32694809 DOI: 10.1038/s42255-018-0007-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 02/08/2023]
Abstract
Impaired adipose tissue insulin signalling is a critical feature of insulin resistance. Here we identify a pathway linking the lipolytic enzyme hormone-sensitive lipase (HSL) to insulin action via the glucose-responsive transcription factor ChREBP and its target, the fatty acid elongase ELOVL6. Genetic inhibition of HSL in human adipocytes and mouse adipose tissue results in enhanced insulin sensitivity and induction of ELOVL6. ELOVL6 promotes an increase in phospholipid oleic acid, which modifies plasma membrane fluidity and enhances insulin signalling. HSL deficiency-mediated effects are suppressed by gene silencing of ChREBP and ELOVL6. Mechanistically, physical interaction between HSL, independent of lipase activity, and the isoform activated by glucose metabolism ChREBPα impairs ChREBPα translocation into the nucleus and induction of ChREBPβ, the isoform with high transcriptional activity that is strongly associated with whole-body insulin sensitivity. Targeting the HSL-ChREBP interaction may allow therapeutic strategies for the restoration of insulin sensitivity.
Collapse
Affiliation(s)
- Pauline Morigny
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Marianne Houssier
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Aline Mairal
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Claire Ghilain
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Etienne Mouisel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Fadila Benhamed
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bernard Masri
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Emeline Recazens
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Pierre-Damien Denechaud
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Geneviève Tavernier
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sylvie Caspar-Bauguil
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France
| | - Sam Virtue
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Veronika Sramkova
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Laurent Monbrun
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Anne Mazars
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Madjid Zanoun
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sandra Guilmeau
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valentin Barquissau
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Diane Beuzelin
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sophie Bonnel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Marie Marques
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Boris Monge-Roffarello
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Corinne Lefort
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Barbara Fielding
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bernard Payrastre
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Justine Bertrand-Michel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Emmanuelle Meugnier
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Lyon 1, INSA Lyon, Oullins, France
| | - Laetitia Ligat
- Pôle Technologique, Cancer Research Center of Toulouse (CRCT), Plateau Interactions Moléculaires, INSERM-UMR1037, Toulouse, France
| | - Frédéric Lopez
- Pôle Technologique, Cancer Research Center of Toulouse (CRCT), Plateau Interactions Moléculaires, INSERM-UMR1037, Toulouse, France
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRA), UMR1331, Integrative Toxicology and Metabolism, Toulouse, France
- University of Toulouse, UMR1331, Institut National Polytechnique (INP), Paul Sabatier University, Toulouse, France
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Cecilia Holm
- Department of Experimental Medical Science, Lund University, Biomedical Centre, Lund, Sweden
| | - Remi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Department of nutrition, Université de Montréal, Montreal, Canada
- Montreal Diabetes Research Center (MDRC), Montreal, Canada
| | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Vladimir Stich
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Peter Arner
- Department of Medicine, H7, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine, H7, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Cedric Moro
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Nathalie Viguerie
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Matthew Harms
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stefan Hallén
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hubert Vidal
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Lyon 1, INSA Lyon, Oullins, France
| | - Catherine Postic
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dominique Langin
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France.
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France.
| |
Collapse
|
29
|
Igawa H, Kikuchi A, Misu H, Ishii K, Kaneko S, Takamura T. p62-mediated autophagy affects nutrition-dependent insulin receptor substrate 1 dynamics in 3T3-L1 preadipocytes. J Diabetes Investig 2019; 10:32-42. [PMID: 29786968 PMCID: PMC6319485 DOI: 10.1111/jdi.12866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 01/22/2023] Open
Abstract
AIMS/INTRODUCTION Previous studies have shown that an organism's nutritional status changes the protein levels of insulin receptor substrate 1 (IRS-1) in a tissue-specific manner. Although the mechanisms underlying the regulation of IRS-1 in the nutrient-rich conditions associated with diabetes and insulin resistance have been well studied, those under nutrient-poor conditions remain unknown. The aim of the present study was to investigate how IRS-1 protein levels change depending on the nutritional status of 3T3-L1 preadipocytes. MATERIALS AND METHODS 3T3-L1 preadipocytes were treated with glucose-, amino acid- and serum-free medium for starvation. IRS-1 protein levels were detected by western blot. Autophagy activity was observed by western blot and fluorescence microscopy. The effect of autophagy and p62, an adaptor for selective autophagy, on IRS-1 protein levels under starvation conditions was examined by western blot and immunocytochemistry. RESULTS We showed that the levels of IRS-1, but not those of insulin receptor and protein kinase B, decreased when starvation activated autophagy. The inhibition of autophagy by chloroquine or autophagy-related 7 (Atg7) ribonucleic acid interference counteracted the starvation-induced decrease of IRS-1. Additionally, Atg7 knockdown increased insulin-stimulated phosphorylation of protein kinase B under starvation conditions. Furthermore, p62 colocalized with IRS-1 under starvation conditions, and p62 knockdown counteracted the starvation-induced degradation of IRS-1. CONCLUSIONS Autophagy through p62 plays an important role in regulating IRS-1 protein levels in response to nutritional deficiency. The present findings suggest that autophagy might function as energy depletion-sensing machinery that finely tunes insulin signal transduction.
Collapse
Affiliation(s)
- Hirobumi Igawa
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
- Department of System BiologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Akihiro Kikuchi
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Hirofumi Misu
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
- PRESTOJapan Science and Technology AgencyKawaguchiSaitamaJapan
| | - Kiyo‐aki Ishii
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
- Department of System BiologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Shuichi Kaneko
- Department of System BiologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Toshinari Takamura
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| |
Collapse
|
30
|
Zhu W, Niu X, Wang M, Li Z, Jiang HK, Li C, Caton SJ, Bai Y. Endoplasmic reticulum stress may be involved in insulin resistance and lipid metabolism disorders of the white adipose tissues induced by high-fat diet containing industrial trans-fatty acids. Diabetes Metab Syndr Obes 2019; 12:1625-1638. [PMID: 31507325 PMCID: PMC6718956 DOI: 10.2147/dmso.s218336] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/17/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Consumption of industrially produced trans-fatty acids (iTFAs) can result in alteration to lipid profile and glucose metabolism. Moreover, a diet high in iTFAs could increase the risk of obesity, cardiovascular diseases (CVDs) and type 2 diabetes mellitus. Glucose and lipid metabolism are closely linked in white adipose tissue (WAT), yet the underlying mechanisms of the effect of iTFAs in WAT are poorly understood. MATERIALS AND METHODS Parameters of glucose homeostasis, lipid profiles and markers of endoplasmic reticulum (ER) stress of WAT were measured in rats maintained on a high-fat diet containing margarine (HFD-M) (n=10) compared to controls maintained on standard chow (n=10) over 16 weeks. RESULTS Fat mass and body weight was significantly increased in rats maintained on the HFD-M compared to controls (P<0.01). HFD-M rats had increased levels of insulin (INS), homeostasis model assessment of insulin resistance and serum lipid profile was significantly altered. The expression of glucose-regulated protein 78 (GRP78) and the phosphorylation of inositol-requiring enzyme 1-alpha and c-Jun N-terminal kinase (JNK) were significantly increased in subcutaneous and retroperitoneal adipose depots of HFD-M-fed rats. In vitro, wider ER lumens were observed in 100μmol/L elaidic acid (EA)-treated human mature adipocytes. We observed activation of ER stress markers, impaired INS receptor signaling and increased lipogenesis in adipocytes after EA exposure. These effects could be alleviated by inhibiting ER stress in adipocytes in vitro. CONCLUSION Collectively these data suggest that ER stress may be involved in INS resistance and lipid metabolism disorders induced by high-fat diet containing iTFAs. These findings suggest that WAT could be regarded as a key target organ for inhibiting ER stress to reverse the impaired INS receptor signaling, alleviate lipid metabolism disorders, and provide a novel approach to prevent and treat INS resistance and dyslipidemia-related chronic diseases such as T2MD and CVDs.
Collapse
Affiliation(s)
- Wanqiu Zhu
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xin Niu
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Mingxia Wang
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Hong-Kun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Chuntao Li
- Information Center, the First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Samantha J Caton
- School of Health and Related Research (ScHARR), Public Health, University of Sheffield, Sheffield, S1 4DA, UK
| | - Yinglong Bai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Correspondence: Yinglong Bai Department of Maternal and Child Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang110122, Liaoning, People’s Republic of ChinaTel+86 243 193 9406Fax +86 243 193 9406Email
| |
Collapse
|
31
|
Insulin therapy and its consequences for the mother, foetus, and newborn in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2949-2956. [PMID: 29890222 DOI: 10.1016/j.bbadis.2018.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/26/2018] [Accepted: 06/06/2018] [Indexed: 11/21/2022]
Abstract
Gestational diabetes mellitus (GDM) is a disease characterised by glucose intolerance and first diagnosed in pregnancy. This condition relates to an anomalous placental environment and aberrant placental vascular function. GDM-associated hyperglycaemia changes the placenta structure leading to abnormal development and functionality of this vital organ. Aiming to avoid the GDM-hyperglycaemia and its deleterious consequences in the mother, the foetus and newborn, women with GDM are firstly treated with a controlled diet therapy; however, some of the women fail to reach the recommended glycaemia values and therefore they are passed to the second line of treatment, i.e., insulin therapy. The several protocols available in the literature regarding insulin therapy are variable and not a clear consensus is yet reached. Insulin therapy restores maternal glycaemia, but this beneficial effect is not reflected in the foetus and newborn metabolism, suggesting that other factors than d-glucose may be involved in the pathophysiology of GDM. Worryingly, insulin therapy may cause alterations in the placenta and umbilical vessels as well as the foetus and newborn additional to those seen in pregnant women with GDM treated with diet. In this review, we summarised the variable information regarding indications and protocols for administration of the insulin therapy and the possible outcomes on the function and structure of the foetoplacental unit and the neonate parameters from women with GDM.
Collapse
|
32
|
Park JS, Lee H, Choi BW, Ro S, Lee D, Na JE, Hong JH, Lee JS, Kim BW, Ko YG. An MG53-IRS1-interaction disruptor ameliorates insulin resistance. Exp Mol Med 2018; 50:1-12. [PMID: 29884820 PMCID: PMC5994830 DOI: 10.1038/s12276-018-0099-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/08/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022] Open
Abstract
Mitsugumin 53 (MG53) is an E3 ligase that induces insulin receptor substrate-1 (IRS-1) ubiquitination and degradation in skeletal muscle. We previously demonstrated that the pharmaceutical disruption of the MG53-IRS-1 interaction improves insulin sensitivity by abrogating IRS-1 ubiquitination and increasing IRS-1 levels in C2C12 myotubes. Here, we developed a novel MG53-IRS-1 interaction disruptor (MID-00935) that ameliorates insulin resistance in diet-induced obese (DIO) mice. MID-00935 disrupted the molecular interaction of MG53 and IRS-1, abrogated MG53-induced IRS-1 ubiquitination and degradation and improved insulin signaling in C2C12 myotubes. Oral administration of MID-00935 increased insulin-induced IRS-1, Akt, and Erk phosphorylation via increasing IRS-1 levels in the skeletal muscle of DIO mice. In DIO mice, MID-00935 treatment lowered fasting blood glucose levels and improved glucose disposal in glucose and insulin tolerance tests. These results suggest that MID-00935 may be a potential muscle-targeting drug candidate for treating insulin resistance.
Collapse
Affiliation(s)
- Jun Sub Park
- Division of Life Sciences, Korea University, Seoul, Korea.,Tunneling Nanotube Research Center, Korea University, Seoul, Korea
| | - Hyun Lee
- Division of Life Sciences, Korea University, Seoul, Korea.,Tunneling Nanotube Research Center, Korea University, Seoul, Korea
| | - Bo Woon Choi
- Division of Life Sciences, Korea University, Seoul, Korea.,Tunneling Nanotube Research Center, Korea University, Seoul, Korea
| | - Seonggu Ro
- CrystalGenomics, Inc., Seongnam-si, Gyeonggi-do, Korea
| | - Doyoung Lee
- CrystalGenomics, Inc., Seongnam-si, Gyeonggi-do, Korea
| | - Jeong Eun Na
- CrystalGenomics, Inc., Seongnam-si, Gyeonggi-do, Korea
| | - Jeoung-Ho Hong
- Division of Life Sciences, Korea University, Seoul, Korea.,Tunneling Nanotube Research Center, Korea University, Seoul, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, College of Medicine, INHA University, Incheon, Korea
| | - Bong-Woo Kim
- Division of Life Sciences, Korea University, Seoul, Korea. .,Tunneling Nanotube Research Center, Korea University, Seoul, Korea.
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea. .,Tunneling Nanotube Research Center, Korea University, Seoul, Korea.
| |
Collapse
|
33
|
Alpha-Mangostin Improves Insulin Secretion and Protects INS-1 Cells from Streptozotocin-Induced Damage. Int J Mol Sci 2018; 19:ijms19051484. [PMID: 29772703 PMCID: PMC5983655 DOI: 10.3390/ijms19051484] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/04/2018] [Accepted: 05/13/2018] [Indexed: 12/13/2022] Open
Abstract
Alpha (α)-mangostin, a yellow crystalline powder with a xanthone core structure, is isolated from mangosteen (Garcinia mangostana), which is a tropical fruit of great nutritional value. The aim of the present study was to investigate the anti-diabetic effects of α-mangostin and to elucidate the molecular mechanisms underlying its effect on pancreatic beta (β)-cell dysfunction. To assess the effects of α-mangostin on insulin production, rat pancreatic INS-1 cells were treated with non-toxic doses of α-mangostin (1⁻10 μM) and its impact on insulin signaling was examined by Western blotting. In addition, the protective effect of α-mangostin against pancreatic β-cell apoptosis was verified by using the β-cell toxin streptozotocin (STZ). Our results showed that α-mangostin stimulated insulin secretion in INS-1 cells by activating insulin receptor (IR) and pancreatic and duodenal homeobox 1 (Pdx1) followed by phosphorylation of phospho-phosphatidylinositol-3 kinase (PI3K), Akt, and extracellular signal regulated kinase (ERK) signaling cascades, whereas it inhibited the phosphorylation of insulin receptor substrate (IRS-1) (Ser1101). Moreover, α-mangostin was found to restore the STZ-induced decrease in INS-1 cell viability in a dose-dependent manner. In addition, treatment of INS-1 cells with 50 μM STZ resulted in an increase in intracellular reactive oxygen species (ROS) levels, which was represented by the fluorescence intensity of 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). This oxidative stress was decreased by co-treatment with 5 μM α-mangostin. Similarly, marked increases in the phosphorylation of P38, c-Jun N-terminal kinase (JNK), and cleavage of caspase-3 by STZ were decreased significantly by co-treatment with 5 μM α-mangostin. These results suggest that α-mangostin is capable of improving insulin secretion in pancreatic β-cells and protecting cells from apoptotic damage.
Collapse
|
34
|
Fang J, Wang X, Lu M, He X, Yang X. Recent advances in polysaccharides from Ophiopogon japonicus and Liriope spicata var. prolifera. Int J Biol Macromol 2018; 114:1257-1266. [PMID: 29634971 DOI: 10.1016/j.ijbiomac.2018.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023]
Abstract
O. japonicus and L. spicata var. prolifera are distinguished as sources of highly promising yin-tonifying medicinals, namely Ophiopogonis Radix and Liriopes Radix. Liriopes Radix is generally medicinally used as a substitute for Ophiopogonis Radix in various prescriptions due to their extremely similar nature. Ophiopogonis Radix and Liriopes Radix are both very rich in bioactive polysaccharides, especially β‑fructans. Over the past twelve years, except for work on physical entrapment and chemical modification of obtained β‑fructans, the vast majority of studies are carried out to investigate the bioactivities of O. japonicus polysaccharides (OJP) and L. spicata var. prolifera polysaccharides (LSP), mainly including anti-diabetes, immunomodulation, anti-inflammation, antioxidation, anti-obesity, cardiovascular protection, etc. In addition, OJP and LSP are considered to have the potential to regulate intestinal flora. The main purpose of this review is to provide systematically reorganized information on structural characteristics and bioactivities of OJP and LSP to support their further therapeutic potentials and sanitarian functions.
Collapse
Affiliation(s)
- Jiacheng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China.
| | - Xiaoxiao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Mengxin Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Xirui He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China; Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Xinhua Yang
- Chongqing Jiangbei Hospital of Traditional Chinese Medicine, Chongqing 400020, PR China
| |
Collapse
|
35
|
He X, Fang J, Ruan Y, Wang X, Sun Y, Wu N, Zhao Z, Chang Y, Ning N, Guo H, Huang L. Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): A review. Food Chem 2018; 245:899-910. [DOI: 10.1016/j.foodchem.2017.11.084] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/16/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
|
36
|
Amtul Z, Hill DJ, Arany EJ, Cechetto DF. Altered Insulin/Insulin-Like Growth Factor Signaling in a Comorbid Rat model of Ischemia and β-Amyloid Toxicity. Sci Rep 2018; 8:5136. [PMID: 29572520 PMCID: PMC5865153 DOI: 10.1038/s41598-018-22985-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke and diabetes are vascular risk factors for the development of impaired memory such as dementia and/or Alzheimer's disease. Clinical studies have demonstrated that minor striatal ischemic lesions in combination with β-amyloid (Aβ) load are critical in generating cognitive deficits. These cognitive deficits are likely to be associated with impaired insulin signaling. In this study, we examined the histological presence of insulin-like growth factor-I (IGF-1) and insulin receptor substrate (IRS-1) in anatomically distinct brain circuits compared with morphological brain damage in a co-morbid rat model of striatal ischemia (ET1) and Aβ toxicity. The results demonstrated a rapid increase in the presence of IGF-1 and IRS-1 immunoreactive cells in Aβ + ET1 rats, mainly in the ipsilateral striatum and distant regions with synaptic links to the striatal lesion. These regions included subcortical white matter, motor cortex, thalamus, dentate gyrus, septohippocampal nucleus, periventricular region and horizontal diagonal band of Broca in the basal forebrain. The alteration in IGF-1 and IRS-1 presence induced by ET1 or Aβ rats alone was not severe enough to affect the entire brain circuit. Understanding the causal or etiologic interaction between insulin and IGF signaling and co-morbidity after ischemia and Aβ toxicity will help design more effective therapeutics.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada.
| | - David J Hill
- Departments of Medicine, Physiology and Pharmacology, and Pediatrics, University of Western Ontario, London, N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, N6A 5C1, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada
| |
Collapse
|
37
|
Cao Y, Chen X, Sun Y, Shi J, Xu X, Shi YC. Hypoglycemic Effects of Pyrodextrins with Different Molecular Weights and Digestibilities in Mice with Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2988-2995. [PMID: 29446938 DOI: 10.1021/acs.jafc.8b00404] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pyrodextrin shares some properties of resistant starch, which is metabolically beneficial, and has potential applications as a functional food. In this study, we report that the oral administration of pyrodextrin (50 mg/kg/d for 7 weeks) decreased blood glucose (from 9.18 ± 1.47 to 7.67 ± 0.42 mmol/L), serum HbA1c, triglycerides, adipocyte size, and body weight (from 24.4 ± 1.2 to 22.5 ± 1.2 g) in mice with high-fat-diet-induced obesity. Western-blotting analysis suggested that pyrodextrins decreased intestinal SGLT-1 and GLUT-2 expression to ∼70 and ∼60% of the obese control, respectively, which slowed down glucose transportation from the gut into the blood and tentatively improved hepatic metabolism. Moreover, the pyrodextrin with a lower molecular weight of 44 kDa, a more branched structure, and increased nondigestible starch of 46.2 ± 0.3% showed stronger hypoglycemic activity. This work provides important information for developing pyrodextrins as a functional food and dietary supplement for the management of obesity and diabetes.
Collapse
Affiliation(s)
- Yan Cao
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiaoli Chen
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
- College of Food Science and Technology, Modern Biochemistry Experimental Center , Guangdong Ocean University , Zhanjiang 524088 , China
| | - Ying Sun
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Jialiang Shi
- Department of Grain Science and Industry , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Yong-Cheng Shi
- Department of Grain Science and Industry , Kansas State University , Manhattan , Kansas 66506 , United States
| |
Collapse
|
38
|
Conde SV, Sacramento JF, Guarino MP. Carotid body: a metabolic sensor implicated in insulin resistance. Physiol Genomics 2018; 50:208-214. [PMID: 29373079 DOI: 10.1152/physiolgenomics.00121.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The carotid body is now looked at as a multipurpose sensor for blood gases, blood pH, and several hormones. The matter of glucose sensing by the carotid body has been debated for several years in the literature, and these days there is a consensus that carotid body activity is modified by metabolic factors that contribute to glucose homeostasis. However, the sensing ability for glucose is still being pondered: are the carotid bodies low glucose sensors or, in contrast, are they overresponsive in high-glucose conditions? Herein, we debate the glucose and insulin sensing capabilities of the carotid body as key early events in the overactivation of the carotid body, which is increasingly recognized as an important feature of metabolic diseases. Additionally, we dedicate a final section to discuss new outside-the-box therapies designed to decrease carotid body activity that may be used for treating metabolic diseases.
Collapse
Affiliation(s)
- Silvia V Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências, Universidade NOVA de Lisboa , Lisbon , Portugal
| | - Joana F Sacramento
- CEDOC, NOVA Medical School, Faculdade de Ciências, Universidade NOVA de Lisboa , Lisbon , Portugal
| | - Maria P Guarino
- CEDOC, NOVA Medical School, Faculdade de Ciências, Universidade NOVA de Lisboa , Lisbon , Portugal.,School of Health Sciences, Polytechnic Institute of Leiria , Leiria , Portugal
| |
Collapse
|
39
|
Choi J, Kim KJ, Koh EJ, Lee BY. Gelidium elegans Extract Ameliorates Type 2 Diabetes via Regulation of MAPK and PI3K/Akt Signaling. Nutrients 2018; 10:E51. [PMID: 29316644 PMCID: PMC5793279 DOI: 10.3390/nu10010051] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/29/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022] Open
Abstract
Gelidium elegans, a red alga native to the Asia Pacific region, contains biologically active polyphenols. We conducted a molecular biological study of the anti-diabetic effect of Gelidium elegans extract (GEE) in C57BL/KsJ-db/db mice. Mice that had been administered GEE had significantly lower body mass, water consumption, and fasting blood glucose than db/db controls. Moreover, hemoglobin A1c (HbA1c), an indicator of the glycemic status of people with diabetes, was significantly lower in mice that had been administered GEE. We also found that 200 mg/kg/day GEE upregulates the insulin signaling pathway by activating insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K), and increasing the expression of glucose transporter type 4 (GLUT4). In parallel, mitogen-activated protein kinase (MAPK) activity was lower in GEE-treated groups. In summary, these findings indicate that GEE regulates glucose metabolism by activating the insulin signaling pathway and downregulating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jia Choi
- Department of Food Science and Biotechnology, College of Life Science, CHA University, 463-400 Seongnam, Kyonggi, Korea.
| | - Kui-Jin Kim
- Department of Food Science and Biotechnology, College of Life Science, CHA University, 463-400 Seongnam, Kyonggi, Korea.
| | - Eun-Jeong Koh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, 463-400 Seongnam, Kyonggi, Korea.
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, 463-400 Seongnam, Kyonggi, Korea.
| |
Collapse
|
40
|
Jeong H, Koh A, Lee J, Park D, Lee JO, Lee MN, Jo KJ, Tran HNK, Kim E, Min BS, Kim HS, Berggren PO, Ryu SH. Inhibition of C1-Ten PTPase activity reduces insulin resistance through IRS-1 and AMPK pathways. Sci Rep 2017; 7:17777. [PMID: 29259227 PMCID: PMC5736594 DOI: 10.1038/s41598-017-18081-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 12/06/2017] [Indexed: 11/09/2022] Open
Abstract
Insulin resistance causes type 2 diabetes; therefore, increasing insulin sensitivity is a therapeutic approach against type 2 diabetes. Activating AMP-activated protein kinase (AMPK) is an effective approach for treating diabetes, and reduced insulin receptor substrate-1 (IRS-1) protein levels have been suggested as a molecular mechanism causing insulin resistance. Thus, dual targeting of AMPK and IRS-1 might provide an ideal way to treat diabetes. We found that 15,16-dihydrotanshinone I (DHTS), as a C1-Ten protein tyrosine phosphatase inhibitor, increased IRS-1 stability, improved glucose tolerance and reduced muscle atrophy. Identification of DHTS as a C1-Ten inhibitor revealed a new function of C1-Ten in AMPK inhibition, possibly through regulation of IRS-1. These findings suggest that C1-Ten inhibition by DHTS could provide a novel therapeutic strategy for insulin resistance-associated metabolic syndrome through dual targeting of IRS-1 and AMPK.
Collapse
Affiliation(s)
- Heeyoon Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jiyoun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Dohyun Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jung Ok Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Mi Nam Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kyung-Jin Jo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Huynh Nguyen Khanh Tran
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk, 38430, Republic of Korea
| | - Eui Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Byung-Sun Min
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk, 38430, Republic of Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Per-Olof Berggren
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, S-171 76, Stockholm, Sweden
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
41
|
Jiao Y, Zhang M, Wang S, Yan C. Consumption of guava may have beneficial effects in type 2 diabetes: A bioactive perspective. Int J Biol Macromol 2017; 101:543-552. [DOI: 10.1016/j.ijbiomac.2017.03.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/23/2022]
|
42
|
Li H, Yao Y, Li L. Coumarins as potential antidiabetic agents. ACTA ACUST UNITED AC 2017; 69:1253-1264. [PMID: 28675434 DOI: 10.1111/jphp.12774] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/28/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Even with great advances in modern medicine and therapeutic agent development, the search for effective antidiabetic drugs remains challenging. Coumarins are secondary metabolites found widely in nature plants and used mainly in anticoagulation and antithrombotic therapy. Over the past two decades, however, there has been an increasing body of literatures related to the effects of coumarins and their derivatives on diabetes and its complications. This review aimed to focus on research findings concerning the effects of coumarins against diabetes and its complications using in-vitro and in-vivo animal models, and also to discuss cellular and molecular mechanisms underlying these effects. KEY FINDINGS The search for new coumarins against diabetes and it complications, either isolated from traditional medicine or chemically synthesized, has been constantly expanding. The cellular and molecular mechanisms involved include protecting pancreatic beta cells from damage, improving abnormal insulin signalling, reducing oxidative stress/inflammation, activating AMP-activated protein kinase (AMPK), inhibiting α-glucosidases and ameliorating diabetic complications. CONCLUSIONS The effects and mechanisms of coumarins and their derivatives upon diabetes and its complications are discussed in current review. Further investigations remain to be carried out to develop a promising antidiabetic agent based on coumarin cores.
Collapse
Affiliation(s)
- Hanbing Li
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China.,Section of Endocrinology, School of Medicine, Yale University, New Haven, USA
| | - Yuanfa Yao
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Linghuan Li
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
43
|
Horita S, Nakamura M, Suzuki M, Satoh N, Suzuki A, Homma Y, Nangaku M. The role of renal proximal tubule transport in the regulation of blood pressure. Kidney Res Clin Pract 2017; 36:12-21. [PMID: 28428931 PMCID: PMC5331971 DOI: 10.23876/j.krcp.2017.36.1.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/18/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
The electrogenic sodium/bicarbonate cotransporter 1 (NBCe1) on the basolateral side of the renal proximal tubule plays a pivotal role in systemic acid-base homeostasis. Mutations in the gene encoding NBCe1 cause severe proximal renal tubular acidosis accompanied by other extrarenal symptoms. The proximal tubule reabsorbs most of the sodium filtered in the glomerulus, contributing to the regulation of plasma volume and blood pressure. NBCe1 and other sodium transporters in the proximal tubule are regulated by hormones, such as angiotensin II and insulin. Angiotensin II is probably the most important stimulator of sodium reabsorption. Proximal tubule AT1A receptor is crucial for the systemic pressor effect of angiotensin II. In rodents and rabbits, the effect on proximal tubule NBCe1 is biphasic; at low concentration, angiotensin II stimulates NBCe1 via PKC/cAMP/ERK, whereas at high concentration, it inhibits NBCe1 via NO/cGMP/cGKII. In contrast, in human proximal tubule, angiotensin II has a dose-dependent monophasic stimulatory effect via NO/cGMP/ERK. Insulin stimulates the proximal tubule sodium transport, which is IRS2-dependent. We found that in insulin resistance and overt diabetic nephropathy, stimulatory effect of insulin on proximal tubule transport was preserved. Our results suggest that the preserved stimulation of the proximal tubule enhances sodium reabsorption, contributing to the pathogenesis of hypertension with metabolic syndrome. We describe recent findings regarding the role of proximal tubule transport in the regulation of blood pressure, focusing on the effects of angiotensin II and insulin.
Collapse
Affiliation(s)
- Shoko Horita
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Motonobu Nakamura
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Masashi Suzuki
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Nobuhiko Satoh
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Atsushi Suzuki
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, The University of Tokyo Hospital, Tokyo, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
44
|
A post-weaning obesogenic diet exacerbates the detrimental effects of maternal obesity on offspring insulin signaling in adipose tissue. Sci Rep 2017; 7:44949. [PMID: 28338072 PMCID: PMC5364470 DOI: 10.1038/srep44949] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
Previous studies have shown that maternal diet-induced obesity leads to increased risk of type 2 diabetes in offspring. The current study investigated if weaning onto an obesogenic diet exaggerated the detrimental effects of maternal diet-induced obesity in adipose tissue. Maternal obesity and offspring obesity led to reduced expression of key insulin signalling proteins, including insulin receptor substrate-1 (IRS-1). The effects of maternal obesity and offspring obesity were, generally, independent and additive. Irs1 mRNA levels were similar between all four groups of offspring, suggesting that in both cases post-transcriptional regulation was involved. Maternal diet-induced obesity increased miR-126 expression however levels of this miR were not influenced by a post-weaning obesogenic diet. In contrast, a post-weaning obesogenic diet was associated with increased levels of suppressor of cytokine signaling-1, implicating increased degradation of IRS-1 as an underlying mechanism. Our results suggest that whilst programmed reductions in IRS-1 are associated with increased levels of miR-126 and consequently reduced translation of Irs1 mRNA, the effects of a post-weaning obesogenic diet on IRS-1 are mediated by miR-126 independent mechanisms, including increased IRS-1 protein degradation. These divergent mechanisms explain why the combination of maternal obesity and offspring obesity leads to the most pronounced effects on offspring metabolism.
Collapse
|
45
|
Jiao Y, Wang X, Jiang X, Kong F, Wang S, Yan C. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:119-127. [PMID: 28163112 DOI: 10.1016/j.jep.2017.02.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) is becoming a serious threat to human health. The fruit of Morus alba L. is widely used as a traditional Chinese medicine for the treatment of DM, dizziness, tinnitus, insomnia, and premature graying, as well as to protect the liver and kidneys. Several studies have demonstrated that the aqueous extracts of the roots bark, leaves, and ramuli of mulberry, which are known to contain polyphenols and polysaccharides, have antihyperglycemic and antihyperlipidemic activities. The aim of the present study was to further investigate the active polysaccharides from M. alba fruit by evaluating the antidiabetic activities of different fractions on T2DM rats and elucidate the mechanism underlying these activities. MATERIALS AND METHODS Diabetic rats were treated with two fractions of M. alba fruit polysaccharides (MFP50 and MFP90). The disease models were induced by a high-fat diet and low dose injection of streptozotocin and were compared to normal rats and metformin-treated diabetic rats. After seven weeks, the fasting blood glucose (FBG), oral glucose tolerance test (OGTT), fasting serum insulin (FINS) levels, homeostasis model of assessment-insulin resistance (HOMA-IR), glycated serum protein (GSP), and serum alanine transaminase (ALT) levels, as well as serum lipid profiles and histopathological changes in the pancreas were measured. Next, the expressions of the insulin signaling pathway were measured by western blot analysis to elucidate the potential mechanism underlying these antidiabetic activities. RESULTS After seven weeks of treatment, a significant reduction in the FBG levels, OGTT-area under the curve (OGTT-AUC), FINS, HOMA-IR, ALT, and triglyceride (TG) values of the MFP50 group was observed. On the other hand, in the MFP90 group, the FBG, OGTT-AUC, FINS, HOMA-IR, GSP, and TG levels were significantly reduced. The level of high-density lipoprotein cholesterol (HDL-c) and the proportion of HDL-c to total cholesterol (TC) significantly increased in the MFP50 group. Moreover, MFP50 and MFP90 induced repair of damaged pancreatic tissues of the diabetic rats. The hypoglycemic effect of MFP50 was more stable than MFP90, whereas the hypolipidemic effect of MFP90 was slightly better than MFP50. Moreover, the expression levels of InsR, IRS-2, Akt and GLUT4 in the MFP90 group significantly increased relative to that of the T2DM group. CONCLUSIONS MFP50 and MFP90 have markedly antihyperglycemic and antihyperlipidemic effects and can clearly relieve diabetes symptoms in the T2DM rat model. The M. alba fruit polysaccharides may potentially be utilized as an effective treatment for T2DM. Further research into the structures of active M. alba fruit polysaccharides and their mechanisms in promoting antidiabetic effects are underway.
Collapse
Affiliation(s)
- Yukun Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, China
| | - Xueqian Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiang Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, China
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, China.
| |
Collapse
|
46
|
Tang CY, Man XF, Guo Y, Tang HN, Tang J, Zhou CL, Tan SW, Wang M, Zhou HD. IRS-2 Partially Compensates for the Insulin Signal Defects in IRS-1 -/- Mice Mediated by miR-33. Mol Cells 2017; 40:123-132. [PMID: 28190325 PMCID: PMC5339503 DOI: 10.14348/molcells.2017.2228] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 01/06/2023] Open
Abstract
Insulin signaling is coordinated by insulin receptor substrates (IRSs). Many insulin responses, especially for blood glucose metabolism, are mediated primarily through Irs-1 and Irs-2. Irs-1 knockout mice show growth retardation and insulin signaling defects, which can be compensated by other IRSs in vivo; however, the underlying mechanism is not clear. Here, we presented an Irs-1 truncated mutated mouse (Irs-1-/-) with growth retardation and subcutaneous adipocyte atrophy. Irs-1-/- mice exhibited mild insulin resistance, as demonstrated by the insulin tolerance test. Phosphatidylinositol 3-kinase (PI3K) activity and phosphorylated Protein Kinase B (PKB/AKT) expression were elevated in liver, skeletal muscle, and subcutaneous adipocytes in Irs-1 deficiency. In addition, the expression of IRS-2 and its phosphorylated version were clearly elevated in liver and skeletal muscle. With miRNA microarray analysis, we found miR-33 was down-regulated in bone marrow stromal cells (BMSCs) of Irs-1-/- mice, while its target gene Irs-2 was up-regulated in vitro studies. In addition, miR-33 was down-regulated in the presence of Irs-1 and which was up-regulated in fasting status. What's more, miR-33 restored its expression in re-feeding status. Meanwhile, miR-33 levels decreased and Irs-2 levels increased in liver, skeletal muscle, and subcutaneous adipocytes of Irs-1-/- mice. In primary cultured liver cells transfected with an miR-33 inhibitor, the expression of IRS-2, PI3K, and phosphorylated-AKT (p-AKT) increased while the opposite results were observed in the presence of an miR-33 mimic. Therefore, decreased miR-33 levels can up-regulate IRS-2 expression, which appears to compensate for the defects of the insulin signaling pathway in Irs-1 deficient mice.
Collapse
Affiliation(s)
- Chen-Yi Tang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Xiao-Fei Man
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Yue Guo
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Hao-Neng Tang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Jun Tang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Ci-La Zhou
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Shu-Wen Tan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008,
China
| | - Hou-De Zhou
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| |
Collapse
|
47
|
Sacramento JF, Ribeiro MJ, Rodrigues T, Olea E, Melo BF, Guarino MP, Fonseca-Pinto R, Ferreira CR, Coelho J, Obeso A, Seiça R, Matafome P, Conde SV. Functional abolition of carotid body activity restores insulin action and glucose homeostasis in rats: key roles for visceral adipose tissue and the liver. Diabetologia 2017; 60:158-168. [PMID: 27744526 DOI: 10.1007/s00125-016-4133-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS We recently described that carotid body (CB) over-activation is involved in the aetiology of insulin resistance and arterial hypertension in animal models of the metabolic syndrome. Additionally, we have demonstrated that CB activity is increased in animal models of insulin resistance, and that carotid sinus nerve (CSN) resection prevents the development of insulin resistance and arterial hypertension induced by high-energy diets. Here, we tested whether the functional abolition of CB by CSN transection would reverse pre-established insulin resistance, dyslipidaemia, obesity, autonomic dysfunction and hypertension in animal models of the metabolic syndrome. The effect of CSN resection on insulin signalling pathways and tissue-specific glucose uptake was evaluated in skeletal muscle, adipose tissue and liver. METHODS Experiments were performed in male Wistar rats submitted to two high-energy diets: a high-fat diet, representing a model of insulin resistance, hypertension and obesity, and a high-sucrose diet, representing a lean model of insulin resistance and hypertension. Half of each group was submitted to chronic bilateral resection of the CSN. Age-matched control rats were also used. RESULTS CSN resection normalised systemic sympathetic nervous system activity and reversed weight gain induced by high-energy diets. It also normalised plasma glucose and insulin levels, insulin sensitivity lipid profile, arterial pressure and endothelial function by improving glucose uptake by the liver and perienteric adipose tissue. CONCLUSIONS/INTERPRETATION We concluded that functional abolition of CB activity restores insulin sensitivity and glucose homeostasis by positively affecting insulin signalling pathways in visceral adipose tissue and liver.
Collapse
Affiliation(s)
- Joana F Sacramento
- Centro Estudos Doenças Crónicas (CEDOC), Faculdade Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, Rua Camara Pestana, 6-6a, Edificio II, piso 3, 1150-082, Lisboa, Portugal
| | - Maria J Ribeiro
- Centro Estudos Doenças Crónicas (CEDOC), Faculdade Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, Rua Camara Pestana, 6-6a, Edificio II, piso 3, 1150-082, Lisboa, Portugal
| | - Tiago Rodrigues
- Laboratório de Fisiologia, Instituto Biomédico de Investigação de Luz e Imagem (IBILI), Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Elena Olea
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Facultad de Medicina. Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Salud Carlos III (ISCIII), Valladolid, España
| | - Bernardete F Melo
- Centro Estudos Doenças Crónicas (CEDOC), Faculdade Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, Rua Camara Pestana, 6-6a, Edificio II, piso 3, 1150-082, Lisboa, Portugal
| | - Maria P Guarino
- Centro Estudos Doenças Crónicas (CEDOC), Faculdade Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, Rua Camara Pestana, 6-6a, Edificio II, piso 3, 1150-082, Lisboa, Portugal
- Unidade de Investigação em Saúde (UIS), Escola Superior de Saúde de Leiria, Instituto Politécnico de Leiria, Leiria, Portugal
| | - Rui Fonseca-Pinto
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Leiria, Portugal
- Instituto de Telecomunicações, Leiria, Portugal
| | - Cristiana R Ferreira
- Centro Estudos Doenças Crónicas (CEDOC), Faculdade Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, Rua Camara Pestana, 6-6a, Edificio II, piso 3, 1150-082, Lisboa, Portugal
| | - Joana Coelho
- Centro Estudos Doenças Crónicas (CEDOC), Faculdade Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, Rua Camara Pestana, 6-6a, Edificio II, piso 3, 1150-082, Lisboa, Portugal
| | - Ana Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Facultad de Medicina. Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Salud Carlos III (ISCIII), Valladolid, España
| | - Raquel Seiça
- Laboratório de Fisiologia, Instituto Biomédico de Investigação de Luz e Imagem (IBILI), Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Laboratório de Fisiologia, Instituto Biomédico de Investigação de Luz e Imagem (IBILI), Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
- Instituto Politécnico de Coimbra, Escola Superior de Tecnologia da Saúde (ESTeSC), Departmento de Ciências Complementares, Coimbra, Portugal
| | - Sílvia V Conde
- Centro Estudos Doenças Crónicas (CEDOC), Faculdade Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, Rua Camara Pestana, 6-6a, Edificio II, piso 3, 1150-082, Lisboa, Portugal.
| |
Collapse
|
48
|
Prattichizzo F, Giuliani A, De Nigris V, Pujadas G, Ceka A, La Sala L, Genovese S, Testa R, Procopio AD, Olivieri F, Ceriello A. Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity? Diabetes Obes Metab 2016; 18:855-67. [PMID: 27161301 PMCID: PMC5094499 DOI: 10.1111/dom.12688] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/18/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation of senescent cells and the low-grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and organs. MiRNA deregulation has been associated with the development and progression of a number of age-related diseases, including the enduring gene expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes-associated miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA-containing extracellular vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a 'physiological' signature capable of preventing or delaying the harmful systemic effects of T2DM.
Collapse
Affiliation(s)
- F Prattichizzo
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - A Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - V De Nigris
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - G Pujadas
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - A Ceka
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - L La Sala
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
| | - S Genovese
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
| | - R Testa
- Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona, Italy
| | - A D Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - F Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - A Ceriello
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
| |
Collapse
|
49
|
Hsieh FC, Lan CCE, Huang TY, Chen KW, Chai CY, Chen WT, Fang AH, Chen YH, Wu CS. Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food Funct 2016; 7:2374-88. [PMID: 27163114 DOI: 10.1039/c5fo01396h] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our objective was to investigate and compare the effects of heat-killed (HK) and live Lactobacillus reuteri GMNL-263 (Lr263) on insulin resistance and its related complications in high-fat diet (HFD)-induced rats. Male Sprague-Dawley rats were fed with a HFD with either HK or live Lr263 for 12 weeks. The increases in the weight gain, serum glucose, insulin, and lipid profiles in the serum and liver observed in the HFD group were significantly reduced after HK or live Lr263 administration. Feeding HK or live Lr263 reversed the decreased number of probiotic bacteria and increased the number of pathogenic bacteria induced by high-fat treatment. The decreased intestinal barrier in the HFD group was markedly reversed by HK or live Lr263 treatments. The elevations of pro-inflammatory associated gene expressions in both adipose and hepatic tissues by high-fat administration were markedly decreased by HK or live Lr263 treatments. The increased macrophage infiltration noticed in adipose tissue after high-fat treatment was effectively suppressed by HK or live Lr263 consumption. The insulin resistance associated gene expressions in both adipose and hepatic tissues, which were downregulated in the HFD group, were markedly enhanced after HK or live Lr263 administration. HK or live Lr263 consumption significantly decreased hepatic lipogenic gene expressions stimulated by high-fat treatment. Administration of HK or live Lr263 significantly reduced hepatic oil red O staining and ameliorated the hepatic steatosis observed in high-fat treated rats. Our data suggested that similar to live Lr263, HK Lr263 exerted significant effects on attenuating obesity-induced metabolic abnormalities by reducing insulin resistance and hepatic steatosis formation.
Collapse
Affiliation(s)
- Feng-Ching Hsieh
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chai SP, Fong JC. Synergistic induction of insulin resistance by endothelin-1 and cAMP in 3T3-L1 adipocytes. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2048-55. [PMID: 26143144 DOI: 10.1016/j.bbadis.2015.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/30/2015] [Accepted: 06/25/2015] [Indexed: 12/27/2022]
Abstract
Both endothelin-1 (ET-1) and cAMP are implicated for inducing insulin resistance. Since we have shown previously that there is a crosstalk between ET-1 and cAMP signaling pathways in regulating glucose uptake in 3T3-L1 adipocytes, we extended our investigation in this study on whether they may have a synergistic effect on inducing insulin resistance. Our results showed that it was indeed the case. Insulin-stimulated glucose uptake, phosphorylation of PKB, IRS-1-associated PI3K, and IRS-1 tyrosine phosphorylation were all inhibited by ET-1 and 8-bromo cAMP in a synergistic manner. IRS-1 protein levels were similarly decreased by ET-1 and 8-bromo cAMP, attributable to suppressed mRNA expression. In addition, after correction for the loss in IRS-1 protein, the inhibition of insulin-stimulated IRS-1 tyrosine phosphorylation or IRS-1-associated PI3K was mainly caused by cAMP. Moreover, whereas IRS-2 protein levels were increased by cAMP or ET-1 plus cAMP, insulin-stimulated IRS-2-associated PI3K activities were abolished by both treatments. Furthermore, ET-1 and β-adrenergic agonists had similar synergistic inhibition on insulin-stimulated glucose uptake. In conclusion, we have shown that ET-1 and cAMP may synergistically induce insulin resistance in adipocytes via inhibiting IRS-1 expression as well as insulin-stimulated IRS-1/IRS-2 activities.
Collapse
Affiliation(s)
- Shin-Pei Chai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | - Jim C Fong
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan, ROC.
| |
Collapse
|