1
|
Sharif A, Mamo J, Lam V, Al-Salami H, Mooranian A, Watts GF, Clarnette R, Luna G, Takechi R. The therapeutic potential of probucol and probucol analogues in neurodegenerative diseases. Transl Neurodegener 2024; 13:6. [PMID: 38247000 PMCID: PMC10802046 DOI: 10.1186/s40035-024-00398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Neurodegenerative disorders present complex pathologies characterized by various interconnected factors, including the aggregation of misfolded proteins, oxidative stress, neuroinflammation and compromised blood-brain barrier (BBB) integrity. Addressing such multifaceted pathways necessitates the development of multi-target therapeutic strategies. Emerging research indicates that probucol, a historic lipid-lowering medication, offers substantial potential in the realm of neurodegenerative disease prevention and treatment. Preclinical investigations have unveiled multifaceted cellular effects of probucol, showcasing its remarkable antioxidative and anti-inflammatory properties, its ability to fortify the BBB and its direct influence on neural preservation and adaptability. These diverse effects collectively translate into enhancements in both motor and cognitive functions. This review provides a comprehensive overview of recent findings highlighting the efficacy of probucol and probucol-related compounds in the context of various neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and cognitive impairment associated with diabetes.
Collapse
Affiliation(s)
- Arazu Sharif
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - John Mamo
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Research, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Hani Al-Salami
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Armin Mooranian
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Roger Clarnette
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Giuseppe Luna
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ryu Takechi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
| |
Collapse
|
2
|
Matralis AN, Kaklamanis L, Perrea D, Kourounakis AP. Effect of a new squalene synthase inhibitor on an ApoE -/- mouse model of atherosclerosis. Bioorg Med Chem 2023; 90:117378. [PMID: 37336084 DOI: 10.1016/j.bmc.2023.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Ηypercholesterolemia/hyperlipidemia in conjunction with oxidative stress and inflammatory processes contribute synergistically to the pathogenesis of atherosclerosis. We hereby evaluated the antiatherosclerotic effect of the multi-target derivative 4-methyl-2-(10H-phenothiazin-3-yl)morpholin-2-ol hydrobromide 1 in apoE-/- mice; compound 1 is a potent antihyperlipidemic agent acting through Squalene Synthase inhibition, while it has exhibited an outstanding antioxidant and anti-inflammatory activity in various experimental animal models. The new analogue was evaluated in terms of its antiatherosclerotic/antioxidant effect in the ApoE-/- transgenic mouse model. Its toxicity profile was also assessed by measuring the levels of four sensitive indicators of liver toxicity. Prolonged administration of 1 in ApoE-/- mice fed with a western-type (wt) diet efficiently reduced the aortic atheromatic lesions, an effect that took place through a cholesterol lowering independent manner. In addition, 1 displayed a significant reduction not only of glucose but also of oxidative stress levels, while it did not cause any toxicity. To the best of our knowledge this is the first time that the antiatherosclerotic effect of a Squalene Synthase inhibitor is studied in this specific atherosclerosis mouse model. As a result, compound 1 may serve as a promising starting point towards developing new bioactive analogues against the onset and subsequent development of atherosclerosis.
Collapse
Affiliation(s)
- Alexios N Matralis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; Bio-innovation Institute, Biomedical Sciences Research Center "Alexander Fleming", Vari, Athens, Greece.
| | - Loukas Kaklamanis
- Onassis Cardiac Surgery Center, Department of Pathology, Athens, Greece
| | - Despina Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Angeliki P Kourounakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to focus on the outcome of recent antioxidant interventions using synthetic and naturally occurring molecules established as adjuvant strategies to lipid-lowering or anti-inflammatory therapies designed to reduce the risk of cardiovascular disease. RECENT FINDINGS To date, accumulated evidence regarding oxidation as a pro-atherogenic factor indicates that redox biochemical events involved in atherogenesis are indeed a very attractive target for the management of cardiovascular disease in the clinic. Nevertheless, although evidence indicates that redox reactions are important in the initiation and progression of atherosclerosis, oxidation with a pro-atherogenic context does not eliminate the fact that oxidation participates in many cases as an essential messenger of important cellular signaling pathways. Therefore, disease management and therapeutic goals require not only high-precision and high-sensitivity methods to detect in plasma very low amounts of reducing and oxidizing molecules but also a much better understanding of the normal processes and metabolic pathways influenced and/or controlled by oxidative stress. As several methodologies have been specifically described for the quantification of the total antioxidant capacity and the oxidation state of diverse biological systems, a successful way to carefully study how redox reactions influence atherosclerosis can be achieved. Since there is still a lack of standardization with many of these methods, clinical trials studying antioxidant capacity have been difficult to compare and therefore difficult to use in order to reach a conclusion. We believe a comprehensive analysis of new knowledge and its relationship with the presence of plasma antioxidants and their reducing capacity will undoubtedly open new ways to understand and develop new therapeutic pathways in the fight not only against atherosclerosis but also against other degenerative diseases.
Collapse
Affiliation(s)
- Paola Toledo-Ibelles
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
4
|
|
5
|
Schmidt HHHW, Stocker R, Vollbracht C, Paulsen G, Riley D, Daiber A, Cuadrado A. Antioxidants in Translational Medicine. Antioxid Redox Signal 2015; 23:1130-43. [PMID: 26154592 PMCID: PMC4657516 DOI: 10.1089/ars.2015.6393] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. RECENT ADVANCES The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. CRITICAL ISSUES Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. FUTURE DIRECTIONS Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities.
Collapse
Affiliation(s)
- Harald H H W Schmidt
- 1 Department of Pharmacology, CARIM, FHML, MIAS, Maastricht University , Maastricht, The Netherlands
| | - Roland Stocker
- 2 Victor Chang Cardiac Research Institute , Sydney, Australia .,3 University of New South Wales , Sydney, Australia
| | - Claudia Vollbracht
- 4 Hochschule Fresenius, University of Applied Sciences , Idstein, Germany
| | | | - Dennis Riley
- 6 Galera Therapeutics Inc., Malvern, Pennsylvania
| | - Andreas Daiber
- 7 Labor für Molekulare Kardiologie, II. Medizinische Klinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität , Mainz, Germany
| | - Antonio Cuadrado
- 8 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , ISCIII, Madrid, Spain .,9 Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC , Madrid, Spain .,10 Instituto de Investigación Sanitaria La Paz (IdiPaz) , Madrid, Spain .,11 Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid , Madrid, Spain
| |
Collapse
|
6
|
A Mathematical Model of Atherosclerosis with Reverse Cholesterol Transport and Associated Risk Factors. Bull Math Biol 2014; 77:758-81. [DOI: 10.1007/s11538-014-0010-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/13/2014] [Indexed: 01/19/2023]
|
7
|
Yasui F, Sudoh M, Arai M, Kohara M. Synthetic lipophilic antioxidant BO-653 suppresses HCV replication. J Med Virol 2012. [DOI: 10.1002/jmv.23466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Yueli L, Liqun W, Haitao W, Lianbo L, Xinan Y. Comparison of anti–atherosclerotic effects of two different extracts from leaves of Mallotus furetianus. ASIAN PAC J TROP MED 2011; 4:878-82. [DOI: 10.1016/s1995-7645(11)60212-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/02/2011] [Accepted: 10/18/2011] [Indexed: 11/28/2022] Open
|
9
|
Niki E. Do free radicals play causal role in atherosclerosis? Low density lipoprotein oxidation and vitamin E revisited. J Clin Biochem Nutr 2010; 48:3-7. [PMID: 21297905 PMCID: PMC3022060 DOI: 10.3164/jcbn.11-007fr] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/10/2010] [Indexed: 12/31/2022] Open
Abstract
Lipid peroxidation induced by free radicals has been implicated in the pathogenesis of various diseases. Numerous in vitro and animal studies show that oxidative modification of low density lipoprotein (LDL) is an important initial event of atherosclerosis. Vitamin E and other antioxidants inhibit low density lipoprotein oxidation efficiently in vitro, however, human clinical trials with vitamin E have not yielded positive results. The mixed results for vitamin E effect may be ascribed primarily to the two factors. Firstly low density lipoprotein oxidation proceeds by multiple pathways mediated not only by free radicals but also by other non-radical oxidants and vitamin E is effective only against free radical mediated oxidation. Secondly, in contrast to animal experiments, vitamin E is given at the latter stage where oxidation is no more important. Free radicals must play causal role in pathogenesis of atherosclerosis and vitamin E should be effective if given at right time to right subjects.
Collapse
Affiliation(s)
- Etsuo Niki
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
10
|
Cynshi O, Tamura K, Niki E. Design, synthesis, and action of antiatherogenic antioxidants. Methods Mol Biol 2010; 610:91-107. [PMID: 20013174 DOI: 10.1007/978-1-60327-029-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ample evidence supports the critical role of oxidized low-density lipoprotein (ox-LDL) in initiation and progression of atherosclerosis. Oxidation of LDL is a complex process involving several steps (processes) of reactions such as initiation and propagation. Both proteins and lipids in LDL undergo free radical-mediated oxidations leading to the formation of ox-LDL that plays a pivotal role in atherosclerosis. Antioxidants of various types (both aqueous and lipophilic) either arrest or retard the oxidation of LDL at various steps of the oxidation process (e.g., initiation or propagation). Certain lipophilic antioxidants act as the chain-terminating antioxidants leading to the inhibition of LDL oxidation. The current chapter describes the designing and efficacy of two novel lipophilic antioxidants (benzofuranol, BO-653 and aniline, BO-313) in inhibiting the LDL oxidation and atherogenesis in experimental animal model. Furthermore, the characteristics of an effective antioxidant to inhibit LDL oxidation and atherogenesis which dictates the designing of the antioxidant drug and its mechanism(s) of antiatherogenic action are discussed.
Collapse
Affiliation(s)
- Osamu Cynshi
- Fuji-gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., Shizuoka, Japan
| | | | | |
Collapse
|
11
|
Dutta K, Bishayi B. Escherichia coli lipopolysaccharide administration alters antioxidant profile during hypercholesterolemia. Indian J Clin Biochem 2009; 24:179-83. [PMID: 23105829 PMCID: PMC3453217 DOI: 10.1007/s12291-009-0032-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pathogens, especially Gram-negative bacteria or bacterial endotoxin, along with other classical factors, may be involved in inflammatory response within the aortic endothelium during the progression of cardiovascular disease. Studies have shown that bacterial endotoxin activates various inflammatory processes in the body. Our study aims to establish a correlation between endotoxemia and vascular expression of antioxidant enzymes. Swiss albino mice (4 weeks old) were fed a high fat diet for 24 weeks and then were administered Escherichia coli endotoxin intraperitonealy, for 4 weeks. Tissue antioxidant enzymes, serum levels of IL-6 and TNF alpha were measured from the mice. We report that i.p. administration of endotoxin to hyperlipidemic mice resulted in elevation of superoxide dismutase and catalase enzymes, which was paralleled by a systemic reduction of serum cholesterol and LDL expression. Myeloperoxidase levels were also found to be elevated in aortic tissue, while an increase was also observed in the serum cytokine levels.
Collapse
Affiliation(s)
- Kallol Dutta
- Department of Physiology, University College of Science & Technology, University of Calcutta, 92, APC Road, Kolkata, 700009 West Bengal India
| | - Biswadev Bishayi
- Department of Physiology, University College of Science & Technology, University of Calcutta, 92, APC Road, Kolkata, 700009 West Bengal India
- Immunology Laboratory, Department of Physiology, University of Calcutta, 92 APC Road, Kolkata, 700009 West Bengal India
| |
Collapse
|
12
|
Kim KJ, Kim MA, Jung JH. Antitumor and antioxidant activity of protocatechualdehyde produced from Streptomyces lincolnensis M-20. Arch Pharm Res 2008; 31:1572-7. [PMID: 19099226 DOI: 10.1007/s12272-001-2153-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 11/14/2008] [Accepted: 12/01/2008] [Indexed: 11/26/2022]
Abstract
We characterized the biological functions of protocatechualdehyde (PA) isolated from the butanol extract of culture supernatant from Streptomyces lincolnensis M-20. Following butanol extraction, it was purified by silica gel and Sephadex LH-20 column chromatography. PA was analyzed by Furier Transform Infrared Spectroscopy (FT-IR), Gas chromatograph-Mass Spectrometer (GC-MS), and Nuclear Magnetic Resonance (NMR). PA had potent antioxidant activity, as measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. Antitumor activity against MCF-7 human breast cancer cells was evaluated by the 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide (MTT) assay. PA treatment (0 approximately 150 muM) dose-dependently blocked apoptosis, as shown by improved cell viability and inter-nucleosomal DNA fragmentation. Our findings suggest that Streptomyces lincolnensis M-20, a lincomycin producer, also produces protocatechualdehyde.
Collapse
Affiliation(s)
- Kyoung-Ja Kim
- Department of Biotechnology, College of Life Science, Soonchunhyang University, Asan, 336-745, Korea.
| | | | | |
Collapse
|
13
|
de Lima Portella R, Barcelos RP, de Bem AF, Carratu VS, Bresolin L, da Rocha JBT, Soares FAA. Oximes as inhibitors of low density lipoprotein oxidation. Life Sci 2008; 83:878-85. [DOI: 10.1016/j.lfs.2008.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/24/2008] [Accepted: 10/03/2008] [Indexed: 01/13/2023]
|
14
|
Miyamura M, Moriyama H, Murata S, Yokota J, Yoshioka S, Takuma D, Hamada A, Nishioka Y. [Inhibitory effects of "Goishi-tea" as a post-fermented-tea on dietary-induced hypercholesteremia and atherosclerosis in rabbits]. YAKUGAKU ZASSHI 2008; 128:1037-44. [PMID: 18591872 DOI: 10.1248/yakushi.128.1037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since lipid oxidation is involved in the deterioration of hypercholesterolemia-related atherosclerosis, ingestion of drinks and foods with antioxidant actions is useful for preventing lipid oxidation. Goishi-tea is a post-fermented-tea manufactured by a unique method in Japan, and may be useful for preventing various disorders. However, there is no scientific evidence. In this study, we compared the radical scavenging activity of goishi-tea with that of other teas, and administered this tea to a rabbit model of hypercholesteremia to evaluate its usefulness in the inhibition of hypercholesteremia and atherosclerosis. The radical scavenging activity of goishi-tea was similar to that of green-tea, and was higher than that of other types of fermented-teas. On the other hand, some difference of components was found between goishi-tea and green-tea. In cholesterol-fed rabbits, low-density lipoprotein (LDL)-cholesterol level in the goishi-tea-group was lower than that in the green-tea-group. Plasma lipidperoxide value was also lower in the goishi-tea-group than in the green-tea and tap-water-groups. On aortic endothelial staining, fat area in the goishi-tea-group was lower than that in the tap-water-group. Furthermore, fat accumulation in the aortic intima in the goishi-tea-group was very low. Goishi-tea has higher antioxidant activities than the other fermented-teas tested, which were generally low, and decreased serum lipid levels, suggesting that goishitea is a very peculiar fermented-tea with usefulness in the prevention of hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Mitsuhiko Miyamura
- Department of Pharmacy, Kochi Medical School Hospital, Nankoku City, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Shiao MS, Chiu JJ, Chang BW, Wang J, Jen WP, Wu YJ, Chen YL. In search of antioxidants and anti-atherosclerotic agents from herbal medicines. Biofactors 2008; 34:147-57. [PMID: 19706980 DOI: 10.1002/biof.5520340206] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many recent studies have suggested that low-density lipoprotein (LDL) oxidation, endothelial dysfunction, and inflammation are involved in the pathogenesis of atherosclerosis. Herbal regimens in the treatment of blood stasis, a counterpart of atherosclerosis, commonly use medicinal plants of leguminosae and labiatae. We have developed disease-oriented screening methods to search for bioactive components, particularly isoflavones in leguminosae and polyphenols in labiatae from Chinese herbal medicines. Many bioactive components and active fractions capable of inhibiting a. Cu(II)-induced LDL oxidation, b. oxidized LDL-induced endothelial damage, c. uptake of oxidized LDL by macrophages (J774A.1), and d. expression of cell adhesion molecules (CAMs) have been identified. A polyphenol, namely salvianolic acid B from Salvia miltiorrhiza was identified to be a potent antioxidant, endothelial-protecting agent, and an inhibitor to suppress the expression of ICAM and VCAM. This review also briefly describes the strategy for developing herbal medicines as anti-atherosclerotic agents.
Collapse
Affiliation(s)
- Ming-Shi Shiao
- Department of Life Science, Chang Gung University, Taoyuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
16
|
INAFUKU M, TODA T, OKABE T, WADA K, TAKARA K, IWASAKI H, OKU H. Effect of Kokuto, a Non-Centrifugal Cane Sugar, on the Development of Experimental Atherosclerosis in Japanese Quail and Apolipoprotein E Deficient Mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2007. [DOI: 10.3136/fstr.13.61] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Suarna C, Wu BJ, Choy K, Mori T, Croft K, Cynshi O, Stocker R. Protective effect of vitamin E supplements on experimental atherosclerosis is modest and depends on preexisting vitamin E deficiency. Free Radic Biol Med 2006; 41:722-30. [PMID: 16895792 DOI: 10.1016/j.freeradbiomed.2006.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/05/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
Vitamin E has failed to protect humans from cardiovascular disease outcome, yet its role in experimental atherosclerosis remains less clear. A previous study (Proc. Natl. Acad. Sci. USA 97:13830-13834; 2000) showed that vitamin E deficiency caused by disruption of the alpha-tocopherol transfer protein gene (Ttpa) is associated with a modest increase in atherosclerosis in apolipoprotein E gene deficient (Apoe(-/-)) mice. Here we confirm this finding and report that in Apoe(-/-)Ttpa(-/-) mice dietary alpha-tocopherol (alphaT) supplements restored circulating and aortic levels of alphaT, and decreased atherosclerosis in the aortic root to a level comparable to that seen in Apoe(-/-) mice. However, such dietary supplements did not decrease disease in Apoe(-/-) mice, whereas dietary supplements with a synthetic vitamin E analog (BO-653), either alone or in combination with alphaT, decreased atherosclerosis in Apoe(-/-) and in Apoe(-/-)Ttpa(-/-) mice. Differences in atherosclerosis were not associated with changes in the arterial concentrations of F(2)-isoprostanes and cholesterylester hydro(pero)xides, nor were they reflected in the resistance of plasma lipids to ex vivo oxidation. These results show that vitamin E at best has a modest effect on experimental atherosclerosis in hyperlipidemic mice, and only in situations of severe vitamin E deficiency and independent of lipid oxidation in the vessel wall.
Collapse
Affiliation(s)
- Cacang Suarna
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Dogné JM, Hanson J, Pratico D. Thromboxane, prostacyclin and isoprostanes: therapeutic targets in atherogenesis. Trends Pharmacol Sci 2005; 26:639-44. [PMID: 16243403 DOI: 10.1016/j.tips.2005.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 08/22/2005] [Accepted: 10/06/2005] [Indexed: 01/18/2023]
Abstract
Atherosclerosis is a chronic disease of the vasculature that is influenced by multiple factors that involve a complex interplay between some components of the blood and the arterial wall. Inflammation and oxidative stress have key roles in atherogenesis. The production of F2-isoprostanes (F2-IPs), thromboxane A2 (TxA2) and prostacyclin (PGI2) increases in atherosclerosis, and recent studies show that pharmacological modulation of their biosynthesis and biological activities are important therapeutic targets for managing atherosclerosis. In this review, we highlight recent breakthroughs in the roles of F2-IPs, TxA2 and PGI2 in atherogenesis, and identify pertinent therapeutic targets.
Collapse
Affiliation(s)
- Jean-Michel Dogné
- Department of Pharmacy, University of Namur, rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | |
Collapse
|
19
|
Kim HY, Pratt DA, Seal JR, Wijtmans M, Porter NA. Lipid-Soluble 3-Pyridinol Antioxidants Spare α-Tocopherol and Do Not Efficiently Mediate Peroxidation of Cholesterol Esters in Human Low-Density Lipoprotein. J Med Chem 2005; 48:6787-9. [PMID: 16250637 DOI: 10.1021/jm0507173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because alpha-tocopherol (alpha-TOH) mediates the peroxidation of cholesterol-esterified lipids in human low-density lipoprotein (LDL) in vitro and has displayed disappointing results against the onset and development of atherosclerosis, it may not be appropriate for use as a therapeutic in the prevention and/or treatment of the disease. Herein are described the experimental results demonstrating that 3-pyridinols spare alpha-TOH, do not efficiently mediate lipid peroxidation, and protect lipoprotein tryptophan residues in human LDL.
Collapse
Affiliation(s)
- Hye-Young Kim
- Department of Chemistry and Center for Molecular Toxicology, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | |
Collapse
|
20
|
Saini HK, Xu YJ, Arneja AS, Tappia PS, Dhalla NS. Pharmacological basis of different targets for the treatment of atherosclerosis. J Cell Mol Med 2005; 9:818-39. [PMID: 16364193 PMCID: PMC6740287 DOI: 10.1111/j.1582-4934.2005.tb00382.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of atherosclerotic plaque is a highly regulated and complex process which occurs as a result of structural and functional alterations in endothelial cells, smooth muscle cells (SMCs), monocytes/macrophages, T-lymphocytes and platelets. The plaque formation in the coronary arteries or rupture of the plaque in the peripheral vasculature in latter stages of atherosclerosis triggers the onset of acute ischemic events involving myocardium. Although lipid lowering with statins has been established as an important therapy for the treatment of atherosclerosis, partially beneficial effects of statins beyond decreasing lipid levels has shifted the focus to develop newer drugs that can affect directly the process of atherosclerosis. Blockade of renin angiotensin system, augmentation of nitric oxide availability, reduction of Ca(2+) influx, prevention of oxidative stress as well as attenuation of inflammation, platelet activation and SMC proliferation have been recognized as targets for drug treatment to control the development, progression and management of atherosclerosis. A major challenge for future drug development is to formulate a combination therapy affecting different targets to improve the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Harjot K Saini
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
21
|
Holvoet P. Role of oxidatively modified low density lipoproteins and anti-oxidants in atherothrombosis. Expert Opin Investig Drugs 2005; 8:527-44. [PMID: 15992113 DOI: 10.1517/13543784.8.5.527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Retrospective studies have demonstrated an association between coronary artery disease (CAD) and increased plasma levels of oxidised low density lipoproteins (LDL). A very recent prospective study in heart transplant patients has demonstrated that oxidised LDL is an independent risk factor for transplant CAD, thus further supporting the hypothesis that oxidised LDL is actively involved in the development of CAD. The increase of circulating oxidised LDL is most probably caused by back-diffusion from the atherosclerotic arterial wall in the blood, independent of plaque rupture. Indeed, plasma levels of oxidised LDL were very similar in patients with stable CAD and in patients with acute coronary syndromes. These were, however, associated with increased release of malondialdehyde (MDA)-modified LDL. Oxidised LDL may be generated by radical-mediated or by lipoxygenase or phospholipase catalysed lipid oxidation, and by myeloperoxidase catalysed protein and lipid oxidation. Prostaglandin synthesis by endothelial cells under oxidative stress and platelet activation are associated with the release of aldehydes; these induce the oxidative modification of the apolipoprotein B-100 moiety of LDL in the absence of lipid peroxidation, and thus generate MDA-modified LDL. Efficient prevention of in vivo oxidation may involve efficient cholesterol lowering, improving the anti-oxidative status of LDL by increasing the anti-oxidant content and increasing the oleate content of LDL, and by shifting the LDL away from phenotype B (characterised by small dense LDL particles). Anti-oxidative and anti-inflammatory enzymes associated with HDL may inhibit the oxidation of LDL or reverse the atherothrombotic effects of LDL.
Collapse
Affiliation(s)
- P Holvoet
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Abstract
According to the oxidative modification hypothesis, antioxidants that inhibit the oxidation of low-density lipoprotein (LDL) are expected to attenuate atherosclerosis, yet not all antioxidants that inhibit LDL oxidation in vitro inhibit disease in animal models of atherosclerosis. As with animal studies, a benefit with dietary supplements of antioxidants in general and vitamin E in particular was anticipated in humans, yet the overall outcome of large, randomized controlled studies has been disappointing. However, in recent years it has become clear that the role of vitamin E in LDL oxidation and the relationship between in vitro and in vivo inhibition of LDL oxidation are more complex than previously appreciated, and that oxidative events in addition to LDL oxidation in the extracellular space need to be considered in the context of an antioxidant as a therapeutic drug against atherosclerosis. This review focuses on some of these complexities, proposes a novel method to assess in vitro 'oxidizability' of lipoprotein lipids, and summarizes the present situation of development of antioxidant compounds as drugs against atherosclerosis and related cardiovascular disorders.
Collapse
Affiliation(s)
- O Cynshi
- Fuji-Gotemba Research Laboratories, Chugai Pharmaceutical Co Ltd, Shizuoka, Japan
| | | |
Collapse
|
23
|
Yamauchi R, Southwell-Keely P, Suarna C, Ray S, Raftery M, Cynshi O, Stocker R. Characterization of the oxidation products of BO-653 formed during peroxyl radical-mediated oxidation of human plasma. Free Radic Biol Med 2005; 38:32-40. [PMID: 15589369 DOI: 10.1016/j.freeradbiomed.2004.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 07/27/2004] [Accepted: 09/20/2004] [Indexed: 10/26/2022]
Abstract
4,6-Di-tert-butyl-2,3-dihydro-2,2-dipentyl-5-benzofuranol (BO-653) is a novel antioxidant synthesized by theoretical findings and considerations. Here we report on the aqueous peroxyl radical-induced oxidation of human plasma in the presence of BO-653. When BO-653 was given to healthy human subjects at 400 mg twice daily for 28 days, lipids in the resulting plasma were protected from oxidation compared with lipids present in plasma from subjects receiving placebo. Similarly, BO-653 added in vitro at 50 muM inhibited the peroxyl radical-induced accumulation of cholesteryl ester hydroperoxides that occurred in the presence of alpha-tocopherol, although BO-653 did not decrease the rate of consumption of ascorbate, albumin-bound bilirubin, and uric acid. The antioxidant action of in vivo and in vitro added BO-653 was associated with the formation of two major reaction products of BO-653, the structures of which were elucidated by mass spectrometry and nuclear magnetic resonance analyses. The products were identified as stereoisomers of dioxybis(4,6-di-tert.-butyl-2,3,5,7a-tetrahydro-2,2-dipentylbenzofuran-5-one). These dialkylperoxides of BO-653 might be useful markers to assess the antioxidant function of BO-653 in biological systems in vivo.
Collapse
Affiliation(s)
- Ryo Yamauchi
- Centre for Vascular Research, University of New South Wales, and Department of Haematology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
This review focuses on the role of oxidative processes in atherosclerosis and its resultant cardiovascular events. There is now a consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein oxidation in the vascular wall. The oxidative modification hypothesis of atherosclerosis predicts that low-density lipoprotein (LDL) oxidation is an early event in atherosclerosis and that oxidized LDL contributes to atherogenesis. In support of this hypothesis, oxidized LDL can support foam cell formation in vitro, the lipid in human lesions is substantially oxidized, there is evidence for the presence of oxidized LDL in vivo, oxidized LDL has a number of potentially proatherogenic activities, and several structurally unrelated antioxidants inhibit atherosclerosis in animals. An emerging consensus also underscores the importance in vascular disease of oxidative events in addition to LDL oxidation. These include the production of reactive oxygen and nitrogen species by vascular cells, as well as oxidative modifications contributing to important clinical manifestations of coronary artery disease such as endothelial dysfunction and plaque disruption. Despite these abundant data however, fundamental problems remain with implicating oxidative modification as a (requisite) pathophysiologically important cause for atherosclerosis. These include the poor performance of antioxidant strategies in limiting either atherosclerosis or cardiovascular events from atherosclerosis, and observations in animals that suggest dissociation between atherosclerosis and lipoprotein oxidation. Indeed, it remains to be established that oxidative events are a cause rather than an injurious response to atherogenesis. In this context, inflammation needs to be considered as a primary process of atherosclerosis, and oxidative stress as a secondary event. To address this issue, we have proposed an "oxidative response to inflammation" model as a means of reconciling the response-to-injury and oxidative modification hypotheses of atherosclerosis.
Collapse
Affiliation(s)
- Roland Stocker
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|
25
|
Itoh N, Yoshida Y, Hayakawa M, Noguchi N, Kodama T, Cynshi O, Niki E. Inhibition of plasma lipid peroxidation by anti-atherogenic antioxidant BO-653, 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran. Biochem Pharmacol 2004; 68:813-8. [PMID: 15294444 DOI: 10.1016/j.bcp.2004.05.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 05/27/2004] [Indexed: 11/19/2022]
Abstract
BO-653, 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran, is a synthetic antioxidant which is now being developed as an anti-atherogenic drug. The antioxidant action of BO-653 against lipid peroxidation in rat plasma was studied and compared with its analogue BO-653M, 2,3-dihydro-5-hydroxy-4,6-di-methyl-2,2-dipentylbenzofuran, and vitamin E. BO-653 was readily incorporated into plasma by oral administration and it inhibited plasma lipid peroxidation more efficiently than vitamin E independent of the presence or absence of vitamin C. On the other hand, its analogue BO-653M having two methyl substituents in place of tert-butyl groups of BO-653 did not inhibit the lipid peroxidation in plasma as efficiently as BO-653, demonstrating clearly that the tert-butyl groups at the ortho-position play a key role in determining the antioxidant efficacy.
Collapse
Affiliation(s)
- Nanako Itoh
- Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka Ikeda, Osaka 563-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Lodyato VI, Yurkova IL, Sorokin VL, Shadyro OI, Dolgopalets VI, Kisel MA. Novel (3,5-di-tert-butyl-2-hydroxy-phenylcarbamoyl)-alkanoic acids as potent antioxidants. Bioorg Med Chem Lett 2004; 14:4253-6. [PMID: 15261281 DOI: 10.1016/j.bmcl.2004.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 05/21/2004] [Accepted: 06/03/2004] [Indexed: 11/19/2022]
Abstract
A series of novel phenolic antioxidants of amphiphilic structure has been synthesized. Investigations into the influence of aliphatic spacer length and nature of a hydrophilic anchor on the antioxidant activity allowed elucidating certain structure requirements for the membrane-addressed antioxidant designing.
Collapse
Affiliation(s)
- Vladimir I Lodyato
- Department of Chemistry of the Belarusian State University, Skaryna av., 4, 220050 Minsk, Belarus
| | | | | | | | | | | |
Collapse
|
27
|
Azzi A, Gysin R, Kempná P, Ricciarelli R, Villacorta L, Visarius T, Zingg JM. The role of alpha-tocopherol in preventing disease: from epidemiology to molecular events. Mol Aspects Med 2004; 24:325-36. [PMID: 14585303 DOI: 10.1016/s0098-2997(03)00028-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The function of vitamin E has been attributed to its capacity to protect the organism against the attack of free radicals by acting as a lipid based radical chain breaking molecule. More recently, alternative non-antioxidant functions of vitamin E have been proposed and in particular that of a "gene regulator". Effects of vitamin E have been observed at the level of mRNA or protein and could be consequent to regulation of gene transcription, mRNA stability, protein translation, protein stability and post-translational events. Given the high priority functions assigned to vitamin E, it can be speculated that it would be inefficient to consume it as a radical scavenger. Rather, it would be important to protect vitamin E through a network of cellular antioxidant defences, similarly to what occurs with proteins, nucleic acids and lipids.
Collapse
Affiliation(s)
- A Azzi
- Institute of Biochemistry and Molecular Biology, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Chiesa G, Rigamonti E, Monteggia E, Parolini C, Marchesi M, Miragoli L, Grotti A, Maggioni F, Lorusso V, Sirtori CR. Evaluation of a soft atherosclerotic lesion in the rabbit aorta by an invasive IVUS method versus a non-invasive MRI technology. Atherosclerosis 2004; 174:25-33. [PMID: 15135247 DOI: 10.1016/j.atherosclerosis.2004.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 01/05/2004] [Accepted: 01/22/2004] [Indexed: 10/26/2022]
Abstract
The intravascular ultrasound (IVUS) modality has rapidly gained acceptance for the measurement of arterial plaque thickness and for anatomical characterization. In view, however, of the growing interest in the direct assessment of plaque size after therapeutic modalities directly reducing plaque burden, a non-invasive method such as magnetic resonance imaging (MRI) may be of help for repeated evaluations. The two methods were compared directly on a focal plaque developed at the abdominal aortic level by a combination of local electric lesion followed by a hypercholesterolemic diet. The plaque was fully characterized histopathologically at intervals up to 120 days from lesion induction, and maximal plaque formation was detected at 90 days from electrical injury. Plaques could be well assessed by IVUS at each time point analyzed and data correlated very well to histopathologic findings (r = 0.969, P = 0.0014). The MRI technology provided reliable determinations only at 90 days after lesion induction, i.e. at maximal plaque formation, with excellent correspondence to IVUS determinations (r = 0.989, P = 0.0111). Altogether these findings indicate that the non-invasive MRI technology, when applied to the analysis of arterial plaques of adequate size, can be used successfully for plaque determination, with results comparable to the invasive IVUS technique.
Collapse
Affiliation(s)
- G Chiesa
- Department of Pharmacological Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pettersson K, Bergstrand H. The antiatherogenic effect of DiNAC: experimental findings supporting immunomodulation as a new treatment for atherosclerosis related diseases. CARDIOVASCULAR DRUG REVIEWS 2003; 21:119-32. [PMID: 12847563 DOI: 10.1111/j.1527-3466.2003.tb00110.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inflammatory processes in the arterial wall are important in atherogenesis. The present review discusses the development of DiNAC as a potential new treatment modality for atherosclerosis related diseases. DiNAC, N,N'-diacetyl-L-cystine, is the disulphide dimer of N-acetyl cysteine, NAC. It was selected as an immunomodulating drug candidate due to its ability to modify contact sensitivity/delayed type hypersensitivity (CS/DTH) reactions in vivo. Initial structure-activity relationship (SAR) studies indicated that an intact disulfide bridge was essential for this effect. Antioxidants, like probucol and some close analogs with two sulphurs in close proximity (but not disulphides), were also found to have similar effects on CS/DTH reactions. These antioxidants have antiatherosclerotic effects, while structurally related compounds without sulphurs do not. Therefore, it was hypothesized that DiNAC might also possess antiatherosclerotic effects. This was investigated in WHHL rabbits and mice. In both species, DiNAC had antiatherosclerotic activity similar to that of probucol. The effect of DiNAC was not due to an alteration of lipid metabolism. Impaired endothelium mediated relaxation is known to be associated with atherosclerosis. DiNAC was shown to reverse this process in WHHL rabbits with advanced atherosclerosis, probably due to an action on the vessel wall itself that is not related to the extent of atherosclerosis or to plasma lipid levels. Preliminary data from a clinical investigation in hypercholesterolemic subjects suggest that DiNAC is likely to have similar effects also in patients. Taken together, these findings suggest immunomodulation to be a potential new therapy for atherosclerosis related diseases. DiNAC may represent a new treatment modality for such diseases.
Collapse
Affiliation(s)
- Knut Pettersson
- AstraZeneca Research and Development Mölndal, Kungsladugårdsgatan 110, SE-414 76 Göteborg, Sweden.
| | | |
Collapse
|
30
|
Choy KJ, Deng YM, Hou JY, Wu B, Lau A, Witting PK, Stocker R. Coenzyme Q(10) supplementation inhibits aortic lipid oxidation but fails to attenuate intimal thickening in balloon-injured New Zealand white rabbits. Free Radic Biol Med 2003; 35:300-9. [PMID: 12885592 DOI: 10.1016/s0891-5849(03)00304-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidized lipoproteins are implicated in atherosclerosis, and some antioxidants attenuate the disease in animals. Coenzyme Q(10) (CoQ(10)) in its reduced form, ubiquinol-10, effectively inhibits lipoprotein oxidation in vitro and in vivo; CoQ(10) supplements also inhibit atherosclerosis in apolipoprotein E gene knockout (apoE-/-) mice. Here we tested the effect of dietary CoQ(10) supplements on intimal proliferation and lipoprotein lipid oxidation in balloon-injured, hypercholesterolemic rabbits. Compared to nonsupplemented chow, CoQ(10) supplementation (0.5% and 1.0%, w/w) significantly increased the plasma concentration of CoQ(10) and the resistance of plasma lipids to ex vivo oxidation. CoQ(10) supplements also increased the content of CoQ(10) in the aorta and liver, but not in the brain, skeletal muscle, kidney, and heart. Surprisingly, CoQ(10) supplementation at 1% increased the aortic concentrations of all lipids, particularly triacylglycerols, although it significantly inhibited the proportion of triacylglycerols present as hydroperoxides by > 80%. The observed increase in vessel wall lipid content was reflected in elevated plasma concentrations of cholesterol, cholesteryl esters and triacylglycerols, and hepatic levels of mRNA for 3-hydroxy-3-methylglutaryl-coenzyme A reductase. CoQ(10) supplements did not attenuate lesion formation, assessed by the intima-to-media ratio of injured aortic vessels. Thus, like in apoE-/- mice, a high dose of supplemented CoQ(10) inhibits lipid oxidation in the artery wall of balloon-injured, hypercholesterolemic rabbits. However, unlike its antiatherosclerosis activity in the mice, CoQ(10) does not inhibit intimal hyperplasia in rabbits, thereby dissociating this disease process from lipid oxidation in the vessel wall.
Collapse
Affiliation(s)
- Katherine J Choy
- Biochemistry Group, The Heart Research Institute, Camperdown, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Tamura K, Kato Y, Ishikawa A, Kato Y, Himori M, Yoshida M, Takashima Y, Suzuki T, Kawabe Y, Cynshi O, Kodama T, Niki E, Shimizu M. Design and synthesis of 4,6-di-tert-butyl-2,3-dihydro-5-benzofuranols as a novel series of antiatherogenic antioxidants. J Med Chem 2003; 46:3083-93. [PMID: 12825946 DOI: 10.1021/jm030062a] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antioxidants have been considered as potential antiatherogenic agents by inhibiting oxidation of low-density lipoprotein (LDL), albeit vitamin E, a natural antioxidant, has failed to show reduction on atherosclerosis in clinical trials. We have rationally designed and synthesized a novel series of antioxidants, 4,6-di-tert-butyl-2,3-dihydro-5-benzofuranols, to overcome the clinical limitation of vitamin E. In vitro, the compounds showed a potent inhibitory effect on lipid peroxidation detected as 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3-one (MCLA)-dependent chemiluminescence in linoleic acid autoxidation. They also inhibited the LDL oxidation induced by Cu(2+), and the inhibition is more potent than that of vitamin E and probucol. In vivo, 4,6-di-tert-butyl-2,3-dihydro-2,2-dipentyl-5-benzofuranol (BO-653, 1f), an optimal compound, showed the highest concentration in plasma and LDL fraction in Watanabe heritable hyperlipidemic rabbits, due to its high affinity to LDL. The isolated LDL samples from the 1f-treated rabbits showed potent resistibility to LDL oxidation. Compound 1f has been taken into clinical trials.
Collapse
Affiliation(s)
- Kunio Tamura
- Synthetic Technology Research Department, Chugai Pharmaceutical Co, Ltd, 5-5-1 Ukima, Kita-ku, Tokyo 115-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chan H, Lougheed M, Laher I, Steinbrecher UP. Oxidized low-density lipoprotein inhibits endothelium-dependent vasodilation by an antioxidant-sensitive, lysophosphatidylcholine-independent mechanism. J Cardiovasc Pharmacol 2003; 41:856-65. [PMID: 12775962 DOI: 10.1097/00005344-200306000-00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Previous studies have shown that oxidized low-density lipoprotein (LDL) can impair endothelial function and that this can be overcome in vivo by administration of vitamin E. However, it is unclear whether this effect of oxidized LDL is due to lysophosphatidylcholine or other components of oxidized LDL, and it is also uncertain if the protective effect of vitamin E is related to its antioxidant action. The objectives of the current study were to define how much of the effect of extensively oxidized LDL on endothelium-dependent relaxation (EDR) was in fact due to lysophosphatidylcholine, to determine if the effect of oxidized LDL involved oxidant stress to the endothelium, and, if so, to ascertain if this could be blocked by oxyradical scavengers or antioxidants. Endothelial function was assessed by measuring vasodilation in preconstricted rat mesenteric artery rings in response to acetylcholine. In the presence of 100 microg/mL oxidized LDL, 25-fold higher concentrations of acetylcholine were required for the same degree of vasorelaxation. Similar concentrations of native LDL or acetyl LDL had no effect, but 100 microg/mL phospholipase A(2)-treated LDL or 20 microM lysophosphatidylcholine produced a similar inhibition of EDR. Removal of more than 90% of lysophosphatidylcholine from oxidized LDL did not affect its ability to inhibit EDR, nor did treatment of oxidized LDL with borohydride. This effect of oxidized LDL was blocked by preincubation of arterial rings with vitamin E, probucol, or BO-653 (a potent lipophilic antioxidant), but not by superoxide dismutase. In contrast, the inhibition of EDR by lysophosphatidylcholine was unaffected by antioxidants. Calphostin C prevented the inhibition of EDR by oxidized LDL and lysophosphatidylcholine. These studies demonstrate that at least part of the effect of oxidized LDL on EDR is independent of lysophosphatidylcholine, lipid peroxides, and superoxide release but appears to involve intracellular oxidative stress and protein kinase C activation.
Collapse
Affiliation(s)
- Holman Chan
- Department of Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
33
|
Cyrus T, Yao Y, Rokach J, Tang LX, Praticò D. Vitamin E reduces progression of atherosclerosis in low-density lipoprotein receptor-deficient mice with established vascular lesions. Circulation 2003; 107:521-3. [PMID: 12566360 DOI: 10.1161/01.cir.0000055186.40785.c4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND A growing body of evidence from animal studies supports the hypothesis that oxidative stress-mediated mechanisms play a central role in early atherogenesis. In contrast, clinical trials with antioxidant vitamins have not produced consistent results in humans with established atherosclerosis. METHODS AND RESULTS Low-density lipoprotein receptor-deficient mice (LDLR KO) were fed a high-fat diet for 3 months to induce atheroma. At this time, 1 group of mice was euthanized for examination of atherosclerosis, and 2 other groups were randomized to receive high-fat diet either alone or supplemented with vitamin E for 3 additional months. At the end of the study, LDLR KO on a vitamin E-supplemented fat diet had decreased 8,12-iso-isoprostane (iP)F(2alpha)-VI and monocyte chemoattractant protein-1 levels, but increased nitric oxide levels compared with mice on placebo. No difference in lipid levels was observed between the 2 groups. Compared with baseline, placebo group had progression of atherosclerosis. In contrast, vitamin E-treated animals showed a significant reduction in progression of atherosclerosis. CONCLUSIONS These results demonstrate that in LDLR KO, vitamin E supplementation reduces progression of established atherosclerosis by suppressing oxidative and inflammatory reactions and increasing nitric oxide levels.
Collapse
Affiliation(s)
- Tillmann Cyrus
- Center for Experimental Therapeutics and Department of Pharmacology, University of Pennsylvania, School of Medicine, Philadelphia, Pa 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Noguchi N. Novel insights into the molecular mechanisms of the antiatherosclerotic properties of antioxidants: the alternatives to radical scavenging. Free Radic Biol Med 2002; 33:1480-9. [PMID: 12446205 DOI: 10.1016/s0891-5849(02)01114-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Since the oxidation hypothesis of atherogenesis was first proposed, mechanisms of low density lipoprotein (LDL) oxidation and the biological properties of oxidized LDL have been investigated in depth. The major mechanism for the antiatherogenic effects of antioxidants, especially radical scavenging antioxidants, has been thought to be direct inhibition of LDL oxidation. The recently developed genomic technology has allowed this hypothesis to be addressed more rigorously than relying on the simple chemical properties of these therapeutic agents. Oxidized LDL, which is known to be proatherogenic, induces many categories of genes that have a potential involvement in the development of atherosclerotic lesions. The genes involved in cell growth, survival, adhesion, and inflammatory responses were upregulated through some nuclear receptor-depending pathways in cells exposed to stimulants such as shear stress, TNF-alpha, and oxidized LDL. On the other hand, these transcriptome analyses have shown a novel mechanism underlying phenolic antioxidants contribute to antiatherogenicity by regulating the expression of genes involved in protein degradation and transcriptional pathways. These studies reveal the often-suspected complexity of the atherogenic process and have the potential for novel therapeutic intervention.
Collapse
Affiliation(s)
- Noriko Noguchi
- Department of System Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
35
|
Keaney JF, Vita JA. Vascular oxidative stress and antioxidant protection in atherosclerosis: what do the clinical trials say? JOURNAL OF CARDIOPULMONARY REHABILITATION 2002; 22:225-33. [PMID: 12202841 DOI: 10.1097/00008483-200207000-00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- John F Keaney
- Evans Memorial Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Room W507, Boston, MA 02118, USA.
| | | |
Collapse
|
36
|
Niki E, Noguchi N. Effects of antioxidants against atherosclerosis. Mol Cell Biochem 2002; 234-235:19-25. [PMID: 12162433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
It is generally accepted that the oxidative modification of low density lipoprotein (LDL) plays a pivotal role in the progression of atherosclerosis. This suggests that the antioxidants which suppress the oxidative modification of LDL should be effective in preventing atherogenesis. This brief article reviews the role and potency of antioxidants against the oxidation of LDL. It is emphasized that the LDL can be oxidized by different oxidants by different mechanisms and the efficacy of antioxidants depends on the type of oxidants.
Collapse
Affiliation(s)
- Etsuo Niki
- Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, Japan.
| | | |
Collapse
|
37
|
Yoshida N, Murase H, Kunieda T, Toyokuni S, Tanaka T, Terao J, Naito Y, Tanigawa T, Yoshikawa T. Inhibitory effect of a novel water-soluble vitamin E derivative on atherosclerosis in rabbits. Atherosclerosis 2002; 162:111-7. [PMID: 11947904 DOI: 10.1016/s0021-9150(01)00702-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel vitamin E derivative that is freely soluble in water, 2-(alpha-D-glucopyranosyl)methyl-2,5,7,8-tetramethylchroman-6-ol (TMG), was evaluated for ability to inhibit development of atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits or cholesterol-loaded New Zealand White rabbits. Although TMG rapidly entered the circulation blood after oral administration, the blood TMG concentration remained low, while neither TMG nor its metabolites appeared in the low-density lipoprotein (LDL) fraction. TMG did not decrease serum total cholesterol and the various lipoprotein-associated cholesterol fractions (very LDL-, or high-density lipoprotein- (HDL) cholesterol). TMG reduced the serum concentration of thiobarbituric acid-reactive substances (TBARS; an index of lipid peroxidation) in cholesterol-loaded rabbits but not WHHL rabbits. Nonetheless, TMG inhibited aortic atherosclerosis as effectively as probucol in both models. Our results indicate that TMG opposes progression of atherosclerosis not only by preventing oxidation of LDL, but also by presently unknown mechanisms. Even an antioxidant with no uptake by LDL apparently can inhibit development of atherosclerosis despite a very low serum concentration.
Collapse
Affiliation(s)
- Norimasa Yoshida
- First Department of Internal Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Inoue K, Cynshi O, Kawabe Y, Nakamura M, Miyauchi K, Kimura T, Daida H, Hamakubo T, Yamaguchi H, Kodama T. Effect of BO-653 and probucol on c-MYC and PDGF-A messenger RNA of the iliac artery after balloon denudation in cholesterol-fed rabbits. Atherosclerosis 2002; 161:353-63. [PMID: 11888518 DOI: 10.1016/s0021-9150(01)00662-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antioxidants have been proposed as a promising treatment for restenosis after percutaneous transluminal coronary angioplasty (PTCA), but their mechanism of action remains unclear. Here, we investigated the effect of antioxidants on gene expression in the artery after balloon denudation. We developed a sensitive ribonuclease (RNase) protection assay for the messenger RNA (mRNA) levels of immediate early (IE) genes (c-jun, c-fos and c-myc), as well as platelet-derived growth factor-A (PDGF-A), platelet-derived growth factor-beta receptor, transforming growth factor-beta 1, and vascular endothelial growth factor. New Zealand White rabbits were fed a 0.17% cholesterol diet containing vehicle, BO-653 or probucol, and balloon denudation for iliac arteries was performed. The iliac arteries were then removed at 4 h after the denudation, for IE genes, and 10 days after for growth factors and receptors. Both BO-653 and probucol significantly reduced neointimal thickening, compared with the control. In terms of gene expression, BO-653, but not probucol, significantly inhibited c-myc induction. On the other hand, probucol, but not BO-653, significantly inhibited PDGF-A expression. Neither treatment had any effect on the expression of other genes. These results suggest that antioxidants affect the gene expression of the neointimal response and that both BO-653 and probucol inhibit gene expression in specific manners.
Collapse
Affiliation(s)
- Kenji Inoue
- Department Molecular Biology and Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kamada N, Kodama T, Suzuki H. Macrophage scavenger receptor (SR-A I/II) deficiency reduced diet-induced atherosclerosis in C57BL/6J mice. J Atheroscler Thromb 2002; 8:1-6. [PMID: 11686309 DOI: 10.5551/jat1994.8.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The effects of SR-A I/II deficiency and a synthetic anti-oxidant BO-653 on a diet-induced atherosclerosis in C57BL/6J, an inbred strain known to be susceptible to diet-induced atherosclerotic lesion formation, were examined. Quantitative analysis of the extent of atherosclerotic lesions in the mice fed the high-fat diet revealed that the atherosclerotic lesion area in SR-A I/II mutants was significantly reduced by 70% compared to wild type mice. A similar level of lesion reduction (75%) was found in wild type mice fed the high-fat diet supplemented with 0.6% BO-653 compared to those without BO-653. Thus, for C57BL/6J in the setting of prolonged exposure to a high-fat diet, defect of SR-A I/II expression is significantly protective against the development of atherosclerosis, as is the synthetic anti-oxidant BO-653. These results indicate that SR-A I/II has a crucial role in atherosclerotic lesion formation with uptake of oxidized-LDL in this mouse model.
Collapse
Affiliation(s)
- N Kamada
- Pharmaceutical Technology Laboratory, Chugai Pharmaceutical Co., Ltd., Shizuoka, Japan
| | | | | |
Collapse
|
40
|
Takabe W, Mataki C, Wada Y, Ishii M, Izumi A, Aburatani H, Hamakubo T, Niki E, Kodama T, Noguchi N. Gene expression induced by BO-653, probucol and BHQ in human endothelial cells. J Atheroscler Thromb 2002; 7:223-30. [PMID: 11521686 DOI: 10.5551/jat1994.7.223] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
2, 3-Dihydro-5-hydroxy-2, 2-dipentyl-4, 6-di-tert-butylbenzofuran (BO-653) and probucol, which act as radical scavenging antioxidants, were developed as anti-atherosclerotic medicines. In order to investigate the effect of these antioxidants on cell functions, we analyzed their ability to regulate gene expression in cultured human umbilical vein endothelial cells (HUVECs) using an oligonucleotide chip. Among 6,416 genes, 17 genes including those encoding mitochondrial proteins and proteins related to oxidative stress response were induced more than 3 fold by BO-653, probucol and tert-butylated hydroquinone (BHO). On the other hand, genes of three subunits of proteasome (PSMA2, PSMA3, PSMA4) were down-regulated by these antioxidants. A gene of cytochrome P-450 1A1 isozyme, a drug-metabolizing phase I enzyme, was expressed only by BHQ treatment. These results suggested that anti-atherogenic antioxidants affected gene expression in HUVECs by which they might regulate cell functions against oxidative stress.
Collapse
Affiliation(s)
- W Takabe
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kondo Y, Murakami S, Oda H, Nagate T. Taurine reduces atherosclerotic lesion development in apolipoprotein E-deficient mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 483:193-202. [PMID: 11787598 DOI: 10.1007/0-306-46838-7_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effects of dietary taurine on development of atherosclerotic lesions were investigated using apolipoprotein E (apoE)-deficient mice. Taurine added to regular chow at 2% (w/w), was made freely available to mice for 3 months. Severe hypercholesterolemia and development of atherosclerotic lesions occurred in the apo-E-deficient mice. Taurine treatment decreased the area of Oil red-O positive lipid accumulation in the aortic valve by 31%. In contrast, taurine significantly increased serum atherogenic lipoproteins (LDL + VLDL), without changing HDL cholesterol levels. Although the levels of serum thiobarbituric acid reactive substances (TBARS) in apoE-deficient mice were significantly higher than in wild-type mice, taurine decreased TBARS by 26%. These observations mean that taurine prevents the development of atherosclerosis, independent of serum cholesterol levels. We suggest that antioxidative actions may be involved in the anti-atherosclerotic effects of taurine.
Collapse
Affiliation(s)
- Y Kondo
- Medicinal Research Laboratories, Taisho Pharmaceutical Co. Ltd., Ohmiya, Japan
| | | | | | | |
Collapse
|
42
|
Takabe W, Kodama T, Hamakubo T, Tanaka K, Suzuki T, Aburatani H, Matsukawa N, Noguchi N. Anti-atherogenic antioxidants regulate the expression and function of proteasome alpha-type subunits in human endothelial cells. J Biol Chem 2001; 276:40497-501. [PMID: 11533053 DOI: 10.1074/jbc.m104882200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been proposed that phenolic antioxidants such as probucol exert their anti-atherogenic effects through scavenging lipid-derived radicals. In this study the potential for genomics to reveal unanticipated pharmacological properties of phenolic antioxidants is explored. It was found that two anti-atherogenic compounds, BO-653 and probucol, inhibited the expression of three alpha-type proteasome subunits, PMSA2, PMSA3, and PMSA4 in human umbilical vein endothelial cells. Here we report that both BO-653 and probucol caused not only inhibition of the mRNA levels of these three subunits but also inhibition of both the gene expression and protein synthesis of the alpha-type subunit, PMSA1. Other subunit components of the proteasome such as the beta-type subunits (PMSB1, PMSB7), the ATPase subunit of 19 S (PMSC6), the non-ATPase subunit of 19 S (PMSD1), and PA28 (PMSE2) were not significantly affected by treatment with these compounds. The specific inhibition of alpha-type subunit expression in response to these antioxidants resulted in functional alterations of the proteasome with suppression of degradation of multiubiquitinated proteins and IkappaBalpha. These results suggest that certain compounds previously classified solely as antioxidants are able to exert potentially important modulatory effects on proteasome function.
Collapse
Affiliation(s)
- W Takabe
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cyrus T, Tang LX, Rokach J, FitzGerald GA, Praticò D. Lipid peroxidation and platelet activation in murine atherosclerosis. Circulation 2001; 104:1940-5. [PMID: 11602498 DOI: 10.1161/hc4101.097114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Lipid peroxidation and platelet activation are thought to be important contributors to the pathogenesis of atherosclerosis. The relevance of their interaction in vivo, however, is unknown. METHODS AND RESULTS LDL receptor-deficient (LDLR(-/-)) mice on a high-fat diet developed extensive atherosclerosis and had increased urinary levels of 8,12-iso-isoprostane (iP) F(2alpha)-VI and 2,3-dinor-thromboxane (Tx) B(2), markers of in vivo lipid peroxidation and platelet activation, respectively. Vitamin E supplementation suppressed 8,12-iso-iPF(2alpha)-VI biosynthesis and reduced atherosclerosis (65%) without having a significant effect on lipid levels or TxB(2) biosynthesis. Addition of the platelet inhibitor indomethacin to vitamin E simultaneously suppressed 8,12-iso-iPF(2alpha)-VI and TxB(2), significantly reduced soluble intercellular adhesion molecule-1 and monocyte chemoattractant protein-1, and remarkably, further reduced atherosclerosis (80%). CONCLUSIONS These results indicate that in vivo lipid peroxidation and platelet activation coexist in murine atherosclerosis and that lipid peroxidation does not contribute to platelet activation and reflects the oxidant component of the inflammatory response. Our findings suggest that oxidant stress and platelet activation represent 2 distinct therapeutic targets in atherogenesis. We propose that a combination of antioxidants and platelet inhibitors might be rationally evaluated in the prevention of progression of human atherosclerosis.
Collapse
Affiliation(s)
- T Cyrus
- Center for Experimental Therapeutics, Department of Pharmacology, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | |
Collapse
|
44
|
Laukkanen MO, Leppänen P, Turunen P, Porkkala-Sarataho E, Salonen JT, Ylä-Herttuala S. Gene transfer of extracellular superoxide dismutase to atherosclerotic mice. Antioxid Redox Signal 2001; 3:397-402. [PMID: 11491652 DOI: 10.1089/15230860152409040] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clinical and epidemiological studies have provided circumstantial evidence that oxidized low-density lipoprotein (LDL) and antioxidants are involved in the pathogenesis of atherosclerosis. Superoxide dismutases (SODs) have been shown in vitro to protect LDL from deleterious effects of superoxide anions. In the present study, we have used adenoviral gene transfer to determine effect of extracellular SOD (EC-SOD) on atherogenesis in LDL receptor -/- mice. Intravenous administration of EC-SOD adenovirus (2 x 10(9) plaque forming units) into tail vein targeted transgene mainly to liver and induced a 3.5- to sevenfold increase in plasma total SOD activity. EC-SOD was secreted into circulation for 2-3 weeks mostly in a truncated B-form, suggesting that endogenous proteolytic mechanisms control the level and distribution of the enzyme. Therapeutic potential was determined by measuring plasma resistance against copper oxidation and analyzing atherosclerotic lesion areas in aortas of LDL receptor -/- mice. Mice were kept on a cholesterol diet for 10 weeks before gene transfer and 3 or 6 weeks after the gene transfer. Results showed a tendency for a reduction in the overall lesion area after EC-SOD gene transfer as compared with LacZ transduced control mice, but the difference did not reach statistical significance. It is concluded that short-term overexpression of EC-SOD in vivo does not affect atherogenesis in LDL receptor -/- mice.
Collapse
Affiliation(s)
- M O Laukkanen
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
45
|
Thomas SR, Leichtweis SB, Pettersson K, Croft KD, Mori TA, Brown AJ, Stocker R. Dietary cosupplementation with vitamin E and coenzyme Q(10) inhibits atherosclerosis in apolipoprotein E gene knockout mice. Arterioscler Thromb Vasc Biol 2001; 21:585-93. [PMID: 11304477 DOI: 10.1161/01.atv.21.4.585] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intimal oxidation of LDL is considered an important early event in atherogenesis, and certain antioxidants are antiatherogenic. Dietary coenrichment with vitamin E (VitE) plus ubiquinone-10 (CoQ(10), which is reduced during intestinal uptake to the antioxidant ubiquinol-10, CoQ(10)H(2)) protects, whereas enrichment with VitE alone can increase oxidizability of LDL lipid against ex vivo oxidation. In the present study, we tested whether VitE plus CoQ(10) cosupplementation is more antiatherogenic than either antioxidant alone, by use of apolipoprotein E-deficient (apoE-/-) mice fed a high-fat diet without (control) or with 0.2% (wt/wt) VitE, 0.5% CoQ(10), or 0.2% VitE plus 0.5% CoQ(10) (VitE+CoQ(10)) for 24 weeks. None of the supplements affected plasma cholesterol concentrations, whereas in the VitE and CoQ(10) groups, plasma level of the respective supplement increased. Compared with control, plasma from CoQ(10) or VitE+CoQ(10) but not VitE-supplemented animals was more resistant to ex vivo lipid peroxidation induced by peroxyl radicals. VitE supplementation increased VitE levels in aorta, heart, brain, and skeletal muscle, whereas CoQ(10) supplementation increased CoQ(10) only in plasma and aorta and lowered tissue VITE: All treatments significantly lowered aortic cholesterol compared with control, but only VitE+CoQ(10) supplementation significantly decreased tissue lipid hydroperoxides when expressed per parent lipid. In contrast, none of the treatments affected aortic ratios of 7-ketocholesterol to cholesterol. Compared with controls, VitE+CoQ(10) supplementation decreased atherosclerosis at the aortic root and arch and descending thoracic aorta to an extent that increased with increasing distance from the aortic root. CoQ(10) significantly inhibited atherosclerosis at aortic root and arch, whereas VitE decreased disease at aortic root only. Thus, in apoE-/- mice, VitE+CoQ(10) supplements are more antiatherogenic than CoQ(10) or VitE supplements alone and disease inhibition is associated with a decrease in aortic lipid hydroperoxides but not 7-ketocholesterol.
Collapse
Affiliation(s)
- S R Thomas
- Biochemistry Group, The Heart Research Institute, Camperdown, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Tomimoto S, Tsujita M, Okazaki M, Usui S, Tada T, Fukutomi T, Ito S, Itoh M, Yokoyama S. Effect of probucol in lecithin-cholesterol acyltransferase-deficient mice: inhibition of 2 independent cellular cholesterol-releasing pathways in vivo. Arterioscler Thromb Vasc Biol 2001; 21:394-400. [PMID: 11231919 DOI: 10.1161/01.atv.21.3.394] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellular cholesterol release takes place by at least 2 distinct mechanisms: the lecithin-cholesterol acyltransferase (LCAT)-driven net efflux by cholesterol diffusion and the generation of high density lipoprotein (HDL) with cellular cholesterol and phospholipid on the cell-apolipoprotein interaction. Therefore, LCAT deficiency impairs the former pathway, and the latter can be inhibited by probucol, which interferes with the apolipoprotein-cell interaction. Hence, probucol was given to the LCAT-deficient mice in the attempt to suppress both of these pathways. The mice were fed low (0.2%) and high (1.2%) cholesterol diets containing 0.5% probucol for 2 weeks. LCAT deficiency and probucol markedly decreased plasma HDL, and the effects were synergistic. Tissue cholesterol content was lower in the adrenal glands and ovaries in the LCAT-deficient mice and in the probucol-treated mice, suggesting that HDL is a main cholesterol provider for these organs. It was also moderately decreased in the spleen of the low cholesterol-fed female mice and in the thyroid gland of the low cholesterol-fed male mice. On the other hand, the esterified cholesterol content in the liver was substantially increased by the probucol treatment with a high cholesterol diet in the LCAT-deficient mice but not in the wild-type mice. Among the groups, there was no significant difference in the tissue cholesterol levels in other organs, such as the liver, spleen, thymus, brain, erythrocytes, thyroid gland, testis, and aorta, resulting from either LCAT deficiency or probucol. Thus, the apolipoprotein-mediated mechanism plays a significant role in the export of cellular cholesterol in the liver, indicating that the liver is a major site of the HDL assembly. Otherwise, tissue cholesterol homeostasis can largely be maintained in mice even when the assembly of new HDL is inhibited by probucol in the absence of LCAT. Nonspecific diffusion of cholesterol perhaps adequately maintains the homeostasis in the experimental condition.
Collapse
Affiliation(s)
- S Tomimoto
- Department of Biochemistry, School of Nursing, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jishage K, Arita M, Igarashi K, Iwata T, Watanabe M, Ogawa M, Ueda O, Kamada N, Inoue K, Arai H, Suzuki H. Alpha-tocopherol transfer protein is important for the normal development of placental labyrinthine trophoblasts in mice. J Biol Chem 2001; 276:1669-72. [PMID: 11076932 DOI: 10.1074/jbc.c000676200] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alpha-tocopherol transfer protein (alpha-TTP), a cytosolic protein that specifically binds alpha-tocopherol, is known as a product of the causative gene in patients with ataxia that is associated with vitamin E deficiency. Targeted disruption of the alpha-TTP gene revealed that alpha-tocopherol concentration in the circulation was regulated by alpha-TTP expression levels. Male alpha-TTP(-/-) mice were fertile; however, placentas of pregnant alpha-TTP(-/-) females were severely impaired with marked reduction of labyrinthine trophoblasts, and the embryos died at mid-gestation even when fertilized eggs of alpha-TTP(+/+) mice were transferred into alpha-TTP(-/-) recipients. The use of excess alpha-tocopherol or a synthetic antioxidant (BO-653) dietary supplement by alpha-TTP(-/-) females prevented placental failure and allowed full-term pregnancies. In alpha-TTP(+/+) animals, alpha-TTP gene expression was observed in the uterus, and its level transiently increased after implantation (4.5 days postcoitum). Our results suggest that oxidative stress in the labyrinth region of the placenta is protected by vitamin E during development and that in addition to the hepatic alpha-TTP, which governs plasma alpha-tocopherol level, the uterine alpha-TTP may also play an important role in supplying this vitamin.
Collapse
Affiliation(s)
- K Jishage
- Pharmaceutical Technology Laboratory, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Abstract
All biological organisms have developed a defense system against oxidative stress, which is comprised of many kinds of antioxidants. Antioxidants are classified by function into four categories; preventive antioxidants; radical scavenging antioxidants; repair and de novo antioxidants; and adaptation. Radical scavenging antioxidants have the greatest advantage. Although the activities of radical scavenging antioxidant are determined by several factors, their chemical structure is of key importance. Furthermore, radical scavenging antioxidants have been explored to have a novel function by which they regulate gene expression of cell.
Collapse
Affiliation(s)
- N Noguchi
- Research Center for Advanced Science and Technology, University of Tokyo, Meguro, Japan.
| | | | | |
Collapse
|
50
|
Witting PK, Pettersson K, Letters J, Stocker R. Site-specific antiatherogenic effect of probucol in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2000; 20:E26-33. [PMID: 10938028 DOI: 10.1161/01.atv.20.8.e26] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
-The lipid-lowering antioxidant probucol can inhibit atherosclerosis in animals and restenosis in humans. However, probucol has been shown to promote atherosclerosis in the aortic root of apolipoprotein E-deficient (apoE-/-) mice. In the current study, we examined the effects of probucol on both lesion formation at 4 sites along the aorta and lipoprotein oxidation in the plasma and aortas of apoE-/- mice receiving a diet containing 21.2% (wt/wt) fat and 0. 15% (wt/wt) cholesterol without or with 1% (wt/wt) probucol. After 6 months, controls had developed lesions at all sites investigated. Lesion development was strongly (P=0.0001) affected by probucol, but this effect was not uniform: lesion size was increased in the aortic root but significantly decreased in the arch, the descending thoracic aorta, and proximal abdominal aorta. Plasma and aortas of probucol-treated mice contained high concentrations of probucol and its metabolites (bisphenol and diphenoquinone); increased vitamin C; markedly decreased very low density lipoprotein (but not low density lipoprotein and high density lipoprotein); and decreased cholesterol, cholesteryl esters, triglycerides, vitamin E, and oxidized lipids compared with controls. Interestingly, probucol treatment did not decrease the proportion of aortic lipids that were oxidized. Plasma vitamin C and bisphenol, but not probucol, protected plasma lipids from ex vivo oxidation by peroxyl radicals. These results show that as in other species, probucol can inhibit lesion formation in most parts of the aorta of apoE-/- mice. This effect may involve lipid oxidation-independent mechanisms localized within the vessel wall as well as lipid lowering.
Collapse
Affiliation(s)
- PK Witting
- Biochemistry Group (K.P., J.L., R.S.), The Heart Research Institute, Camperdown, Australia, and Cardiovascular Pharmacology (P.K.W.), AstraZeneca, Molndal, Sweden. P.K.W. is presently at the Department of Biochemistry and Molecular Biology, Univers
| | | | | | | |
Collapse
|