1
|
Cleary JA, Kumar A, Craft S, Deep G. Neuron-derived extracellular vesicles as a liquid biopsy for brain insulin dysregulation in Alzheimer's disease and related disorders. Alzheimers Dement 2025; 21:e14497. [PMID: 39822132 PMCID: PMC11848159 DOI: 10.1002/alz.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) have emerged as novel blood-based biomarkers for various pathologies. The development of methods to enrich cell-specific EVs from biofluids has enabled us to monitor difficult-to-access organs, such as the brain, in real time without disrupting their function, thus serving as liquid biopsy. Burgeoning evidence indicates that the contents of neuron-derived EVs (NDEs) in blood reveal dynamic alterations that occur during neurodegenerative pathogenesis, including Alzheimer's disease (AD), reflecting a disease-specific molecular signature. Among these AD-specific molecular changes is brain insulin-signaling dysregulation, which cannot be assessed clinically in a living patient and remains an unexplained co-occurrence during AD pathogenesis. This review is focused on delineating how NDEs in the blood may begin to close the gap between identifying molecular changes associated with brain insulin dysregulation reliably in living patients and its connection to AD. This approach could lead to the identification of novel early and less-invasive diagnostic molecular biomarkers for AD. HIGHLIGHTS: Neuron-derived extracellular vesicles (NDEs) could be isolated from peripheral blood. NDEs in blood reflect the molecular signature of Alzheimer's disease (AD). Brain insulin-signaling dysregulation plays a critical role in AD. NDEs in blood could predict brain insulin-signaling dysregulation. NDEs offer novel early and less-invasive diagnostic biomarkers for AD.
Collapse
Affiliation(s)
- Jacob Alexander Cleary
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ashish Kumar
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Gagan Deep
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
2
|
Kaur N, Aran KR. Uncovering the intricacies of IGF-1 in Alzheimer's disease: new insights from regulation to therapeutic targeting. Inflammopharmacology 2025:10.1007/s10787-025-01641-0. [PMID: 39883327 DOI: 10.1007/s10787-025-01641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/12/2025] [Indexed: 01/31/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway. In addition to the physiological activities in the brain, numerous studies point to a potential protective role of the IGF-1 pathway in the pathogenesis of neurodegenerative diseases, such as AD. Interestingly, patients with AD often exhibit altered insulin and IGF-1 levels, along with an inadequate insulin response. Dysregulation of IGF-1 signaling contributes to hyperphosphorylation of tau, NFT accumulation, increased β- and γ-secretase activity, elevated Aβ production, and impaired Aβ clearance, highlighting the need to explore the role of this signaling for potential therapeutic targets of AD. This review explores the role of IGF signaling in AD pathology, highlighting IGF-1 as a promising therapeutic target due to its significant involvement in disease mechanisms. Modulating IGF-1 activity could help mitigate neurodegeneration and preserve cognitive function in AD. A comprehensive understanding of the mechanisms underlying IGF-1 dysregulation is crucial for developing targeted therapeutic strategies to address the complex and multifaceted nature of AD.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
3
|
Zhang Z, Xue P, Bendlin BB, Zetterberg H, De Felice F, Tan X, Benedict C. Melatonin: A potential nighttime guardian against Alzheimer's. Mol Psychiatry 2025; 30:237-250. [PMID: 39128995 PMCID: PMC11649572 DOI: 10.1038/s41380-024-02691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
In the context of the escalating global health challenge posed by Alzheimer's disease (AD), this comprehensive review considers the potential of melatonin in both preventive and therapeutic capacities. As a naturally occurring hormone and robust antioxidant, accumulating evidence suggests melatonin is a compelling candidate to consider in the context of AD-related pathologies. The review considers several mechanisms, including potential effects on amyloid-beta and pathologic tau burden, antioxidant defense, immune modulation, and regulation of circadian rhythms. Despite its promise, several gaps need to be addressed prior to clinical translation. These include conducting additional randomized clinical trials in patients with or at risk for AD dementia, determining optimal dosage and timing, and further determining potential side effects, particularly of long-term use. This review consolidates existing knowledge, identifies gaps, and suggests directions for future research to better understand the potential of melatonin for neuroprotection and disease mitigation within the landscape of AD.
Collapse
Affiliation(s)
- Zefan Zhang
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Barbara B Bendlin
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Fernanda De Felice
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences, and Psychiatry, Queen's University, Kingston, ON, K7L 3N6, Canada
- D'Or Institute for Research and Education, Rio de Janeiro RJ, 22281-100, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Yuan Y, Zhao G, Zhao Y. Dysregulation of energy metabolism in Alzheimer's disease. J Neurol 2024; 272:2. [PMID: 39621206 PMCID: PMC11611936 DOI: 10.1007/s00415-024-12800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 12/06/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Its etiology and associated mechanisms are still unclear, which largely hinders the development of AD treatment strategies. Many studies have shown that dysregulation of energy metabolism in the brain of AD is closely related to disease development. Dysregulation of brain energy metabolism in AD brain is associated with reduced glucose uptake and utilization, altered insulin signaling pathways, and mitochondrial dysfunction. In this study, we summarized the relevant pathways and mechanisms regarding the dysregulation of energy metabolism in AD. In addition, we highlight the possible role of mitochondrial dysfunction as a central role in the AD process. A deeper understanding of the relationship between energy metabolism dysregulation and AD may provide new insights for understanding learning memory impairment in AD patients and in improving AD prevention and treatment.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Gang Zhao
- China Resources Pharmaceutical Commercial Group, Beijing, China
| | - Yang Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, 130061, China.
| |
Collapse
|
5
|
Song L, Liu H, Yang W, Yin H, Wang J, Guo M, Yang Z. Biological functions of the m6A reader YTHDF2 and its role in central nervous system disorders. Biochem Pharmacol 2024; 230:116576. [PMID: 39424201 DOI: 10.1016/j.bcp.2024.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
N6-methyladenosine (m6A) is a prevalent mRNA modification in eukaryotic cells, characterized by its reversible nature. YTH structural domain family protein 2 (YTHDF2), a key reader of m6A, plays a crucial role in identifying and binding m6A-containing RNAs, thereby influencing RNA metabolism through various functional mechanisms. The upstream and downstream targets of YTHDF2 are critical in the pathogenesis of various central nervous system (CNS) diseases, affecting disease development by regulating signaling pathways and gene expression. This paper provides an overview of current research on the role of YTHDF2 in CNS diseases and investigates the regulatory mechanisms by which YTHDF2 influences the development of these conditions. This exploration aims to improve understanding of disease pathogenesis and offer novel insights for the targeted prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Lili Song
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Huimin Liu
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Weiyu Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Hongqing Yin
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Jiayi Wang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China
| | - Maojuan Guo
- Department of Pathology, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, China
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, China.
| |
Collapse
|
6
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
7
|
Chang Z, Wang Z, Luo L, Xie Z, Yue C, Bian X, Yang H, Wang P. Case report: Double mutations in a patient with early-onset Alzheimer's disease in China, PSEN2 and IDE variants. Front Neurosci 2024; 18:1423892. [PMID: 39539495 PMCID: PMC11557526 DOI: 10.3389/fnins.2024.1423892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by gradual cognitive decline. Early-onset Alzheimer's disease (EOAD) is defined as AD occurring before age 65. The main pathogenic gene variants associated with EOAD include PSEN1, PSEN2, and APP. IDE gene has been identified as a risk factor in the pathogenesis of AD. In this study, we report a 33-year-old male with mutations in the PSEN2 gene (c.640G > T, p.V214L) and IDE gene (c.782G > A, p.R261Q). PSEN2 V214L has been reported in five previous cases, and no reported cases have carried IDE R261Q. He had progressive memory decline, his sister carried the same gene mutations but had no clinical manifestations. Neuroimaging revealed mild cortical atrophy. The concentration of Aβ42 in cerebrospinal fluid (CSF) was obviously decreased. In silico predictive models suggested that these mutations are damaging. Our findings indicate that mutations in the PSEN2 and IDE genes may disrupt the normal functioning of their respective proteins, contributing to the pathogenesis of AD.
Collapse
Affiliation(s)
- Zhongzheng Chang
- Department of Neurology, the Second Hospital of Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyang Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lele Luo
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaohong Xie
- Department of Neurology, the Second Hospital of Shandong University, Jinan, China
| | - Caibin Yue
- Department of Infectious Diseases and Hepatology, the Second Hospital of Shandong University, Jinan, China
| | - Xianli Bian
- Department of Neurology, the Second Hospital of Shandong University, Jinan, China
| | - Hui Yang
- Department of Neurology, the Second Hospital of Shandong University, Jinan, China
| | - Ping Wang
- Department of Neurology, the Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
8
|
Yang Y, Tong M, de la Monte SM. Early-Stage Moderate Alcohol Feeding Dysregulates Insulin-Related Metabolic Hormone Expression in the Brain: Potential Links to Neurodegeneration Including Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1211-1228. [PMID: 39247872 PMCID: PMC11380283 DOI: 10.3233/adr-240026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Background Alzheimer's disease (AD), one of the most prevalent causes of dementia, is mainly sporadic in occurrence but driven by aging and other cofactors. Studies suggest that excessive alcohol consumption may increase AD risk. Objective Our study examined the degree to which short-term moderate ethanol exposure leads to molecular pathological changes of AD-type neurodegeneration. Methods Long Evans male and female rats were fed for 2 weeks with isocaloric liquid diets containing 24% or 0% caloric ethanol (n = 8/group). The frontal lobes were used to measure immunoreactivity to AD biomarkers, insulin-related endocrine metabolic molecules, and proinflammatory cytokines/chemokines by duplex or multiplex enzyme-linked immunosorbent assays (ELISAs). Results Ethanol significantly increased frontal lobe levels of phospho-tau, but reduced Aβ, ghrelin, glucagon, leptin, PAI, IL-2, and IFN-γ. Conclusions Short-term effects of chronic ethanol feeding produced neuroendocrine molecular pathologic changes reflective of metabolic dysregulation, together with abnormalities that likely contribute to impairments in neuroplasticity. The findings suggest that chronic alcohol consumption rapidly establishes a platform for impairments in energy metabolism that occur in both the early stages of AD and alcohol-related brain degeneration.
Collapse
Affiliation(s)
- Yiwen Yang
- Molecular Pharmacology, Physiology and Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne M. de la Monte
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, the Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurology and Neurosurgery, Rhode Island Hospital, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Martinez P, Jury-Garfe N, Patel H, You Y, Perkins A, You Y, Lee-Gosselin A, Vidal R, Lasagna-Reeves CA. Phosphorylation at serine 214 correlates with tau seeding activity in an age-dependent manner in two mouse models for tauopathies and is required for tau transsynaptic propagation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604618. [PMID: 39211286 PMCID: PMC11361173 DOI: 10.1101/2024.07.22.604618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pathological aggregation and propagation of hyperphosphorylated and aberrant forms of tau are critical features of the clinical progression of Alzheimer's disease and other tauopathies. To better understand the correlation between these pathological tau species and disease progression, we profiled the temporal progression of tau seeding activity and the levels of various phospho- and conformational tau species in the brains of two mouse models of human tauopathies. Our findings indicate that tau seeding is an early event that occurs well before the appearance of AT8-positive NFT. Specifically, we observed that tau phosphorylation in serine 214 (pTau-Ser214) positively correlates to tau seeding activity during disease progression in both mouse models. Furthermore, we found that the histopathology of pTau-Ser214 appears much earlier and has a distinct pattern and compartmentalization compared to the pathology of AT8, demonstrating the diversity of tau species within the same region of the brain. Importantly, we also observed that preventing the phosphorylation of tau at Ser214 significantly decreases tau propagation in mouse primary neurons, and seeding activity in a Drosophila model of tauopathy, suggesting a role for this tau phosphorylation in spreading pathological forms of tau. Together, these results suggest that the diverse spectrum of soluble pathological tau species could be responsible for the distinct pathological properties of tau and that it is critical to dissect the nature of the tau seed in the context of disease progression.
Collapse
|
10
|
Sequeira RC, Godad A. Understanding Glycogen Synthase Kinase-3: A Novel Avenue for Alzheimer's Disease. Mol Neurobiol 2024; 61:4203-4221. [PMID: 38064104 DOI: 10.1007/s12035-023-03839-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/28/2023] [Indexed: 07/11/2024]
Abstract
Alzheimer's Disease (AD) is the most prevalent form of age-related dementia. Even though a century has passed since the discovery of AD, the exact cause of the disease still remains unknown. As a result, this poses a major hindrance in developing effective therapies for treating AD. Glycogen synthase kinase-3 (GSK-3) is one of the kinases that has been investigated recently as a potential therapeutic target for the treatment of AD. It is also known as human tau protein kinase and is a proline-directed serine-threonine kinase. Since dysregulation of this kinase affects all the major characteristic features of the disease, such as tau phosphorylation, amyloid formation, memory, and synaptic function, it is thought to be a major player in the pathogenesis of AD. In this review, we present the most recent information on the role of this kinase in the onset and progression of AD, as well as significant findings that identify GSK-3 as one of the most important targets for AD therapy. We further discuss the potential of treating AD by targeting GSK-3 and give an overview of the ongoing studies aimed at developing GSK-3 inhibitors in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Ronnita C Sequeira
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra, 400056, India
| | - Angel Godad
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra, 400056, India.
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
11
|
Quesnel MJ, Labonté A, Picard C, Zetterberg H, Blennow K, Brinkmalm A, Villeneuve S, Poirier J. Insulin-like growth factor binding protein-2 in at-risk adults and autopsy-confirmed Alzheimer brains. Brain 2024; 147:1680-1695. [PMID: 37992295 PMCID: PMC11068109 DOI: 10.1093/brain/awad398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Insulin, insulin-like growth factors (IGF) and their receptors are highly expressed in the adult hippocampus. Thus, disturbances in the insulin-IGF signalling pathway may account for the selective vulnerability of the hippocampus to nascent Alzheimer's disease (AD) pathology. In the present study, we examined the predominant IGF-binding protein in the CSF, IGFBP2. CSF was collected from 109 asymptomatic members of the parental history-positive PREVENT-AD cohort. CSF levels of IGFBP2, core AD and synaptic biomarkers were measured using proximity extension assay, ELISA and mass spectrometry. Cortical amyloid-beta (Aβ) and tau deposition were examined using 18F-NAV4694 and flortaucipir. Cognitive assessments were performed during up to 8 years of follow-up, using the Repeatable Battery for the Assessment of Neuropsychological Status. T1-weighted structural MRI scans were acquired, and neuroimaging analyses were performed on pre-specified temporal and parietal brain regions. Next, in an independent cohort, we allocated 241 dementia-free ADNI-1 participants into four stages of AD progression based on the biomarkers CSF Aβ42 and total-tau (t-tau). In this analysis, differences in CSF and plasma IGFBP2 levels were examined across the pathological stages. Finally, IGFBP2 mRNA and protein levels were examined in the frontal cortex of 55 autopsy-confirmed AD and 31 control brains from the Quebec Founder Population (QFP) cohort, a unique population isolated from Eastern Canada. CSF IGFBP2 progressively increased over 5 years in asymptomatic PREVENT-AD participants. Baseline CSF IGFBP2 was positively correlated with CSF AD biomarkers and synaptic biomarkers, and negatively correlated with longitudinal changes in delayed memory (P = 0.024) and visuospatial abilities (P = 0.019). CSF IGFBP2 was negatively correlated at a trend-level with entorhinal cortex volume (P = 0.082) and cortical thickness in the piriform (P = 0.039), inferior temporal (P = 0.008), middle temporal (P = 0.014) and precuneus (P = 0.033) regions. In ADNI-1, CSF (P = 0.009) and plasma (P = 0.001) IGFBP2 were significantly elevated in Stage 2 [CSF Aβ(+)/t-tau(+)]. In survival analyses in ADNI-1, elevated plasma IGFBP2 was associated with a greater rate of AD conversion (hazard ratio = 1.62, P = 0.021). In the QFP cohort, IGFBP2 mRNA was reduced (P = 0.049); however, IGFBP2 protein levels did not differ in the frontal cortex of autopsy-confirmed AD brains (P = 0.462). Nascent AD pathology may induce an upregulation in IGFBP2 in asymptomatic individuals. CSF and plasma IGFBP2 may be valuable markers for identifying CSF Aβ(+)/t-tau(+) individuals and those with a greater risk of AD conversion.
Collapse
Affiliation(s)
- Marc James Quesnel
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792-2420, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75646 Cedex 13, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230026, P.R. China
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Sylvia Villeneuve
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Judes Poirier
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| |
Collapse
|
12
|
Pan Y, Li J, Lin P, Wan L, Qu Y, Cao L, Wang L. A review of the mechanisms of abnormal ceramide metabolism in type 2 diabetes mellitus, Alzheimer's disease, and their co-morbidities. Front Pharmacol 2024; 15:1348410. [PMID: 38379904 PMCID: PMC10877008 DOI: 10.3389/fphar.2024.1348410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
The global prevalence of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) is rapidly increasing, revealing a strong association between these two diseases. Currently, there are no curative medication available for the comorbidity of T2DM and AD. Ceramides are structural components of cell membrane lipids and act as signal molecules regulating cell homeostasis. Their synthesis and degradation play crucial roles in maintaining metabolic balance in vivo, serving as important mediators in the development of neurodegenerative and metabolic disorders. Abnormal ceramide metabolism disrupts intracellular signaling, induces oxidative stress, activates inflammatory factors, and impacts glucose and lipid homeostasis in metabolism-related tissues like the liver, skeletal muscle, and adipose tissue, driving the occurrence and progression of T2DM. The connection between changes in ceramide levels in the brain, amyloid β accumulation, and tau hyper-phosphorylation is evident. Additionally, ceramide regulates cell survival and apoptosis through related signaling pathways, actively participating in the occurrence and progression of AD. Regulatory enzymes, their metabolites, and signaling pathways impact core pathological molecular mechanisms shared by T2DM and AD, such as insulin resistance and inflammatory response. Consequently, regulating ceramide metabolism may become a potential therapeutic target and intervention for the comorbidity of T2DM and AD. The paper comprehensively summarizes and discusses the role of ceramide and its metabolites in the pathogenesis of T2DM and AD, as well as the latest progress in the treatment of T2DM with AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Qiu J, Feng X, Chen H, Liu W, Liu W, Wu L, Gao X, Liu Y, Huang Y, Gong H, Qi Y, Xu Z, Zhao Q. Discovery of novel harmine derivatives as GSK-3β/DYRK1A dual inhibitors for Alzheimer's disease treatment. Arch Pharm (Weinheim) 2024; 357:e2300404. [PMID: 38010470 DOI: 10.1002/ardp.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Multitarget-directed ligands (MTDLs) have recently attracted significant interest due to their superior effectiveness in multifactorial Alzheimer's disease (AD). Combined inhibition of two important AD targets, glycogen synthase kinase-3β (GSK-3β) and dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), may be a breakthrough in the treatment of AD. Based on our previous work, we have designed and synthesized a series of novel harmine derivatives, investigated their inhibition of GSK-3β and DYRK1A, and evaluated a variety of biological activities. The results of the experiments showed that most of these compounds exhibited good activity against GSK-3β and DYRK1A in vitro. ZLQH-5 was selected as the best compound due to the most potent inhibitory effect against GSK-3β and DYRK1A. Molecular docking studies demonstrated that ZLQH-5 could form stable interactions with the ATP binding pocket of GSK-3β and DYRK1A. In addition, ZLQH-5 showed low cytotoxicity against SH-SY5Y and HL-7702, good blood-brain barrier permeability, and favorable pharmacokinetic properties. More importantly, ZLQH-5 also attenuated the tau hyperphosphorylation in the okadaic acid SH-SY5Y cell model. These results indicated that ZLQH-5 could be a promising dual-target drug candidate for the treatment of AD.
Collapse
Affiliation(s)
- Jingsong Qiu
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangling Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Huanhua Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenwu Liu
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
| | - Wenjie Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Limeng Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xudong Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Yanfang Liu
- Department of Clinical Trial Center, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Hao Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yiming Qi
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Zihua Xu
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingchun Zhao
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
14
|
Zareei S, Pourmand S, Eskandarzadeh M, Massahi S. In silico anti-alzheimer study of phytochemicals from Lamiaceae family through GSK3-β inhibition. Sci Rep 2024; 14:834. [PMID: 38191548 PMCID: PMC10774376 DOI: 10.1038/s41598-023-47069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024] Open
Abstract
Glycogen synthase kinase 3-beta (GSK3-β) is a serine-threonine protease expressed in the brain, and its hyperactivity is considered the underlying cause of Alzheimer's disease. This enzyme requires an ATP molecule in its N-terminal lobe to phosphorylate its substrates, with the most important substrate being the Tau protein. This study focuses on the inhibitory mechanism of four naturally occurring compounds-apigenin, luteolin, rosmarinic acid, and salvianolic acid-from the Laminaceae family against GSK3-β. The orientation of the ligands within the ATP-binding pocket of GSK3-β and their binding energy were determined through molecular docking. Additionally, molecular dynamics simulations was conducted to study the conformational changes induced by the ligands in the protein structure. The results showed that apigenin and salvianolic acid achieved deeper parts of the cavity compared to luteolin and rosmarinic acid and formed stable complexes with the enzyme. In the rosmarinic acid complex, the enzyme exhibited the most exposed conformation. On the other hand, luteolin binding caused a small closure of the opening, suggesting a potentially ATP-competitive role. Our results suggest these compounds as lead candidates for the design of GSK3-β inhibitors.
Collapse
Affiliation(s)
- Sara Zareei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saeed Pourmand
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, PO Box: 51666-16471, Tabriz, Iran.
| | - Marzieh Eskandarzadeh
- Research Committee of Faculty of Pharmacy, Lorestan University of Medical Science, Khorramabad, Iran
| | - Shokoufeh Massahi
- Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran.
| |
Collapse
|
15
|
Smith K, Fan J, Marriner GA, Gerdes J, Kessler R, Zinn KR. Distribution of insulin in primate brain following nose-to-brain transport. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12459. [PMID: 38469552 PMCID: PMC10925727 DOI: 10.1002/trc2.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Introduction Nose-to-brain (N2B) insulin delivery has potential for Alzheimer's disease (AD) therapy. However, clinical implementation has been challenging without methods to follow N2B delivery non-invasively. Positron emission tomography (PET) was applied to measure F-18-labeled insulin ([18F]FB-insulin) from intranasal dosing to brain uptake in non-human primates following N2B delivery. Methods [18F]FB-insulin was prepared by reacting A1,B29-di(tert-butyloxycarbonyl)insulin with [18F]-N-succinimidyl-4-fluorobenzoate. Three methods of N2B delivery for [18F]FB-insulin were compared - delivery as aerosol via tubing (rhesus macaque, n = 2), as aerosol via preplaced catheter (rhesus macaque, n = 3), and as solution via preplaced catheter (cynomolgus macaque, n = 3). Following dosing, dynamic PET imaging (120 min) quantified delivery efficiency to the nasal cavity and whole brain. Area under the time-activity curve was calculated for 46 regions of the cynomolgus macaque brain to determine regional [18F]FB-insulin levels. Results Liquid instillation of [18F]FB-insulin by catheter outperformed aerosol methods for delivery to the subject (39.89% injected dose vs 10.03% for aerosol via tubing, 0.17% for aerosol by catheter) and subsequently to brain (0.34% injected dose vs 0.00020% for aerosol via tubing, 0.05% for aerosol by catheter). [18F]FB-insulin was rapidly transferred across the cribriform plate to limbic and frontotemporal areas responsible for emotional and memory processing. [18F]FB-insulin half-life was longer in olfactory nerve projection sites with high insulin receptor density compared to the whole brain. Discussion The catheter-based liquid delivery approach combined with PET imaging successfully tracked the fate of N2B [18F]FB-insulin and is thought to be broadly applicable for assessments of other therapeutic agents. This method can be rapidly applied in humans to advance clinical evaluation of N2B insulin as an AD therapeutic. Highlights for [18F]FB-insulin passage across the cribriform plate was detected by PET.Intranasal [18F]FB-insulin reached the brain within 13 min.[18F]FB-insulin activity was highest in emotional and memory processing regions.Aerosol delivery was less efficient than liquid instillation by preplaced catheter.Insulin delivery to the cribriform plate was critical for arrival in the brain.
Collapse
Affiliation(s)
- Kylie Smith
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMichiganUSA
- Institute for Quantitative Health Science and Engineering, Michigan State UniversityEast LansingMichiganUSA
| | - Jinda Fan
- Institute for Quantitative Health Science and Engineering, Michigan State UniversityEast LansingMichiganUSA
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
- Department of RadiologyMichigan State UniversityEast LansingMichiganUSA
| | | | - John Gerdes
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Robert Kessler
- Department of RadiologyMichigan State UniversityEast LansingMichiganUSA
| | - Kurt R. Zinn
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMichiganUSA
- Institute for Quantitative Health Science and Engineering, Michigan State UniversityEast LansingMichiganUSA
- Department of RadiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
16
|
Joshi D. Incretin Therapy and Insulin Signaling: Therapeutic Targets for Diabetes And Associated Dementia. Curr Diabetes Rev 2024; 21:57-63. [PMID: 38425117 DOI: 10.2174/0115733998279875240216093902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Dementia is the primary cause of disability and dependence among the elderly population worldwide. The population living with dementia is anticipated to double in the next 17 years. Recent studies show the fact that compared to people without diabetes, people with Type 2 Diabetes (T2D) have about a 60% increased chance of developing dementia. In addition to cholinergic function being downregulated, improper insulin signalling also has a negative impact on synaptic plasticity and neuronal survival. Type 2 diabetes and dementia share various similar pathophysiological components. The ageing of the population and the ensuing rise in dementia prevalence are both results of ongoing medical advancements. It is possible that restoring insulin signaling could be a helpful therapy against dementia, as it is linked to both diminished cognitive function and the development of dementia, including AD. This review article comprehensively focused on scientific literature to analyze the relationship of Dementia with diabetes, recent experimental studies, and insight into incretin-based drug therapy for diabetes-related dementia.
Collapse
Affiliation(s)
- Deepika Joshi
- Siddhartha Institute of Pharmacy, Sahastradhara Road, Dehradun, Uttarakhand, India
- School of Pharmacy, Graphic Era Hill University, Clement Town Dehradun, Uttarakhand, India
| |
Collapse
|
17
|
Mangiafico SP, Tuo QZ, Li XL, Liu Y, Haralambous C, Ding XL, Ayton S, Wang Q, Laybutt DR, Chan JY, Zhang X, Kos C, Thomas HE, Loudovaris T, Yang CH, Joannides CN, Lamont BJ, Dai L, He HH, Dong B, Andrikopoulos S, Bush AI, Lei P. Tau suppresses microtubule-regulated pancreatic insulin secretion. Mol Psychiatry 2023; 28:3982-3993. [PMID: 37735502 DOI: 10.1038/s41380-023-02267-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet β-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in β-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.
Collapse
Affiliation(s)
- Salvatore P Mangiafico
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiao-Lan Li
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yu Liu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Christian Haralambous
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Xu-Long Ding
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Qing Wang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Jeng Yie Chan
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Xiang Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Cameron Kos
- St. Vincent's Institute of Medical Research and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute of Medical Research and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
- Institute for Cellular Transplantation, Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, 85724-5066, USA
| | - Chieh-Hsin Yang
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Christos N Joannides
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Benjamin J Lamont
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Lunzhi Dai
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Hai-Huai He
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Biao Dong
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Sofianos Andrikopoulos
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia.
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
18
|
Wu M, Li Y, Miao Y, Qiao H, Wang Y. Exploring the efficient natural products for Alzheimer's disease therapy via Drosophila melanogaster (fruit fly) models. J Drug Target 2023; 31:817-831. [PMID: 37545435 DOI: 10.1080/1061186x.2023.2245582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Alzheimer's disease (AD) is a grievous neurodegenerative disorder and a major form of senile dementia, which is partially caused by abnormal amyloid-beta peptide deposition and Tau protein phosphorylation. But until now, the exact pathogenesis of AD and its treatment strategy still need to investigate. Fortunately, natural products have shown potential as therapeutic agents for treating symptoms of AD due to their neuroprotective activity. To identify the excellent lead compounds for AD control from natural products of herbal medicines, as well as, detect their modes of action, suitable animal models are required. Drosophila melanogaster (fruit fly) is an important model for studying genetic and cellular biological pathways in complex biological processes. Various Drosophila AD models were broadly used for AD research, especially for the discovery of neuroprotective natural products. This review focused on the research progress of natural products in AD disease based on the fruit fly AD model, which provides a reference for using the invertebrate model in developing novel anti-AD drugs.
Collapse
Affiliation(s)
- Mengdi Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
de la Monte SM, Goel A, Tong M, Delikkaya B. Agent Orange Causes Metabolic Dysfunction and Molecular Pathology Reminiscent of Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:751-766. [PMID: 37662613 PMCID: PMC10473158 DOI: 10.3233/adr-230046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 09/05/2023] Open
Abstract
Background Agent Orange, an herbicide used during the Vietnam War, contains 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). Agent Orange has teratogenic and carcinogenic effects, and population-based studies suggest Agent Orange exposures lead to higher rates of toxic and degenerative pathologies in the peripheral and central nervous system (CNS). Objective This study examines the potential contribution of Agent Orange exposures to neurodegeneration. Methods Human CNS-derived neuroepithelial cells (PNET2) treated with 2,4-D and 2,4,5-T were evaluated for viability, mitochondrial function, and Alzheimer's disease (AD)-related proteins. Results Treatment with 250μg/ml 2,4-D or 2,4,5-T significantly impaired mitochondrial function, caused degenerative morphological changes, and reduced viability in PNET2 cells. Correspondingly, glyceraldehyde-3-phosphate dehydrogenase expression which is insulin-regulated and marks the integrity of carbohydrate metabolism, was significantly inhibited while 4-hydroxy-2-nonenal, a marker of lipid peroxidation, was increased. Tau neuronal cytoskeletal protein was significantly reduced by 2,4,5-T, and relative tau phosphorylation was progressively elevated by 2,4,5-T followed by 2,4-D treatment relative to control. Amyloid-β protein precursor (AβPP) was increased by 2,4,5-T and 2,4-D, and 2,4,5-T caused a statistical trend (0.05 < p<0.10) increase in Aβ. Finally, altered cholinergic function due to 2,4,5-T and 2,4-D exposures was marked by significantly increased choline acetyltransferase and decreased acetylcholinesterase expression, corresponding with responses in early-stage AD. Conclusion Exposures to Agent Orange herbicidal chemicals rapidly damage CNS neurons, initiating a path toward AD-type neurodegeneration. Additional research is needed to understand the permanency of these neuropathologic processes and the added risks of developing AD in Agent Orange-exposed aging Vietnam Veterans.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Anuva Goel
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Busra Delikkaya
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
20
|
Lee S, Byun MS, Yi D, Kim MJ, Jung JH, Kong N, Jung G, Ahn H, Lee JY, Kang KM, Sohn CH, Lee YS, Kim YK, Lee DY. Body mass index and two-year change of in vivo Alzheimer's disease pathologies in cognitively normal older adults. Alzheimers Res Ther 2023; 15:108. [PMID: 37312229 DOI: 10.1186/s13195-023-01259-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Low body mass index (BMI) or underweight status in late life is associated with an increased risk of dementia or Alzheimer's disease (AD). However, the relationship between late-life BMI and prospective longitudinal changes of in-vivo AD pathology has not been investigated. METHODS This prospective longitudinal study was conducted as part of the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease (KBASE). A total of 194 cognitive normal older adults were included in the analysis. BMI at baseline was measured, and two-year changes in brain Aβ and tau deposition on PET imaging were used as the main outcomes. Linear mixed-effects (LME) models were used to examine the relationships between late-life BMI and longitudinal change in AD neuropathological biomarkers. RESULTS A lower BMI at baseline was significantly associated with a greater increase in tau deposition in AD-signature region over 2 years (β, -0.018; 95% CI, -0.028 to -0.004; p = .008), In contrast, BMI was not related to two-year changes in global Aβ deposition (β, 0.0002; 95% CI, -0.003 to 0.002, p = .671). An additional exploratory analysis for each sex showed lower baseline BMI was associated with greater increases in tau deposition in males (β, -0.027; 95% CI, -0.046 to -0.009; p = 0.007), but not in females. DISCUSSION The findings suggest that lower BMI in late-life may predict or contribute to the progression of tau pathology over the subsequent years in cognitively unimpaired older adults.
Collapse
Affiliation(s)
- Seunghoon Lee
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, 10475, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Min Jung Kim
- Department of Neuropsychiatry, Nowon Eulji University Hospital, Seoul, 01830, Republic of Korea
| | - Joon Hyung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Nayeong Kong
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Hyejin Ahn
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
21
|
Kooshki L, Zarneshan SN, Fakhri S, Moradi SZ, Echeverria J. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154686. [PMID: 36804755 DOI: 10.1016/j.phymed.2023.154686] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunctionality which results in disability and human life-threatening events. In recent decades, NDDs are on the rise. Besides, conventional drugs have not shown potential effectiveness to attenuate the complications of NDDs. So, exploring novel therapeutic agents is an urgent need to combat such disorders. Accordingly, growing evidence indicates that polyphenols and alkaloids are promising natural candidates, possessing several beneficial pharmacological effects against diseases. Considering the complex pathophysiological mechanisms behind NDDs, Janus kinase (JAK), insulin receptor substrate (IRS), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT) seem to play critical roles during neurodegeneration/neuroregeneration. In this line, modulation of the JAK/STAT and IRS/PI3K signaling pathways and their interconnected mediators by polyphenols/alkaloids could play pivotal roles in combating NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, aging, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), depression and other neurological disorders. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of polyphenols/alkaloids as multi-target natural products against NDDs which are critically passing through the modulation of the JAK/STAT and IRS/PI3K signaling pathways. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of polyphenols and alkaloids on the JAK/STAT and IRS/PI3K signaling pathways in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including Scopus, PubMed, ScienceDirect, and associated reference lists. RESULTS In the present study 141 articles were included from a total of 1267 results. The results showed that phenolic compounds such as curcumin, epigallocatechin-3-gallate, and quercetin, and alkaloids such as berberine could be introduced as new strategies in combating NDDs through JAK/STAT and IRS/PI3K signaling pathways. This is the first systematic review that reveals the correlation between the JAK/STAT and IRS/PI3K axis which is targeted by phytochemicals in NDDs. Hence, this review highlighted promising insights into the neuroprotective potential of polyphenols and alkaloids through the JAK/STAT and IRS/PI3K signaling pathway and interconnected mediators toward neuroprotection. CONCLUSION Amongst natural products, phenolic compounds and alkaloids are multi-targeting agents with the most antioxidants and anti-inflammatory effects possessing the potential of combating NDDs with high efficacy and lower toxicity. However, additional reports are needed to prove the efficacy and possible side effects of natural products.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
22
|
Zhang Y, Deng S, Zhong H, Liu M, Ding J, Geng R, Tu Q. Exploration and Clinical Verification of the Blood Co-Expression Genes of Type 2 Diabetes Mellitus and Mild Cognitive Dysfunction in the Elderly. Biomedicines 2023; 11:biomedicines11040993. [PMID: 37189611 DOI: 10.3390/biomedicines11040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 05/17/2023] Open
Abstract
With the development of society, the incidence of dementia and type 2 diabetes (T2DM) in the elderly has been increasing. Although the correlation between T2DM and mild cognitive impairment (MCI) has been confirmed in the previous literature, the interaction mechanism remains to be clarified. To explore the co-pathogenic genes in the blood of MCI and T2DM patients, clarify the correlation between T2DM and MCI, achieve the purpose of early disease prediction, and provide new ideas for the prevention and treatment of dementia. We downloaded T2DM and MCI microarray data from GEO databases and identified the differentially expressed genes associated with MCI and T2DM. We obtained co-expressed genes by intersecting differentially expressed genes. Then, we performed GO and KEGG enrichment analysis of co-DEGs. Next, we constructed the PPI network and found the hub genes in the network. By constructing the ROC curve of hub genes, the most valuable genes for diagnosis were obtained. Finally, the correlation between MCI and T2DM was clinically verified by means of a current situation investigation, and the hub gene was verified by qRT-PCR. A total of 214 co-DEGs were selected, 28 co-DEGs were up-regulated, and 90 co-DEGs were down-regulated. Functional enrichment analysis showed that co-DEGs were mainly enriched in metabolic diseases and some signaling pathways. The construction of the PPI network identified the hub genes in MCI and T2DM co-expression genes. We identified nine hub genes of co-DEGs, namely LNX2, BIRC6, ANKRD46, IRS1, TGFB1, APOA1, PSEN1, NPY, and ALDH2. Logistic regression analysis and person correlation analysis showed that T2DM was correlated with MCI, and T2DM increased the risk of cognitive impairment. The qRT-PCR results showed that the expressions of LNX2, BIRC6, ANKRD46, TGFB1, PSEN1, and ALDH2 were consistent with the results of bioinformatic analysis. This study screened the co-expressed genes of MCI and T2DM, which may provide new therapeutic targets for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Shengfeng Deng
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Hongfei Zhong
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Miao Liu
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jingwen Ding
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Rulin Geng
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Qiuyun Tu
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
23
|
Gil‐Polo C, Martinez‐Horta S, Sampedro Santalo F, Martín‐Palencia M, Gundín‐Menéndez S, Alvarez‐Baños P, Maza‐Pereg L, Calvo S, Collazo C, Alonso‐García E, Riñones‐Mena E, Arrabal‐Alonso A, Núñez Rodriguez J, Saiz‐Rodriguez M, Aguado L, Mariscal N, Muñoz‐Siscart I, Piñeiro D, Rivadeneyra J, Diez‐Fairen M, Miguel‐Pérez I, Cubo E. Association Between Insulin-Like Growth Factor-1 and Social Cognition in Huntington's Disease. Mov Disord Clin Pract 2022; 10:279-284. [PMID: 36825059 PMCID: PMC9941927 DOI: 10.1002/mdc3.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background Insulin-like growth factor 1 (IGF-1) seems to be involved in the neural circuits associated with social cognition and brain structure. Objectives To investigate the association of IGF-1 levels with social cognition and brain structure in Huntington's disease (HD). Methods We evaluated social cognition using the Ekman test in 22 HD patients and 19 matched controls. Brain structure was assessed using standard volume-based voxel-based morphometry and surface-based cortical thickness pipeline. We analyzed the association of IGF-1 levels with social cognition and brain structure using adjusted regression analysis. Results Social cognition was worse in HD patients (P < 0.001), on antidopaminergic drugs (P = 0.02), and with lower IGF-1 levels (P = 0.04). In neuroimaging analyses, lower IGF-1 levels were associated with social cognition impairment and atrophy mainly in frontotemporal regions (P < 0.05 corrected). Conclusions In HD, abnormal IGF-1 function seems to be associated with brain atrophy leading to clinical deficits in social cognition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laura Maza‐Pereg
- Endocrinology DepartmentHospital Universitario BurgosBurgosSpain
| | - Sara Calvo
- Research UnitHospital Universitario BurgosBurgosSpain
| | - Carla Collazo
- Research UnitHospital Universitario BurgosBurgosSpain
| | | | | | | | | | | | - Laura Aguado
- Neurology DepartmentHospital Universitario BurgosBurgosSpain
| | | | | | - Dolores Piñeiro
- Psychiatry DepartmentHospital Universitario BurgosBurgosSpain
| | | | | | | | - Esther Cubo
- Neurology DepartmentHospital Universitario BurgosBurgosSpain,University of BurgosBurgosSpain
| |
Collapse
|
24
|
Hamzé R, Delangre E, Tolu S, Moreau M, Janel N, Bailbé D, Movassat J. Type 2 Diabetes Mellitus and Alzheimer's Disease: Shared Molecular Mechanisms and Potential Common Therapeutic Targets. Int J Mol Sci 2022; 23:ijms232315287. [PMID: 36499613 PMCID: PMC9739879 DOI: 10.3390/ijms232315287] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of diabetes mellitus and Alzheimer's disease is increasing alarmingly with the aging of the population. Numerous epidemiological data suggest that there is a strong association between type 2 diabetes and an increased risk of dementia. These diseases are both degenerative and progressive and share common risk factors. The amyloid cascade plays a key role in the pathophysiology of Alzheimer's disease. The accumulation of amyloid beta peptides gradually leads to the hyperphosphorylation of tau proteins, which then form neurofibrillary tangles, resulting in neurodegeneration and cerebral atrophy. In Alzheimer's disease, apart from these processes, the alteration of glucose metabolism and insulin signaling in the brain seems to induce early neuronal loss and the impairment of synaptic plasticity, years before the clinical manifestation of the disease. The large amount of evidence on the existence of insulin resistance in the brain during Alzheimer's disease has led to the description of this disease as "type 3 diabetes". Available animal models have been valuable in the understanding of the relationships between type 2 diabetes and Alzheimer's disease, but to date, the mechanistical links are poorly understood. In this non-exhaustive review, we describe the main molecular mechanisms that may link these two diseases, with an emphasis on impaired insulin and IGF-1 signaling. We also focus on GSK3β and DYRK1A, markers of Alzheimer's disease, which are also closely associated with pancreatic β-cell dysfunction and type 2 diabetes, and thus may represent common therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Rim Hamzé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Etienne Delangre
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Stefania Tolu
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Manon Moreau
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Nathalie Janel
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Danielle Bailbé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Jamileh Movassat
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
- Correspondence: ; Tel.: +33-1-57-27-77-82; Fax: +33-1-57-27-77-91
| |
Collapse
|
25
|
Behroozi Z, Ramezani F, Nasirinezhad F. Human umbilical cord blood-derived platelet -rich plasma: a new window for motor function recovery and axonal regeneration after spinal cord injury. Physiol Behav 2022; 252:113840. [PMID: 35525286 DOI: 10.1016/j.physbeh.2022.113840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND There are complex mechanisms for reducing intrinsic repairability and neuronal regeneration following spinal cord injury (SCI). Platelet-rich plasma (PRP) is a rich source of growth factors and has been used to motivate the regeneration of peripheral nerves in neurodegenerative disorders. However, only a few studies have shown the effects of PRP on the SCI models. METHODS We investigated whether PRP derived from human umbilical cord blood (HUCB-PRP) could recover motor function in animals with spinal cord injury. Sixty adult male Wistar rats were randomly divided into 6 groups (n=60) as control, sham (laminectomy without induction of spinal cord injury), SCI, vehicle (SCI+ Platelet-Poor Plasma), PRP2day (SCI+PRP injection 2 days after SCI), and PRP14day (SCI+PRP injection 14 days after SCI). SCI was performed at the T12-T13 level. BBB test was carried out weekly after injury for six weeks. Caspase3 expression was determined using the Immunohistochemistry technique. The expression of GSK3β, CSF-tau, and MAG was determined using the Western blot technique. Data were analyzed by PRISM & SPSS software. RESULTS HUCB-PRP treated animals showed a higher locomotor function recovery than those in the SCI group (p<0.0001). The level of caspase3, GSK3β and CSF- Tau reduced and the MAG level in the spinal cord increased by the injection of HUCB-PRP in SCI animals. CONCLUSION Injection of HUCB-PRP enhanced hind limb locomotor performance by modulation of caspase3, GSK3β, CSF-tau, and MAG expression. Using HUCB-PRP could be a new therapeutic option for recovering motor function and axonal regeneration after SCI.
Collapse
Affiliation(s)
- Zahra Behroozi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran.
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Farinaz Nasirinezhad
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Department of Physiology, Iran University of Medical Sciences; Center for Experimental and Comparative Study, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Zhou J, Zhang Z, Yang Y, Liao F, Zhou P, Wang Y, Zhang H, Jiang H, Alinejad T, Shan G, Wu S. Deletion of serine racemase reverses neuronal insulin signaling inhibition by amyloid-β oligomers. J Neurochem 2022; 163:8-25. [PMID: 35839294 DOI: 10.1111/jnc.15664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
Dysregulation of insulin signaling in the Alzheimer's (AD) brain has been extensively reported. Serine racemase(SR) modulates insulin secretion in pancreatic islets. Similarly, we wonder whether or not SR regulates insulin synthesis and secretion in neurons, thereby modulating insulin signaling in the AD brain. Srr-knockout (Srr-/- ) mice generated with the CRISPR/Cas9 technique were used. Using immunofluorescence and fluorescence in situ hybridization, the levels of insulin protein and insulin(ins2) mRNA significantly increased in the hippocampal but not in the hypothalamic sections of Srr-/- mice compared with WT mice. Using real-time quantitative PCR, ins2 mRNA from primary hippocampal neuronal cultures of Srr-/- mice significantly increased compared with the cultured neurons from WT mice. Notably, the secretion of proinsulin C-peptide increased in Srr-/- neurons relative to WT neurons. By examining the membrane fractional proteins with immunoblotting, Srr-/- neurons retained ATP-dependent potassium channel on plasmalemma and correspondingly contained higher levels of p-AMPK. Under treatment by Aβ42, the phosphorylation levels of insulin receptor substrate at serine 616,636 (p-IRS1ser616,636 ) were significantly lower whereas p-AKT308 and p-AKT473 were higher in Srr-/- neurons, compared with WT neurons, respectively. The phosphorylated form of c-Jun N-terminal kinase decreased in the cultured Srr-/- neurons relative to the WT neurons upon Aβ42 treatment. In contrast, the phosphorylated protein kinase R remained at the same levels. Further, reactive oxygen species reduced in the cultured Srr-/- neurons under Aβ42 treatment relative to the WT neurons. Altogether, our study indicated that Srr deletion promoted insulin synthesis and secretion of proinsulin C-peptide, thereby reversing insulin resistance by Aβ42. This study suggests that targeting the neuronal SR may be utilized to enhance insulin signaling which is inhibited at the early stage of the AD brain.
Collapse
Affiliation(s)
- Jing Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Zhiwen Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Yuanhong Yang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Fei Liao
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Piansi Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Yan Wang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China.,College of Life and Environmental Sciences, Wenzhou University, Zhejiang, People's Republic of China
| | - Haiyan Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Zhejiang, China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| |
Collapse
|
27
|
Medina-Vera D, Navarro JA, Rivera P, Rosell-Valle C, Gutiérrez-Adán A, Sanjuan C, López-Gambero AJ, Tovar R, Suárez J, Pavón FJ, Baixeras E, Decara J, Rodríguez de Fonseca F. d-Pinitol promotes tau dephosphorylation through a cyclin-dependent kinase 5 regulation mechanism: A new potential approach for tauopathies? Br J Pharmacol 2022; 179:4655-4672. [PMID: 35760415 PMCID: PMC9544772 DOI: 10.1111/bph.15907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose Recent evidence links brain insulin resistance with neurodegenerative diseases, where hyperphosphorylated tau protein contributes to neuronal cell death. In the present study, we aimed to evaluate if d‐pinitol inositol, which acts as an insulin sensitizer, affects the phosphorylation status of tau protein. Experimental Approach We studied the pharmacological effect of d‐pinitol on insulin signalling and tau phosphorylation in the hippocampus of Wistar and Zucker rats. To this end, we evaluated by western blotting the Akt pathway and its downstream proteins as being one of the main insulin‐mediator pathways. Also, we explored the functional status of additional kinases phosphorylating tau, including PKA, ERK1/2, AMPK and CDK5. We utilized the 3xTg mouse model as a control for tauopathy, since it carries tau mutations that promote phosphorylation and aggregation. Key Results Surprisingly, we discovered that oral d‐pinitol treatment lowered tau phosphorylation significantly, but not through the expected kinase GSK‐3 regulation. An extensive search for additional kinases phosphorylating tau revealed that this effect was mediated through a mechanism dependent on the reduction of the activity of the CDK5, affecting both its p35 and p25 subunits. This effect disappeared in leptin‐deficient Zucker rats, uncovering that the association of leptin deficiency, obesity, dyslipidaemia and hyperinsulinaemia abrogates d‐pinitol actions on tau phosphorylation. The 3xTg mice confirmed d‐pinitol effectiveness in a genetic AD‐tauopathy. Conclusion and Implications The present findings suggest that d‐pinitol, by regulating CDK5 activity through a decrease of CDK5R1, is a potential drug for developing treatments for neurological disorders such as tauopathies.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Facultad de Medicina, Universidad de Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA and CIBER Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario Virgen de la Victoria, UGC del Corazón, Málaga, Spain
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Carlos Sanjuan
- Euronutra S.L., Parque Tecnológico de Andalucía, Málaga, Spain
| | - Antonio Jesús López-Gambero
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Rubén Tovar
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA and CIBER Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario Virgen de la Victoria, UGC del Corazón, Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain
| |
Collapse
|
28
|
Piccialli I, Tedeschi V, Caputo L, D’Errico S, Ciccone R, De Feo V, Secondo A, Pannaccione A. Exploring the Therapeutic Potential of Phytochemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front Pharmacol 2022; 13:876614. [PMID: 35600880 PMCID: PMC9114803 DOI: 10.3389/fphar.2022.876614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic, complex neurodegenerative disorder mainly characterized by the irreversible loss of memory and cognitive functions. Different hypotheses have been proposed thus far to explain the etiology of this devastating disorder, including those centered on the Amyloid-β (Aβ) peptide aggregation, Tau hyperphosphorylation, neuroinflammation and oxidative stress. Nonetheless, the therapeutic strategies conceived thus far to treat AD neurodegeneration have proven unsuccessful, probably due to the use of single-target drugs unable to arrest the progressive deterioration of brain functions. For this reason, the theoretical description of the AD etiology has recently switched from over-emphasizing a single deleterious process to considering AD neurodegeneration as the result of different pathogenic mechanisms and their interplay. Moreover, much relevance has recently been conferred to several comorbidities inducing insulin resistance and brain energy hypometabolism, including diabetes and obesity. As consequence, much interest is currently accorded in AD treatment to a multi-target approach interfering with different pathways at the same time, and to life-style interventions aimed at preventing the modifiable risk-factors strictly associated with aging. In this context, phytochemical compounds are emerging as an enormous source to draw on in the search for multi-target agents completing or assisting the traditional pharmacological medicine. Intriguingly, many plant-derived compounds have proven their efficacy in counteracting several pathogenic processes such as the Aβ aggregation, neuroinflammation, oxidative stress and insulin resistance. Many strategies have also been conceived to overcome the limitations of some promising phytochemicals related to their poor pharmacokinetic profiles, including nanotechnology and synthetic routes. Considering the emerging therapeutic potential of natural medicine, the aim of the present review is therefore to highlight the most promising phytochemical compounds belonging to two major classes, polyphenols and monoterpenes, and to report the main findings about their mechanisms of action relating to the AD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Anna Pannaccione,
| |
Collapse
|
29
|
Yang JJ. Brain insulin resistance and the therapeutic value of insulin and insulin-sensitizing drugs in Alzheimer's disease neuropathology. Acta Neurol Belg 2022; 122:1135-1142. [PMID: 35482277 DOI: 10.1007/s13760-022-01907-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
The incidence of Alzheimer's disease (AD) is significantly higher in people with diabetes. Insulin and insulin receptor (IR) signaling intermediates are expressed in the brain. Insulin exerts multiple function in the brain. The role of compromised IR signaling in AD pathogenesis and the therapeutic value of insulin attract broad attention. This review summarizes the collective insulin action in the brain related to key factors of AD pathogenesis, updates the key features of insulin resistance in the AD brain and assesses the therapeutic potential of insulin and insulin-sensitizing drugs. Insulin stimulates neural growth and survival, suppresses amyloidogenic processing of the amyloid precursor protein (AβPP) and inhibits the Tau phosphorylation kinase, glycogen synthase kinase 3β. Central nervous IR signaling regulates systemic metabolism and increases glucose availability to neurons. The expression of IR and its downstream effectors is reduced in AD brain tissues. Insulin and insulin-sensitizing drugs can improve cognitive function in AD patients and AD animal models. Systemic insulin delivery is less effective than intranasal insulin treatment. The penetrance of insulin-sensitizing drugs to the blood brain barrier is problematic and new brain-prone drugs need be developed. Insulin resistance manifested by the degradation and the altered phosphorylation of IR intermediates precedes overt AD syndrome. Type 3 diabetes as a pure form of brain insulin resistance without systemic insulin resistance is proposed as a causal factor in AD. Further research is needed for the identification of critical factors leading to impaired IR signaling and the development of new molecules to stimulate brain IR signaling.
Collapse
Affiliation(s)
- James J Yang
- Marriotts Ridge High School, 12100 Woodford Dr, Marriottsville, MD, 21104, USA.
- , 3060 Seneca Chief Trail, Ellicott City, MD, 21042, USA.
| |
Collapse
|
30
|
Islam M, Shen F, Regmi D, Du D. Therapeutic strategies for tauopathies and drug repurposing as a potential approach. Biochem Pharmacol 2022; 198:114979. [PMID: 35219701 PMCID: PMC9159505 DOI: 10.1016/j.bcp.2022.114979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
Tauopathies are neurodegenerative diseases characterized by the deposition of abnormal tau in the brain. To date, there are no disease-modifying therapies approved by the U.S. Food and Drug Administration (US FDA) for the treatment of tauopathies. In the past decades, extensive efforts have been provided to develop disease-modifying therapies to treat tauopathies. Specifically, exploring existing drugs with the intent of repurposing for the treatment of tauopathies affords a reasonable alternative to discover potent drugs for treating these formidable diseases. Drug repurposing will not only reduce formulation and development stage effort and cost but will also take a key advantage of the established toxicological studies, which is one of the main causes of clinical trial failure of new molecules. In this review, we provide an overview of the current treatment strategies for tauopathies and the recent progress in drug repurposing as an alternative approach to treat tauopathies.
Collapse
Affiliation(s)
- Majedul Islam
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States.
| | - Fengyun Shen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States.
| |
Collapse
|
31
|
Su M, Zhang X, Yuan J, Zhang X, Li F. The Role of Insulin-like Peptide in Maintaining Hemolymph Glucose Homeostasis in the Pacific White Shrimp Litopenaeus vannamei. Int J Mol Sci 2022; 23:ijms23063268. [PMID: 35328689 PMCID: PMC8948857 DOI: 10.3390/ijms23063268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin-like peptide (ILP) has been identified in various crustaceans, but whether it has a similar function in regulating hemolymph glucose as vertebrate insulin is unclear. We analyzed the components of hemolymph sugar in the Pacific white shrimp, Litopenaeus vannamei, and investigated the changes of hemolymph glucose concentration and the expressions of ILP and glucose metabolism genes under different treatments. We found glucose was a major component of hemolymph sugar in shrimp. Starvation caused hemolymph glucose to rise first and then decline, and the raised hemolymph glucose after exogenous glucose injection returned to basal levels within a short time, indicating that shrimp have a regulatory mechanism to maintain hemolymph glucose homeostasis. In addition, injections of bovine insulin and recombinant LvILP protein both resulted in a fast decline in hemolymph glucose. Notably, RNA interference of LvILP did not significantly affect hemolymph glucose levels, but it inhibited exogenous glucose clearance. Based on the detection of glucose metabolism genes, we found LvILP might maintain hemolymph glucose stability by regulating the expression of these genes. These results suggest that ILP has a conserved function in shrimp similar to insulin in vertebrates and plays an important role in maintaining hemolymph glucose homeostasis.
Collapse
Affiliation(s)
- Manwen Su
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.S.); (J.Y.); (X.Z.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.S.); (J.Y.); (X.Z.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| | - Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.S.); (J.Y.); (X.Z.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.S.); (J.Y.); (X.Z.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.S.); (J.Y.); (X.Z.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Michailidis M, Moraitou D, Tata DA, Kalinderi K, Papamitsou T, Papaliagkas V. Alzheimer's Disease as Type 3 Diabetes: Common Pathophysiological Mechanisms between Alzheimer's Disease and Type 2 Diabetes. Int J Mol Sci 2022; 23:2687. [PMID: 35269827 PMCID: PMC8910482 DOI: 10.3390/ijms23052687] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/27/2022] Open
Abstract
Globally, the incidence of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) epidemics is increasing rapidly and has huge financial and emotional costs. The purpose of the current review article is to discuss the shared pathophysiological connections between AD and T2DM. Research findings are presented to underline the vital role that insulin plays in the brain's neurotransmitters, homeostasis of energy, as well as memory capacity. The findings of this review indicate the existence of a mechanistic interplay between AD pathogenesis with T2DM and, especially, disrupted insulin signaling. AD and T2DM are interlinked with insulin resistance, neuroinflammation, oxidative stress, advanced glycosylation end products (AGEs), mitochondrial dysfunction and metabolic syndrome. Beta-amyloid, tau protein and amylin can accumulate in T2DM and AD brains. Given that the T2DM patients are not routinely evaluated in terms of their cognitive status, they are rarely treated for cognitive impairment. Similarly, AD patients are not routinely evaluated for high levels of insulin or for T2DM. Studies suggesting AD as a metabolic disease caused by insulin resistance in the brain also offer strong support for the hypothesis that AD is a type 3 diabetes.
Collapse
Affiliation(s)
- Michalis Michailidis
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (D.M.); (D.A.T.)
| | - Despina Moraitou
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (D.M.); (D.A.T.)
| | - Despina A. Tata
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (D.M.); (D.A.T.)
| | - Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theodora Papamitsou
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
33
|
Potential role of Drug Repositioning Strategy (DRS) for management of tauopathy. Life Sci 2022; 291:120267. [PMID: 34974076 DOI: 10.1016/j.lfs.2021.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 01/08/2023]
Abstract
Tauopathy is a term that has been used to represent a pathological condition in which hyperphosphorylated tau protein aggregates in neurons and glia which results in neurodegeneration, synapse loss and dysfunction and cognitive impairments. Recently, drug repositioning strategy (DRS) becomes a promising field and an alternative approach to advancing new treatments from actually developed and FDA approved drugs for an indication other than the indication it was originally intended for. This paradigm provides an advantage because the safety of the candidate compound has already been established, which abolishes the need for further preclinical safety testing and thus substantially reduces the time and cost involved in progressing of clinical trials. In the present review, we focused on correlation between tauopathy and common diseases as type 2 diabetes mellitus and the global virus COVID-19 and how tau pathology can aggravate development of these diseases in addition to how these diseases can be a risk factor for development of tauopathy. Moreover, correlation between COVID-19 and type 2 diabetes mellitus was also discussed. Therefore, repositioning of a drug in the daily clinical practice of patients to manage or prevent two or more diseases at the same time with lower side effects and drug-drug interactions is a promising idea. This review concluded the results of pre-clinical and clinical studies applied on antidiabetics, COVID-19 medications, antihypertensives, antidepressants and cholesterol lowering drugs for possible drug repositioning for management of tauopathy.
Collapse
|
34
|
Mohseni-Moghaddam P, Ghobadian R, Khaleghzadeh-Ahangar H. Dementia in Diabetes mellitus and Atherosclerosis; Two Interrelated Systemic Diseases. Brain Res Bull 2022; 181:87-96. [DOI: 10.1016/j.brainresbull.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/18/2021] [Accepted: 01/24/2022] [Indexed: 12/06/2022]
|
35
|
Miller Y. Advancements and future directions in research of the roles of insulin in amyloid diseases. Biophys Chem 2021; 281:106720. [PMID: 34823073 DOI: 10.1016/j.bpc.2021.106720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022]
Abstract
Amyloid diseases, such as type 2 diabetes, Alzheimer's disease and Parkinson's disease are characterized by amyloid aggregates. Insulin is released from the pancreas, and it is known that insulin downstream signaling molecules are located majorly in the regions of cortex and hippocampus. Therefore, insulin plays crucial roles not only in the pancreas, but also in the brain. Recent studies have focused on the role of insulin in amyloid diseases. This review demonstrates the recent studies in which insulin affects amyloid aggregation. Specifically, molecular modeling studies provide insights into the molecular mechanisms of the effects of insulin in amyloid aggregates. Still, experimental studies are required to provide insights into the kinetics effects. This review opens new avenues for future studies on insulin molecules and amyloid aggregation.
Collapse
Affiliation(s)
- Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel; Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| |
Collapse
|
36
|
Maigler F, Ladel S, Flamm J, Gänger S, Kurpiers B, Kiderlen S, Völk R, Hamp C, Hartung S, Spiegel S, Soleimanizadeh A, Eberle K, Hermann R, Krainer L, Pitzer C, Schindowski K. Selective CNS Targeting and Distribution with a Refined Region-Specific Intranasal Delivery Technique via the Olfactory Mucosa. Pharmaceutics 2021; 13:pharmaceutics13111904. [PMID: 34834319 PMCID: PMC8620656 DOI: 10.3390/pharmaceutics13111904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022] Open
Abstract
Intranasal drug delivery is a promising approach for the delivery of drugs to the CNS, but too heterogenous, unprecise delivery methods without standardization decrease the quality of many studies in rodents. Thus, the lack of a precise and region-specific application technique for mice is a major drawback. In this study, a previously developed catheter-based refined technique was validated against the conventional pipette-based method and used to specifically reach the olfactory or the respiratory nasal regions. This study successfully demonstrated region-specific administration at the olfactory mucosa resulting in over 20% of the administered fluorescein dose in the olfactory bulbs, and no peripheral bioactivity of insulin detemir and Fc-dependent uptake of two murine IgG1 (11C7 and P3X) along the olfactory pathway to cortex and hippocampus. An scFv of 11C7 showed hardly any uptake to the CNS. Elimination was dependent on the presence of the IgG’s antigen. In summary, it was successfully demonstrated that region-specific intranasal administration via the olfactory region resulted in improved brain targeting and reduced peripheral targeting in mice. The data are discussed with regard to their clinical potential.
Collapse
Affiliation(s)
- Frank Maigler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simone Ladel
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Stella Gänger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Medical Faculty, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; (B.K.); (C.P.)
| | - Stefanie Kiderlen
- Prospective Instruments LK OG, Stadtstraße 33, 6850 Dornbirn, Austria; (S.K.); (L.K.)
| | - Ronja Völk
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Carmen Hamp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Sunniva Hartung
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Sebastian Spiegel
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Arghavan Soleimanizadeh
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Katharina Eberle
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Rebecca Hermann
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
| | - Lukas Krainer
- Prospective Instruments LK OG, Stadtstraße 33, 6850 Dornbirn, Austria; (S.K.); (L.K.)
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; (B.K.); (C.P.)
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (F.M.); (S.L.); (J.F.); (S.G.); (R.V.); (C.H.); (S.H.); (S.S.); (A.S.); (K.E.); (R.H.)
- Correspondence:
| |
Collapse
|
37
|
He Z, You G, Liu Q, Li N. Alzheimer's Disease and Diabetes Mellitus in Comparison: The Therapeutic Efficacy of the Vanadium Compound. Int J Mol Sci 2021; 22:ijms222111931. [PMID: 34769364 PMCID: PMC8584792 DOI: 10.3390/ijms222111931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is an intractable neurodegenerative disease that leads to dementia, primarily in elderly people. The neurotoxicity of amyloid-beta (Aβ) and tau protein has been demonstrated over the last two decades. In line with these findings, several etiological hypotheses of AD have been proposed, including the amyloid cascade hypothesis, the oxidative stress hypothesis, the inflammatory hypothesis, the cholinergic hypothesis, et al. In the meantime, great efforts had been made in developing effective drugs for AD. However, the clinical efficacy of the drugs that were approved by the US Food and Drug Association (FDA) to date were determined only mild/moderate. We recently adopted a vanadium compound bis(ethylmaltolato)-oxidovanadium (IV) (BEOV), which was originally used for curing diabetes mellitus (DM), to treat AD in a mouse model. It was shown that BEOV effectively reduced the Aβ level, ameliorated the inflammation in brains of the AD mice, and improved the spatial learning and memory activities of the AD mice. These finding encouraged us to further examine the mechanisms underlying the therapeutic effects of BEOV in AD. In this review, we summarized the achievement of vanadium compounds in medical studies and investigated the prospect of BEOV in AD and DM treatment.
Collapse
Affiliation(s)
- Zhijun He
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
| | - Guanying You
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Nan Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-(0)755-2653-5432; Fax: +86-(0)755-8671-3951
| |
Collapse
|
38
|
Jung S, Kim Y, Kim M, Seo M, Kim S, Kim S, Lee S. Exercise Pills for Drug Addiction: Forced Moderate Endurance Exercise Inhibits Methamphetamine-Induced Hyperactivity through the Striatal Glutamatergic Signaling Pathway in Male Sprague Dawley Rats. Int J Mol Sci 2021; 22:ijms22158203. [PMID: 34360969 PMCID: PMC8348279 DOI: 10.3390/ijms22158203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Physical exercise reduces the extent, duration, and frequency of drug use in drug addicts during the drug initiation phase, as well as during prolonged addiction, withdrawal, and recurrence. However, information about exercise-induced neurobiological changes is limited. This study aimed to investigate the effects of forced moderate endurance exercise training on methamphetamine (METH)-induced behavior and the associated neurobiological changes. Male Sprague Dawley rats were subjected to the administration of METH (1 mg/kg/day, i.p.) and/or forced moderate endurance exercise (treadmill running, 21 m/min, 60 min/day) for 2 weeks. Over the two weeks, endurance exercise training significantly reduced METH-induced hyperactivity. METH and/or exercise treatment increased striatal dopamine (DA) levels, decreased p(Thr308)-Akt expression, and increased p(Tyr216)-GSK-3β expression. However, the phosphorylation levels of Ser9-GSK-3β were significantly increased in the exercise group. METH administration significantly increased the expression of NMDAr1, CaMKK2, MAPKs, and PP1 in the striatum, and exercise treatment significantly decreased the expression of these molecules. Therefore, it is apparent that endurance exercise inhibited the METH-induced hyperactivity due to the decrease in GSK-3β activation by the regulation of the striatal glutamate signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sooyeun Lee
- Correspondence: ; Tel.: +82-53-580-6651; Fax: +82-53-580-5164
| |
Collapse
|
39
|
Brain Glucose Transporters: Role in Pathogenesis and Potential Targets for the Treatment of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22158142. [PMID: 34360906 PMCID: PMC8348194 DOI: 10.3390/ijms22158142] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
The most common cause of dementia, especially in elderly people, is Alzheimer’s disease (AD), with aging as its main risk factor. AD is a multifactorial neurodegenerative disease. There are several factors increasing the risk of AD development. One of the main features of Alzheimer’s disease is impairment of brain energy. Hypometabolism caused by decreased glucose uptake is observed in specific areas of the AD-affected brain. Therefore, glucose hypometabolism and energy deficit are hallmarks of AD. There are several hypotheses that explain the role of glucose hypometabolism in AD, but data available on this subject are poor. Reduced transport of glucose into neurons may be related to decreased expression of glucose transporters in neurons and glia. On the other hand, glucose transporters may play a role as potential targets for the treatment of AD. Compounds such as antidiabetic drugs, agonists of SGLT1, insulin, siRNA and liposomes are suggested as therapeutics. Nevertheless, the suggested targets of therapy need further investigations.
Collapse
|
40
|
Motta C, Assogna M, Bonomi CG, Mascolo AP, De Lucia V, Semprini R, Mercuri NB, Koch G, Martorana A. Diabetes mellitus contributes to higher cerebrospinal fluid tau levels selectively in Alzheimer's disease patients with the APOE4 genotype. Eur J Neurol 2021; 28:3965-3971. [PMID: 34309155 DOI: 10.1111/ene.15039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE Diabetes mellitus (DM) is considered a risk factor for Alzheimer's disease (AD) and shares some pathological pathways, such as activation of amyloid cascade and tau phosphorylation. The aim of the present study was to investigate to what extent DM could impact on neurodegeneration within the AD continuum, using β amyloid (A: Aβ1-42 ) and phosphorylated tau (T: p-tau) biomarkers to discriminate patients by Alzheimer's pathological change (A+/T-) and AD (A+/T+), according to the National Institute on Aging and Alzheimer's Association classification. In addition, we aimed to evaluate whether APOE genotype interacts with tau protein and glucose metabolism dysfunction to affect the pathological process. METHODS For this retrospective observational study, 1350 patients were recruited. The patients underwent a complete clinical investigation, neuropsychological assessment, lumbar puncture for cerebrospinal fluid (CSF) biomarkers analysis and APOE genotyping. RESULTS A total of 607 patients fulfilled the clinical criteria of mild cognitive impairment or early dementia. In A+T- patients (n = 350), DM did not influence CSF biomarker levels, while among A+T+ patients (n = 257) those with DM showed increased total tau (t-tau) levels compared to non-DM patients (DM: 919.4 ± 444 vs. non-DM: 773.1 ± 348.2; p = 0.04), but similar p-tau (p = 0.72) and Aβ1-42 levels (p = 0.83). Furthermore, multivariable regression analyses showed a significant association between DM and t-tau CSF levels, adjusting for age and sex, in APOE E4+ carriers (coefficient 222.83, 95% confidence interval 47.49-398.1; p = 0.01), but not in APOE E4- (p = 0.53). CONCLUSIONS The present study shows a clear dependency of CSF t-tau levels on DM for APOE E4+ AD patients, suggesting important differences between APOE E4-related and non-related disease, with key implications for AD pathophysiology and treatment.
Collapse
Affiliation(s)
- Caterina Motta
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Martina Assogna
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | | - Vincenzo De Lucia
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy.,Neuroscience and Rehabilitation Department, Human Physiology Section, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
41
|
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells 2021; 10:1236. [PMID: 34069890 PMCID: PMC8157600 DOI: 10.3390/cells10051236] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer's disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jesús Burillo
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| |
Collapse
|
42
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
43
|
Tang X, Cardoso MA, Yang J, Zhou JB, Simó R. Impact of Intensive Glucose Control on Brain Health: Meta-Analysis of Cumulative Data from 16,584 Patients with Type 2 Diabetes Mellitus. Diabetes Ther 2021; 12:765-779. [PMID: 33548021 PMCID: PMC7947088 DOI: 10.1007/s13300-021-01009-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/23/2021] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Despite growing evidence that type 2 diabetes is associated with dementia, the question of whether intensive glucose control can prevent or arrest cognitive decline remains unanswered. In the analysis reported here, we explored the effect of intensive glucose control versus standard care on brain health, including structural abnormalities of the brain (atrophy, white matter hyperintensities, lacunar infarction, and cerebral microbleeds), cognitive dysfunction, and risk of dementia. METHODS We searched the PubMed and Embase databases, the Web of Science website, and the Clinicaltrial.gov registry for studies published in English prior to July 2020. Only studies with a randomized controlled trial (RCT) design were considered. We analyzed structural abnormalities of the brain (atrophy, white matter hyperintensities, lacunar infarction, and cerebral microbleeds), cognitive function (cognitive impairment, executive function, memory, attention, and information-processing speed), and dementia (Alzheimer's disease, vascular dementia, and mixed dementia). RESULTS Six studies (5 different RCTs) with 16,584 participants were included in this meta-analysis. One study that compared structural changes between groups receiving intensive versus conventional glucose control measures reported non-significant results. The results of the five studies, comprising four cohorts, indicated a significantly poorer decline in cognitive function in the intensive glucose control group (β - 0.03, 95% confidence interval [CI] - 0.05 to - 0.02) than in the conventional glucose control group. Further subgroup analysis showed a significant difference in the change in cognitive performance in composite cognitive function (β - 0.03, 95% CI - 0.05 to - 0.01) and memory (β - 0.13, 95% CI - 0.25 to - 0.02). One trial evaluated the prevalence of cognitive impairment and dementia between groups receiving intensive and conventional glucose control, respectively, and the differences were insignificant. CONCLUSION This meta-analysis suggests that intensive glucose control in patients with type 2 diabetes can slow down cognitive decline, especially the decline in composite cognition and memory function. However, further studies are necessary to confirm the impact of strict glucose control on structural abnormalities in the brain and the risk of dementia.
Collapse
Affiliation(s)
- Xingyao Tang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Marly A Cardoso
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Jinkui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Rafael Simó
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
44
|
Engin AB, Engin A. Risk of Alzheimer's disease and environmental bisphenol A exposure. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Thelen M, Brown-Borg HM. Does Diet Have a Role in the Treatment of Alzheimer's Disease? Front Aging Neurosci 2020; 12:617071. [PMID: 33424583 PMCID: PMC7785773 DOI: 10.3389/fnagi.2020.617071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
The aging process causes many changes to the brain and is a major risk factor for the development of neurodegenerative diseases such as Alzheimer's Disease (AD). Despite an already vast amount of research on AD, a greater understanding of the disease's pathology and therapeutic options are desperately needed. One important distinction that is also in need of further study is the ability to distinguish changes to the brain observed in early stages of AD vs. changes that occur with normal aging. Current FDA-approved therapeutic options for AD patients have proven to be ineffective and indicate the need for alternative therapies. Aging interventions including alterations in diet (such as caloric restriction, fasting, or methionine restriction) have been shown to be effective in mediating increased health and lifespan in mice and other model organisms. Because aging is the greatest risk factor for the development of neurodegenerative diseases, certain dietary interventions should be explored as they have the potential to act as a future treatment option for AD patients.
Collapse
Affiliation(s)
- Mitchell Thelen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
46
|
Reich N, Hölscher C. Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease. Front Neurosci 2020; 14:614828. [PMID: 33381011 PMCID: PMC7767977 DOI: 10.3389/fnins.2020.614828] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Much thought has been given to the impact of Amyloid Beta, Tau and Alpha-Synuclein in the development of Alzheimer's disease (AD) and Parkinson's disease (PD), yet the clinical failures of the recent decades indicate that there are further pathological mechanisms at work. Indeed, besides amyloids, AD and PD are characterized by the culminative interplay of oxidative stress, mitochondrial dysfunction and hyperfission, defective autophagy and mitophagy, systemic inflammation, BBB and vascular damage, demyelination, cerebral insulin resistance, the loss of dopamine production in PD, impaired neurogenesis and, of course, widespread axonal, synaptic and neuronal degeneration that leads to cognitive and motor impediments. Interestingly, the acylated form of the hormone ghrelin has shown the potential to ameliorate the latter pathologic changes, although some studies indicate a few complications that need to be considered in the long-term administration of the hormone. As such, this review will illustrate the wide-ranging neuroprotective properties of acylated ghrelin and critically evaluate the hormone's therapeutic benefits for the treatment of AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, A Second Hospital, Shanxi Medical University, Taiyuan, China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
47
|
Goswami S, Kareem O, Goyal RK, Mumtaz SM, Tonk RK, Gupta R, Pottoo FH. Role of Forkhead Transcription Factors of the O Class (FoxO) in Development and Progression of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:709-721. [PMID: 33001019 DOI: 10.2174/1871527319666201001105553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/20/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
In the Central Nervous System (CNS), a specific loss of focal neurons leads to mental and neurological disorders like dementia, Alzheimer's Disease (AD), Huntington's disease, Parkinson's disease, etc. AD is a neurological degenerative disorder, which is progressive and irreversible in nature and is the widely recognized reason for dementia in the geriatric populace. It affects 10% of people above the age of 65 and is the fourth driving reason for death in the United States. Numerous evidence suggests that the neuronal compartment is not the only genesis of AD, but transcription factors also hold significant importance in the occurrence and advancement of the disease. It is the need of the time to find the novel molecular targets and new techniques for treating or slowing down the progression of neurological disorders, especially AD. In this article, we summarised a conceivable association between transcriptional factors and their defensive measures against neurodegeneration and AD. The mammalian forkhead transcription factors of the class O (FoxO) illustrate one of the potential objectives for the development of new methodologies against AD and other neurocognitive disorders. The presence of FoxO is easily noticeable in the "cognitive centers" of the brain, specifically in the amygdala, hippocampus, and the nucleus accumbens. FoxO proteins are the prominent and necessary factors in memory formation and cognitive functions. FoxO also assumes a pertinent role in the protection of multiple cells in the brain by controlling the involving mechanism of autophagy and apoptosis and also modulates the process of phosphorylation of the targeted protein, thus FoxO must be a putative target in the mitigation of AD. This review features the role of FoxO as an important biomarker and potential new targets for the treatment of AD.
Collapse
Affiliation(s)
- Shikha Goswami
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Ozaifa Kareem
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, JK, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Sayed M Mumtaz
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Rajiv K Tonk
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Rahul Gupta
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
48
|
Sharma Y, Garabadu D. Intracerebroventricular streptozotocin administration impairs mitochondrial calcium homeostasis and bioenergetics in memory-sensitive rat brain regions. Exp Brain Res 2020; 238:2293-2306. [PMID: 32728854 DOI: 10.1007/s00221-020-05896-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cardinal manifestation of cognitive dysfunction. The limitation to avail a successful drug candidate encourages researchers to establish an appropriate animal model in the novel anti-AD drug discovery process. In this context, the mechanism of mitochondrial dysfunction in cognitive deficit animals is yet to be established for intracerebroventricular injection of streptozotocin (ICV-STZ). Experimental dementia was induced in male rats by ICV-STZ on day-1 (D-1) of the experimental protocol at a sub-diabetogenic dose (3 mg/kg) twice at an interval of 48 h into both rat lateral ventricles. ICV-STZ caused cognitive decline in terms of increase in the escape latency on D-14 to D-17 and, decrease in the time spent and percentage of distance travelled in the target quadrant during Morris water maze and decrease in the spontaneous alteration behavior during Y-maze tests in rats. Further, ICV-STZ decreased the level of acetylcholine and activity of choline acetyltransferase and increased the activity of acetylcholinesterase in rat hippocampus, pre-frontal cortex and amygdala. Interestingly, ICV-STZ increased the mitochondrial calcium in addition to decrease in the mitochondrial function, integrity and bioenergetics in all rat brain regions. Further, ICV-STZ enhanced the levels of expression of NR1 subunit of N-methyl-D-aspartate receptor, mitochondrial calcium uniporter and sodium-calcium exchanger in these rat brain regions. Thus, NR1-dependent mitochondrial calcium accumulation could be considered as a major attribute to the animal model of ICV-STZ-induced AD-like manifestations. Further, drugs targeting to manage mitochondrial calcium homeostasis could best be studied in this animal model.
Collapse
Affiliation(s)
- Yati Sharma
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India.
| |
Collapse
|
49
|
Yang W, Li G, Cao K, Ma P, Guo Y, Tong W, Wan J. Exogenous insulin-like growth factor 1 attenuates acute ischemic stroke-induced spatial memory impairment via modulating inflammatory response and tau phosphorylation. Neuropeptides 2020; 83:102082. [PMID: 32863068 DOI: 10.1016/j.npep.2020.102082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 01/22/2023]
Abstract
Acute ischemic stroke is one of the main causes of mortality and morbidity worldwide. The present study aimed to explore the effects of exogenous insulin-like growth factor 1 (IGF-1) on the cognitive injuries induced by acute ischemic stroke and the underlying mechanisms. Acute ischemic stroke rat model was established via transient occlusion of the left middle cerebral artery to male Sprague-Dawley rats. IGF-1 was administered intravenously every other day 24 h after surgery for 14 days. Cognitive functions were determined by Morris water maze assay. Cerebral infarction and edema were determined by riphenyltetrazolium chloride staining and cerebral water content measurement. ELISA and Western blot were performed to detect concentrations of target proteins. Ischemic stroke rats exhibited reduced plasma IGF-1 level and impaired cognitive functions. Intravenous IGF-1 delivery increased the IGF-1 levels in plasma, ischemic amygdala, hippocampus and cortex, improved the neurological dysfunction, cognitive deficits, cerebral infarction and brain edema. Furthermore, IGF-1 relieved the systemic and cerebral inflammatory response by inhibiting the secretion of pro-inflammatory cytokines, interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α), in serum and ischemic hippocampus of ischemic rats. Additionally, IGF-1 attenuated tau phosphorylation in ischemic hippocampus. In short, intravenous IGF-1 administration attenuates acute ischemic stroke-induced cognitive injuries in the experimental rat model possibly via modulating inflammatory response and tau phosphorylation, and might be of promising therapeutic value to ischemic stroke in the future.
Collapse
Affiliation(s)
- Wenjin Yang
- Department of Neurosurgery, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China
| | - Gaoyi Li
- Department of Neurosurgery, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China
| | - Ke Cao
- Department of Neurosurgery, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China
| | - Peng Ma
- Department of Neurosurgery, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China
| | - Yijun Guo
- Department of Neurosurgery, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China
| | - Wusong Tong
- Department of Neurosurgery, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China.
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China.
| |
Collapse
|
50
|
Sharma Y, Garabadu D. Ruthenium red, mitochondrial calcium uniporter inhibitor, attenuates cognitive deficits in STZ-ICV challenged experimental animals. Brain Res Bull 2020; 164:121-135. [PMID: 32858127 DOI: 10.1016/j.brainresbull.2020.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cardinal features of cognitive dysfunction in an individual. Recently, the blockade of mitochondrial calcium uniporter (MCU) exhibits neuroprotective activity in experimental animals. However, the therapeutic potential of MCU has not yet been established in the management of AD. Therefore, the present study explored the therapeutic potential of either Ruthenium red (RR), a MCU blocker, or Spermine, a MCU opener, on the extent of mitochondrial calcium accumulation, function, integrity and bioenergetics in hippocampus, pre-frontal cortex and amygdale of ICV-STZ challenged rats. Experimental AD was induced in male rats by intracerebroventricular injection of streptozotocin (ICV-STZ) on day-1 (D-1) of the experimental protocol at a sub-diabetogenic dose (3 mg/kg) twice at an interval of 48 h into both rat lateral ventricles. RR attenuated ICV-STZ-induced memory-related behavioral abnormalities in Morris water maze and Y-maze tests. RR also attenuated ICV-STZ-induced decrease in the level of acetylcholine and activity of choline acetyltransferase and, increase in the activity of acetylcholinestarase in memory-sensitive rat brain regions. Further, RR attenuated mitochondrial toxicity in terms of reducing mitochondrial calcium accumulation and improving the mitochondrial function, integrity and bioenergetics in memory-sensitive brain regions of ICV-STZ challenged rats. Furthermore, RR attenuated the percentage of apoptotic cells in ICV-STZ challenged rat brain regions. However, Spermine did not alter ICV-STZ-induced behavioral, biochemical and molecular observations in any of the brain regions. These observations indicate the fact that the MCU blockage could be a potential therapeutic option in the management of sporadic type of AD.
Collapse
Affiliation(s)
- Yati Sharma
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India.
| |
Collapse
|