1
|
Kim MS, Yoon S, Choi J, Kim YJ, Lee G. Stem Cell-Based Approaches in Parkinson's Disease Research. Int J Stem Cells 2025; 18:21-36. [PMID: 38449089 PMCID: PMC11867902 DOI: 10.15283/ijsc23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of midbrain dopaminergic neurons, leading to motor symptoms. While current treatments provide limited relief, they don't alter disease progression. Stem cell technology, involving patient-specific stem cell-derived neurons, offers a promising avenue for research and personalized regenerative therapies. This article reviews the potential of stem cell-based research in PD, summarizing ongoing efforts, their limitations, and introducing innovative research models. The integration of stem cell technology and advanced models promises to enhance our understanding and treatment strategies for PD.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Subeen Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jiwoo Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Lee S, Miller CL, Bentley AR, Brown MR, Nagarajan P, Noordam R, Morrison J, Schwander K, Westerman K, Kho M, Kraja AT, de Vries PS, Ammous F, Aschard H, Bartz TM, Do A, Dupont CT, Feitosa MF, Gudmundsdottir V, Guo X, Harris SE, Hikino K, Huang Z, Lefevre C, Lyytikäinen LP, Milaneschi Y, Nardone GG, Santin A, Schmidt H, Shen B, Sofer T, Sun Q, Tan YA, Tang J, Thériault S, van der Most PJ, Ware EB, Weiss S, Ya Xing W, Yu C, Zhao W, Ansari MAY, Anugu P, Attia JR, Bazzano LA, Bis JC, Breyer M, Cade B, Chen G, Collins S, Corley J, Davies G, Dörr M, Du J, Edwards TL, Faquih T, Faul JD, Fohner AE, Fretts AM, Gangireddy S, Gepner A, Graff M, Hofer E, Homuth G, Hood MM, Jie X, Kähönen M, Kardia SL, Karvonen-Gutierrez CA, Launer LJ, Levy D, Maheshwari M, Martin LW, Matsuda K, McNeil JJ, Nolte IM, Okochi T, Raffield LM, Raitakari OT, Risch L, Risch M, Roux AD, Ruiz-Narvaez EA, Russ TC, Saito T, Schreiner PJ, Scott RJ, Shikany J, Smith JA, Snieder H, Spedicati B, Tai ES, Taylor AM, Taylor KD, Tesolin P, van Dam RM, Wang R, Wenbin W, Xie T, Yao J, Young KL, Zhang R, Zonderman AB, Concas MP, Conen D, Cox SR, Evans MK, Fox ER, de Las Fuentes L, Giri A, Girotto G, Grabe HJ, Gu C, Gudnason V, Harlow SD, Holliday E, Jost JB, Lacaze P, Lee S, Lehtimäki T, Li C, Liu CT, Morrison AC, North KE, Penninx BW, Peyser PA, Province MM, Psaty BM, Redline S, Rosendaal FR, Rotimi CN, Rotter JI, Schmidt R, Sim X, Terao C, Weir DR, Zhu X, Franceschini N, O'Connell JR, Jaquish CE, Wang H, Manning A, Munroe PB, Rao DC, Chen H, Gauderman WJ, Bierut L, Winkler TW, Fornage M. A Large-Scale Genome-wide Association Study of Blood Pressure Accounting for Gene-Depressive Symptomatology Interactions in 564,680 Individuals from Diverse Populations. RESEARCH SQUARE 2025:rs.3.rs-6025759. [PMID: 40034430 PMCID: PMC11875294 DOI: 10.21203/rs.3.rs-6025759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Gene-environment interactions may enhance our understanding of hypertension. Our previous study highlighted the importance of considering psychosocial factors in gene discovery for blood pressure (BP) but was limited in statistical power and population diversity. To address these challenges, we conducted a multi-population genome-wide association study (GWAS) of BP accounting for gene-depressive symptomatology (DEPR) interactions in a larger and more diverse sample. Results Our study included 564,680 adults aged 18 years or older from 67 cohorts and 4 population backgrounds (African (5%), Asian (7%), European (85%), and Hispanic (3%)). We discovered seven novel gene-DEPR interaction loci for BP traits. These loci mapped to genes implicated in neurogenesis (TGFA, CASP3), lipid metabolism (ACSL1), neuronal apoptosis (CASP3), and synaptic activity (CNTN6, DBI). We also identified evidence for gene-DEPR interaction at nine known BP loci, further suggesting links between mood disturbance and BP regulation. Of the 16 identified loci, 11 loci were derived from African, Asian, or Hispanic populations. Post-GWAS analyses prioritized 36 genes, including genes involved in synaptic functions (DOCK4, MAGI2) and neuronal signaling (CCK, UGDH, SLC01A2). Integrative druggability analyses identified 11 druggable candidate gene targets, including genes implicated in pathways linked to mood disorders as well as gene products targeted by known antihypertensive drugs. Conclusions Our findings emphasize the importance of considering gene-DEPR interactions on BP, particularly in non-European populations. Our prioritized genes and druggable targets highlight biological pathways connecting mood disorders and hypertension and suggest opportunities for BP drug repurposing and risk factor prevention, especially in individuals with DEPR.
Collapse
Affiliation(s)
- Songmi Lee
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Pavithra Nagarajan
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Karen Schwander
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Kenneth Westerman
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA
| | - Minjung Kho
- Graduate School of Data Science, Seoul National University, Seoul
| | - Aldi T Kraja
- University of Mississippi Medical Center, Jackson, MS
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Farah Ammous
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Hughes Aschard
- Department of Computational Biology, F-75015 Paris, France Institut Pasteur, Université Paris Cité, Paris
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Anh Do
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Charles T Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | | | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Christophe Lefevre
- Department of Data Sciences, Hunter Medical Research Institute, New Lambton Heights, NSW
| | - Leo-Pekka Lyytikäinen
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Health Technology, Tampere University, Tampere
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC/Vrije universiteit, Amsterdam
| | | | - Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - Helena Schmidt
- Department of Molecular Biology and Biochemistry, Medical University Graz, Graz, Styria
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ye An Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Jingxian Tang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald
| | - Wang Ya Xing
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, Beijing
| | - Chenglong Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Md Abu Yusuf Ansari
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS
| | - Pramod Anugu
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS
| | - John R Attia
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Max Breyer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Stacey Collins
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald
| | - Jiawen Du
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tariq Faquih
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Alison E Fohner
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Amanda M Fretts
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Srushti Gangireddy
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Adam Gepner
- Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - MariaElisa Graff
- Cardiovascular Disease (CVD) Genetic Epidemiology Laboratory, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Edith Hofer
- Department of Neurology, Medical University Graz, Graz, Styria
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald
| | - Michelle M Hood
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Xu Jie
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, Beijing
| | - Mika Kähönen
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere
| | - Sharon Lr Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Lisa W Martin
- Department of Cardiology, George Washington University, Washington, DC
| | - Koichi Matsuda
- Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo
| | - John J McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Tomo Okochi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Olli T Raitakari
- Centre for Population Health Research, Department of Clinical Physiology and Nuclear Medicine, InFLAMES Research Flagship, Turku University Hospital and University of Turku, Turku
| | - Lorenz Risch
- Faculty of Medical Sciences , Institute for Laboratory Medicine, Private University in the Principality of Liechtenstein, Vaduz
| | - Martin Risch
- Central Laboratory, Cantonal Hospital Graubünden, Chur
| | - Ana Diez Roux
- Urban Health Collaborative, Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA
| | | | - Tom C Russ
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Rodney J Scott
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW
| | - James Shikany
- Division of General Internal Medicine and Population Science, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Adele M Taylor
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Rujia Wang
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Wei Wenbin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, Beijing
| | - Tian Xie
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Kristin L Young
- Cardiovascular Disease (CVD) Genetic Epidemiology Laboratory, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - David Conen
- Population Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Ervin R Fox
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS
| | - Lisa de Las Fuentes
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Mecklenburg-Western Pomerania
| | - Charles Gu
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | | | - Sioban D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Elizabeth Holliday
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW
| | - Jonas B Jost
- Rothschild Foundation Hospital, Institut Français de Myopie, Paris
| | - Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul
| | - Terho Lehtimäki
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Health Technology, Tampere University, Tampere
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Kari E North
- Cardiovascular Disease (CVD) Genetic Epidemiology Laboratory, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Michael M Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | | | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Chikashi Terao
- The Clinical Research Center at Shizuoka General Hospital, Shizuoka
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Cashell E Jaquish
- Division of Cardiovascular Science, Epidemiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Alisa Manning
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Patricia B Munroe
- Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London
| | - Dabeeru C Rao
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| |
Collapse
|
3
|
Geribaldi-Doldán N, Carrascal L, Pérez-García P, Oliva-Montero JM, Pardillo-Díaz R, Domínguez-García S, Bernal-Utrera C, Gómez-Oliva R, Martínez-Ortega S, Verástegui C, Nunez-Abades P, Castro C. Migratory Response of Cells in Neurogenic Niches to Neuronal Death: The Onset of Harmonic Repair? Int J Mol Sci 2023; 24:6587. [PMID: 37047560 PMCID: PMC10095545 DOI: 10.3390/ijms24076587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Harmonic mechanisms orchestrate neurogenesis in the healthy brain within specific neurogenic niches, which generate neurons from neural stem cells as a homeostatic mechanism. These newly generated neurons integrate into existing neuronal circuits to participate in different brain tasks. Despite the mechanisms that protect the mammalian brain, this organ is susceptible to many different types of damage that result in the loss of neuronal tissue and therefore in alterations in the functionality of the affected regions. Nevertheless, the mammalian brain has developed mechanisms to respond to these injuries, potentiating its capacity to generate new neurons from neural stem cells and altering the homeostatic processes that occur in neurogenic niches. These alterations may lead to the generation of new neurons within the damaged brain regions. Notwithstanding, the activation of these repair mechanisms, regeneration of neuronal tissue within brain injuries does not naturally occur. In this review, we discuss how the different neurogenic niches respond to different types of brain injuries, focusing on the capacity of the progenitors generated in these niches to migrate to the injured regions and activate repair mechanisms. We conclude that the search for pharmacological drugs that stimulate the migration of newly generated neurons to brain injuries may result in the development of therapies to repair the damaged brain tissue.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Pérez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - José M. Oliva-Montero
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Samuel Domínguez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Carlos Bernal-Utrera
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Ricardo Gómez-Oliva
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Sergio Martínez-Ortega
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Cristina Verástegui
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Carmen Castro
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| |
Collapse
|
4
|
Sun Y, Kong J, Ge X, Mao M, Yu H, Wang Y. An Antisense Oligonucleotide-Loaded Blood-Brain Barrier Penetrable Nanoparticle Mediating Recruitment of Endogenous Neural Stem Cells for the Treatment of Parkinson's Disease. ACS NANO 2023; 17:4414-4432. [PMID: 36688425 DOI: 10.1021/acsnano.2c09752] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the death of dopaminergic (DA) neurons and currently cannot be cured. One selected antisense oligonucleotide (ASO) is reported to be effective for the treatment of PD. However, ASO is usually intrathecally administered by lumbar puncture into the cerebral spinal fluid, through which the risks of highly invasive neurosurgery are the major concerns. In this study, ZAAM, an ASO-loaded, aptamer Apt 19S-conjugated, neural stem cell membrane (NSCM)-coated nanoparticle (NP), was developed for the targeted treatment of PD. NSCM facilitated the blood-brain barrier (BBB) penetration of NPs, and both NSCM and Apt 19S promoted the recruitment of the neural stem cells (NSCs) toward the PD site for DA neuron regeneration. The behavioral tests demonstrated that ZAAM highly improved the efficacy of ASO on PD by the targeted delivery of ASO and the recruitment of NSCs. This work is a heuristic report of (1) nonchemoattractant induced endogenous NSC recruitment, (2) NSCM-coated nanoparticles for the treatment of neurodegenerative diseases, and (3) systemic delivery of ASO for the treatment of PD. These findings provide insights into the development of biomimetic BBB penetrable drug carriers for precise diagnosis and therapy of central nervous system diseases.
Collapse
Affiliation(s)
- Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
- Ningbo Research Institute, Zhejiang University, Ningbo315100, P.R. China
| |
Collapse
|
5
|
Cai W, Shi L, Zhao J, Xu F, Dufort C, Ye Q, Yang T, Dai X, Lyu J, Jin C, Pu H, Yu F, Hassan S, Sun Z, Zhang W, Hitchens TK, Shi Y, Thomson AW, Leak RK, Hu X, Chen J. Neuroprotection against ischemic stroke requires a specific class of early responder T cells in mice. J Clin Invest 2022; 132:157678. [PMID: 35912857 PMCID: PMC9337834 DOI: 10.1172/jci157678] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/17/2022] [Indexed: 12/20/2022] Open
Abstract
Immunomodulation holds therapeutic promise against brain injuries, but leveraging this approach requires a precise understanding of mechanisms. We report that CD8+CD122+CD49dlo T regulatory-like cells (CD8+ TRLs) are among the earliest lymphocytes to infiltrate mouse brains after ischemic stroke and temper inflammation; they also confer neuroprotection. TRL depletion worsened stroke outcomes, an effect reversed by CD8+ TRL reconstitution. The CXCR3/CXCL10 axis served as the brain-homing mechanism for CD8+ TRLs. Upon brain entry, CD8+ TRLs were reprogrammed to upregulate leukemia inhibitory factor (LIF) receptor, epidermal growth factor–like transforming growth factor (ETGF), and interleukin 10 (IL-10). LIF/LIF receptor interactions induced ETGF and IL-10 production in CD8+ TRLs. While IL-10 induction was important for the antiinflammatory effects of CD8+ TRLs, ETGF provided direct neuroprotection. Poststroke intravenous transfer of CD8+ TRLs reduced infarction, promoting long-term neurological recovery in young males or aged mice of both sexes. Thus, these unique CD8+ TRLs serve as early responders to rally defenses against stroke, offering fresh perspectives for clinical translation.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ligen Shi
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingyan Zhao
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fei Xu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Connor Dufort
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xuejiao Dai
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Junxuan Lyu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chenghao Jin
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hongjian Pu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sulaiman Hassan
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Zeyu Sun
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wenting Zhang
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - T Kevin Hitchens
- Animal Imaging Center and Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Bowles KR, Pugh DA, Liu Y, Patel T, Renton AE, Bandres-Ciga S, Gan-Or Z, Heutink P, Siitonen A, Bertelsen S, Cherry JD, Karch CM, Frucht SJ, Kopell BH, Peter I, Park YJ, Charney A, Raj T, Crary JF, Goate AM. 17q21.31 sub-haplotypes underlying H1-associated risk for Parkinson's disease are associated with LRRC37A/2 expression in astrocytes. Mol Neurodegener 2022; 17:48. [PMID: 35841044 PMCID: PMC9284779 DOI: 10.1186/s13024-022-00551-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/21/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is genetically associated with the H1 haplotype of the MAPT 17q.21.31 locus, although the causal gene and variants underlying this association have not been identified. METHODS To better understand the genetic contribution of this region to PD and to identify novel mechanisms conferring risk for the disease, we fine-mapped the 17q21.31 locus by constructing discrete haplotype blocks from genetic data. We used digital PCR to assess copy number variation associated with PD-associated blocks, and used human brain postmortem RNA-seq data to identify candidate genes that were then further investigated using in vitro models and human brain tissue. RESULTS We identified three novel H1 sub-haplotype blocks across the 17q21.31 locus associated with PD risk. Protective sub-haplotypes were associated with increased LRRC37A/2 copy number and expression in human brain tissue. We found that LRRC37A/2 is a membrane-associated protein that plays a role in cellular migration, chemotaxis and astroglial inflammation. In human substantia nigra, LRRC37A/2 was primarily expressed in astrocytes, interacted directly with soluble α-synuclein, and co-localized with Lewy bodies in PD brain tissue. CONCLUSION These data indicate that a novel candidate gene, LRRC37A/2, contributes to the association between the 17q21.31 locus and PD via its interaction with α-synuclein and its effects on astrocytic function and inflammatory response. These data are the first to associate the genetic association at the 17q21.31 locus with PD pathology, and highlight the importance of variation at the 17q21.31 locus in the regulation of multiple genes other than MAPT and KANSL1, as well as its relevance to non-neuronal cell types.
Collapse
Affiliation(s)
- Kathryn R. Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Derian A. Pugh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Yiyuan Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Tulsi Patel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alan E. Renton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD USA
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, Québec Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec Canada
| | - Peter Heutink
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ari Siitonen
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Sarah Bertelsen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Jonathan D. Cherry
- Alzheimer’s Disease and CTE Center, Boston University, Boston University School of Medicine, Boston, MA USA
- Department of Neurology, Boston University School of Medicine, Boston, MA USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St. Louis, MO USA
| | - Steven J. Frucht
- Department of Neurology, Fresco Institute for Parkinson’s and Movement Disorders, New York University Langone, New York, NY USA
| | - Brian H. Kopell
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Center for Neuromodulation, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Inga Peter
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Y. J. Park
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Alexander Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John F. Crary
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - A. M. Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
7
|
Caballero-Villarraso J, Medina FJ, Escribano BM, Agüera E, Santamaría A, Pascual-Leone A, Túnez I. Mechanisms Involved in Neuroprotective Effects of Transcranial Magnetic Stimulation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:557-573. [PMID: 34370648 DOI: 10.2174/1871527320666210809121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
Transcranial Magnetic Stimulation (TMS) is widely used in neurophysiology to study cortical excitability. Research over the last few decades has highlighted its added value as a potential therapeutic tool in the treatment of a broad range of psychiatric disorders. More recently, a number of studies have reported beneficial and therapeutic effects for TMS in neurodegenerative conditions and strokes. Yet, despite its recognised clinical applications and considerable research using animal models, the molecular and physiological mechanisms through which TMS exerts its beneficial and therapeutic effects remain unclear. They are thought to involve biochemical-molecular events affecting membrane potential and gene expression. In this aspect, the dopaminergic system plays a special role. This is the most directly and selectively modulated neurotransmitter system, producing an increase in the flux of dopamine (DA) in various areas of the brain after the application of repetitive TMS (rTMS). Other neurotransmitters, such as glutamate and gamma-aminobutyric acid (GABA) have shown a paradoxical response to rTMS. In this way, their levels increased in the hippocampus and striatum but decreased in the hypothalamus and remained unchanged in the mesencephalon. Similarly, there are sufficient evidence that TMS up-regulates the gene expression of BDNF (one of the main brain neurotrophins). Something similar occurs with the expression of genes such as c-Fos and zif268 that encode trophic and regenerative action neuropeptides. Consequently, the application of TMS can promote the release of molecules involved in neuronal genesis and maintenance. This capacity may mean that TMS becomes a useful therapeutic resource to antagonize processes that underlie the previously mentioned neurodegenerative conditions.
Collapse
Affiliation(s)
- Javier Caballero-Villarraso
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,UGC Análisis Clínicos, Hospital Universitario Reina Sofía, Córdoba, Cordoba, Spain
| | - Francisco J Medina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
| | - Begoña M Escribano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Veterinaria, Universidad de Córdoba, Cordoba, Spain
| | - Eduardo Agüera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,UGC Neurología, Hospital Universitario Reina Sofía, Córdoba, Cordoba, Spain
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A. Mexico City, Mexico
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Instituto Guttman de Neurorrehabilitación, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
| |
Collapse
|
8
|
Leal-Galicia P, Chávez-Hernández ME, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-de-Jesús A, Buenrostro-Jáuregui MH. Adult Neurogenesis: A Story Ranging from Controversial New Neurogenic Areas and Human Adult Neurogenesis to Molecular Regulation. Int J Mol Sci 2021; 22:11489. [PMID: 34768919 PMCID: PMC8584254 DOI: 10.3390/ijms222111489] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
The generation of new neurons in the adult brain is a currently accepted phenomenon. Over the past few decades, the subventricular zone and the hippocampal dentate gyrus have been described as the two main neurogenic niches. Neurogenic niches generate new neurons through an asymmetric division process involving several developmental steps. This process occurs throughout life in several species, including humans. These new neurons possess unique properties that contribute to the local circuitry. Despite several efforts, no other neurogenic zones have been observed in many years; the lack of observation is probably due to technical issues. However, in recent years, more brain niches have been described, once again breaking the current paradigms. Currently, a debate in the scientific community about new neurogenic areas of the brain, namely, human adult neurogenesis, is ongoing. Thus, several open questions regarding new neurogenic niches, as well as this phenomenon in adult humans, their functional relevance, and their mechanisms, remain to be answered. In this review, we discuss the literature and provide a compressive overview of the known neurogenic zones, traditional zones, and newly described zones. Additionally, we will review the regulatory roles of some molecular mechanisms, such as miRNAs, neurotrophic factors, and neurotrophins. We also join the debate on human adult neurogenesis, and we will identify similarities and differences in the literature and summarize the knowledge regarding these interesting topics.
Collapse
Affiliation(s)
- Perla Leal-Galicia
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Florencia Mata
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Jesús Mata-Luévanos
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Alejandro Tapia-de-Jesús
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| |
Collapse
|
9
|
Novel Approaches Used to Examine and Control Neurogenesis in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22179608. [PMID: 34502516 PMCID: PMC8431772 DOI: 10.3390/ijms22179608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurogenesis is a key mechanism of brain development and plasticity, which is impaired in chronic neurodegeneration, including Parkinson’s disease. The accumulation of aberrant α-synuclein is one of the features of PD. Being secreted, this protein produces a prominent neurotoxic effect, alters synaptic plasticity, deregulates intercellular communication, and supports the development of neuroinflammation, thereby providing propagation of pathological events leading to the establishment of a PD-specific phenotype. Multidirectional and ambiguous effects of α-synuclein on adult neurogenesis suggest that impaired neurogenesis should be considered as a target for the prevention of cell loss and restoration of neurological functions. Thus, stimulation of endogenous neurogenesis or cell-replacement therapy with stem cell-derived differentiated neurons raises new hopes for the development of effective and safe technologies for treating PD neurodegeneration. Given the rapid development of optogenetics, it is not surprising that this method has already been repeatedly tested in manipulating neurogenesis in vivo and in vitro via targeting stem or progenitor cells. However, niche astrocytes could also serve as promising candidates for controlling neuronal differentiation and improving the functional integration of newly formed neurons within the brain tissue. In this review, we mainly focus on current approaches to assess neurogenesis and prospects in the application of optogenetic protocols to restore the neurogenesis in Parkinson’s disease.
Collapse
|
10
|
Harnessing Astrocytes and Müller Glial Cells in the Retina for Survival and Regeneration of Retinal Ganglion Cells. Cells 2021; 10:cells10061339. [PMID: 34071545 PMCID: PMC8229010 DOI: 10.3390/cells10061339] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
Astrocytes have been associated with the failure of axon regeneration in the central nervous system (CNS), as it undergoes reactive gliosis in response to damages to the CNS and functions as a chemical and physical barrier to axon regeneration. However, beneficial roles of astrocytes have been extensively studied in the spinal cord over the years, and a growing body of evidence now suggests that inducing astrocytes to become more growth-supportive can promote axon regeneration after spinal cord injury (SCI). In retina, astrocytes and Müller cells are known to undergo reactive gliosis after damage to retina and/or optic nerve and are hypothesized to be either detrimental or beneficial to survival and axon regeneration of retinal ganglion cells (RGCs). Whether they can be induced to become more growth-supportive after retinal and optic nerve injury has yet to be determined. In this review, we pinpoint the potential molecular pathways involved in the induction of growth-supportive astrocytes in the spinal cord and suggest that stimulating the activation of these pathways in the retina could represent a new therapeutic approach to promoting survival and axon regeneration of RGCs in retinal degenerative diseases.
Collapse
|
11
|
Bialek K, Czarny P, Wigner P, Synowiec E, Barszczewska G, Bijak M, Szemraj J, Niemczyk M, Tota-Glowczyk K, Papp M, Sliwinski T. Chronic Mild Stress and Venlafaxine Treatment Were Associated with Altered Expression Level and Methylation Status of New Candidate Inflammatory Genes in PBMCs and Brain Structures of Wistar Rats. Genes (Basel) 2021; 12:genes12050667. [PMID: 33946816 PMCID: PMC8146372 DOI: 10.3390/genes12050667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
Preclinical studies conducted to date suggest that depression could be elicited by the elevated expression of proinflammatory molecules: these play a key role in the mediation of neurochemical, neuroendocrine and behavioral changes. Thus, this study investigates the effect of chronic mild stress (CMS) and administration of venlafaxine (SSRI) on the expression and methylation status of new target inflammatory genes: TGFA, TGFB, IRF1, PTGS2 and IKBKB, in peripheral blood mononuclear cells (PMBCs) and in selected brain structures of rats. Adult male Wistar rats were subjected to the CMS and further divided into matched subgroups to receive vehicle or venlafaxine. TaqMan gene expression assay and methylation-sensitive high-resolution melting (MS-HRM) were used to evaluate the expression of the genes and the methylation status of their promoters, respectively. Our results indicate that both CMS and chronic treatment with venlafaxine were associated with changes in expression of the studied genes and their promoter methylation status in PMBCs and the brain. Moreover, the effect of antidepressant administration clearly differed between brain structures. Summarizing, our results confirm at least a partial association between TGFA, TGFB, IRF1, PTGS2 and IKBKB and depressive disorders.
Collapse
Affiliation(s)
- Katarzyna Bialek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland; (P.C.); (J.S.)
| | - Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Gabriela Barszczewska
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland; (P.C.); (J.S.)
| | - Monika Niemczyk
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Katarzyna Tota-Glowczyk
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
- Correspondence: ; Tel.: +48-42-635-44-86; Fax: +48-42-635-44-84
| |
Collapse
|
12
|
Bressan C, Saghatelyan A. Intrinsic Mechanisms Regulating Neuronal Migration in the Postnatal Brain. Front Cell Neurosci 2021; 14:620379. [PMID: 33519385 PMCID: PMC7838331 DOI: 10.3389/fncel.2020.620379] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023] Open
Abstract
Neuronal migration is a fundamental brain development process that allows cells to move from their birthplaces to their sites of integration. Although neuronal migration largely ceases during embryonic and early postnatal development, neuroblasts continue to be produced and to migrate to a few regions of the adult brain such as the dentate gyrus and the subventricular zone (SVZ). In the SVZ, a large number of neuroblasts migrate into the olfactory bulb (OB) along the rostral migratory stream (RMS). Neuroblasts migrate in chains in a tightly organized micro-environment composed of astrocytes that ensheath the chains of neuroblasts and regulate their migration; the blood vessels that are used by neuroblasts as a physical scaffold and a source of molecular factors; and axons that modulate neuronal migration. In addition to diverse sets of extrinsic micro-environmental cues, long-distance neuronal migration involves a number of intrinsic mechanisms, including membrane and cytoskeleton remodeling, Ca2+ signaling, mitochondria dynamics, energy consumption, and autophagy. All these mechanisms are required to cope with the different micro-environment signals and maintain cellular homeostasis in order to sustain the proper dynamics of migrating neuroblasts and their faithful arrival in the target regions. Neuroblasts in the postnatal brain not only migrate into the OB but may also deviate from their normal path to migrate to a site of injury induced by a stroke or by certain neurodegenerative disorders. In this review, we will focus on the intrinsic mechanisms that regulate long-distance neuroblast migration in the adult brain and on how these pathways may be modulated to control the recruitment of neuroblasts to damaged/diseased brain areas.
Collapse
Affiliation(s)
- Cedric Bressan
- CERVO Brain Research Center, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
13
|
Neurogenesis of medium spiny neurons in the nucleus accumbens continues into adulthood and is enhanced by pathological pain. Mol Psychiatry 2021; 26:4616-4632. [PMID: 32612250 PMCID: PMC8589654 DOI: 10.1038/s41380-020-0823-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
In mammals, most adult neural stem cells (NSCs) are located in the ventricular-subventricular zone (V-SVZ) along the wall of the lateral ventricles and they are the source of olfactory bulb interneurons. Adult NSCs exhibit an apico-basal polarity; they harbor a short apical process and a long basal process, reminiscent of radial glia morphology. In the adult mouse brain, we detected extremely long radial glia-like fibers that originate from the anterior-ventral V-SVZ and that are directed to the ventral striatum. Interestingly, a fraction of adult V-SVZ-derived neuroblasts dispersed in close association with the radial glia-like fibers in the nucleus accumbens (NAc). Using several in vivo mouse models, we show that newborn neurons integrate into preexisting circuits in the NAc where they mature as medium spiny neurons (MSNs), i.e., a type of projection neurons formerly believed to be generated only during embryonic development. Moreover, we found that the number of newborn neurons in the NAc is dynamically regulated by persistent pain, suggesting that adult neurogenesis of MSNs is an experience-modulated process.
Collapse
|
14
|
Lemma M, Petkov S, Bekele Y, Petros B, Howe R, Chiodi F. Profiling of Inflammatory Proteins in Plasma of HIV-1-Infected Children Receiving Antiretroviral Therapy. Proteomes 2020; 8:proteomes8030024. [PMID: 32906648 PMCID: PMC7563605 DOI: 10.3390/proteomes8030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Treatment of HIV-1-infected patients results in improved clinical and immunological conditions, but severe non-AIDS-related conditions still persist. Novel proteomic platforms have identified inflammatory proteins where abundance is dysregulated in adult treated patients, whereas limited data are available in treated HIV-1 infection of children. Using a proteomic plasma profiling approach comprising 92 inflammation-related molecules, we analyzed specimens from 43 vertically HIV-1-infected children receiving antiretroviral treatment (ART) and matched controls in Ethiopia. The infected children were analyzed as a group and separately, according to age of treatment initiation. Proteins displaying a significantly different abundance between groups were hierarchically clustered and presented in heat maps. Random forest analysis was performed to pin-point proteins discriminating between groups; five proteins (STAMBP, CD5, TFG-α, TRANCE, AXIN1) were the strongest prediction factors for treated HIV-1 infection. TRANCE was previously linked to reduced bone mass levels in HIV-1-infected children. CCL4 chemokine, ligand to HIV-1 co-receptor CCR5, was the most critical protein for successful classification between children who initiated ART at different time points. Our data provide evidence that a dysregulated expression of proteins linked to immunological abnormalities and bone metabolism can be found in HIV-1-infected children with prolonged exposure to ART.
Collapse
Affiliation(s)
- Mahlet Lemma
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden; (M.L.); (S.P.); (Y.B.)
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia;
- Department of Microbial, Cellular and Molecular Biology, PO Box 1176, Addis Ababa University, Addis Ababa, Ethiopia;
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden; (M.L.); (S.P.); (Y.B.)
| | - Yonas Bekele
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden; (M.L.); (S.P.); (Y.B.)
| | - Beyene Petros
- Department of Microbial, Cellular and Molecular Biology, PO Box 1176, Addis Ababa University, Addis Ababa, Ethiopia;
| | - Rawleigh Howe
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia;
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden; (M.L.); (S.P.); (Y.B.)
- Correspondence: ; Tel.: +46-8-52486315
| |
Collapse
|
15
|
Purvis EM, O'Donnell JC, Chen HI, Cullen DK. Tissue Engineering and Biomaterial Strategies to Elicit Endogenous Neuronal Replacement in the Brain. Front Neurol 2020; 11:344. [PMID: 32411087 PMCID: PMC7199479 DOI: 10.3389/fneur.2020.00344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Neurogenesis in the postnatal mammalian brain is known to occur in the dentate gyrus of the hippocampus and the subventricular zone. These neurogenic niches serve as endogenous sources of neural precursor cells that could potentially replace neurons that have been lost or damaged throughout the brain. As an example, manipulation of the subventricular zone to augment neurogenesis has become a popular strategy for attempting to replace neurons that have been lost due to acute brain injury or neurodegenerative disease. In this review article, we describe current experimental strategies to enhance the regenerative potential of endogenous neural precursor cell sources by enhancing cell proliferation in neurogenic regions and/or redirecting migration, including pharmacological, biomaterial, and tissue engineering strategies. In particular, we discuss a novel replacement strategy based on exogenously biofabricated "living scaffolds" that could enhance and redirect endogenous neuroblast migration from the subventricular zone to specified regions throughout the brain. This approach utilizes the first implantable, biomimetic tissue-engineered rostral migratory stream, thereby leveraging the brain's natural mechanism for sustained neuronal replacement by replicating the structure and function of the native rostral migratory stream. Across all these strategies, we discuss several challenges that need to be overcome to successfully harness endogenous neural precursor cells to promote nervous system repair and functional restoration. With further development, the diverse and innovative tissue engineering and biomaterial strategies explored in this review have the potential to facilitate functional neuronal replacement to mitigate neurological and psychiatric symptoms caused by injury, developmental disorders, or neurodegenerative disease.
Collapse
Affiliation(s)
- Erin M. Purvis
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - John C. O'Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries. Cell Death Dis 2020; 11:262. [PMID: 32321920 PMCID: PMC7176668 DOI: 10.1038/s41419-020-2453-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration.
Collapse
|
17
|
Chen SY, Lin MC, Tsai JS, He PL, Luo WT, Chiu IM, Herschman HR, Li HJ. Exosomal 2',3'-CNP from mesenchymal stem cells promotes hippocampus CA1 neurogenesis/neuritogenesis and contributes to rescue of cognition/learning deficiencies of damaged brain. Stem Cells Transl Med 2020; 9:499-517. [PMID: 31943851 PMCID: PMC7103625 DOI: 10.1002/sctm.19-0174] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been used in clinical studies to treat neurological diseases and damage. However, implanted MSCs do not achieve their regenerative effects by differentiating into and replacing neural cells. Instead, MSC secretome components mediate the regenerative effects of MSCs. MSC-derived extracellular vesicles (EVs)/exosomes carry cargo responsible for rescuing brain damage. We previously showed that EP4 antagonist-induced MSC EVs/exosomes have enhanced regenerative potential to rescue hippocampal damage, compared with EVs/exosomes from untreated MSCs. Here we show that EP4 antagonist-induced MSC EVs/exosomes promote neurosphere formation in vitro and increase neurogenesis and neuritogenesis in damaged hippocampi; basal MSC EVs/exosomes do not contribute to these regenerative effects. 2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) levels in EP4 antagonist-induced MSC EVs/exosomes are 20-fold higher than CNP levels in basal MSC EVs/exosomes. Decreasing elevated exosomal CNP levels in EP4 antagonist-induced MSC EVs/exosomes reduced the efficacy of these EVs/exosomes in promoting β3-tubulin polymerization and in converting toxic 2',3'-cAMP into neuroprotective adenosine. CNP-depleted EP4 antagonist-induced MSC EVs/exosomes lost the ability to promote neurogenesis and neuritogenesis in damaged hippocampi. Systemic administration of EV/exosomes from EP4 -antagonist derived MSC EVs/exosomes repaired cognition, learning, and memory deficiencies in mice caused by hippocampal damage. In contrast, CNP-depleted EP4 antagonist-induced MSC EVs/exosomes failed to repair this damage. Exosomal CNP contributes to the ability of EP4 antagonist-elicited MSC EVs/exosomes to promote neurogenesis and neuritogenesis in damaged hippocampi and recovery of cognition, memory, and learning. This experimental approach should be generally applicable to identifying the role of EV/exosomal components in eliciting a variety of biological responses.
Collapse
Affiliation(s)
- Shih-Yin Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Meng-Chieh Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jia-Shiuan Tsai
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Lin He
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Ting Luo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ing-Ming Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Harvey R Herschman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
| | - Hua-Jung Li
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
18
|
Protecting Mitochondrial Health: A Unifying Mechanism in Adult Neurogenesis. J Neurosci 2019; 37:6603-6605. [PMID: 28701582 DOI: 10.1523/jneurosci.1036-17.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/26/2017] [Accepted: 06/04/2017] [Indexed: 11/21/2022] Open
|
19
|
Geribaldi-Doldán N, Gómez-Oliva R, Domínguez-García S, Nunez-Abades P, Castro C. Protein Kinase C: Targets to Regenerate Brain Injuries? Front Cell Dev Biol 2019; 7:39. [PMID: 30949480 PMCID: PMC6435489 DOI: 10.3389/fcell.2019.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Acute or chronic injury to the central nervous system (CNS), causes neuronal death and irreversible cognitive deficits or sensory-motor alteration. Despite the capacity of the adult CNS to generate new neurons from neural stem cells (NSC), neuronal replacement following an injury is a restricted process, which does not naturally result in functional regeneration. Therefore, potentiating endogenous neurogenesis is one of the strategies that are currently being under study to regenerate damaged brain tissue. The insignificant neurogenesis that occurs in CNS injuries is a consequence of the gliogenic/non-neurogenic environment that inflammatory signaling molecules create within the injured area. The modification of the extracellular signals to generate a neurogenic environment would facilitate neuronal replacement. However, in order to generate this environment, it is necessary to unearth which molecules promote or impair neurogenesis to introduce the first and/or eliminate the latter. Specific isozymes of the protein kinase C (PKC) family differentially contribute to generate a gliogenic or neurogenic environment in injuries by regulating the ADAM17 mediated release of growth factor receptor ligands. Recent reports describe several non-tumorigenic diterpenes isolated from plants of the Euphorbia genus, which specifically modulate the activity of PKC isozymes promoting neurogenesis. Diterpenes with 12-deoxyphorbol or lathyrane skeleton, increase NPC proliferation in neurogenic niches in the adult mouse brain in a PKCβ dependent manner exerting their effects on transit amplifying cells, whereas PKC inhibition in injuries promotes neurogenesis. Thus, compounds that balance PKC activity in injuries might be of use in the development of new drugs and therapeutic strategies to regenerate brain injuries.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
20
|
Vadgama N, Pittman A, Simpson M, Nirmalananthan N, Murray R, Yoshikawa T, De Rijk P, Rees E, Kirov G, Hughes D, Fitzgerald T, Kristiansen M, Pearce K, Cerveira E, Zhu Q, Zhang C, Lee C, Hardy J, Nasir J. De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes. Eur J Hum Genet 2019; 27:1121-1133. [PMID: 30886340 DOI: 10.1038/s41431-019-0376-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 01/11/2023] Open
Abstract
Recent studies have demonstrated genetic differences between monozygotic (MZ) twins. To test the hypothesis that early post-twinning mutational events associate with phenotypic discordance, we investigated a cohort of 13 twin pairs (n = 26) discordant for various clinical phenotypes using whole-exome sequencing and screened for copy number variation (CNV). We identified a de novo variant in PLCB1, a gene involved in the hydrolysis of lipid phosphorus in milk from dairy cows, associated with lactase non-persistence, and a variant in the mitochondrial complex I gene MT-ND5 associated with amyotrophic lateral sclerosis (ALS). We also found somatic variants in multiple genes (TMEM225B, KBTBD3, TUBGCP4, TFIP11) in another MZ twin pair discordant for ALS. Based on the assumption that discordance between twins could be explained by a common variant with variable penetrance or expressivity, we screened the twin samples for known pathogenic variants that are shared and identified a rare deletion overlapping ARHGAP11B, in the twin pair manifesting with either schizotypal personality disorder or schizophrenia. Parent-offspring trio analysis was implemented for two twin pairs to assess potential association of variants of parental origin with susceptibility to disease. We identified a de novo variant in RASD2 shared by 8-year-old male twins with a suspected diagnosis of autism spectrum disorder (ASD) manifesting as different traits. A de novo CNV duplication was also identified in these twins overlapping CD38, a gene previously implicated in ASD. In twins discordant for Tourette's syndrome, a paternally inherited stop loss variant was detected in AADAC, a known candidate gene for the disorder.
Collapse
Affiliation(s)
- Nirmal Vadgama
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Alan Pittman
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Michael Simpson
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | | | - Robin Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - Takeo Yoshikawa
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Peter De Rijk
- Applied Molecular Genomics Group, University of Antwerp, Antwerp, Belgium
| | - Elliott Rees
- Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - George Kirov
- Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Deborah Hughes
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | | | - Mark Kristiansen
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Kerra Pearce
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Eliza Cerveira
- Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Qihui Zhu
- Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Chengsheng Zhang
- Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Charles Lee
- Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - John Hardy
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jamal Nasir
- Cell Biology and Genetics Research Centre, St. George's University of London, London, UK. .,Molecular Biosciences Research Group, University of Northampton, Northampton, NN1 5PH, UK.
| |
Collapse
|
21
|
Dincel GC, Kul O. First description of enhanced expression of transforming growth factor-alpha (TGF-α) and glia maturation factor-beta (GMF-β) correlate with severity of neuropathology in border disease virus-infected small ruminants. Microb Pathog 2019; 128:301-310. [PMID: 30654008 DOI: 10.1016/j.micpath.2019.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/25/2022]
Abstract
Border disease (BD) is caused by Pestivirus and characterized by severe neuropathology, and histopathologically observed severe hypomyelination. We have previously shown that small ruminants infected with border disease virus (BDV) play an important role for neuropathology and pathogenesis of severe oxidative damage in brain tissue, neuronal mtDNA; in the production of high pathologic levels of nitric oxide; in glial cell activation and stimulation of intrinsic apoptosis pathway. This study aimed to investigate the relationship between glia maturation factor beta (GMF-β) and transforming growth factor alpha (TGF-α) expressions and the causes of BDV-induced neuropathology and to investigate their role in neuropathogenesis in a way that was not presented before. Expression levels of GMF-β and TGF-α were investigated. Results of the study revealed that the levels of GMF-β (P < 0.005) and TGF-α (P < 0.005) expression in the brain tissue markedly increased in the BDV-infected animals compared to the non-infected healthy control group. While TGF-α expressions were predominantly observed in neurons, GMF-β expressions were found in astrocytes, glial cells and neurons. These results were reasonable to suggest that BDV-mediated increased GMF-β might play a pivotal role neuropathogenesis and a different type of role in the mechanism of neurodegeneration/neuropathology in the process of BD. The results also indicated that increased levels of GMF up-regulation in glial cells and neurons causes neuronal destruction, suggesting pathological pathway involving GMF-mediated brain cell cytotoxicity. It is clearly indicated that the cause of astrogliosis is due to severe TGF-a expression. This is the first study to demonstrate the expression of GMF-β and TGF-α in neurons and reactive glial cells and its association with neuropathology in BD.
Collapse
Affiliation(s)
| | - Oguz Kul
- Department of Pathology, University of Kirikkale, Kirikkale, Turkey
| |
Collapse
|
22
|
Existence of Neural Stem Cells in Mouse Spleen. ScientificWorldJournal 2019; 2019:6264072. [PMID: 30728755 PMCID: PMC6343157 DOI: 10.1155/2019/6264072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 11/18/2022] Open
Abstract
Pluripotent stem cells are used in regenerative medicine and exist in various internal organs. However, there are a small number of reports of neural cells or neural stem cells existing in the spleen. In this study, we sought to identify possible neural stem cells in the mouse spleen. The spleens of ICR mice were removed and small specimens were incubated in Dulbecco's modified Eagle's medium with Nutrient Mixture F-12 containing either 10% fetal bovine serum (FBS), 20% FBS, 10% neonate bovine serum, or 10% fetal calf serum. Neural cell medium was also used. The cultured cells were investigated for expression of the neural cell markers neuron-specific enolase (NSE) and neurofilament 150 kDa (NF-150) by immunocytochemistry. Mouse spleens were also examined by immunohistochemistry for NSE, NF-150, NF-200, peripherin, and glial fibrillary acidic protein. Cells morphologically resembling neural cells were obtained and were positive for neural cell markers. Some of the cells generated sphere-like formations, which may have been neurospheres. Cell proliferation was best in medium containing 10% FBS. Cells positive for neural markers were observed in the subcapsular and perivascular regions of the spleen. The cells were round and present in much lower numbers than in cell culture. These cells are suspected neural stem cells and would be expected to differentiate into neural cells in cell culture. This report suggests the existence of neural stem cells in the mouse spleen.
Collapse
|
23
|
García-Bernal F, Geribaldi-Doldán N, Domínguez-García S, Carrasco M, Murillo-Carretero M, Delgado-Ariza A, Díez-Salguero M, Verástegui C, Castro C. Protein Kinase C Inhibition Mediates Neuroblast Enrichment in Mechanical Brain Injuries. Front Cell Neurosci 2018; 12:462. [PMID: 30542270 PMCID: PMC6277931 DOI: 10.3389/fncel.2018.00462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Brain injuries of different etiologies lead to irreversible neuronal loss and persisting neuronal deficits. New therapeutic strategies are emerging to compensate neuronal damage upon brain injury. Some of these strategies focus on enhancing endogenous generation of neurons from neural stem cells (NSCs) to substitute the dying neurons. However, the capacity of the injured brain to produce new neurons is limited, especially in cases of extensive injury. This reduced neurogenesis is a consequence of the effect of signaling molecules released in response to inflammation, which act on intracellular pathways, favoring gliogenesis and preventing recruitment of neuroblasts from neurogenic regions. Protein kinase C (PKC) is a family of intracellular kinases involved in several of these gliogenic signaling pathways. The aim of this study was to analyze the role of PKC isozymes in the generation of neurons from neural progenitor cells (NPCs) in vitro and in vivo in brain injuries. PKC inhibition in vitro, in cultures of NPC isolated from the subventricular zone (SVZ) of postnatal mice, leads differentiation towards a neuronal fate. This effect is not mediated by classical or atypical PKC. On the contrary, this effect is mediated by novel PKCε, which is abundantly expressed in NPC cultures under differentiation conditions. PKCε inhibition by siRNA promotes neuronal differentiation and reduces glial cell differentiation. On the contrary, inhibition of PKCθ exerts a small anti-gliogenic effect and reverts the effect of PKCε inhibition on neuronal differentiation when both siRNAs are used in combination. Interestingly, in cortical brain injuries we have found expression of almost all PKC isozymes found in vitro. Inhibition of PKC activity in this type of injuries leads to neuronal production. In conclusion, these findings show an effect of PKCε in the generation of neurons from NPC in vitro, and they highlight the role of PKC isozymes as targets to produce neurons in brain lesions.
Collapse
Affiliation(s)
- Francisco García-Bernal
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Biomedicina de Cádiz (INIBICA), Universidad de Cadiz, Cádiz, Spain
| | - Noelia Geribaldi-Doldán
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Biomedicina de Cádiz (INIBICA), Universidad de Cadiz, Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Biomedicina de Cádiz (INIBICA), Universidad de Cadiz, Cádiz, Spain
| | - Manuel Carrasco
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Biomedicina de Cádiz (INIBICA), Universidad de Cadiz, Cádiz, Spain
| | - Maribel Murillo-Carretero
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Biomedicina de Cádiz (INIBICA), Universidad de Cadiz, Cádiz, Spain
| | | | - Mónica Díez-Salguero
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Biomedicina de Cádiz (INIBICA), Universidad de Cadiz, Cádiz, Spain
| | - Cristina Verástegui
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Departamento de Anatomía, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación en Biomedicina de Cádiz (INIBICA), Universidad de Cadiz, Cádiz, Spain
| |
Collapse
|
24
|
Geribaldi-Doldán N, Carrasco M, Murillo-Carretero M, Domínguez-García S, García-Cózar FJ, Muñoz-Miranda JP, Del Río-García V, Verástegui C, Castro C. Specific inhibition of ADAM17/TACE promotes neurogenesis in the injured motor cortex. Cell Death Dis 2018; 9:862. [PMID: 30154402 PMCID: PMC6113335 DOI: 10.1038/s41419-018-0913-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 11/12/2022]
Abstract
Brain injuries in the adult mammalian brain are accompanied by a fast neurogenic response inside neurogenic niches. However, this response does not contribute to the generation of new neurons within damaged tissues like the cerebral cortex, which are essentially non-neurogenic. This occurs because injuries create a hostile environment that favors gliogenesis. Overexpression and sequential activation of the ADAM17/TGFα/EGFR signaling cascade are crucial for the generation of this gliogenic/non-neurogenic environment. Here, we demonstrate that chronic local infusion of a general metalloprotease inhibitor in areas of traumatic cortical injury in adult mice moderately increased the number of neuroblasts around the lesion, by facilitating the survival of neuroblasts and undifferentiated progenitors, which had migrated to the perilesional area from the subventricular zone. Next, we generated a dominant-negative version of ADAM17 metalloprotease, consisting of a truncated protein containing only the pro-domain (ADAM17-Pro). Specific inhibition of ADAM17 activity by ADAM17-Pro overexpression increased the generation of new neurons in vitro. Local overexpression of ADAM17-Pro in injured cortex in vivo, mediated by lentiviral vectors, dramatically increased the number of neuroblasts observed at the lesion 14 days after injury. Those neuroblasts were able to differentiate into cholinergic and GABAergic neurons 28 days after injury. We conclude that ADAM17 is a putative target to develop new therapeutic tools for the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Área de Fisiología, Facultad de Medicina and Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Manuel Carrasco
- Área de Fisiología, Facultad de Medicina and Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Maribel Murillo-Carretero
- Área de Fisiología, Facultad de Medicina and Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina and Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Francisco J García-Cózar
- Área de Inmunología, Facultad de Medicina and Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Juan Pedro Muñoz-Miranda
- Área de Inmunología, Facultad de Medicina and Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Valme Del Río-García
- Área de Fisiología, Facultad de Medicina and Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Cristina Verástegui
- Departamento de Anatomía, Facultad de Medicina and Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina and Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain.
| |
Collapse
|
25
|
Li Y, Chang S, Li W, Tang G, Ma Y, Liu Y, Yuan F, Zhang Z, Yang GY, Wang Y. cxcl12-engineered endothelial progenitor cells enhance neurogenesis and angiogenesis after ischemic brain injury in mice. Stem Cell Res Ther 2018; 9:139. [PMID: 29751775 PMCID: PMC5948880 DOI: 10.1186/s13287-018-0865-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background Ischemic stroke causes a multitude of brain damage. Neurovascular injury and myelin sheath degradation are two manifestations of ischemic brain damage. Therapeutic strategies aiming only at repairing the neural components or the vessels cannot efficiently restore neurological function. Endothelial progenitor cells (EPCs) have the advantages of both promoting angiogenesis and secreting trophic factors that would promote neurogenesis. Chemokine cxcl12 gene therapy has also been shown to promote angiogenesis, neurogenesis, and remyelination, attracting EPCs, neural progenitor cells, and oligodendrocyte progenitor cells (OPCs) to the injured sites of the brain. In this work, we tested whether these two therapeutics can be combined by genetically engineering the EPCs with cxcl12 to harness the synergistic effects of these two interventions. Methods We used lentivirus (LV) to deliver cxcl12 gene into human umbilical cord blood EPCs to generate the engineered CXCL12-EPCs, which were then delivered into the perifocal region at 1 week after permanent middle cerebral artery occlusion to investigate the effects of CXCL12-EPCs on the functional recovery and angiogenesis, neurogenesis, and remyelination in ischemic stroke mice. Green fluorescent protein (gfp) gene-modified EPCs and LV-CXCL12 gene therapy were used as controls. Results CXCL12-EPC treatment significantly reduced brain atrophy and improved neurobehavioral function at 5 weeks after brain ischemia. The treatment resulted in increased blood vessel density and myelin sheath integrity, and promoted neurogenesis, angiogenesis, and the proliferation and migration of OPCs. In-vitro data showed that CXCL12-EPCs performed better in proliferation and tube formation assays and expressed a higher level of vascular endothelial growth factor compared to GFP-EPCs. Conclusions The synergistic treatment of CXCL12-EPCs outperformed the single therapies of GFP-EPCs or LV-CXCL12 gene therapy in various aspects related to post-ischemic brain repair. cxcl12-engineered EPCs hold great potential in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yaning Li
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Shuang Chang
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Wanlu Li
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Guanghui Tang
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yuanyuan Ma
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yanqun Liu
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fang Yuan
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Zhijun Zhang
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Guo-Yuan Yang
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China. .,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yongting Wang
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
26
|
Lv J, Shao Y, Gao Y. Activation of A 1 and A 2a adenosine receptors promotes neural progenitor cell proliferation. Brain Res 2018; 1686:65-71. [DOI: 10.1016/j.brainres.2018.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/18/2018] [Accepted: 02/18/2018] [Indexed: 01/08/2023]
|
27
|
Shen R, Ye D, Huang Q, Li J, Wang Q, Fei J. An EGF receptor-targeting amphinase recombinant protein mediates anti-tumor activity in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2018; 50:391-398. [PMID: 29566107 DOI: 10.1093/abbs/gmy016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Indexed: 11/13/2022] Open
Abstract
Utilizing cytotoxic proteins linked to tumor targeting molecules as anti-tumor drugs is a promising approach. However, most cytotoxins derived from bacteria or plants have inherent problems such as large molecular weights and they trigger a strong immune system reaction, which leads to drug failure and serious side effects. Amphinase (Amph) is a ribonuclease with a low molecular weight that is found in northern leopard frog oocytes. It has strong cytotoxicity against tumor cell lines in vitro and weak immunogenicity in vivo, and is a promising candidate in the development of targeted drugs. Transforming growth factor-α (TGF-α) that binds to the epidermal growth factor receptor (EGFR) is being used as a targeting molecule for the treatment of EGFR high-expressing tumors. In this study, we expressed and purified a recombinant amphinase and its TGF-α fusion protein (AGT) separately from Escherichia coli. AGT exhibited more significant cytotoxicity in vitro on EGFR high-expressing tumor cell lines, and stronger anti-tumor effects in vivo. This fusion protein also exhibited unusual thermostability, low in vivo immunogenicity, and side effects. Our results provide a new entry point for the development of novel, highly efficient anti-tumor targeting biological agents with low immunogenicity.
Collapse
Affiliation(s)
- Ruling Shen
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Danrong Ye
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Qin Huang
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Jun Li
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Qingcheng Wang
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| |
Collapse
|
28
|
Saudek F, Cahová M, Havrdová T, Zacharovová K, Daňková H, Voska L, Lánská V, Üçeyler N, Sommer C. Preserved Expression of Skin Neurotrophic Factors in Advanced Diabetic Neuropathy Does Not Lead to Neural Regeneration despite Pancreas and Kidney Transplantation. J Diabetes Res 2018; 2018:2309108. [PMID: 30648113 PMCID: PMC6311823 DOI: 10.1155/2018/2309108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes with potential severe consequences. Its pathogenesis involves hyperglycemia-linked mechanisms, which may include changes in the expression of neurotrophic growth factors. We analyzed the expression of 29 factors potentially related to nerve degeneration and regeneration in skin biopsies from 13 type 1 diabetic pancreas and kidney recipients with severe DPN including severe depletion of intraepidermal nerve fibers (IENF) in lower limb skin biopsies (group Tx1 1st examination). The investigation was repeated after a median 28-month period of normoglycemia achieved by pancreas transplantation (group Tx1 2nd examination). The same tests were performed in 13 stable normoglycemic pancreas and kidney recipients 6-12 years posttransplantation (group Tx2), in 12 matched healthy controls (group HC), and in 12 type 1 diabetic subjects without severe DPN (group DM). Compared to DM and HC groups, we found a significantly higher (p < 0.05-0.001) expression of NGF (nerve growth factor), NGFR (NGF receptor), NTRK1 (neurotrophic receptor tyrosine kinase 1), GDNF (glial cell-derived neurotrophic factor), GFRA1 (GDNF family receptor alpha 1), and GFAP (glial fibrillary acidic protein) in both transplant groups (Tx1 and Tx2). Enhanced expression of these factors was not normalized following the median 28-month period of normoglycemia (Tx1 2nd examination) and negatively correlated with IENF density and with electrophysiological indices of DPN (vibration perception threshold, electromyography, and autonomic tests). In contrast to our expectation, the expression of most of 29 selected factors related to neural regeneration was comparable in subjects with severe peripheral nerve fiber depletion and healthy controls and the expression of six factors was significantly upregulated. These findings may be important for better understanding the pathophysiology of nerve regeneration and for the development of intervention strategies.
Collapse
Affiliation(s)
- František Saudek
- Diabetes Center, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Monika Cahová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Terezie Havrdová
- Diabetes Center, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Klára Zacharovová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Helena Daňková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Luděk Voska
- Clinical and Transplant Pathology Department, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Věra Lánská
- Department of Statistics, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Nurcan Üçeyler
- University Hospital of Würzburg, Department of Neurology, 97080 Würzburg, Germany
| | - Claudia Sommer
- University Hospital of Würzburg, Department of Neurology, 97080 Würzburg, Germany
| |
Collapse
|
29
|
Grade S, Götz M. Neuronal replacement therapy: previous achievements and challenges ahead. NPJ Regen Med 2017; 2:29. [PMID: 29302363 PMCID: PMC5677983 DOI: 10.1038/s41536-017-0033-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022] Open
Abstract
Lifelong neurogenesis and incorporation of newborn neurons into mature neuronal circuits operates in specialized niches of the mammalian brain and serves as role model for neuronal replacement strategies. However, to which extent can the remaining brain parenchyma, which never incorporates new neurons during the adulthood, be as plastic and readily accommodate neurons in networks that suffered neuronal loss due to injury or neurological disease? Which microenvironment is permissive for neuronal replacement and synaptic integration and which cells perform best? Can lost function be restored and how adequate is the participation in the pre-existing circuitry? Could aberrant connections cause malfunction especially in networks dominated by excitatory neurons, such as the cerebral cortex? These questions show how important connectivity and circuitry aspects are for regenerative medicine, which is the focus of this review. We will discuss the impressive advances in neuronal replacement strategies and success from exogenous as well as endogenous cell sources. Both have seen key novel technologies, like the groundbreaking discovery of induced pluripotent stem cells and direct neuronal reprogramming, offering alternatives to the transplantation of fetal neurons, and both herald great expectations. For these to become reality, neuronal circuitry analysis is key now. As our understanding of neuronal circuits increases, neuronal replacement therapy should fulfill those prerequisites in network structure and function, in brain-wide input and output. Now is the time to incorporate neural circuitry research into regenerative medicine if we ever want to truly repair brain injury.
Collapse
Affiliation(s)
- Sofia Grade
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
30
|
Yao L, Li Y. The Role of Direct Current Electric Field-Guided Stem Cell Migration in Neural Regeneration. Stem Cell Rev Rep 2017; 12:365-75. [PMID: 27108005 DOI: 10.1007/s12015-016-9654-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Effective directional axonal growth and neural cell migration are crucial in the neural regeneration of the central nervous system (CNS). Endogenous currents have been detected in many developing nervous systems. Experiments have demonstrated that applied direct current (DC) electric fields (EFs) can guide axonal growth in vitro, and attempts have been made to enhance the regrowth of damaged spinal cord axons using DC EFs in in vivo experiments. Recent work has revealed that the migration of stem cells and stem cell-derived neural cells can be guided by DC EFs. These studies have raised the possibility that endogenous and applied DC EFs can be used to direct neural tissue regeneration. Although the mechanism of EF-directed axonal growth and cell migration has not been fully understood, studies have shown that the polarization of cell membrane proteins and the activation of intracellular signaling molecules are involved in the process. The application of EFs is a promising biotechnology for regeneration of the CNS.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, Wichita, KS, 67260, USA.
| | - Yongchao Li
- Department of Biological Sciences, Wichita State University, Wichita, KS, 67260, USA
| |
Collapse
|
31
|
Tian Z, Zhao Q, Biswas S, Deng W. Methods of reactivation and reprogramming of neural stem cells for neural repair. Methods 2017; 133:3-20. [PMID: 28864354 DOI: 10.1016/j.ymeth.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/21/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022] Open
Abstract
Research on the biology of adult neural stem cells (NSCs) and induced NSCs (iNSCs), as well as NSC-based therapies for diseases in central nervous system (CNS) has started to generate the expectation that these cells may be used for treatments in CNS injuries or disorders. Recent technological progresses in both NSCs themselves and their derivatives have brought us closer to therapeutic applications. Adult neurogenesis presents in particular regions in mammal brain, known as neurogenic niches such as the dental gyrus (DG) in hippocampus and the subventricular zone (SVZ), within which adult NSCs usually stay for long periods out of the cell cycle, in G0. The reactivation of quiescent adult NSCs needs orchestrated interactions between the extrinsic stimulis from niches and the intrinsic factors involving transcription factors (TFs), signaling pathway, epigenetics, and metabolism to start an intracellular regulatory program, which promotes the quiescent NSCs exit G0 and reenter cell cycle. Extrinsic and intrinsic mechanisms that regulate adult NSCs are interconnected and feedback on one another. Since endogenous neurogenesis only happens in restricted regions and steadily fails with disease advances, interest has evolved to apply the iNSCs converted from somatic cells to treat CNS disorders, as is also promising and preferable. To overcome the limitation of viral-based reprogramming of iNSCs, bioactive small molecules (SM) have been explored to enhance the efficiency of iNSC reprogramming or even replace TFs, making the iNSCs more amenable to clinical application. Despite intense research efforts to translate the studies of adult and induced NSCs from the bench to bedside, vital troubles remain at several steps in these processes. In this review, we examine the present status, advancement, pitfalls, and potential of the two types of NSC technologies, focusing on each aspects of reactivation of quiescent adult NSC and reprogramming of iNSC from somatic cells, as well as on progresses in cell-based regenerative strategies for neural repair and criteria for successful therapeutic applications.
Collapse
Affiliation(s)
- Zuojun Tian
- Department of Neurology, The Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Qiuge Zhao
- Department of Neurology, The Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
32
|
Murillo‐Carretero M, Geribaldi‐Doldán N, Flores‐Giubi E, García‐Bernal F, Navarro‐Quiroz EA, Carrasco M, Macías‐Sánchez AJ, Herrero‐Foncubierta P, Delgado‐Ariza A, Verástegui C, Domínguez‐Riscart J, Daoubi M, Hernández‐Galán R, Castro C. ELAC (3,12-di-O-acetyl-8-O-tigloilingol), a plant-derived lathyrane diterpene, induces subventricular zone neural progenitor cell proliferation through PKCβ activation. Br J Pharmacol 2017; 174:2373-2392. [PMID: 28476069 PMCID: PMC5481651 DOI: 10.1111/bph.13846] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological strategies aimed to facilitate neuronal renewal in the adult brain, by promoting endogenous neurogenesis, constitute promising therapeutic options for pathological or traumatic brain lesions. We have previously shown that non-tumour-promoting PKC-activating compounds (12-deoxyphorbols) promote adult neural progenitor cell (NPC) proliferation in vitro and in vivo, enhancing the endogenous neurogenic response of the brain to a traumatic injury. Here, we show for the first time that a diterpene with a lathyrane skeleton can also activate PKC and promote NPC proliferation. EXPERIMENTAL APPROACH We isolated four lathyranes from the latex of Euphorbia plants and tested their effect on postnatal NPC proliferation, using neurosphere cultures. The bioactive lathyrane ELAC (3,12-di-O-acetyl-8-O-tigloilingol) was also injected into the ventricles of adult mice to analyse its effect on adult NPC proliferation in vivo. KEY RESULTS The lathyrane ELAC activated PKC and significantly increased postnatal NPC proliferation in vitro, particularly in synergy with FGF2. In addition ELAC stimulated proliferation of NPC, specifically affecting undifferentiated transit amplifying cells. The proliferative effect of ELAC was reversed by either the classical/novel PKC inhibitor Gö6850 or the classical PKC inhibitor Gö6976, suggesting that NPC proliferation is promoted in response to activation of classical PKCs, particularly PKCß. ELAC slightly increased the proportion of NPC expressing Sox2. The effects of ELAC disappeared upon acetylation of its C7-hydroxyl group. CONCLUSIONS AND IMPLICATIONS We propose lathyranes like ELAC as new drug candidates to modulate adult neurogenesis through PKC activation. Functional and structural comparisons between ELAC and phorboids are included.
Collapse
Affiliation(s)
- Maribel Murillo‐Carretero
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Noelia Geribaldi‐Doldán
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Eugenia Flores‐Giubi
- Departamento de Química Orgánica, Facultad de CienciasUniversidad de Cádiz, Puerto RealCádizSpain and Instituto de Investigación en Biomoléculas (INBIO)
| | - Francisco García‐Bernal
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Elkin A Navarro‐Quiroz
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
- Universidad Simón BolívarBarranquillaColombia
| | - Manuel Carrasco
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Antonio J Macías‐Sánchez
- Departamento de Química Orgánica, Facultad de CienciasUniversidad de Cádiz, Puerto RealCádizSpain and Instituto de Investigación en Biomoléculas (INBIO)
| | - Pilar Herrero‐Foncubierta
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Antonio Delgado‐Ariza
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Cristina Verástegui
- Departamento de Anatomía y Embriología HumanaUniversidad de CádizCádizSpain and Instituto de Investigación en Innovación Biomédica de Cádiz (INiBICA)
| | - Jesús Domínguez‐Riscart
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Mourad Daoubi
- Departamento de Química Orgánica, Facultad de CienciasUniversidad de Cádiz, Puerto RealCádizSpain and Instituto de Investigación en Biomoléculas (INBIO)
| | - Rosario Hernández‐Galán
- Departamento de Química Orgánica, Facultad de CienciasUniversidad de Cádiz, Puerto RealCádizSpain and Instituto de Investigación en Biomoléculas (INBIO)
| | - Carmen Castro
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| |
Collapse
|
33
|
Boroujeni ME, Gardaneh M. Umbilical cord: an unlimited source of cells differentiable towards dopaminergic neurons. Neural Regen Res 2017; 12:1186-1192. [PMID: 28852404 PMCID: PMC5558501 DOI: 10.4103/1673-5374.211201] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2017] [Indexed: 12/14/2022] Open
Abstract
Cell replacement therapy utilizing mesenchymal stem cells as its main resource holds great promise for ultimate treatment of human neurological disorders. Parkinson's disease (PD) is a common, chronic neurodegenerative disorder hallmarked by localized degeneration of a specific set of dopaminergic neurons within a midbrain sub-region. The specific cell type and confined location of degenerating neurons make cell replacement therapy ideal for PD treatment since it mainly requires replenishment of lost dopaminergic neurons with fresh and functional ones. Endogenous as well as exogenous cell sources have been identified as candidate targets for cell replacement therapy in PD. In this review, umbilical cord mesenchymal stem cells (UCMSCs) are discussed as they provide an inexpensive unlimited reservoir differentiable towards functional dopaminergic neurons that potentially lead to long-lasting behavioral recovery in PD patients. We also present miRNAs-mediated neuronal differentiation of UCMSCs. The UCMSCs bear a number of outstanding characteristics including their non-tumorigenic, low-immunogenic properties that make them ideal for cell replacement therapy purposes. Nevertheless, more investigations as well as controlled clinical trials are required to thoroughly confirm the efficacy of UCMSCs for therapeutic medical-grade applications in PD.
Collapse
Affiliation(s)
- Mahdi Eskandarian Boroujeni
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mossa Gardaneh
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
34
|
Distinct Effects of miR-210 Reduction on Neurogenesis: Increased Neuronal Survival of Inflammation But Reduced Proliferation Associated with Mitochondrial Enhancement. J Neurosci 2017; 37:3072-3084. [PMID: 28188219 DOI: 10.1523/jneurosci.1777-16.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 01/19/2023] Open
Abstract
Neurogenesis is essential to brain development and plays a central role in the response to brain injury. Stroke and head trauma stimulate proliferation of endogenous neural stem cells (NSCs); however, the survival of young neurons is sharply reduced by postinjury inflammation. Cellular mitochondria are critical to successful neurogenesis and are a major target of inflammatory injury. Mitochondrial protection was shown to improve survival of young neurons. This study tested whether reducing cellular microRNA-210 (miR-210) would enhance mitochondrial function and improve survival of young murine neurons under inflammatory conditions. Several studies have demonstrated the potential of miR-210 inhibition to enhance and protect mitochondrial function through upregulation of mitochondrial proteins. Here, miR-210 inhibition significantly increased neuronal survival and protected the activity of mitochondrial enzymes cytochrome c oxidase and aconitase in differentiating NSC cultures exposed to inflammatory mediators. Unexpectedly, we found that reducing miR-210 significantly attenuated NSC proliferation upon induction of differentiation. Further investigation revealed that increased mitochondrial function suppressed the shift to primarily glycolytic metabolism and reduced mitochondrial length characteristic of dividing cells. Activation of AMP-regulated protein kinase-retinoblastoma signaling is important in NSC proliferation and the reduction of this activation observed by miR-210 inhibition is one mechanism contributing to the reduced proliferation. Postinjury neurogenesis occurs as a burst of proliferation that peaks in days, followed by migration and differentiation over weeks. Our studies suggest that mitochondrial protective miR-210 inhibition should be delayed until after the initial burst of proliferation, but could be beneficial during the prolonged differentiation stage.SIGNIFICANCE STATEMENT Increasing the success of endogenous neurogenesis after brain injury holds therapeutic promise. Postinjury inflammation markedly reduces newborn neuron survival. This study found that enhancement of mitochondrial function by reducing microRNA-210 (miR-210) levels could improve survival of young neurons under inflammatory conditions. miR-210 inhibition protected the activity of mitochondrial enzymes cytochrome c oxidase and aconitase. Conversely, we observed decreased precursor cell proliferation likely due to suppression of the AMP-regulated protein kinase-retinoblastoma axis with miR-210 inhibition. Therefore, mitochondrial protection is a double-edged sword: early inhibition reduces proliferation, but inhibition later significantly increases neuroblast survival. This explains in part the contradictory published reports of the effects of miR-210 on neurogenesis.
Collapse
|
35
|
Cui C, Wang P, Cui N, Song S, Liang H, Ji A. Stichopus japonicus Polysaccharide, Fucoidan, or Heparin Enhanced the SDF-1α/CXCR4 Axis and Promoted NSC Migration via Activation of the PI3K/Akt/FOXO3a Signaling Pathway. Cell Mol Neurobiol 2016; 36:1311-1329. [PMID: 26886751 PMCID: PMC11482349 DOI: 10.1007/s10571-016-0329-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/07/2016] [Indexed: 02/02/2023]
Abstract
Stichopus japonicus Polysaccharide (SJP) is a sulfated polysaccharide from the body wall of the sea cucumber, Stichopus japonicus. Fucoidan is a heparinoid compound that belongs to a family of sulfated polyfucose polysaccharides. Heparin is a glycosaminoglycan. SJP, fucoidan, and heparin profoundly promoted stromal cell-derived factor 1 alpha (SDF-1α)-induced neural stem cell (NSC) migration in a concentration-dependent manner. In addition, the basal migration capacity of cells was significantly promoted after incubation with SJP, fucoidan, or heparin. Interaction of SJP, fucoidan, or heparin with SDF-1α efficiently showed additive effects on the promotion of cell migration from the neurosphere. SJP, fucoidan, or heparin interaction with SDF-1α treatment could increase Nestin expression. SDF-1α modulated by SJP, fucoidan, or heparin activated the CXCR4 receptor and directed cellular migration via the activation of the PI3K/Akt/FOXO3a signaling pathway. Moreover, interaction of SJP, fucoidan, or heparin with SDF-1α effectively promoted NSC migration and induced SDF-1α and CXCR4 expressions. Results suggested that SJP, fucoidan, and heparin might be good candidates for alleviating injury-initiated signals to which NSCs respond.
Collapse
Affiliation(s)
- Chao Cui
- Marine College, Shandong University, Weihai, Shandong, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Peng Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Ningshan Cui
- Marine College, Shandong University, Weihai, Shandong, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai, Shandong, China
| | - Hao Liang
- Marine College, Shandong University, Weihai, Shandong, China
| | - Aiguo Ji
- Marine College, Shandong University, Weihai, Shandong, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
36
|
Dmitrieva VG, Stavchansky VV, Povarova OV, Skvortsova VI, Limborska SA, Dergunova LV. Effects of ischemia on the expression of neurotrophins and their receptors in rat brain structures outside the lesion site, including on the opposite hemisphere. Mol Biol 2016. [DOI: 10.1134/s0026893316030067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Xu W, Sachewsky N, Azimi A, Hung M, Gappasov A, Morshead CM. Myelin Basic Protein Regulates Primitive and Definitive Neural Stem Cell Proliferation from the Adult Spinal Cord. Stem Cells 2016; 35:485-496. [PMID: 27573615 DOI: 10.1002/stem.2488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/29/2016] [Accepted: 07/29/2016] [Indexed: 11/07/2022]
Abstract
The adult mammalian forebrain comprises two distinct populations of neural stem cells (NSCs): rare, Oct4 positive, primitive NSCs (pNSCs) and definitive NSC (dNSC) which are more abundant and express GFAP. The pNSCs are upstream of the dNSCs in the neural stem cell lineage. Herein we show that pNSC and dNSC populations can also be isolated from the developing and adult spinal cord. Spinal cord derived pNSCs are similarly rare, Oct4 expressing cells that are responsive to leukemia inhibitory factor and dNSCs are 4-5X more abundant and express GFAP. We demonstrate that myelin basic protein (MBP) is inhibitory to both pNSC and dNSC derived colony formation. Similar to what is seen in the adult forebrain following injury, spinal cord injury results in a significant increase in the size of the dNSC and pNSC pools. Hence, both primitive and definitive neural stem cells can be isolated from along the embryonic and adult neuraxis in vivo and their behavior is regulated by MBP and injury. Stem Cells 2017;35:485-496.
Collapse
Affiliation(s)
- Wenjun Xu
- Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Nadia Sachewsky
- Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Ashkan Azimi
- Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Maurita Hung
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Andrew Gappasov
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Cindi M Morshead
- Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Towards a Better Treatment Option for Parkinson’s Disease: A Review of Adult Neurogenesis. Neurochem Res 2016; 41:3161-3170. [DOI: 10.1007/s11064-016-2053-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 02/04/2023]
|
39
|
Wedekind L, Belkacemi L. Altered cytokine network in gestational diabetes mellitus affects maternal insulin and placental-fetal development. J Diabetes Complications 2016; 30:1393-400. [PMID: 27230834 DOI: 10.1016/j.jdiacomp.2016.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/16/2016] [Accepted: 05/09/2016] [Indexed: 12/15/2022]
Abstract
Pregnancy is characterized by an altered inflammatory profile, compared to the non-pregnant state with an adequate balance between pro-and anti-inflammatory cytokines needed for normal development. Cytokines are small secreted proteins expressed mainly in immunocompetent cells in the reproductive system. From early developmental stages onward, the secretory activity of placenta cells clearly contributes to increase local as well as systemic levels of cytokines. The placental production of cytokines may affect mother and fetus independently. In turn because of this unique position at the maternal fetal interface, the placenta is also exposed to the regulatory influence of cytokines from maternal and fetal circulations, and hence, may be affected by changes in any of these. Gestational diabetes mellitus (GDM) is associated with an overall alteration of the cytokine network. This review discusses the changes that occur in cytokines post GDM and their negative effects on maternal insulin and placental-fetal development.
Collapse
Affiliation(s)
- Lauren Wedekind
- Stanford University, Program in Human Biology, Stanford, CA, 94305, USA
| | - Louiza Belkacemi
- University of Houston, Departments of Biology and Biochemistry, Houston, TX, 77204, USA.
| |
Collapse
|
40
|
Intraventricular administration of endoneuraminidase-N facilitates ectopic migration of subventricular zone-derived neural progenitor cells into 6-OHDA lesioned striatum of mice. Exp Neurol 2015; 277:139-149. [PMID: 26724216 DOI: 10.1016/j.expneurol.2015.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 01/23/2023]
Abstract
Polysialic acid (PSA), a carbohydrate polymer associated with the neural cell adhesion molecule (NCAM), plays an important role in the migration, differentiation and maturation of neuroblasts. Endoneuraminidase-N (Endo-N) can specifically cleave PSA from NCAM. The objective of the present study was to examine: the effect of Endo-N on characteristics of subventricular zone (SVZ)-derived neural progenitor cells (NPCs) in vitro; whether intraventricular administration of Endo-N could increase ectopic migration of SVZ-derived NPCs into 6-hydroxydopamine (6-OHDA)-lesioned striatum, and whether migrated NPCs could differentiate into neuronal and glial cells. In in vitro study, Endo-N was found to inhibit the migration of NPCs, and to enhance the differentiation of NPCs. In in vivo study, mice sequentially received injections of 6-OHDA into the right striatum, Endo-N into the right lateral ventricle, and bromodeoxyuridine (BrdU) intraperitoneally. The data showed that intraventricular injections of Endo-N disorganized the normal structure of the rostral migratory stream (RMS), and drastically increased the number of BrdU-immunoreactive (IR) cells in 6-OHDA-lesioned striatum. In addition, a number of BrdU-IR cells were double labeled for doublecortin (DCX), NeuN or glial fibrillary acidic protein (GFAP). The results suggest that interruption of neuroblast chain pathway with Endo-N facilitates ectopic migration of SVZ-derived NPCs into the lesioned striatum, and migrated NPCs can differentiate into neurons and astrocytes.
Collapse
|
41
|
Bonaventura G, Chamayou S, Liprino A, Guglielmino A, Fichera M, Caruso M, Barcellona ML. Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability. PLoS One 2015; 10:e0140790. [PMID: 26517263 PMCID: PMC4627815 DOI: 10.1371/journal.pone.0140790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/30/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Stem cells are capable of self-renewal and differentiation into a wide range of cell types with multiple clinical and therapeutic applications. Stem cells are providing hope for many diseases that currently lack effective therapeutic methods, including strokes, Huntington's disease, Alzheimer's and Parkinson's disease. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach. AIM The innovative aspect of this study has been to evaluate the neural differentiation capability of different tissue-derived stem cells coming from different tissue sources such as bone marrow, umbilical cord blood, human endometrium and amniotic fluid, cultured under the same supplemented media neuro-transcription factor conditions, testing the expression of neural markers such as GFAP, Nestin and Neurofilaments using the immunofluorescence staining assay and some typical clusters of differentiation such as CD34, CD90, CD105 and CD133 by using the cytofluorimetric test assay. RESULTS Amniotic fluid derived stem cells showed a more primitive phenotype compared to the differentiating potential demonstrated by the other stem cell sources, representing a realistic possibility in the field of regenerative cell therapy suitable for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gabriele Bonaventura
- Department of Pharmaceutical Science, Biochemistry Section, University of Catania, Catania, Italy
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Sandrine Chamayou
- Unità di Medicina della Riproduzione, Fondazione Hera, Sant’Agata Li Battiati (CT), Italy
| | - Annalisa Liprino
- Department of Obstetrics and Gynecology and Radiological Sciences (OGiRA), University of Catania, Catania, Italy
| | - Antonino Guglielmino
- Unità di Medicina della Riproduzione, Fondazione Hera, Sant’Agata Li Battiati (CT), Italy
| | - Michele Fichera
- Department of Obstetrics and Gynecology and Radiological Sciences (OGiRA), University of Catania, Catania, Italy
| | - Massimo Caruso
- Department of Clinic and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Maria Luisa Barcellona
- Department of Pharmaceutical Science, Biochemistry Section, University of Catania, Catania, Italy
| |
Collapse
|
42
|
Wang B, Jin K. Current perspectives on the link between neuroinflammation and neurogenesis. Metab Brain Dis 2015; 30:355-65. [PMID: 24623361 DOI: 10.1007/s11011-014-9523-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
Abstract
The link between neuroinflammation and neurogenesis is an area of intensive research in contemporary neuroscience. The burgeoning amount of evidence accumulated over the past decade has been incredible, and now there remains the figuring out of minutia to give us a more complete picture of what individual, synergistic, and antagonistic events are occurring between neurogenesis and neuroinflammation. An intricate study of the inflammatory microenvironment influenced by the presence of the various inflammatory components like cytokines, chemokines, and immune cells is essential for: 1) understanding how neurogenesis can be affected in such a specialized niche and 2) applying the knowledge gained for the treatment of cognitive and/or motor deficits arising from inflammation-associated diseases like stroke, traumatic brain injury, Alzheimer's disease, and Parkinson's disease. This review is written to provide the reader with up-to-date information explaining how these inflammatory components are effecting changes on neurogenesis.
Collapse
Affiliation(s)
- Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | | |
Collapse
|
43
|
Szabolcsi V, Celio MR. De novo expression of parvalbumin in ependymal cells in response to brain injury promotes ependymal remodeling and wound repair. Glia 2014; 63:567-94. [PMID: 25421913 DOI: 10.1002/glia.22768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/06/2014] [Indexed: 12/21/2022]
Abstract
The calcium-binding protein parvalbumin (PV) hallmarks subpopulations of interneurons in the murine brain. We serendipitously observed the de novo expression of PV in ependymal cells of the lateral ventricle wall following in vivo lesioning and brain slicing for the preparation of organotypic hippocampal slice cultures (OHSCs). In OHSCs, de novo PV-expression begins shortly after the onset of culturing, and the number of ependymal cells implicated in this process increases with time. PV-immunopositive ependymal cells aggregate and form compact cell clusters, which are characterized by lumen-formation and beating cilia. Scratches inflicted on such clusters with a sharp knife are rapidly closed. Exposure of OHSCs to NF-КB-inhibitors and to antioxidants reduces PV-expression in ependymal cells, thereby implicating injury-induced inflammation in this process. Indeed, in vivo stab injury enhances PV-expression in ependymal cells adjacent to the lesion, whereas neuraminidase denudation is without effect. PV-knock-out mice manifest an impaired wound-healing response to in vivo injury, and a reduced scratch-wound reparation capacity in OHSCs. Whole-transcriptome analysis of ependymal-cell clusters in OHSCs revealed down-regulation of genes involved in cytoskeletal rearrangement, cell motility and cell adhesion in PV-knock out mice as compared with wild-type mice. Our data indicate that the injury-triggered up-regulation of PV-expression is mediated by inflammatory cytokines, and promotes the motility and adhesion of ependymal cells, thereby contributing to leakage closure by the re-establishment of a continuous ependymal layer.
Collapse
Affiliation(s)
- Viktória Szabolcsi
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg, Rte Albert Gockel 1, CH-1700, Fribourg, Switzerland
| | | |
Collapse
|
44
|
Muthuraju S, Islam MR, Pati S, Jaafar H, Abdullah JM, Yusoff KM. Normobaric hyperoxia treatment prevents early alteration in dopamine level in mice striatum after fluid percussion injury: a biochemical approach. Int J Neurosci 2014; 125:686-92. [PMID: 25180987 DOI: 10.3109/00207454.2014.961065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dopamine (DA) is one of the key neurotransmitters in the striatum, which is functionally important for a variety of cognitive and motor behaviours. It is known that the striatum is vulnerable to damage from traumatic brain injury (TBI). However, a therapeutic approach has not yet been established to treat TBI. Hence, the present work aimed to evaluate the ability of Normobaric hyperoxia treatment (NBOT) to recover dopaminergic neurons following a fluid percussion injury (FPI) as a TBI experimental animal model. To examine this, mice were divided into four groups: (i) Control, (ii) Sham, (iii) FPI and (iv) FPI+NBOT. Mice were anesthetized and surgically prepared for FPI in the striatum and immediate exposure to NBOT at various time points (3, 6, 12 and 24 h). Dopamine levels were then estimated post injury by utilizing a commercially available ELISA method specific to DA. We found that DA levels were significantly reduced at 3 h, but there was no reduction at 6, 12 and 24 h in FPI groups when compared to the control and sham groups. Subjects receiving NBOT showed consistent increased DA levels at each time point when compared with Sham and FPI groups. These results suggest that FPI may alter DA levels at the early post-TBI stages but not in later stages. While DA levels increased in 6, 12 and 24 h in the FPI groups, NBOT could be used to accelerate the prevention of early dopaminergic neuronal damage following FPI injury and improve DA levels consistently.
Collapse
Affiliation(s)
- Sangu Muthuraju
- 1Center for Neuroscience Services and Research(P3Neuro), Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | | | | | | | | | | |
Collapse
|
45
|
Gillette R, Miller-Crews I, Nilsson EE, Skinner MK, Gore AC, Crews D. Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats. Endocrinology 2014; 155:3853-66. [PMID: 25051444 PMCID: PMC4164929 DOI: 10.1210/en.2014-1253] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How an individual responds to the environment depends upon both personal life history as well as inherited genetic and epigenetic factors from ancestors. Using a 2-hit, 3 generations apart model, we tested how F3 descendants of rats given in utero exposure to the environmental endocrine-disrupting chemical (EDC) vinclozolin reacted to stress during adolescence in their own lives, focusing on sexually dimorphic phenotypic outcomes. In adulthood, male and female F3 vinclozolin- or vehicle-lineage rats, stressed or nonstressed, were behaviorally characterized on a battery of tests and then euthanized. Serum was used for hormone assays, and brains were used for quantitative PCR and transcriptome analyses. Results showed that the effects of ancestral exposure to vinclozolin converged with stress experienced during adolescence in a sexually dimorphic manner. Debilitating effects were seen at all levels of the phenotype, including physiology, behavior, brain metabolism, gene expression, and genome-wide transcriptome modifications in specific brain nuclei. Additionally, females were significantly more vulnerable than males to transgenerational effects of vinclozolin on anxiety but not sociality tests. This fundamental transformation occurs in a manner not predicted by the ancestral exposure or the proximate effects of stress during adolescence, an interaction we refer to as synchronicity.
Collapse
Affiliation(s)
- Ross Gillette
- Institute for Cellular and Molecular Biology (R.G., I.M.-C., A.C.G., D.C.), Division of Pharmacology and Toxicology (A.C.G., D.C.), and Department of Integrative Biology (D.C.), The University of Texas at Austin, Austin, Texas 78712; and Center for Reproductive Biology (E.E.N., M.K.S.), School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | | | | | | | | | | |
Collapse
|
46
|
Merino JJ, Bellver-Landete V, Oset-Gasque MJ, Cubelos B. CXCR4/CXCR7 Molecular Involvement in Neuronal and Neural Progenitor Migration: Focus in CNS Repair. J Cell Physiol 2014; 230:27-42. [DOI: 10.1002/jcp.24695] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/03/2014] [Indexed: 12/13/2022]
Affiliation(s)
- José Joaquín Merino
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
- Instituto de Investigación; Neuroquímica (IUIN), UCM; Madrid Spain
| | - Victor Bellver-Landete
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
| | - María Jesús Oset-Gasque
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
- Instituto de Investigación; Neuroquímica (IUIN), UCM; Madrid Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular; Centro de Biología Molecular Severo Ochoa (CBMSO); Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
47
|
Dimou L, Götz M. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 2014; 94:709-37. [PMID: 24987003 DOI: 10.1152/physrev.00036.2013] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The diverse functions of glial cells prompt the question to which extent specific subtypes may be devoted to a specific function. We discuss this by reviewing one of the most recently discovered roles of glial cells, their function as neural stem cells (NSCs) and progenitor cells. First we give an overview of glial stem and progenitor cells during development; these are the radial glial cells that act as NSCs and other glial progenitors, highlighting the distinction between the lineage of cells in vivo and their potential when exposed to a different environment, e.g., in vitro. We then proceed to the adult stage and discuss the glial cells that continue to act as NSCs across vertebrates and others that are more lineage-restricted, such as the adult NG2-glia, the most frequent progenitor type in the adult mammalian brain, that remain within the oligodendrocyte lineage. Upon certain injury conditions, a distinct subset of quiescent astrocytes reactivates proliferation and a larger potential, clearly demonstrating the concept of heterogeneity with distinct subtypes of, e.g., astrocytes or NG2-glia performing rather different roles after brain injury. These new insights not only highlight the importance of glial cells for brain repair but also their great potential in various aspects of regeneration.
Collapse
Affiliation(s)
- Leda Dimou
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University, Munich, Germany; Institute for Stem Cell Research, HelmholtzZentrum, Neuherberg, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University, Munich, Germany; Institute for Stem Cell Research, HelmholtzZentrum, Neuherberg, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
48
|
Obernier K, Tong CK, Alvarez-Buylla A. Restricted nature of adult neural stem cells: re-evaluation of their potential for brain repair. Front Neurosci 2014; 8:162. [PMID: 24987325 PMCID: PMC4060730 DOI: 10.3389/fnins.2014.00162] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/28/2014] [Indexed: 01/17/2023] Open
Abstract
Neural stem cells (NSCs) in the walls of the lateral ventricles continue to produce new neurons and oligodendrocytes throughout life. The identification of NSCs, long-range neuronal migration, and the integration of new neurons into fully formed mature neural circuits-all in the juvenile or adult brain-has dramatically changed concepts in neurodevelopment and suggests new strategies for brain repair. Yet, the latter has to be seen in perspective: NSCs in the adult are heterogeneous and highly regionally specified; young neurons derived from these primary progenitors migrate and integrate in specific brain regions. Neurogenesis appears to have a function in brain plasticity rather than brain repair. If similar processes could be induced in regions of the brain that are normally not a target of new neurons, therapeutic neuronal replacement may one day reinstate neural circuit plasticity and possibly repair broken neural circuits.
Collapse
Affiliation(s)
- Kirsten Obernier
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco San Francisco, CA, USA
| | - Cheuk Ka Tong
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco San Francisco, CA, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
49
|
Harnessing neurogenesis for the possible treatment of Parkinson's disease. J Comp Neurol 2014; 522:2817-30. [DOI: 10.1002/cne.23607] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/24/2014] [Accepted: 04/08/2014] [Indexed: 01/05/2023]
|
50
|
Abstract
It is well known that the death of dopaminergic neurons of the substantia nigra pars compacta (SNc) is the pathological hallmark of Parkinson's disease (PD), the second most common and disabling condition in the expanding elderly population. Nevertheless, the intracellular cascade of events leading to dopamine cell death is still unknown and, consequently, treatment is largely symptomatic rather than preventive. Moreover, the mechanisms whereby nigral dopaminergic neurons may degenerate still remain controversial. Hitherto, several data have shown that the earlier cellular disturbances occurring in dopaminergic neurons include oxidative stress, excitotoxicity, inflammation, mitochondrial dysfunction and altered proteolysis. These alterations, rather than killing neurons, trigger subsequent death-related molecular pathways, including elements of apoptosis. In rare incidences, PD may be inherited; this evidence has opened a new and exciting area of research, attempting to shed light on the nature of the more common idiopathic PD form. In this review, the characteristics of the SNc dopaminergic neurons and their lifecycle from birth to death are reviewed. In addition, of the mechanisms by which the aforementioned alterations cause neuronal dopaminergic death, particular emphasis will be given to the role played by inflammation, and the relevance of the possible use of anti-inflammatory drugs in the treatment of PD. Finally, new evidence of a possible de novo neurogenesis in the SNc of adult animals and in PD patients will also be examined.
Collapse
Affiliation(s)
- Ennio Esposito
- Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Via Nazionale 8, 66030 Santa Maria Imbaro (Chieti), Italy.
| | | | | |
Collapse
|