1
|
Schiffmann A, Ahlswede L, Gimpl G. Reversible translocation of acyl-CoA:cholesterol acyltransferase (ACAT) between the endoplasmic reticulum and vesicular structures. Front Mol Biosci 2023; 10:1258799. [PMID: 38028547 PMCID: PMC10667705 DOI: 10.3389/fmolb.2023.1258799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The enzyme acyl-CoA:cholesterol acyltransferase (ACAT) is normally localized in the endoplasmic reticulum (ER) where it can esterify cholesterol for storage in lipid droplets and/or the formation of lipoproteins. Here, we report that ACAT can translocate from the ER into vesicular structures in response to different ACAT inhibitors. The translocation was fast (within minutes), reversible and occurred in different cell types. Interestingly, oleic acid was able to fasten the re-translocation from vesicles back into the reticular ER network. The process of ACAT translocation could also be induced by cyclodextrins, cholesterol, lanosterol (but not 4-cholestene-3 one), 25-hydroxycholesterol, and by certain stress stimuli such as hyperosmolarity (sucrose treatment), temperature change, or high-density cultivation. In vitro esterification showed that ACAT remains fully active after it has been translocated to vesicles in response to hyperosmotic sucrose treatment of the cells. The translocation process was not accompanied by changes in the electrophoretic mobility of ACAT, even after chemical crosslinking. Interestingly, the protein synthesis inhibitor cycloheximide showed a stimulating effect on ACAT activity and prevented the translocation of ACAT from the ER into vesicles.
Collapse
Affiliation(s)
| | | | - Gerald Gimpl
- Department of Chemistry and Biochemistry, Biocenter II, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
De La Torre AL, Huynh TN, Chang CCY, Pooler DB, Ness DB, Lewis LD, Pannem S, Feng Y, Samkoe KS, Hickey WF, Chang TY. Stealth Liposomes Encapsulating a Potent ACAT1/SOAT1 Inhibitor F12511: Pharmacokinetic, Biodistribution, and Toxicity Studies in Wild-Type Mice and Efficacy Studies in Triple Transgenic Alzheimer's Disease Mice. Int J Mol Sci 2023; 24:11013. [PMID: 37446191 PMCID: PMC10341764 DOI: 10.3390/ijms241311013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cholesterol is essential for cellular function and is stored as cholesteryl esters (CEs). CEs biosynthesis is catalyzed by the enzymes acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2), with ACAT1 being the primary isoenzyme in most cells in humans. In Alzheimer's Disease, CEs accumulate in vulnerable brain regions. Therefore, ACATs may be promising targets for treating AD. F12511 is a high-affinity ACAT1 inhibitor that has passed phase 1 safety tests for antiatherosclerosis. Previously, we developed a nanoparticle system to encapsulate a large concentration of F12511 into a stealth liposome (DSPE-PEG2000 with phosphatidylcholine). Here, we injected the nanoparticle encapsulated F12511 (nanoparticle F) intravenously (IV) in wild-type mice and performed an HPLC/MS/MS analysis and ACAT enzyme activity measurement. The results demonstrated that F12511 was present within the mouse brain after a single IV but did not overaccumulate in the brain or other tissues after repeated IVs. A histological examination showed that F12511 did not cause overt neurological or systemic toxicity. We then showed that a 2-week IV delivery of nanoparticle F to aging 3xTg AD mice ameliorated amyloidopathy, reduced hyperphosphorylated tau and nonphosphorylated tau, and reduced neuroinflammation. This work lays the foundation for nanoparticle F to be used as a possible therapy for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Adrianna L. De La Torre
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (A.L.D.L.T.)
| | - Thao N. Huynh
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (A.L.D.L.T.)
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (A.L.D.L.T.)
| | - Darcy B. Pooler
- Clinical Pharmacology Shared Resource, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Dylan B. Ness
- Clinical Pharmacology Shared Resource, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Lionel D. Lewis
- Clinical Pharmacology Shared Resource, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Sanjana Pannem
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.P.); (Y.F.)
| | - Yichen Feng
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.P.); (Y.F.)
| | - Kimberley S. Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.P.); (Y.F.)
| | - William F. Hickey
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA;
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (A.L.D.L.T.)
| |
Collapse
|
3
|
Harned TC, Stan RV, Cao Z, Chakrabarti R, Higgs HN, Chang CCY, Chang TY. Acute ACAT1/SOAT1 Blockade Increases MAM Cholesterol and Strengthens ER-Mitochondria Connectivity. Int J Mol Sci 2023; 24:5525. [PMID: 36982602 PMCID: PMC10059652 DOI: 10.3390/ijms24065525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain unknown. Here, using biochemical fractionation techniques, we observe cholesterol accumulation at the MAM which leads to ACAT1/SOAT1 enrichment in this domain. MAM proteomics data suggests that ACAT1/SOAT1 inhibition strengthens the ER-mitochondria connection. Confocal and electron microscopy confirms that ACAT1/SOAT1 inhibition increases the number of ER-mitochondria contact sites and strengthens this connection by shortening the distance between these two organelles. This work demonstrates how directly manipulating local cholesterol levels at the MAM can alter inter-organellar contact sites and suggests that cholesterol buildup at the MAM is the impetus behind the therapeutic benefits of ACAT1/SOAT1 inhibition.
Collapse
Affiliation(s)
- Taylor C. Harned
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Radu V. Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Ze Cao
- Chinese Academy of Sciences, Beijing 100045, China;
| | - Rajarshi Chakrabarti
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Henry N. Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; (T.C.H.); (R.V.S.); (H.N.H.)
| |
Collapse
|
4
|
Guard SE, Chapnick DA, Poss ZC, Ebmeier CC, Jacobsen J, Nemkov T, Ball KA, Webb KJ, Simpson HL, Coleman S, Bunker E, Ramirez A, Reisz JA, Sievers R, Stowell MHB, D'Alessandro A, Liu X, Old WM. Multiomic Analysis Reveals Disruption of Cholesterol Homeostasis by Cannabidiol in Human Cell Lines. Mol Cell Proteomics 2022; 21:100262. [PMID: 35753663 PMCID: PMC9525918 DOI: 10.1016/j.mcpro.2022.100262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 01/18/2023] Open
Abstract
The nonpsychoactive cannabinoid, cannabidiol (CBD), is Food and Dug Administration approved for treatment of two drug-resistant epileptic disorders and is seeing increased use among the general public, yet the mechanisms that underlie its therapeutic effects and side-effect profiles remain unclear. Here, we report a systems-level analysis of CBD action in human cell lines using temporal multiomic profiling. FRET-based biosensor screening revealed that CBD elicits a sharp rise in cytosolic calcium, and activation of AMP-activated protein kinase in human keratinocyte and neuroblastoma cell lines. CBD treatment leads to alterations in the abundance of metabolites, mRNA transcripts, and proteins associated with activation of cholesterol biosynthesis, transport, and storage. We found that CBD rapidly incorporates into cellular membranes, alters cholesterol accessibility, and disrupts cholesterol-dependent membrane properties. Sustained treatment with high concentrations of CBD induces apoptosis in a dose-dependent manner. CBD-induced apoptosis is rescued by inhibition of cholesterol synthesis and potentiated by compounds that disrupt cholesterol trafficking and storage. Our data point to a pharmacological interaction of CBD with cholesterol homeostasis pathways, with potential implications in its therapeutic use.
Collapse
Affiliation(s)
- Steven E Guard
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Douglas A Chapnick
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary C Poss
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Christopher C Ebmeier
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jeremy Jacobsen
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Kerri A Ball
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Kristofor J Webb
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Helen L Simpson
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Stephen Coleman
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Eric Bunker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Adrian Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Robert Sievers
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Xuedong Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - William M Old
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA.
| |
Collapse
|
5
|
Griffiths WJ, Wang Y. Cholesterol metabolism: from lipidomics to immunology. J Lipid Res 2022; 63:100165. [PMID: 34953867 PMCID: PMC8953665 DOI: 10.1016/j.jlr.2021.100165] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Oxysterols, the oxidized forms of cholesterol or of its precursors, are formed in the first steps of cholesterol metabolism. Oxysterols have interested chemists, biologists, and physicians for many decades, but their exact biological relevance in vivo, other than as intermediates in bile acid biosynthesis, has long been debated. However, in the first quarter of this century, a role for side-chain oxysterols and their C-7 oxidized metabolites has been convincingly established in the immune system. 25-Hydroxycholesterol has been shown to be synthesized by macrophages in response to the activation of Toll-like receptors and to offer protection against microbial pathogens, whereas 7α,25-dihydroxycholesterol has been shown to act as a chemoattractant to lymphocytes expressing the G protein-coupled receptor Epstein-Barr virus-induced gene 2 and to be important in coordinating the action of B cells, T cells, and dendritic cells in secondary lymphoid tissue. There is a growing body of evidence that not only these two oxysterols but also many of their isomers are of importance to the proper function of the immune system. Here, we review recent findings related to the roles of oxysterols in immunology.
Collapse
Affiliation(s)
| | - Yuqin Wang
- Swansea University Medical School, Swansea, Wales, United Kingdom.
| |
Collapse
|
6
|
Li J, Wang H, Xu J, Wu S, Han M, Li J, Wang Q, Ge Z. Mimic Lipoproteins Responsive to Intratumoral pH and Allosteric Enzyme for Efficient Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:404-416. [PMID: 34962752 DOI: 10.1021/acsami.1c21810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Discoid-reconstituted high-density lipoprotein (d-rHDL) is advantageous for tumor-targeted drug delivery due to its small size, long circulation, and efficient internalization into cancer cells. Nevertheless, an allosteric reaction catalyzed by serum lecithin-cholesterol acyltransferase (LCAT) may cause drug leakage from d-rHDL and reduce its targeting efficiency. Conversely, similar "structural weakening" catalyzed by acyl-coenzyme A-cholesterol acyltransferase (ACAT) inside tumor cells can stimulate precise intracellular drug release. Therefore, we synthesized and characterized a pH-sensitive n-butyraldehyde bi-cholesterol (BCC) to substitute for cholesterol in the d-rHDL particle, and bovine serum albumin (BSA) was used as the targeting agent. This dual pH- and ACAT-sensitive d-rHDL (d-d-rHDL) was small with a disk-like appearance. Morphological transformation observation, in vitro release assays, and differences in internalization upon LCAT treatment confirmed that BCC effectively inhibited the remodeling behavior and enhanced the tumor-targeting efficiency. The accumulation of d-d-rHDL in HepG2 cells was significantly higher than that in LO2 cells, and accumulation was inhibited by free BSA. The pH sensitivity was verified, and d-d-rHDL achieved efficient drug release in vitro and inside tumor cells after exposure to acidic conditions and ACAT. Confocal laser scanning microscopy demonstrated that d-d-rHDL escaped from lysosomes and became distributed evenly throughout cells. Moreover, in vivo imaging assays in a tumor-bearing mouse model demonstrated tumor-targeting properties of d-d-rHDL, and paclitaxel-loaded d-d-rHDL showed strong anticancer activity in these mice. This dual-sensitive d-d-rHDL thus combines structural stability in plasma and an intracellular pH/ACAT-triggered drug release to facilitate inhibition of tumor growth.
Collapse
Affiliation(s)
- Jin Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Jingbo Xu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Shengyue Wu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Mengmeng Han
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Jianfei Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Qianqian Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Zhiming Ge
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Chang TY, Chang CCY, Harned TC, De La Torre AL, Lee J, Huynh TN, Gow JG. Blocking cholesterol storage to treat Alzheimer's disease. EXPLORATION OF NEUROPROTECTIVE THERAPY 2021; 1:173-184. [PMID: 35199105 PMCID: PMC8863366 DOI: 10.37349/ent.2021.00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Cholesterol serves as an essential lipid molecule in various membrane organelles of mammalian cells. The metabolites of cholesterol also play important functions. Acyl-coenzyme A: cholesterol acyltransferase 1 (ACAT1), also named as sterol O-acyltransferase 1, is a membrane-bound enzyme residing at the endoplasmic reticulum (ER). It converts cholesterol to cholesteryl esters (CEs) for storage, and is expressed in all cells. CEs cannot partition in membranes; they can only coalesce as cytosolic lipid droplets. Excess CEs are found in the vulnerable region of the brains of patients with late-onset Alzheimer's disease (AD), and in cell and mouse models for AD. Reducing CE contents by genetic inactivation of ACAT1, or by pharmacological inhibition of ACAT is shown to reduce amyloidopathy and other hallmarks for AD. To account for the various beneficial actions of the ACAT1 blockade (A1B), a working hypothesis is proposed here: the increase in CE contents observed in the AD brain is caused by damages of cholesterol-rich lipid rafts that are known to occur in neurons affected by AD. These damages cause cholesterol to release from lipid rafts and move to the ER where it will be converted to CEs by ACAT1. In addition, the increase in CE contents may also be caused by overloading with cholesterol-rich substances, or through activation of ACAT1 gene expression by various proinflammatory agents. Both scenarios may occur in microglia of the chronically inflamed brain. A1B ameliorates AD by diverting the cholesterol pool destined for CE biosynthesis such that it can be utilized more efficiently to repair membrane damage in various organelles, and to exert regulatory actions more effectively to defend against AD. To test the validity of the A1B hypothesis in cell culture and in vivo, the current status of various anti-ACAT1 agents that could be further developed is briefly discussed.
Collapse
Affiliation(s)
- Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Taylor C. Harned
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Adrianna L. De La Torre
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Junghoon Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Thao N. Huynh
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - James G. Gow
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
8
|
Glitscher M, Hildt E. Endosomal Cholesterol in Viral Infections - A Common Denominator? Front Physiol 2021; 12:750544. [PMID: 34858206 PMCID: PMC8632007 DOI: 10.3389/fphys.2021.750544] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cholesterol has gained tremendous attention as an essential lipid in the life cycle of virtually all viruses. These seem to have developed manifold strategies to modulate the cholesterol metabolism to the side of lipid uptake and de novo synthesis. In turn, affecting the cholesterol homeostasis has emerged as novel broad-spectrum antiviral strategy. On the other hand, the innate immune system is similarly regulated by the lipid and stimulated by its derivatives. This certainly requires attention in the design of antiviral strategies aiming to decrease cellular cholesterol, as evidence accumulates that withdrawal of cholesterol hampers innate immunity. Secondly, there are exceptions to the rule of the abovementioned virus-induced metabolic shift toward cholesterol anabolism. It therefore is of interest to dissect underlying regulatory mechanisms, which we aimed for in this minireview. We further collected evidence for intracellular cholesterol concentrations being less important in viral life cycles as compared to the spatial distribution of the lipid. Various routes of cholesterol trafficking were found to be hijacked in viral infections with respect to organelle-endosome contact sites mediating cholesterol shuttling. Thus, re-distribution of cellular cholesterol in the context of viral infections requires more attention in ongoing research. As a final aim, a pan-antiviral treatment could be found just within the transport and re-adjustment of local cholesterol concentrations. Thus, we aimed to emphasize the importance of the regulatory roles the endosomal system fulfils herein and hope to stimulate research in this field.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
9
|
Ikonen E, Zhou X. Cholesterol transport between cellular membranes: A balancing act between interconnected lipid fluxes. Dev Cell 2021; 56:1430-1436. [PMID: 34004151 DOI: 10.1016/j.devcel.2021.04.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
Cholesterol represents the most abundant single lipid in mammalian cells. How its asymmetric distribution between subcellular membranes is achieved and maintained attracts considerable interest. One of the challenges is that cholesterol rarely is transported alone, but rather is coupled with heterotypic transport and metabolism of other lipids, in particular phosphoinositides, phosphatidylserine, and sphingolipids. This perspective summarizes the major exo- and endocytic cholesterol transport routes and how lipid transfer proteins at membrane contacts and membrane transport intersect along these routes. It discusses the co-transport of cholesterol with other lipids in mammalian cells and reviews emerging evidence related to the physiological relevance of this process.
Collapse
Affiliation(s)
- Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Xin Zhou
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
10
|
Abrams ME, Johnson KA, Perelman SS, Zhang LS, Endapally S, Mar KB, Thompson BM, McDonald JG, Schoggins JW, Radhakrishnan A, Alto NM. Oxysterols provide innate immunity to bacterial infection by mobilizing cell surface accessible cholesterol. Nat Microbiol 2020; 5:929-942. [PMID: 32284563 PMCID: PMC7442315 DOI: 10.1038/s41564-020-0701-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/04/2020] [Indexed: 11/09/2022]
Abstract
Cholesterol 25-hydroxylase (CH25H) is an interferon-stimulated gene that converts cholesterol to the oxysterol 25-hydroxycholesterol (25HC). Circulating 25HC modulates essential immunological processes including antiviral immunity, inflammasome activation and antibody class switching; and dysregulation of CH25H may contribute to chronic inflammatory disease and cancer. Although 25HC is a potent regulator of cholesterol storage, uptake, efflux and biosynthesis, how these metabolic activities reprogram the immunological state of target cells remains poorly understood. Here, we used recently designed toxin-based biosensors that discriminate between distinct pools of plasma membrane cholesterol to elucidate how 25HC prevents Listeria monocytogenes from traversing the plasma membrane of infected host cells. The 25HC-mediated activation of acyl-CoA:cholesterol acyltransferase (ACAT) triggered rapid internalization of a biochemically defined fraction of cholesterol, termed 'accessible' cholesterol, from the plasma membrane while having little effect on cholesterol in complexes with sphingomyelin. We show that evolutionarily distinct bacterial species, L. monocytogenes and Shigella flexneri, exploit the accessible pool of cholesterol for infection and that acute mobilization of this pool by oxysterols confers immunity to these pathogens. The significance of this signal-mediated membrane remodelling pathway probably extends beyond host defence systems, as several other biologically active oxysterols also mobilize accessible cholesterol through an ACAT-dependent mechanism.
Collapse
Affiliation(s)
- Michael E Abrams
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristen A Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sofya S Perelman
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, New York University School of Medicine, NY, NY, USA
| | - Li-Shu Zhang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shreya Endapally
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katrina B Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bonne M Thompson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Babashamsi MM, Koukhaloo SZ, Halalkhor S, Salimi A, Babashamsi M. ABCA1 and metabolic syndrome; a review of the ABCA1 role in HDL-VLDL production, insulin-glucose homeostasis, inflammation and obesity. Diabetes Metab Syndr 2019; 13:1529-1534. [PMID: 31336517 DOI: 10.1016/j.dsx.2019.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) is an integral cell-membrane protein that mediates the rate-limiting step of high density lipoprotein (HDL) biogenesis and suppression of inflammation by triggering a number of signaling pathways via interacting with an apolipoprotein acceptor. The hepatic ABCA1 is involved in regulation of very low density lipoprotein (VLDL) production by affecting the apolipoprotein B trafficking and lipidation of VLDL particles. This protein is involved in protecting the function of pancreatic β-cells and insulin secretion by cholesterol homeostasis. Adipose tissue lipolysis is associated with ABCA1 activity. This transporter is involved in controlling obesity and insulin sensitivity by regulating triglyceride (TG) lipolysis and influencing on adiponectin, visfatin, leptin, and GLUT4 genes expression. The ABCA1 of skeletal muscle cells play a role in increasing the glucose uptake by enhancing the Akt phosphorylation and transferring GLUT4 to the plasma membrane. Abnormal status of ABCA1-regulated phenotypes is observed in metabolic syndrome. This syndrome is associated with the occurrence of many diseases. This review is a summary of the role of ABCA1 in HDL and VLDL production, homeostasis of insulin and glucose, suppression of inflammation and obesity controlling to provide a better insight into the association of this protein with metabolic syndrome.
Collapse
Affiliation(s)
| | | | - Sohrab Halalkhor
- Department of Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ali Salimi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Babashamsi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
12
|
Intracellular and Plasma Membrane Events in Cholesterol Transport and Homeostasis. J Lipids 2018; 2018:3965054. [PMID: 30174957 PMCID: PMC6106919 DOI: 10.1155/2018/3965054] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
Cholesterol transport between intracellular compartments proceeds by both energy- and non-energy-dependent processes. Energy-dependent vesicular traffic partly contributes to cholesterol flux between endoplasmic reticulum, plasma membrane, and endocytic vesicles. Membrane contact sites and lipid transfer proteins are involved in nonvesicular lipid traffic. Only “active" cholesterol molecules outside of cholesterol-rich regions and partially exposed in water phase are able to fast transfer. The dissociation of partially exposed cholesterol molecules in water determines the rate of passive aqueous diffusion of cholesterol out of plasma membrane. ATP hydrolysis with concomitant conformational transition is required to cholesterol efflux by ABCA1 and ABCG1 transporters. Besides, scavenger receptor SR-B1 is involved also in cholesterol efflux by facilitated diffusion via hydrophobic tunnel within the molecule. Direct interaction of ABCA1 with apolipoprotein A-I (apoA-I) or apoA-I binding to high capacity binding sites in plasma membrane is important in cholesterol escape to free apoA-I. ABCG1-mediated efflux to fully lipidated apoA-I within high density lipoprotein particle proceeds more likely through the increase of “active” cholesterol level. Putative cholesterol-binding linear motifs within the structure of all three proteins ABCA1, ABCG1, and SR-B1 are suggested to contribute to the binding and transfer of cholesterol molecules from cytoplasmic to outer leaflets of lipid bilayer. Together, plasma membrane events and intracellular cholesterol metabolism and traffic determine the capacity of the cell for cholesterol efflux.
Collapse
|
13
|
Liu Y, Wei Z, Ma X, Yang X, Chen Y, Sun L, Ma C, Miao QR, Hajjar DP, Han J, Duan Y. 25-Hydroxycholesterol activates the expression of cholesterol 25-hydroxylase in an LXR-dependent mechanism. J Lipid Res 2018; 59:439-451. [PMID: 29298812 DOI: 10.1194/jlr.m080440] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
Cholesterol 25-hydroxylase (CH25H) catalyzes the production of 25-hydroxycholesterol (25-HC), an oxysterol that can play an important role in different biological processes. However, the mechanisms regulating CH25H expression have not been fully elucidated. In this study, we determined that CH25H is highly expressed in mouse liver and peritoneal macrophages. We identified several liver X receptor (LXR) response elements (LXREs) in the human CH25H promoter. In HepG2 cells, activation of LXR by 25-HC or other oxysterols and synthetic ligands [T0901317 (T317) and GW3965] induced CH25H protein expression, which was associated with increased CH25H mRNA expression. 25-HC or T317 activated CH25H transcription in an LXRE-dependent manner. Thus, high-expressing LXRα or LXRβ activated CH25H expression, and the activation was further enhanced by LXR ligands. In contrast, inhibition of LXRα/β expression attenuated 25-HC or T317-induced CH25H expression. Deficiency of interferon γ expression reduced, but did not block, LXR ligand-induced hepatic CH25H expression. Activation of LXR also substantially induced macrophage CH25H expression. In vivo, administration of GW3965 to mice increased CH25H expression in both liver and peritoneal macrophages. Taken together, our study demonstrates that 25-HC can activate CH25H expression in an LXR-dependent manner, which may be an important mechanism to exert the biological actions of 25-HC.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences and Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China.,Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Zhuo Wei
- Department of Biochemistry and Molecular Biology, College of Life Sciences and Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xingzhe Ma
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xiaoxiao Yang
- Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences and Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Lei Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences and Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Chuanrui Ma
- Department of Biochemistry and Molecular Biology, College of Life Sciences and Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Qing R Miao
- Departments of Surgery and Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - David P Hajjar
- Department of Pathology, Weill Cornell Medical College of Cornell University, New York, NY
| | - Jihong Han
- Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China .,College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yajun Duan
- Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, Hefei, China .,College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Mast N, Lin JB, Anderson KW, Bjorkhem I, Pikuleva IA. Transcriptional and post-translational changes in the brain of mice deficient in cholesterol removal mediated by cytochrome P450 46A1 (CYP46A1). PLoS One 2017; 12:e0187168. [PMID: 29073233 PMCID: PMC5658173 DOI: 10.1371/journal.pone.0187168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450 46A1 (CYP46A1) converts cholesterol to 24-hydroxycholesterol and thereby controls the major pathways of cholesterol removal from the brain. Cyp46a1-/- mice have a reduction in the rate of cholesterol biosynthesis in the brain and significant impairments to memory and learning. To gain insights into the mechanisms underlying Cyp46a1-/- phenotype, we used Cyp46a1-/- mice and quantified their brain sterol levels and the expression of the genes pertinent to cholesterol homeostasis. We also compared the Cyp46a1-/- and wild type brains for protein phosphorylation and ubiquitination. The data obtained enable the following inferences. First, there seems to be a compensatory upregulation in the Cyp46a1-/- brain of the pathways of cholesterol storage and CYP46A1-independent removal. Second, transcriptional regulation of the brain cholesterol biosynthesis via sterol regulatory element binding transcription factors is not significantly activated in the Cyp46a1-/- brain to explain a compensatory decrease in cholesterol biosynthesis. Third, some of the liver X receptor target genes (Abca1) are paradoxically upregulated in the Cyp46a1-/- brain, possibly due to a reduced activation of the small GTPases RAB8, CDC42, and RAC as a result of a reduced phosphorylation of RAB3IP and PAK1. Fourth, the phosphorylation of many other proteins (a total of 146) is altered in the Cyp46a1-/- brain, including microtubule associated and neurofilament proteins (the MAP and NEF families) along with proteins related to synaptic vesicles and synaptic neurotransmission (e.g., SLCs, SHANKs, and BSN). Fifth, the extent of protein ubiquitination is increased in the Cyp46a1-/- brain, and the affected proteins pertain to ubiquitination (UBE2N), cognition (STX1B and ATP1A2), cytoskeleton function (TUBA1A and YWHAZ), and energy production (ATP1A2 and ALDOA). The present study demonstrates the diverse potential effects of CYP46A1 deficiency on brain functions and identifies important proteins that could be affected by this deficiency.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Joseph B. Lin
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kyle W. Anderson
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
| | - Ingemar Bjorkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Huddinge, Sweden
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ma Z, Onorato JM, Chen L, Nelson DW, Yen CLE, Cheng D. Synthesis of neutral ether lipid monoalkyl-diacylglycerol by lipid acyltransferases. J Lipid Res 2017; 58:1091-1099. [PMID: 28420705 DOI: 10.1194/jlr.m073445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/14/2017] [Indexed: 12/29/2022] Open
Abstract
In mammals, ether lipids exert a wide spectrum of signaling and structural functions, such as stimulation of immune responses, anti-tumor activities, and enhancement of sperm functions. Abnormal accumulation of monoalkyl-diacylglycerol (MADAG) was found in Wolman's disease, a human genetic disorder defined by a deficiency in lysosomal acid lipase. In the current study, we found that among the nine recombinant human lipid acyltransferases examined, acyl-CoA:diacylglycerol acyltransferase (DGAT)1, DGAT2, acyl-CoA:monoacylglycerol acyltransferase (MGAT)2, MGAT3, acyl-CoA:wax-alcohol acyltransferase 2/MFAT, and DGAT candidate 3 were able to use 1-monoalkylglycerol (1-MAkG) as an acyl acceptor for the synthesis of monoalkyl-monoacylglycerol (MAMAG). These enzymes demonstrated different enzymatic turnover rates and relative efficiencies for the first and second acylation steps leading to the synthesis of MAMAG and MADAG, respectively. They also exhibited different degrees of substrate preference when presented with 1-monooleoylglycerol versus 1-MAkG. In CHO-K1 cells, treatment with DGAT1 selective inhibitor, XP-620, completely blocked the synthesis of MADAG, indicating that DGAT1 is the predominant enzyme responsible for the intracellular synthesis of MADAG in this model system. The levels of MADAG in the adrenal gland of DGAT1 KO mice were reduced as compared with those of the WT mice, suggesting that DGAT1 is a major enzyme for the synthesis of MADAG in this tissue. Our findings indicate that several of these lipid acyltransferases may be able to synthesize neutral ether lipids in mammals.
Collapse
Affiliation(s)
- Zhengping Ma
- Departments of Fibrosis Discovery Bristol-Myers Squibb Company, Princeton, NJ 08543-5400
| | - Joelle M Onorato
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-5400
| | - Luping Chen
- Departments of Fibrosis Discovery Bristol-Myers Squibb Company, Princeton, NJ 08543-5400
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Dong Cheng
- Departments of Fibrosis Discovery Bristol-Myers Squibb Company, Princeton, NJ 08543-5400
| |
Collapse
|
16
|
Infante RE, Radhakrishnan A. Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. eLife 2017; 6. [PMID: 28414269 PMCID: PMC5433840 DOI: 10.7554/elife.25466] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/16/2017] [Indexed: 01/15/2023] Open
Abstract
Cells employ regulated transport mechanisms to ensure that their plasma membranes (PMs) are optimally supplied with cholesterol derived from uptake of low-density lipoproteins (LDL) and synthesis. To date, all inhibitors of cholesterol transport block steps in lysosomes, limiting our understanding of post-lysosomal transport steps. Here, we establish the cholesterol-binding domain 4 of anthrolysin O (ALOD4) as a reversible inhibitor of cholesterol transport from PM to endoplasmic reticulum (ER). Using ALOD4, we: (1) deplete ER cholesterol without altering PM or overall cellular cholesterol levels; (2) demonstrate that LDL-derived cholesterol travels from lysosomes first to PM to meet cholesterol needs, and subsequently from PM to regulatory domains of ER to suppress activation of SREBPs, halting cholesterol uptake and synthesis; and (3) determine that continuous PM-to-ER cholesterol transport allows ER to constantly monitor PM cholesterol levels, and respond rapidly to small declines in cellular cholesterol by activating SREBPs, increasing cholesterol uptake and synthesis.
Collapse
Affiliation(s)
- Rodney Elwood Infante
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States.,Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Arun Radhakrishnan
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
17
|
Arne JM, Widjaja-Adhi MAK, Hughes T, Huynh KW, Silvaroli JA, Chelstowska S, Moiseenkova-Bell VY, Golczak M. Allosteric modulation of the substrate specificity of acyl-CoA wax alcohol acyltransferase 2. J Lipid Res 2017; 58:719-730. [PMID: 28096191 DOI: 10.1194/jlr.m073692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/06/2017] [Indexed: 01/30/2023] Open
Abstract
The esterification of alcohols with fatty acids is a universal mechanism to form inert storage forms of sterols, di- and triacylglycerols, and retinoids. In ocular tissues, formation of retinyl esters is an essential step in the enzymatic regeneration of the visual chromophore (11-cis-retinal). Acyl-CoA wax alcohol acyltransferase 2 (AWAT2), also known as multifunctional O-acyltransferase (MFAT), is an integral membrane enzyme with a broad substrate specificity that has been shown to preferentially esterify 11-cis-retinol and thus contribute to formation of a readily available pool of cis retinoids in the eye. However, the mechanism by which this promiscuous enzyme can gain substrate specificity is unknown. Here, we provide evidence for an allosteric modulation of the enzymatic activity by 11-cis retinoids. This regulation is independent from cellular retinaldehyde-binding protein (CRALBP), the major cis-retinoid binding protein. This positive-feedback regulation leads to decreased esterification rates for 9-cis, 13-cis, or all-trans retinols and thus enables preferential synthesis of 11-cis-retinyl esters. Finally, electron microscopy analyses of the purified enzyme indicate that this allosteric effect does not result from formation of functional oligomers. Altogether, these data provide the experimental basis for understanding regulation of AWAT2 substrate specificity.
Collapse
Affiliation(s)
- Jason M Arne
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | | | - Taylor Hughes
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Kevin W Huynh
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Josie A Silvaroli
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Sylwia Chelstowska
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Laboratory of Hematology and Flow Cytometry, Department of Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH; and
| | - Marcin Golczak
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH; and.
| |
Collapse
|
18
|
Nunomura S, Okayama Y, Matsumoto K, Hashimoto N, Endo-Umeda K, Terui T, Makishima M, Ra C. Activation of LXRs using the synthetic agonist GW3965 represses the production of pro-inflammatory cytokines by murine mast cells. Allergol Int 2015; 64 Suppl:S11-7. [PMID: 26344074 DOI: 10.1016/j.alit.2015.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The activation of liver X receptor (LXR) α or LXRβ negatively regulates the expression of pro-inflammatory genes in mammalian cells. We recently reported that 25-hydroxycholesterol, a representative LXR-activating oxysterol, suppresses IL-6 production in mouse mast cells (MCs) following its engagement of the high-affinity IgE receptor (FcεRI). This finding suggests that murine MCs express functional LXRs; however, the mechanisms underlying the LXR-dependent repression of the MC-mediated production of pro-inflammatory cytokines, including IL-6, are poorly understood. Therefore, we employed the synthetic LXR ligand GW3965 to examine the functions of LXRα and LXRβ in the production of pro-inflammatory cytokines by murine bone marrow-derived MCs (BMMCs). METHODS We prepared BMMCs from wild-type (WT), LXRα(-/-), and LXRα/β(-/-) mice. Each group of BMMCs was pretreated with GW3965 and then stimulated with IgE+antigen (Ag) or lipopolysaccharide (LPS). Cytokine production was then analyzed using specific ELISA kits. RESULTS The activation of LXRs by GW3965 significantly attenuated the production of IL-1α and IL-1β, but not of IL-6, in the WT and LXRα(-/-) BMMCs stimulated with IgE+Ag. However, GW3965 treatment decreased the production of IL-1α, IL-1β, and IL-6 in WT and LXRα(-/-) BMMCs upon stimulation with LPS, while the GW3965-mediated suppression of cytokine production was nearly absent from the LXRα/β(-/-) BMMCs. CONCLUSIONS These findings demonstrate, for the first time, that the activation of LXRs by GW3965 attenuates the antigen- or LPS-induced production of pro-inflammatory cytokines, such as IL-1α and IL-1β, in murine MCs and that LXRβ plays an important role in the LXR-mediated repression of cytokine production.
Collapse
|
19
|
Seo HS, Choi MH. Cholesterol homeostasis in cardiovascular disease and recent advances in measuring cholesterol signatures. J Steroid Biochem Mol Biol 2015; 153:72-9. [PMID: 25910582 DOI: 10.1016/j.jsbmb.2015.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/08/2023]
Abstract
Despite the biochemical importance of cholesterol, its abnormal metabolism has serious cellular consequences that lead to endocrine disorders such as cardiovascular disease (CVD). Nevertheless, the impact of blood cholesterol as a CVD risk factor is still debated, and treatment with cholesterol-lowering drugs remains controversial, particularly in older patients. Although, the prevalence of CVD increases with age, the underlying mechanisms for this phenomenon are not well understood, and metabolic changes have not been confirmed as predisposing factors of atherogenesis. The quantification of circulating biomarkers for cholesterol homeostasis is therefore warranted, and reference values for cholesterol absorption and synthesis should be determined in order to establish CVD risk factors. The traditional lipid profile is often derived rather than directly measured and lacks a universal standard to interpret the results. In contrast, mass spectrometry-based cholesterol profiling can accurately measure free cholesterol as a biologically active component. This approach allows to detect alterations in various metabolic pathways that control cholesterol homeostasis, by quantitative analysis of cholesterol and its precursors/metabolites as well as dietary sterols. An overview of the mechanism of cholesterol homeostasis under different physiological conditions may help to identify predictive biomarkers of concomitant atherosclerosis and conventional CVD risk factors.
Collapse
Affiliation(s)
- Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul 152-703, South Korea; Korea University-Korea Institute of Science and Technology Graduated School of Converging Science and Technology, Seoul 152-703, South Korea
| | - Man Ho Choi
- Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul 136-791, South Korea.
| |
Collapse
|
20
|
Gulati S, Balderes D, Kim C, Guo ZA, Wilcox L, Area-Gomez E, Snider J, Wolinski H, Stagljar I, Granato JT, Ruggles KV, DeGiorgis JA, Kohlwein SD, Schon EA, Sturley SL. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification. FASEB J 2015. [PMID: 26220175 DOI: 10.1096/fj.14-264796] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.
Collapse
Affiliation(s)
- Sonia Gulati
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Dina Balderes
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Christine Kim
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Zhongmin A Guo
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Lisa Wilcox
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Estela Area-Gomez
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Jamie Snider
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Heimo Wolinski
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Igor Stagljar
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Juliana T Granato
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Kelly V Ruggles
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Joseph A DeGiorgis
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Sepp D Kohlwein
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Eric A Schon
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Stephen L Sturley
- *Institute of Human Nutrition, Department of Neurology, **Department of Genetics and Development, and Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA; Donnelly Center for Cellular and Biomolecular Research, Toronto, Ontario, Canada; Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria; Department of Biology, Providence College, Providence, Rhode Island, USA; and Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
21
|
Yamauchi Y, Iwamoto N, Rogers MA, Abe-Dohmae S, Fujimoto T, Chang CCY, Ishigami M, Kishimoto T, Kobayashi T, Ueda K, Furukawa K, Chang TY, Yokoyama S. Deficiency in the Lipid Exporter ABCA1 Impairs Retrograde Sterol Movement and Disrupts Sterol Sensing at the Endoplasmic Reticulum. J Biol Chem 2015. [PMID: 26198636 DOI: 10.1074/jbc.m115.662668] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan,
| | - Noriyuki Iwamoto
- the Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Maximillian A Rogers
- the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Sumiko Abe-Dohmae
- the Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Toyoshi Fujimoto
- the Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Catherine C Y Chang
- the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Masato Ishigami
- the Institute for Integrated Cell-Material Sciences and Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takuma Kishimoto
- the Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan, and
| | | | - Kazumitsu Ueda
- the Institute for Integrated Cell-Material Sciences and Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Koichi Furukawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ta-Yuan Chang
- the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755,
| | - Shinji Yokoyama
- the Nutritional Health Science Research Center and Department of Food and Nutritional Sciences, Chubu University, Kasugai 487-8501, Japan
| |
Collapse
|
22
|
Abstract
Cholesterol and components of the cholesterol biosynthetic pathway have fundamental roles in all mammalian cells. Hydroxylated forms of cholesterol are now emerging as important regulators of immune function. This involves effects on the cholesterol biosynthetic pathway and cell membrane properties, which can have antiviral and anti-inflammatory influences. In addition, a dihydroxylated form of cholesterol functions as an immune cell guidance cue by engaging the G protein-coupled receptor EBI2, and it is required for mounting adaptive immune responses. In this Review, we summarize the current understanding of the closely related oxysterols 25-hydroxycholesterol and 7α,25-dihydroxycholesterol, and the growing evidence that they have wide-ranging influences on innate and adaptive immunity.
Collapse
|
23
|
Sekiya M, Yamamuro D, Ohshiro T, Honda A, Takahashi M, Kumagai M, Sakai K, Nagashima S, Tomoda H, Igarashi M, Okazaki H, Yagyu H, Osuga JI, Ishibashi S. Absence of Nceh1 augments 25-hydroxycholesterol-induced ER stress and apoptosis in macrophages. J Lipid Res 2014; 55:2082-92. [PMID: 24891333 DOI: 10.1194/jlr.m050864] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An excess of cholesterol and/or oxysterols induces apoptosis in macrophages, contributing to the development of advanced atherosclerotic lesions. In foam cells, these sterols are stored in esterified forms, which are hydrolyzed by two enzymes: neutral cholesterol ester hydrolase 1 (Nceh1) and hormone-sensitive lipase (Lipe). A deficiency in either enzyme leads to accelerated growth of atherosclerotic lesions in mice. However, it is poorly understood how the esterification and hydrolysis of sterols are linked to apoptosis. Remarkably, Nceh1-deficient thioglycollate-elicited peritoneal macrophages (TGEMs), but not Lipe-deficient TGEMs, were more susceptible to apoptosis induced by oxysterols, particularly 25-hydroxycholesterol (25-HC), and incubation with 25-HC caused massive accumulation of 25-HC ester in the endoplasmic reticulum (ER) due to its defective hydrolysis, thereby activating ER stress signaling such as induction of CCAAT/enhancer-binding protein-homologous protein (CHOP). These changes were nearly reversed by inhibition of ACAT1. In conclusion, deficiency of Nceh1 augments 25-HC-induced ER stress and subsequent apoptosis in TGEMs. In addition to reducing the cholesteryl ester content of foam cells, Nceh1 may protect against the pro-apoptotic effect of oxysterols and modulate the development of atherosclerosis.
Collapse
Affiliation(s)
- Motohiro Sekiya
- Departments of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo 113-8655, Japan
| | - Daisuke Yamamuro
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Taichi Ohshiro
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki 300-0395, Japan
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Masayoshi Kumagai
- Departments of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo 113-8655, Japan
| | - Kent Sakai
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shuichi Nagashima
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiroshi Tomoda
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Masaki Igarashi
- Departments of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroaki Okazaki
- Departments of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroaki Yagyu
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Jun-ichi Osuga
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
24
|
Olsen BN, Bielska AA, Lee T, Daily MD, Covey DF, Schlesinger PH, Baker NA, Ory DS. The structural basis of cholesterol accessibility in membranes. Biophys J 2014; 105:1838-47. [PMID: 24138860 DOI: 10.1016/j.bpj.2013.08.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 02/02/2023] Open
Abstract
Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.
Collapse
Affiliation(s)
- Brett N Olsen
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bielska AA, Olsen BN, Gale SE, Mydock-McGrane L, Krishnan K, Baker NA, Schlesinger PH, Covey DF, Ory DS. Side-chain oxysterols modulate cholesterol accessibility through membrane remodeling. Biochemistry 2014; 53:3042-51. [PMID: 24758724 PMCID: PMC4020583 DOI: 10.1021/bi5000096] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Side-chain
oxysterols, such as 25-hydroxycholesterol (25-HC), are
key regulators of cholesterol homeostasis. New evidence suggests that
the alteration of membrane structure by 25-HC contributes to its regulatory
effects. We have examined the role of oxysterol membrane effects on
cholesterol accessibility within the membrane using perfringolysin
O (PFO), a cholesterol-dependent cytolysin that selectively binds
accessible cholesterol, as a sensor of membrane cholesterol accessibility.
We show that 25-HC increases cholesterol accessibility in a manner
dependent on the membrane lipid composition. Structural analysis of
molecular dynamics simulations reveals that increased cholesterol
accessibility is associated with membrane thinning, and that the effects
of 25-HC on cholesterol accessibility are driven by these changes
in membrane thickness. Further, we find that the 25-HC antagonist
LY295427 (agisterol) abrogates the membrane effects of 25-HC in a
nonenantioselective
manner, suggesting that agisterol antagonizes the cholesterol-homeostatic
effects of 25-HC indirectly through its membrane interactions. These
studies demonstrate that oxysterols regulate cholesterol accessibility,
and thus the availability of cholesterol to be sensed
and transported throughout the cell, by modulating the membrane environment.
This work
provides new insights into how alterations in membrane structure can
be used to relay cholesterol regulatory signals.
Collapse
Affiliation(s)
- Agata A Bielska
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr 2014; 14:36. [PMID: 24656052 PMCID: PMC3994432 DOI: 10.1186/1471-2318-14-36] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/26/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aging is accompanied by increasing vulnerability to pathologies such as atherosclerosis (ATH) and Alzheimer disease (AD). Are these different pathologies, or different presentations with a similar underlying pathoetiology? DISCUSSION Both ATH and AD involve inflammation, macrophage infiltration, and occlusion of the vasculature. Allelic variants in common genes including APOE predispose to both diseases. In both there is strong evidence of disease association with viral and bacterial pathogens including herpes simplex and Chlamydophila. Furthermore, ablation of components of the immune system (or of bone marrow-derived macrophages alone) in animal models restricts disease development in both cases, arguing that both are accentuated by inflammatory/immune pathways. We discuss that amyloid β, a distinguishing feature of AD, also plays a key role in ATH. Several drugs, at least in mouse models, are effective in preventing the development of both ATH and AD. Given similar age-dependence, genetic underpinnings, involvement of the vasculature, association with infection, Aβ involvement, the central role of macrophages, and drug overlap, we conclude that the two conditions reflect different manifestations of a common pathoetiology. MECHANISM Infection and inflammation selectively induce the expression of cholesterol 25-hydroxylase (CH25H). Acutely, the production of 'immunosterol' 25-hydroxycholesterol (25OHC) defends against enveloped viruses. We present evidence that chronic macrophage CH25H upregulation leads to catalyzed esterification of sterols via 25OHC-driven allosteric activation of ACAT (acyl-CoA cholesterol acyltransferase/SOAT), intracellular accumulation of cholesteryl esters and lipid droplets, vascular occlusion, and overt disease. SUMMARY We postulate that AD and ATH are both caused by chronic immunologic challenge that induces CH25H expression and protection against particular infectious agents, but at the expense of longer-term pathology.
Collapse
Affiliation(s)
- Richard Lathe
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Pieta Research, PO Box 27069, Edinburgh EH10 5YW, UK
| | - Alexandra Sapronova
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Optical Research Group, Laboratory of Evolutionary Biophysics of Development, Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yuri Kotelevtsev
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Biomedical Centre for Research Education and Innovation (CREI), Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh EH16 4TJ, UK
| |
Collapse
|
27
|
Induction of apoptosis and necroptosis by 24(S)-hydroxycholesterol is dependent on activity of acyl-CoA:cholesterol acyltransferase 1. Cell Death Dis 2014; 5:e990. [PMID: 24407243 PMCID: PMC4040651 DOI: 10.1038/cddis.2013.524] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 02/08/2023]
Abstract
24(S)-hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, has an important role in maintaining brain cholesterol homeostasis. We have previously reported that 24S-OHC induces necroptosis in human neuroblastoma SH-SY5Y cells. In the present study, we investigated the mechanisms by which 24S-OHC-induced cell death occurs. We found that lipid droplets formed at the early stages in the treatment of SH-SY5Y cells with 24S-OHC. These lipid droplets could be almost completely eliminated by treatment with a specific inhibitor or by siRNA knockdown of acyl-CoA:cholesterol acyltransferase 1 (ACAT1). In association with disappearance of lipid droplets, cell viability was recovered by treatment with the inhibitor or siRNA for ACAT1. Using gas chromatography–mass spectrometry, we confirmed that 24S-OHC-treated cells exhibited accumulation of 24S-OHC esters but not of cholesteryl esters and confirmed that accumulation of 24S-OHC esters was reduced when ACAT1 was inhibited. 24S-OHC induced apoptosis in T-lymphoma Jurkat cells, which endogenously expressed caspase-8, but did not induce apoptosis in SH-SY5Y cells, which expressed no caspase-8. In Jurkat cells treated with the pan-caspase inhibitor ZVAD and in caspase-8-deficient Jurkat cells, 24S-OHC was found to induce caspase-independent cell death, and this was partially but significantly inhibited by Necrostatin-1. Similarly, knockdown of receptor-interacting protein kinase 3, which is one of the essential kinases for necroptosis, significantly suppressed 24S-OHC-induced cell death in Jurkat cells treated with ZVAD. These results suggest that 24S-OHC can induce apoptosis or necroptosis, which of the two is induced being determined by caspase activity. Regardless of the presence or absence of ZVAD, 24S-OHC treatment induced the formation of lipid droplets and cell death in Jurkat cells, and this was suppressed by treatment with ACAT1 inhibitor. Collectively, these results suggest that it is ACAT1-catalyzed 24S-OHC esterification and the resulting lipid droplet formation that is the initial key event which is responsible for 24S-OHC-induced cell death.
Collapse
|
28
|
de Weille J, Fabre C, Bakalara N. Oxysterols in cancer cell proliferation and death. Biochem Pharmacol 2013; 86:154-60. [PMID: 23500545 DOI: 10.1016/j.bcp.2013.02.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 12/21/2022]
Abstract
Oxysterols have been shown to interfere with proliferation and cause the death of many cancer cell types, such as leukaemia, glioblastoma, colon, breast and prostate cancer cells, while they have little or no effect on senescent cells. The mechanisms by which oxysterols may influence proliferation are manifold: they control the transcription and the turnover of the key enzyme in cholesterol synthesis, 3-hydroxy-3-methylglutaryl CoA reductase, by binding to Insig-1, Insig-2 and liver X receptors. Oxysterols are thought to be generated in proportion to the rate of cholesterol synthesis. Although there is no consensus about the mechanism by which these oxysterols are generated in vivo, it clearly has to be ubiquitous. The 25- and the 27-cholesterol hydroxylases, present in almost all tissues, are possible candidates. Cholesterol uptake from lipoproteins, intracellular vesicle transport and lipid transfer are also modified by oxysterols. Oxysterols interfere with ERK, hedgehog and wnt pathways of proliferation and differentiation. When administered in vitro to cancer cell lines, oxysterols invariably both slow down proliferation and provoke cell death. Perhaps is it sufficient to stop proliferation of a cancer to provoke its eradication. Therefore, the two facets of oxysterol action that seem important for cancer treatment, cytostaticity and cytotoxicity, will be discussed.
Collapse
Affiliation(s)
- Jan de Weille
- Institut des Neurosciences de Montpellier, U1051 INSERM, 80 rue Augustin Fliche, 34295 Montpellier Cedex 05, France.
| | | | | |
Collapse
|
29
|
Bielska AA, Schlesinger P, Covey DF, Ory DS. Oxysterols as non-genomic regulators of cholesterol homeostasis. Trends Endocrinol Metab 2012; 23:99-106. [PMID: 22244444 PMCID: PMC3294026 DOI: 10.1016/j.tem.2011.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/21/2011] [Accepted: 12/05/2011] [Indexed: 12/31/2022]
Abstract
Tight regulation of cellular and plasma cholesterol is crucial to proper cellular functioning because excess free cholesterol is toxic to cells and is associated with atherosclerosis and heart disease. Cellular cholesterol homeostasis is regulated by enzymatically formed oxygenated cholesterol derivatives termed oxysterols. Although the effects of oxysterols on transcriptional pathways are well described, the non-transcriptional mechanisms through which oxysterols acutely modulate cellular cholesterol levels are less well understood. We present emerging evidence suggesting that the membrane biophysical properties of oxysterols underlie their acute cholesterol-regulatory functions and discuss the relevance of these acute effects to cholesterol overload in physiological and pathophysiological states.
Collapse
Affiliation(s)
- Agata A Bielska
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
30
|
Zhang JH, Ge L, Qi W, Zhang L, Miao HH, Li BL, Yang M, Song BL. The N-terminal domain of NPC1L1 protein binds cholesterol and plays essential roles in cholesterol uptake. J Biol Chem 2011; 286:25088-97. [PMID: 21602275 PMCID: PMC3137082 DOI: 10.1074/jbc.m111.244475] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/16/2011] [Indexed: 12/13/2022] Open
Abstract
Niemann-Pick C1-like 1 (NPC1L1) is a multitransmembrane protein playing a crucial role in dietary and biliary cholesterol absorption. Cholesterol promotes the formation and endocytosis of NPC1L1-flotillin-cholesterol membrane microdomains, which is an early step in cholesterol uptake. How cholesterol is sensed in this step is unknown. Here, we find that the N-terminal domain (NTD) of NPC1L1 binds cholesterol. Mutation of residue Leu-216 in NPC1L1-NTD eliminates cholesterol binding, decreases the formation of NPC1L1-flotillin-cholesterol membrane microdomains, and prevents NPC1L1-mediated cholesterol uptake in culture cells and mice livers. NPC1L1-NTD specifically binds cholesterol but not plant sterols, which may account for the selective cholesterol absorption in intestine. Furthermore, 25- or 27-hydroxycholesterol competes with cholesterol to bind NPC1L1-NTD and inhibits the cholesterol induced endocytosis of NPC1L1. Together, these results demonstrate that plasma membrane-localized NPC1L1 binds exogenous cholesterol via its NTD, and facilitates the formation of NPC1L1-flotillin-cholesterol membrane microdomains that are then internalized into cells through the clathrin-AP2 pathway. Our study uncovers the mechanism of cholesterol sensing by NPC1L1 and proposes a mechanism for selective cholesterol absorption.
Collapse
Affiliation(s)
- Jin-Hui Zhang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and
| | - Liang Ge
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and
| | - Wei Qi
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and
| | - Liqing Zhang
- the Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong-Hua Miao
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and
| | - Bo-Liang Li
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and
| | - Maojun Yang
- the Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bao-Liang Song
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and
| |
Collapse
|
31
|
Olsen BN, Schlesinger PH, Ory DS, Baker NA. 25-Hydroxycholesterol increases the availability of cholesterol in phospholipid membranes. Biophys J 2011; 100:948-56. [PMID: 21320439 DOI: 10.1016/j.bpj.2010.12.3728] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/13/2010] [Accepted: 12/08/2010] [Indexed: 02/08/2023] Open
Abstract
Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work by using molecular-dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayers to examine the combined effects of 25-HC and cholesterol in the same bilayer. 25-HC causes larger changes in membrane structure when added to cholesterol-containing membranes than when added to cholesterol-free membranes. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and thus increasing its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These effects provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through modulation of cholesterol availability.
Collapse
Affiliation(s)
- Brett N Olsen
- Department of Medicine, Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
32
|
Nunomura S, Makishima M, Ra C. Liver X receptors and immune regulation. Biomol Concepts 2010; 1:381-7. [PMID: 25962011 DOI: 10.1515/bmc.2010.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent studies suggest that homeostasis of lipid metabolism is crucial for the function of various immune cells. Oxygenated derivatives of cholesterol (oxysterols) are well-known regulators of lipid metabolism and have diverse functions, such as inhibition of cholesterol synthesis, efflux of intracellular cholesterol, synthesis of cholesterol esters, and activation of liver X receptors (LXRs). In this review, we introduce novel roles of the oxysterol receptors LXRs in the immune system, including regulation of inflammatory responses, T cell expansion, immunoglobulin production, and antitumor responses. We also discuss lipid-mediated signaling as a potential target for treatment of immune diseases.
Collapse
|
33
|
Mast cell death induced by 24(S),25-epoxycholesterol. Exp Cell Res 2010; 316:3272-81. [DOI: 10.1016/j.yexcr.2010.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/11/2010] [Accepted: 09/06/2010] [Indexed: 11/23/2022]
|
34
|
Chang CCY, Miyazaki A, Dong R, Kheirollah A, Yu C, Geng Y, Higgs HN, Chang TY. Purification of recombinant acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) from H293 cells and binding studies between the enzyme and substrates using difference intrinsic fluorescence spectroscopy. Biochemistry 2010; 49:9957-63. [PMID: 20964445 DOI: 10.1021/bi1013936] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) is a membrane-bound enzyme utilizing long-chain fatty acyl-coenzyme A and cholesterol to form cholesteryl esters and coenzyme A. Previously, we had expressed tagged human ACAT1 (hACAT1) in CHO cells and purified it to homogeneity; however, only a sparse amount of purified protein could be obtained. Here we report that the hACAT1 expression level in H293 cells is 18-fold higher than that in CHO cells. We have developed a milder purification procedure to purify the enzyme to homogeneity. The abundance of the purified protein enabled us to conduct difference intrinsic fluorescence spectroscopy to study the binding between the enzyme and its substrates in CHAPS/phospholipid mixed micelles. The results show that oleoyl-CoA binds to ACAT1 with K(d) = 1.9 μM and elicits significant structural changes of the protein as manifested by the significantly positive changes in its fluorescence spectrum; stearoyl-CoA elicits a similar spectrum change but much lower in magnitude. Previously, kinetic studies had shown that cholesterol is an efficient substrate and an allosteric activator of ACAT1, while its diastereomer epicholesterol is neither a substrate nor an activator. Here we show that both cholesterol and epicholesterol induce positive changes in the ACAT1 fluorescence spectrum; however, the magnitude of spectrum changes induced by cholesterol is much larger than epicholesterol. These results show that stereospecificity, governed by the 3β-OH moiety in steroid ring A, plays an important role in the binding of cholesterol to ACAT1.
Collapse
Affiliation(s)
- Catherine C Y Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, United States.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tao JL, Ruan XZ, Li H, Li XM, Li XW. Lipids-induced apoptosis is aggravated by acyl-coenzyme A: cholesterol acyltransferase inhibitor. ACTA ACUST UNITED AC 2010; 25:76-84. [PMID: 20598228 DOI: 10.1016/s1001-9294(10)60026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of acyl-coenzyme A: cholesterol acyltransferase inhibitor (ACATI) in apoptosis induced by lipids and whether lipids-induced apoptosis is accompanied by increase of free cholesterol in endoplasmic reticulum (ER), in order to further understand the mechanism of lipids-induced apoptosis in advanced atherosclerosis. METHODS Human vascular smooth muscle cells (VSMCs) and phorbol 12-myristate 13-acetate (PMA) differentiated THP-1 macrophages were used. Tritiated thymidine incorporation was applied to detect cell proliferation. Cytotoxicity was assessed by lactate dehydrogenase (LDH) release. 4',6-diamidino-2-phenylindole (DAPI) staining, caspase-3, -7 assay, and Annexin-V/propidium iodide (PI) staining were used to detect apoptosis. High performance liquid chromatography was used in intracellular free cholesterol and cholesterol ester assay. ER free cholesterol was quantified. RESULTS Different lipids had different effects on proliferation and cytotoxicity of VSMCs. 25-hydroxycholesterol (25OHC) had biphasic effects on the proliferation of VSMCs. At low concentration, it stimulated cell proliferation, but turned to proliferation inhibition as concentration reached 15 mug/mL. 25OHC and acetylated low density lipoprotein (AcLDL) could respectively induce apoptosis in human VSMCs and PMA differentiated THP-1 macrophages, which was aggravated by ACATI, accompanied by increase of intracellular free cholesterol content. There was also an increase of cholesterol content in ER with AcLDL-induced apoptosis in THP-1 macrophages. CONCLUSIONS Lipids could induce apoptosis, accompanied by increase of intracellular free cholesterol content, which could be augmented by ACATI, suggesting that insults resulting in ER free cholesterol rise might be the initiator of apoptosis.
Collapse
Affiliation(s)
- Jian-ling Tao
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | | | | | | | |
Collapse
|
36
|
Chang TY, Chang CCY, Bryleva E, Rogers MA, Murphy SR. Neuronal cholesterol esterification by ACAT1 in Alzheimer's disease. IUBMB Life 2010; 62:261-7. [PMID: 20101629 DOI: 10.1002/iub.305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cholesterol has been implicated in various neurodegenerative diseases. Here we review the connection between cholesterol and Alzheimer's disease (AD), focusing on a recent study that links neuronal cholesterol esterification with biosynthesis of 24(S)-hydroxycholesterol and the fate of human amyloid precursor protein in a mouse model of AD. We also briefly evaluate the potential of ACAT1 as a drug target for AD.
Collapse
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | | | |
Collapse
|
37
|
Li JZ, Lei Y, Wang Y, Zhang Y, Ye J, Xia X, Pan X, Li P. Control of cholesterol biosynthesis, uptake and storage in hepatocytes by Cideb. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:577-86. [PMID: 20123130 DOI: 10.1016/j.bbalip.2010.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 01/11/2010] [Accepted: 01/25/2010] [Indexed: 12/21/2022]
Abstract
Cideb, a member of CIDE family proteins, has emerged as an important regulator in the development of obesity and diabetes by controlling fatty acid synthesis and VLDL secretion in hepatocytes. Here, we investigated the role of Cideb in cholesterol biosynthesis, uptake and storage in the liver by using Cideb-null mice as a model system. Cideb-null mice and wild-type mice were treated with normal diet (ND) or high cholesterol diet (HCD) for one month. The metabolic parameters of cholesterol metabolism and expression profiles of genes in cholesterol biosynthesis and storage were measured. Cideb-null mice had lower levels of plasma cholesterol and LDL when fed with both ND and HCD and increased rate of cholesterol absorption. Furthermore, the liver of Cideb-null mice has lower rates of cholesterol biosynthesis and reduced expression levels of sterol response element-binding protein (SREBP) cleavage-activation protein (SCAP), and lower levels of nuclear form of SREBP2 and its downstream target genes in cholesterol biosynthesis pathway under a normal diet treatment. On the contrary, hepatic cholesterol biosynthesis rate between wild-type and Cideb-null mice was similar after high cholesterol diet treatment. Interestingly, hepatic cholesterol storage in the liver of Cideb-null mice was significantly increased due to its increased LDL receptor (LDLR) and acyl-CoA cholesterol acyltransferase (ACAT) expression. Finally, we observed drastically reduced cholesterol levels in the heart of Cideb-null mice fed with a high cholesterol diet. Overall, our data suggest that Cideb is a novel regulator in controlling cholesterol homeostasis in the liver. Therefore, Cideb could serve as an important therapeutical target for the treatment of atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- John Zhong Li
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cyclodextrin overcomes deficient lysosome-to-endoplasmic reticulum transport of cholesterol in Niemann-Pick type C cells. Proc Natl Acad Sci U S A 2009; 106:19316-21. [PMID: 19884502 DOI: 10.1073/pnas.0910916106] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A handoff model has been proposed to explain the egress from lysosomes of cholesterol derived from receptor-mediated endocytosis of LDL. Cholesterol is first bound by soluble Niemann-Pick C2 (NPC2) protein, which hands off the cholesterol to the N-terminal domain of membrane-bound NPC1. Cells lacking NPC1 or NPC2 accumulate LDL-derived cholesterol in lysosomes and fail to deliver LDL cholesterol to the endoplasmic reticulum (ER) for esterification by acyl-CoA acyltransferase (ACAT) and for inhibition of sterol regulatory element-binding protein cleavage. Here, we support this model by showing that the cholesterol transport defect in NPC1 mutant cells is restricted to lysosomal export. Other cholesterol transport pathways appear normal, including the movement of cholesterol from the plasma membrane to the ER after treatment of cells with 25-hydroxycholesterol or sphingomyelinase. The NPC1 or NPC2 block in cholesterol delivery to the ER can be overcome by 2-hydroxypropyl-beta-cyclodextrin, which leads to a marked increase in ACAT-mediated cholesterol esterification. The buildup of cholesteryl esters in the cytosol is expected to be much less toxic than the buildup of free cholesterol in the lysosomes of patients with mutations in NPC1 or NPC2.
Collapse
|
39
|
Hongo S, Watanabe T, Arita S, Kanome T, Kageyama H, Shioda S, Miyazaki A. Leptin modulates ACAT1 expression and cholesterol efflux from human macrophages. Am J Physiol Endocrinol Metab 2009; 297:E474-82. [PMID: 19625677 DOI: 10.1152/ajpendo.90369.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptin is an adipose tissue-derived hormone implicated in atherosclerosis and macrophage foam cell formation. The current study was conducted to examine the effect of leptin on cholesteryl ester accumulation in human monocytes/macrophages. Exogenously added leptin at 5 nM during differentiation of monocytes into macrophages for 7 days accelerated acetylated LDL (acetyl-LDL)-induced cholesteryl ester accumulation by 30-50%. Leptin did not affect endocytic uptake of acetyl-LDL; however, it increased ACAT activity 1.8-fold and ACAT-1 protein expression 1.9-fold. Among the four ACAT-1 mRNA transcripts, two shorter transcripts (2.8 and 3.6 kb) were upregulated approximately 1.7-fold upon leptin treatment. The enhanced expression of ACAT-1 protein by leptin was suppressed by inhibitors of Janus-activated kinase2 (JAK2) and phosphatidylinositol 3-kinase (PI3K). HDL-mediated cholesterol efflux was suppressed by leptin, which was canceled by K-604, an ACAT-1 inhibitor. Expression of long form of leptin receptor was upregulated during monocytic differentiation into macrophages and sustained after differentiation. Thus, the results suggest that leptin accelerates cholesteryl ester accumulation in human monocyte-derived macrophages by increasing ACAT-1 expression via JAK2 and PI3K, thereby suppressing cholesterol efflux.
Collapse
Affiliation(s)
- Shigeki Hongo
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The storage of fatty acids and fatty alcohols in the form of neutral lipids such as triacylglycerol (TAG), cholesteryl ester (CE), and wax ester (WE) serves to provide reservoirs for membrane formation and maintenance, lipoprotein trafficking, lipid detoxification, evaporation barriers, and fuel in times of stress or nutrient deprivation. This ancient process likely originated in actinomycetes and has persisted in eukaryotes, albeit by different molecular mechanisms. A surfeit of neutral lipids is strongly, perhaps causally, related to several human diseases such as diabetes mellitus, obesity, atherosclerosis and nonalcoholic fatty liver disease. Therefore, understanding the metabolic pathways of neutral lipid synthesis and the roles of the enzymes involved may facilitate the development of new therapeutic interventions for these syndromes.
Collapse
Affiliation(s)
- Aaron R Turkish
- Department of Pediatrics, Columbia University Medical Center, 630 W. 168th St., New York, NY, USA.
| | | |
Collapse
|
41
|
Jain S, Zhang X, Khandelwal PJ, Saunders AJ, Cummings BS, Oelkers P. Characterization of human lysophospholipid acyltransferase 3. J Lipid Res 2009; 50:1563-70. [PMID: 19351971 DOI: 10.1194/jlr.m800398-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Esterifying lysophospholipids may serve a variety of functions, including phospholipid remodeling and limiting the abundance of bioactive lipids. Recently, a yeast enzyme, Lpt1p, that esterifies an array of lysophospholipids was identified. Described here is the characterization of a human homolog of LPT1 that we have called lysophosphatidylcholine acyltransferase 3 (LPCAT3). Expression of LPCAT3 in Sf9 insect cells conferred robust esterification of lysophosphatidylcholine in vitro. Kinetic analysis found apparent cooperativity with a saturated acyl-CoA having the lowest K0.5 (5 microM), a monounsaturated acyl-CoA having the highest apparent Vmax (759 nmol/min/mg), and two polyunsaturated acyl-CoAs showing intermediate values. Lysophosphatidylethanolamine and lysophosphatidylserine were also utilized as substrates. Electrospray ionization mass spectrometric analysis of phospholipids in Sf9 cells expressing LPCAT3 showed a relative increase in phosphatidylcholine containing saturated acyl chains and a decrease in phosphatidylcholine containing unsaturated acyl chains. Targeted reduction of LPCAT3 expression in HEK293 cells had essentially an opposite effect, resulting in decreased abundance of saturated phospholipid species and more unsaturated species. Reduced LPCAT3 expression resulted in more apoptosis and distinctly fewer lamellipodia, suggesting a necessary role for lysophospholipid esterification in maintaining cellular function and structure.
Collapse
Affiliation(s)
- Shilpa Jain
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Bazuine M, Stenkula KG, Cam M, Arroyo M, Cushman SW. Guardian of corpulence: a hypothesis on p53 signaling in the fat cell. ACTA ACUST UNITED AC 2009; 4:231-243. [PMID: 20126301 DOI: 10.2217/clp.09.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adipocytes provide an organism with fuel in times of caloric deficit, and are an important type of endocrine cell in the maintenance of metabolic homeostasis. In addition, as a lipid-sink, adipocytes serve an equally important role in the protection of organs from the damaging effects of ectopic lipid deposition. For the organism, it is of vital importance to maintain adipocyte viability, yet the fat depot is a demanding extracellular environment with high levels of interstitial free fatty acids and associated lipotoxic effects. These surroundings are less than beneficial for the overall health of any resident cell, adipocyte and preadipocyte alike. In this review, we discuss the process of adipogenesis and the potential involvement of the p53 tumor-suppressor protein in alleviating some of the cellular stress experienced by these cells. In particular, we discuss p53-mediated mechanisms that prevent damage caused by reactive oxygen species and the effects of lipotoxicity. We also suggest the potential for two p53 target genes, START domain-containing protein 4 (StARD4) and oxysterol-binding protein (OSBP), with the concomitant synthesis of the signaling molecule oxysterol, to participate in adipogenesis.
Collapse
Affiliation(s)
- Merlijn Bazuine
- Experimental Diabetes, Metabolism & Nutrition Section, Diabetes Branch, NIDDK, NIH, Building 10-CRC, Room 5W-5816, 10 Center Drive, Bethesda, MD 20892, USA, Tel.: +1 301 496 7354, ,
| | | | | | | | | |
Collapse
|
43
|
Padoveze A, Maniero F, Oliveira T, Vitorio T, Couto R, Maranhão R. Effect of a cholesterol-rich diet on the metabolism of the free and esterified cholesterol components of a nanoemulsion that resembles LDL in rabbits. Braz J Med Biol Res 2009; 42:172-8. [DOI: 10.1590/s0100-879x2009000200005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 01/15/2009] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | - R.D. Couto
- Universidade de São Paulo, Brasil; Universidade Federal da Bahia, Brasil
| | - R.C. Maranhão
- Universidade de São Paulo, Brasil; Universidade de São Paulo, Brasil
| |
Collapse
|
44
|
Mehtiev AR, Kozlova NI, Skripnik VV, Misharin AY. The effects of (22S,23S)- and (22R,23R)-3β-hydroxy-22,23-oxido-5α-ergost-8(14)-en-15-ones on biosynthesis of cholesteryl esters and activity of acyl-CoA:Cholesterol acyl transferase in Hep G2 cells. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2008. [DOI: 10.1134/s1990750808040112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Carrasco MP, Jiménez-López JM, Segovia JL, Marco C. Hexadecylphosphocholine interferes with the intracellular transport of cholesterol in HepG2 cells. FEBS J 2008; 275:1675-86. [DOI: 10.1111/j.1742-4658.2008.06322.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Travert C, Carreau S, Le Goff D. Induction of apoptosis by 25-hydroxycholesterol in adult rat Leydig cells: Protective effect of 17β-estradiol. Reprod Toxicol 2006; 22:564-70. [PMID: 17023141 DOI: 10.1016/j.reprotox.2006.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/24/2006] [Accepted: 05/04/2006] [Indexed: 11/18/2022]
Abstract
Testicular macrophages can convert cholesterol into 25-hydroxycholesterol which strongly stimulates Leydig cell testosterone production. We demonstrated that 25-hydroxycholesterol reduced cholesterol biosynthesis in adult rat Leydig cells. This oxysterol can also be cytotoxic. As hydroxylated cholesterol can induce apoptosis in various cells, we investigated cell death produced by 25-hydroxycholesterol. Apoptosis was characterized by TUNEL assay and by DAPI test. Addition of 25-hydroxycholesterol, during 24h, induced a dose dependent increase of apoptosis. This effect was reduced by a treatment with a caspase-3 inhibitor (Ac-DEVD-CHO). 25-Hydroxycholesterol is known to stimulate testosterone production, but an increase of intracellular or culture medium testosterone level does not modify significantly the percentage of apoptotic cells. In contrast, addition of 17beta-estradiol (2 nM) induced a decrease of apoptotic cells. These data suggested that this oxysterol can be used by rat Leydig cells in culture for sterol metabolism, but also induces apoptosis which could be inhibited by 17beta-estradiol.
Collapse
Affiliation(s)
- Carine Travert
- Biochemistry Laboratory EA 2608-USC INRA 2006, IBFA, University of Caen, Esplanade de la Paix, 14302 Caen Cedex, France.
| | | | | |
Collapse
|
47
|
Bourdon E, Loreau N, Lagrost L, Davignon J, Bernier L, Blache D. Differential effects of oxidized LDL on apolipoprotein AI and B synthesis in HepG2 cells. Free Radic Biol Med 2006; 41:786-96. [PMID: 16895799 DOI: 10.1016/j.freeradbiomed.2006.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 05/05/2006] [Accepted: 05/23/2006] [Indexed: 11/26/2022]
Abstract
Oxidized low-density lipoproteins (Ox-LDL) are key elements in atherogenesis. Apolipoprotein AI (apoAI) is an active component of the antiatherogenic high-density lipoproteins (HDL). In contrast, plasma apolipoprotein B (apoB), the main component of LDL, is highly correlated with coronary risk. Our results, obtained in HepG2 cells, show that Ox-LDL, unlike native LDL, leads to opposite effects on apoB and apoAI, namely a decrease in apoAI and an increase in apoB secretion as evaluated by [(3)H]leucine incorporation and specific immunoprecipitation. Parallel pulse-chase studies show that Ox-LDL impaired apoB degradation, whereas apoAI degradation was increased and mRNA levels were decreased. We also found that enhanced lipid biosynthesis of both triglycerides and cholesterol esters was involved in the Ox-LDL-induced increase in apoB secretion. Our data suggest that the increase in apoB and decrease in apoAI secretion may in part contribute to the known atherogenicity of Ox-LDL through an elevated LDL/HDL ratio, a strong predictor of coronary risk in patients.
Collapse
Affiliation(s)
- Emmanuel Bourdon
- INSERM U498, Dijon, France;-Faculté de Médecine, Université de Bourgogne, 21079 Dijon, France
| | | | | | | | | | | |
Collapse
|
48
|
Leon C, Hill JS, Wasan KM. Potential role of acyl-coenzyme A:cholesterol transferase (ACAT) Inhibitors as hypolipidemic and antiatherosclerosis drugs. Pharm Res 2005; 22:1578-88. [PMID: 16180116 DOI: 10.1007/s11095-005-6306-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 06/03/2005] [Indexed: 11/29/2022]
Abstract
Acyl-coenzyme A:cholesterol transferase (ACAT) is an integral membrane protein localized in the endoplasmic reticulum. ACAT catalyzes the formation of cholesteryl esters from cholesterol and fatty acyl coenzyme A. The cholesteryl esters are stored as cytoplasmic lipid droplets inside the cell. This process is very important to the organism as high cholesterol levels have been associated with cardiovascular disease. In mammals, two ACAT genes have been identified, ACAT1 and ACAT2. ACAT1 is ubiquitous and is responsible for cholesteryl ester formation in brain, adrenal glands, macrophages, and kidneys. ACAT2 is expressed in the liver and intestine. The inhibition of ACAT activity has been associated with decreased plasma cholesterol levels by suppressing cholesterol absorption and by diminishing the assembly and secretion of apolipoprotein B-containing lipoproteins such as very low density lipoprotein (VLDL). ACAT inhibition also prevents the conversion of macrophages into foam cells in the arterial walls, a critical event in the development of atherosclerosis. This review paper will focus on the role of ACAT in cholesterol metabolism, in particular as a target to develop novel therapeutic agents to control hypercholesterolemia, atherosclerosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Carlos Leon
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | |
Collapse
|
49
|
Nishikawa Y, Quittnat F, Stedman TT, Voelker DR, Choi JY, Zahn M, Yang M, Pypaert M, Joiner KA, Coppens I. Host cell lipids control cholesteryl ester synthesis and storage in intracellular Toxoplasma. Cell Microbiol 2005; 7:849-67. [PMID: 15888087 DOI: 10.1111/j.1462-5822.2005.00518.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The intracellular protozoan Toxoplasma gondii lacks a de novo mechanism for cholesterol synthesis and therefore must scavenge this essential lipid from the host environment. In this study, we demonstrated that T. gondii diverts cholesterol from low-density lipoproteins for cholesteryl ester synthesis and storage in lipid bodies. We identified and characterized two isoforms of acyl-CoA:cholesterol acyltransferase (ACAT)-related enzymes, designated TgACAT1alpha and TgACAT1beta in T. gondii. Both proteins are coexpressed in the parasite, localized to the endoplasmic reticulum and participate in cholesteryl ester synthesis. In contrast to mammalian ACAT, TgACAT1alpha and TgACAT1beta preferentially incorporate palmitate into cholesteryl esters and present a broad sterol substrate affinity. Mammalian ACAT-deficient cells transfected with either TgACAT1alpha or TgACAT1beta are restored in their capability of cholesterol esterification. TgACAT1alpha produces steryl esters and forms lipid bodies after transformation in a Saccharomyces cerevisiae mutant strain lacking neutral lipids. In addition to their role as ACAT substrates, host fatty acids and low-density lipoproteins directly serve as Toxoplasma ACAT activators by stimulating cholesteryl ester synthesis and lipid droplet biogenesis. Free fatty acids significantly increase TgACAT1alpha mRNA levels. Selected cholesterol esterification inhibitors impair parasite growth by rapid disruption of plasma membrane. Altogether, these studies indicate that host lipids govern neutral lipid synthesis in Toxoplasma and that interference with mechanisms of host lipid storage is detrimental to parasite survival in mammalian cells.
Collapse
Affiliation(s)
- Yoshifumi Nishikawa
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang Y, Castoreno AB, Stockinger W, Nohturfft A. Modulation of endosomal cholesteryl ester metabolism by membrane cholesterol. J Biol Chem 2005; 280:11876-86. [PMID: 15657032 PMCID: PMC1940112 DOI: 10.1074/jbc.m414676200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells acquire cholesterol in part by endocytosis of cholesteryl ester containing lipoproteins. In endosomes and lysosomes cholesteryl ester is hydrolyzed by acidic cholesteryl ester hydrolase producing cholesterol and fatty acids. Under certain pathological conditions, however, such as in atherosclerosis, excessive levels of cholesteryl ester accumulate in lysosomes for reasons that are poorly understood. Here, we have studied endosomal and lysosomal cholesteryl ester metabolism in cultured mouse macrophages and with cell-free extracts. We show that net hydrolysis of cholesteryl ester is coupled to the transfer of cholesterol to membranes. When membrane cholesterol levels are low, absorption of cholesterol effectively drives cholesteryl ester hydrolysis. When cholesterol levels in acceptor membranes approach saturation or when cholesterol export is blocked, cholesterol is re-esterified in endosomes. These results reveal a new facet of cellular cholesterol homeostasis and provide a potential explanation for cholesteryl ester accumulation in lysosomes of atherosclerotic cells.
Collapse
Affiliation(s)
| | | | | | - Axel Nohturfft
- || To whom correspondence should be addressed: The Biological Laboratories, Dept. of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138. Tel.: 617-384-5846; Fax: 617-384-7423; E-mail:
| |
Collapse
|