1
|
Moreira V, Leiguez E, Janovits PM, Maia-Marques R, Fernandes CM, Teixeira C. Inflammatory Effects of Bothrops Phospholipases A 2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins (Basel) 2021; 13:toxins13120868. [PMID: 34941706 PMCID: PMC8709003 DOI: 10.3390/toxins13120868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipases A2s (PLA2s) constitute one of the major protein groups present in the venoms of viperid and crotalid snakes. Snake venom PLA2s (svPLA2s) exhibit a remarkable functional diversity, as they have been described to induce a myriad of toxic effects. Local inflammation is an important characteristic of snakebite envenomation inflicted by viperid and crotalid species and diverse svPLA2s have been studied for their proinflammatory properties. Moreover, based on their molecular, structural, and functional properties, the viperid svPLA2s are classified into the group IIA secreted PLA2s, which encompasses mammalian inflammatory sPLA2s. Thus, research on svPLA2s has attained paramount importance for better understanding the role of this class of enzymes in snake envenomation and the participation of GIIA sPLA2s in pathophysiological conditions and for the development of new therapeutic agents. In this review, we highlight studies that have identified the inflammatory activities of svPLA2s, in particular, those from Bothrops genus snakes, which are major medically important snakes in Latin America, and we describe recent advances in our collective understanding of the mechanisms underlying their inflammatory effects. We also discuss studies that dissect the action of these venom enzymes in inflammatory cells focusing on molecular mechanisms and signaling pathways involved in the biosynthesis of lipid mediators and lipid accumulation in immunocompetent cells.
Collapse
Affiliation(s)
- Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, Brazil;
| | - Elbio Leiguez
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Priscila Motta Janovits
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Rodrigo Maia-Marques
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Cristina Maria Fernandes
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Catarina Teixeira
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
- Correspondence:
| |
Collapse
|
2
|
Sukocheva O, Menschikowski M, Hagelgans A, Yarla NS, Siegert G, Reddanna P, Bishayee A. Current insights into functions of phospholipase A2 receptor in normal and cancer cells: More questions than answers. Semin Cancer Biol 2019; 56:116-127. [PMID: 29104026 DOI: 10.1016/j.semcancer.2017.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 02/08/2023]
Abstract
Lipid signaling network was proposed as a potential target for cancer prevention and treatment. Several recent studies revealed that phospholipid metabolising enzyme, phospholipase A2 (PLA2), is a critical regulator of cancer accelerating pathologies and apoptosis in several types of cancers. In addition to functioning as an enzyme, PLA2 can activate a phospholipase A2 receptor (PLA2R1) in plasma membrane. While the list of PLA2 targets extends to glucose homeostasis, intracellular energy balance, adipocyte development, and hepatic lipogenesis, the PLA2R1 downstream effectors are few and scarcely investigated. Among the most addressed PLA2R1 effects are regulation of pro-inflammatory signaling, autoimmunity, apoptosis, and senescence. Localized in glomeruli podocytes, the receptor can be identified by circulating anti-PLA2R1 autoantibodies leading to development of membranous nephropathy, a strong autoimmune inflammatory cascade. PLA2R1 was shown to induce activation of Janus-kinase 2 (JAK2) and estrogen-related receptor α (ERRα)-controlled mitochondrial proteins, as well as increasing the accumulation of reactive oxygen species, thus leading to apoptosis and senescence. These findings indicate the potential role of PLA2R1 as tumor suppressor. Epigenetic investigations addressed the role of DNA methylation, histone modifications, and specific microRNAs in the regulation of PLA2R1 expression. However, involvement of PLA2R1 in suppression of malignant growth and metastasis remains controversial. In this review, we summarize the recent findings that highlight the role of PLA2R1 in the regulation of carcinogenesis-related intracellular signaling.
Collapse
Affiliation(s)
- Olga Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia.
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Nagendra Sastry Yarla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Gabriele Siegert
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
3
|
Anti-angiogenic effect of phospholipases A2 from Scorpio maurus venom glands on Human Umbilical Vein Endothelial Cells. Toxicon 2018; 145:6-14. [DOI: 10.1016/j.toxicon.2018.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 11/18/2022]
|
4
|
Sun W, Ji W, Hu Q, Yu J, Wang C, Qian C, Hochu G, Gu Z. Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine. Biomaterials 2016; 96:1-10. [PMID: 27131597 DOI: 10.1016/j.biomaterials.2016.04.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 01/24/2023]
Abstract
Direct delivery of cytokines using nanocarriers holds great promise for cancer therapy. However, the nanometric scale of the vehicles made them susceptible to size-dependent endocytosis, reducing the plasma membrane-associated apoptosis signaling. Herein, we report a tumor microenvironment-responsive and transformable nanocarrier for cell membrane targeted delivery of cytokine. This formulation is comprised of a phospholipase A2 (PLA2) degradable liposome as a shell, and complementary DNA nanostructures (designated as nanoclews) decorated with cytokines as the cores. Utilizing the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as a model cytokine, we demonstrate that the TRAIL loaded DNA nanoclews are capable of transforming into nanofibers after PLA2 activation. The nanofibers with micro-scaled lengths efficiently present the loaded TRAIL to death receptors on the cancer cell membrane and amplified the apoptotic signaling with reduced TRAIL internalization.
Collapse
Affiliation(s)
- Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenyan Ji
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chenggen Qian
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gabrielle Hochu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Vivek HK, Swamy SG, Priya BS, Sethi G, Rangappa KS, Swamy SN. A facile assay to monitor secretory phospholipase A₂ using 8-anilino-1-naphthalenesulfonic acid. Anal Biochem 2014; 461:27-35. [PMID: 24915638 DOI: 10.1016/j.ab.2014.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Secretory phospholipases A2 (sPLA2s) are present in snake venoms, serum, and biological fluids of patients with various inflammatory, autoimmune and allergic disorders. Lipid mediators in the inflammatory processes have potential value for controlling phospholipid metabolism through sPLA2 inhibition. Thus, it demands the need for screening of potential leads for sPLA2 inhibition. To date, sPLA2 activity has been assayed using expensive radioactive or chromogenic substrates, thereby limiting a large number of assays. In this study, a simple and sensitive NanoDrop assay was developed using non-fluorogenic and non-chromogenic phospholipid substrate 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 8-anilino-1-naphthalenesulfonic acid (ANS) as interfacial hydrophobic probe. The modified assay required a 10ng concentration of sPLA2. ANS, as a strong anion, binds predominantly to cationic group of choline head of DMPC through ion pair formation, imparting hydrophobicity and lipophilicity and resulting in an increase in fluorescence. Triton X-100 imparts correct geometrical space during sPLA2 catalyzing DMPC, releasing lysophospholipid and acidic myristoyl acid, which in turn alters the hydrophobic environment prevailing around ANS-DMPC, which leads to weakening of the electrostatic ion pair interaction between DMPC and ANS ensuing decrease in fluorescence. These characteristic fluorescence changes between DMPC and ANS in response to sPLA2 catalysis are well documented and validated in this study.
Collapse
Affiliation(s)
- Hamse K Vivek
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, Mysore 570006, India
| | - Supritha G Swamy
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, Mysore 570006, India
| | - Babu S Priya
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, Singapore 117597, Republic of Singapore
| | | | - S Nanjunda Swamy
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, Mysore 570006, India.
| |
Collapse
|
6
|
Jürgensen HJ, Johansson K, Madsen DH, Porse A, Melander MC, Sørensen KR, Nielsen C, Bugge TH, Behrendt N, Engelholm LH. Complex determinants in specific members of the mannose receptor family govern collagen endocytosis. J Biol Chem 2014; 289:7935-47. [PMID: 24500714 DOI: 10.1074/jbc.m113.512780] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Members of the well-conserved mannose receptor (MR) protein family have been functionally implicated in diverse biological and pathological processes. Importantly, a proposed common function is the internalization of collagen for intracellular degradation occurring during bone development, cancer invasion, and fibrosis protection. This functional relationship is suggested by a common endocytic capability and a candidate collagen-binding domain. Here we conducted a comparative investigation of each member's ability to facilitate intracellular collagen degradation. As expected, the family members uPARAP/Endo180 and MR bound collagens in a purified system and internalized collagens for degradation in cellular settings. In contrast, the remaining family members, PLA2R and DEC-205, showed no collagen binding activity and were unable to mediate collagen internalization. To pinpoint the structural elements discriminating collagen from non-collagen receptors, we constructed a series of receptor chimeras and loss- and gain-of-function mutants. Using this approach we identified a critical collagen binding loop in the suggested collagen binding region (an FN-II domain) in uPARAP/Endo180 and MR, which was different in PLA2R or DEC-205. However, we also found that an active FN-II domain was not a sufficient determinant to allow collagen internalization through these receptors. Nevertheless, this ability could be acquired by the transfer of a larger segment of uPARAP/Endo180 (the Cys-rich domain, the FN-II domain and two CTLDs) to DEC-205. These data underscore the importance of the FN-II domain in uPARAP/Endo180 and MR-mediated collagen internalization but at the same time uncover a critical interplay with flanking domains.
Collapse
Affiliation(s)
- Henrik J Jürgensen
- From the Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), DK-2200 Copenhagen, Denmark and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang G, Xu X, Yao X, Zhu Z, Yu L, Chen L, Chen J, Shen X. Latanoprost effectively ameliorates glucose and lipid disorders in db/db and ob/ob mice. Diabetologia 2013; 56:2702-12. [PMID: 23989723 DOI: 10.1007/s00125-013-3032-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/22/2013] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Improvement of glucose and lipid metabolic dysfunctions is a potent therapeutic strategy against type 2 diabetes mellitus, and identifying new functions for existing drugs may help accelerate the speed of new drug development. Here, we report that latanoprost, a clinical drug for treating primary open-angle glaucoma and intraocular hypertension, effectively ameliorated glucose and lipid disorders in two mouse models of type 2 diabetes. In addition, the glucose-lowering mechanisms of latanoprost were intensively investigated. METHODS A binding-affinity assay and enzymatic tests were used to determine the targets of latanoprost. Cell-based assays on 3T3-L1 adipocytes and C2C12 myotubes and animal model-based assays with db/db and ob/ob mice were further performed to clarify the mechanisms underlying latanoprost-regulated glucose and lipid metabolism. RESULTS Latanoprost functioned as both an indirect activator of AMP-activated protein kinase and a selective retinoid X receptor α (RXRα) antagonist able to selectively antagonise the transcription of a RXRα/peroxisome proliferator-activated receptor γ heterodimer. It promoted glucose uptake, inhibited pre-adipocyte differentiation and regulated the main genes responsible for glucose and lipid metabolism, including Fas, Scd1, Perilipin (also known as Plin1), Lpl and Pdk4. Chronic administration of latanoprost in mice potently decreased the levels of fasting blood glucose, HbA1c, fructosamine (FMN), NEFA and total cholesterol, and effectively improved glucose tolerance and glucose/lipid metabolism-related genes in vivo. CONCLUSIONS/INTERPRETATION Our studies demonstrate that the existing eye drug latanoprost is both an indirect activator of AMP-activated protein kinase and a selective RXRα antagonist. Latanoprost effectively ameliorated glucose and lipid disorders in diabetic mice, which strongly highlights the potential of latanoprost in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Gaihong Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Proietti S, Cucina A, Reiter RJ, Bizzarri M. Molecular mechanisms of melatonin's inhibitory actions on breast cancers. Cell Mol Life Sci 2013; 70:2139-57. [PMID: 23007844 PMCID: PMC11113894 DOI: 10.1007/s00018-012-1161-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 02/07/2023]
Abstract
Melatonin is involved in many physiological functions and it plays an important role in many pathological processes as well. Melatonin has been shown to reduce the incidence of experimentally induced cancers and can significantly inhibit the growth of some human tumors, namely hormone-dependent cancers. The anticancer effects of melatonin have been observed in breast cancer, both in in vivo with models of chemically induced rat mammary tumors, and in vitro studies on human breast cancer cell lines. Melatonin acts at different physiological levels and its antitumoral properties are supported by a set of complex, different mechanisms of action, involving apoptosis activation, inhibition of proliferation, and cell differentiation.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Clinical and Molecular Medicine, University “La Sapienza”, Rome, Italy
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Alessandra Cucina
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Mariano Bizzarri
- Systems Biology Group Laboratory, Department of Experimental Medicine, University “La Sapienza”, 14-16, Via Antonio Scarpa, Rome, 00161 Italy
| |
Collapse
|
9
|
Dan P, Rosenblat G, Yedgar S. Phospholipase A2 activities in skin physiology and pathology. Eur J Pharmacol 2012; 691:1-8. [DOI: 10.1016/j.ejphar.2012.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 01/22/2023]
|
10
|
Karray A, Ben Ali Y, Boujelben J, Amara S, Carrière F, Gargouri Y, Bezzine S. Drastic changes in the tissue-specific expression of secreted phospholipases A2 in chicken pulmonary disease. Biochimie 2011; 94:451-60. [PMID: 21893157 PMCID: PMC7117035 DOI: 10.1016/j.biochi.2011.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/17/2011] [Indexed: 12/16/2022]
Abstract
Infectious bronchitis is one of the most important diseases in poultry and it causes major economic losses. Infectious bronchitis is an acute, highly contagious, viral disease of chickens, characterized by rales, coughing, and sneezing. Because secreted phospholipases A2 (sPLA2) are involved in inflammatory processes, the gene expressions of sPLA2s were investigated in both healthy chickens and chickens with infectious bronchitis and lung inflammation. The draft chicken genome was first scanned using human sPLA2 sequences to identify chicken sPLA2s (ChPLA2), chicken total mRNA were isolated and RT-PCR experiments were performed to amplify and then sequence orthologous cDNAs. Full-length cDNA sequences of ChPLA2-IB, -IIA, -IIE, -V and -X were cloned. The high degree of sequence identity of 50–70% between the avian and mammalian (human and mouse) sPLA2 orthologs suggests a conservation of important enzymatic functions for these phospholipases. Quantitation by qPCR of the transcript levels of ChPLA2-IB, -IIA, -IIE, -V and -X in several tissues from healthy chicken indicated that the expression patterns and mRNA levels diverged among the phospholipases tested. In chicken with infectious bronchitis, an over expression of ChPLA2-V was observed in lungs and spleen in comparison with healthy chicken. These findings suggest that ChPLA2-V could be a potential biomarker for lung inflammation. Conversely, a down regulation of ChPLA2-IB, -IIA and -X was observed in lungs and spleen in case of infectious bronchitis. A significant increase in the expression level of ChPLA2-X and ChPLA2-IB was also noticed in pancreas. No or minor changes have been detected in the expression of ChPLA2-IIE in lungs and small intestine, but it shows a significant increase in several infected tissues.
Collapse
Affiliation(s)
- Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, université de Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
11
|
A direct role for secretory phospholipase A2 and lysophosphatidylcholine in the mediation of LPS-induced gastric injury. Shock 2010; 33:634-8. [PMID: 19940811 DOI: 10.1097/shk.0b013e3181cb9266] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Endotoxemia from sepsis can injure the gastrointestinal tract through mechanisms that have not been fully elucidated. We have shown that LPS induces an increase in gastric permeability in parallel with the luminal appearance of secretory phospholipase A2 (sPLA2) and its product, lysophosphatidylcholine (lyso-PC). We proposed that sPLA2 acted on the gastric hydrophobic barrier, composed primarily of phosphatidylcholine (PC), to degrade it and produce lyso-PC, an agent that is damaging to the mucosa. In the present study, we have tested whether lyso-PC and/or sPLA2 have direct damaging effects on the hydrophobic barriers of synthetic and mucosal surfaces. Rats were administered LPS (5 mg/kg, i.p.), and gastric contents were collected 5 h later for analysis of sPLA2 and lyso-PC content. Using these measured concentrations, direct effects of sPLA2 and lyso-PC were determined on (a) surface hydrophobicity as detected with an artificial PC surface and with intact gastric mucosa (contact angle analysis) and (b) cell membrane disruption of gastric epithelial cells (AGS). Both lyso-PC and sPLA2 increased significantly in the collected gastric juice of LPS-treated rats. Using similar concentrations to the levels in gastric juice, the contact angle of PC-coated slides declined after incubation with either pancreatic sPLA2 or lyso-PC. Similarly, gastric contact angles seen in control rats were significantly decreased in sPLA2 and lyso-PC-treated rats. In addition, we observed dose-dependent injurious effects of both lyso-PC and sPLA2 in gastric AGS cells. An LPS-induced increase in sPLA2 activity in the gastric lumen and its product, lyso-PC, are capable of directly disrupting the gastric hydrophobic layer and may contribute to gastric barrier disruption and subsequent inflammation.
Collapse
|
12
|
CC-PLA2-1 and CC-PLA2-2, two Cerastes cerastes venom-derived phospholipases A2, inhibit angiogenesis both in vitro and in vivo. J Transl Med 2010; 90:510-9. [PMID: 20142800 DOI: 10.1038/labinvest.2009.137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Integrins are essential in the complex multistep process of angiogenesis and are thus attractive targets for the development of antiangiogenic therapies. Integrins are antagonized by disintegrins and C-type lectin-like proteins, two protein families from snake venom. Here, we report that CC-PLA2-1 and CC-PLA2-2, two novel secreted phospholipases A(2) (PLA(2)) isolated from Cerastes cerastes venom, also showed anti-integrin activity. Indeed, both PLA(2)s efficiently inhibited human brain microvascular endothelial cell adhesion and migration to fibrinogen and fibronectin in a dose-dependent manner. Interestingly, we show that this anti-adhesive effect was mediated by alpha5beta1 and alphav-containing integrins. CC-PLA2s also impaired in vitro human brain microvascular endothelial cell tubulogenesis on Matrigel and showed antiangiogenic activity in vivo in chicken chorioallantoic membrane assay. The complete PLA(2) cDNAs were cloned from a venom gland cDNA library. Mature CC-PLA2-1 and CC-PLA2-2 contain 121 and 120 amino acids, respectively, including 14 cysteines each and showed 83% identity. Tertiary model structures of CC-PLA2-1 and CC-PLA2-2 were generated by homology modeling. This is thus the first study describing an antiangiogenic effect for snake venom PLA(2)s and reporting first clues to their mechanism of action on endothelial cells.
Collapse
|
13
|
Hu F, Hu X, Ma C, Zhao J, Xu J, Yu X. Molecular characterization of a novel Clonorchis sinensis secretory phospholipase A(2) and investigation of its potential contribution to hepatic fibrosis. Mol Biochem Parasitol 2009; 167:127-34. [PMID: 19463858 DOI: 10.1016/j.molbiopara.2009.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 01/18/2023]
Abstract
A gene encoding a homologue of phospholipase A(2) was identified from the Clonorchis sinensis adult cDNA plasmid library. The deduced amino acid sequence including a signal peptide that has 28-46% identity with secretory phospholipase A(2), group III (group III sPLA(2)) of other species. It also has typical features of group III sPLA(2)s including 10 cysteines, the key residues of the Ca(2+) loop and catalytic site. The recombinant protein encoded by this gene expressed in Escherichia coli showed a product of about 34kDa in SDS-PAGE. Prediction of signal peptide and Western blot analysis indicated the group III secretory phospholipase A(2) of C. sinensis (CsGIIIsPLA(2)) was an excretory-secretory product (ES product). The enzyme activity of the recombinant protein was determined using phosphatidylcholine as substrates. The result revealed that the protein was a Ca(2+)-dependent PLA(2). Both MTT test and cell cycle analysis of LX-2 showed a higher percentage of cells are in proliferation phase. Semi-quantitative RT-PCR experiments demonstrated an up-regulated expression of collagen III in these cells after incubation with the recombinant protein. We also identified that the recombinant CsGIIIsPLA(2) could bind to some membrane proteins on LX-2 cells specifically by immunofluorescence, thus there might be receptors of CsGIIIsPLA(2) on the LX-2 cell membrane. Our results suggest that CsGIIIsPLA(2) might play an important role in the initiation and development of hepatic fibrosis caused by C. sinensis.
Collapse
Affiliation(s)
- Fengyu Hu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Introduction The secretory phospholipase A2 (sPLA2) family provides a seemingly endless array of potential biological functions that is only beginning to be appreciated. In humans, this family comprises 9 different members that vary in their tissue distribution, hydrolytic activity, and phospholipid substrate specificity. Through their lipase activity, these enzymes trigger various cell-signaling events to regulate cellular functions, directly kill bacteria, or modulate inflammatory responses. In addition, some sPLA2’s are high affinity ligands for cellular receptors. Objective This review merely scratches the surface of some of the actions of sPLA2s in innate immunity, inflammation, and atherosclerosis. The goal is to provide an overview of recent findings involving sPLA2s and to point to potential pathophysiologic mechanisms that may become targets for therapy.
Collapse
|
15
|
Toth B, Hornung D, Scholz C, Djalali S, Friese K, Jeschke U. Peroxisome proliferator-activated receptors: new players in the field of reproduction. Am J Reprod Immunol 2007; 58:289-310. [PMID: 17681045 DOI: 10.1111/j.1600-0897.2007.00514.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR) are members of the nuclear hormone receptor superfamily. Synthetic ligands to one family member, PPARgamma, are currently widely used as treatment for chronic diseases such as diabetes type II and other insulin resistances, e.g. as seen in polycystic ovary syndrome (PCOS). Moreover, novel approaches employing knock-out mice demonstrated that PPARgamma seems to play a key role in placental and fetal development. This review describes recent insights into the role of PPARs in human reproduction with specific reference to infertility, placental maturation and fetal development as well as disturbed pregnancy. Further, we highlight the current knowledge on synthetic ligands to PPARgamma used as a treatment in women with PCOS.
Collapse
Affiliation(s)
- Bettina Toth
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University, Grosshadern, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Mai K, Andres J, Bobbert T, Maser-Gluth C, Möhlig M, Bähr V, Pfeiffer AFH, Spranger J, Diederich S. Rosiglitazone decreases 11beta-hydroxysteroid dehydrogenase type 1 in subcutaneous adipose tissue. Clin Endocrinol (Oxf) 2007; 67:419-25. [PMID: 17555498 DOI: 10.1111/j.1365-2265.2007.02903.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist rosiglitazone increases insulin sensitivity, which, in animal models, is comparable to the effect of a reduction in 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activity. We therefore investigated whether rosiglitazone-induced insulin sensitivity is associated with changes in 11beta-HSD1 activity in different tissues. METHODS An oral glucose tolerance test (OGTT) and a euglycaemic hyperinsulinaemic clamp were performed in seven male volunteers [age 59.3 +/- 3.0 years, body mass index (BMI) 29.3 +/- 4.1 kg/m(2)] with impaired glucose tolerance before and after 8 weeks of rosiglitazone treatment. To assess hepatic 11beta-HSD1 activity, serum cortisol levels were measured after oral administration of cortisone acetate. 11beta-HSD1 activity and mRNA expression were assessed in abdominal subcutaneous fat biopsies. Total-body 11beta-HSD activities were estimated by calculating the urinary ratios of glucocorticoid metabolites. RESULTS As expected, rosiglitazone improved insulin resistance and postprandial hyperglycaemia. In parallel, 11beta-HSD1 mRNA expression [100 +/- 0% (reference) vs. 68.5 +/- 9.3%, P < 0.01] and activity [0.18 +/- 0.02 vs. 0.13 +/- 0.02 pmol/min/mg, P < 0.05] decreased in abdominal subcutaneous fat, while an increase in hepatic 11beta-HSD1 activity was detected [the area under the curve (AUC) for the cortisol/cortisone ratio was 1319 +/- 76 vs. 955 +/- 59; P < 0.05]. No changes in BMI, waist-to-hip ratio (WHR) and whole-body 11beta-HSD1 activity were found. CONCLUSIONS Part of the beneficial effects of rosiglitazone may be mediated by a reduction in the 11beta-HSD1 mRNA expression and activity in subcutaneous abdominal fat.
Collapse
Affiliation(s)
- Knut Mai
- Department of Endocrinology, Diabetes and Nutrition, Charite - University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ahmed W, Ziouzenkova O, Brown J, Devchand P, Francis S, Kadakia M, Kanda T, Orasanu G, Sharlach M, Zandbergen F, Plutzky J. PPARs and their metabolic modulation: new mechanisms for transcriptional regulation? J Intern Med 2007; 262:184-98. [PMID: 17645586 DOI: 10.1111/j.1365-2796.2007.01825.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) as ligand-activated nuclear receptors involved in the transcriptional regulation of lipid metabolism, energy balance, inflammation, and atherosclerosis are at the intersection of key pathways involved in the pathogenesis of diabetes and cardiovascular disease. Synthetic PPAR agonists like fibrates (PPAR-alpha) and thiazolidinediones (PPAR-gamma) are in therapeutic use to treat dyslipidaemia and diabetes. Despite strong encouraging in vitro, animal model, and human surrogate marker studies with these agents, recent prospective clinical cardiovascular trials have yielded mixed results, perhaps explained by concomitant drug use, study design, or a lack of efficacy of these agents on cardiovascular disease (independent of their current metabolic indications). The use of PPAR agents has also been limited by untoward effects. An alternative strategy to PPAR therapeutics is better understanding PPAR biology, the nature of natural PPAR agonists, and how these molecules are generated. Such insight might also provide valuable information about pathways that protect against the metabolic problems for which PPAR agents are currently indicated. This approach underscores the important distinction between the effects of synthetic PPAR agonists and the unequivocal biologic role of PPARs as key transcriptional regulators of metabolic and inflammatory pathways relevant to diabetes and atherosclerosis.
Collapse
Affiliation(s)
- W Ahmed
- Cardiovascular Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Woster AP, Combs CK. Differential ability of a thiazolidinedione PPARgamma agonist to attenuate cytokine secretion in primary microglia and macrophage-like cells. J Neurochem 2007; 103:67-76. [PMID: 17573821 DOI: 10.1111/j.1471-4159.2007.04706.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists are known to inhibit select pro-inflammatory changes in models of CNS and systemic inflammation. Recent reports suggest that these anti-inflammatory effects are due to mechanisms other than canonical nuclear receptor-mediated transcriptional alteration. Using primary microglia and the monocytic cell line, THP-1, we demonstrate that rosiglitazone, a PPARgamma-activating thiazolidinedione, decreases pro-inflammatory cytokine secretion as measured by ELISA. Cells were pre-treated with various thiazolidinediones, including rosiglitazone, prior to stimulation with lipopolysaccharide or phorbol 12-myristate 13-acetate (PMA) to stimulate cytokine production. Tumor necrosis factor alpha (TNFalpha) secretion was significantly inhibited in both primary microglia and THP-1 cells differentiated for 72 h in the presence of PMA to induce a macrophage-like phenotype. No reduction in TNFalpha secretion was observed in undifferentiated THP-1 cells with rosiglitazone pre-treatment. Electrophoretic mobility shift assay revealed no significant difference in PPARgamma activation between PMA-differentiated and undifferentiated THP-1 cells. When PMA-differentiated and undifferentiated THP-1 cells were treated with the irreversible PPARgamma antagonist, GW 9662, a significant, dose-dependent decrease in TNFalpha secretion was observed. These results suggest that the anti-inflammatory benefit of PPARgamma ligands occur independently of classical PPARgamma activation.
Collapse
Affiliation(s)
- Andrew P Woster
- Department of Pharmacology, Physiology & Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | | |
Collapse
|
19
|
Putz T, Ramoner R, Gander H, Rahm A, Bartsch G, Bernardo K, Ramsay S, Thurnher M. Bee venom secretory phospholipase A2 and phosphatidylinositol-homologues cooperatively disrupt membrane integrity, abrogate signal transduction and inhibit proliferation of renal cancer cells. Cancer Immunol Immunother 2007; 56:627-40. [PMID: 16947021 PMCID: PMC11030745 DOI: 10.1007/s00262-006-0220-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/02/2006] [Indexed: 02/02/2023]
Abstract
Bee venom secretory phospholipase A2 (bv-sPLA2) and phosphatidylinositol-(3,4)-bisphosphate (PtdIns(3,4)P2) act synergistically to induce cell death in tumour cells of various origins with concomitant stimulation of the immune system. Here, we investigated the mechanisms involved in such actions and examined structural requirements of PtdIns-homologues to inhibit tumour cells in combination with bv-sPLA2. Renal cancer cells were treated with bv-sPLA2 alone or in combination with PtdIns-homologues. Inhibitory effects on [(3)H] thymidine incorporation and intracellular signal transduction pathways were tested. Reaction products generated by bv-sPLA2 interaction with PtdIns(3,4)P2 were identified by mass spectrometry. Among the tested PtdIns-homologues those with a phosphate esterified to position 3 of the inositol head group, were most efficient in cooperating with bv-sPLA2 to block tumour cell proliferation. Growth inhibition induced by the combined action of bv-sPLA2 with either PtdIns(3,4)bisphosphate or PtdIns(3,4,5)trisphosphate were synergistic and accompanied by potent cell lysis. In contrast, PtdIns, which lacked the phosphate group at position 3, failed to promote synergistic growth inhibition. The combined administration of PtdIns(3,4)P2 and bv-sPLA2 abrogated signal transduction mediated by extracellular signal regulated kinase 1 and 2 and prevented transduction of survival signals mediated by protein kinase B. Surface expression of the epidermal growth factor (EGF)-receptor was reduced after PtdIns(3,4)P2-bv-sPLA2 administration and associated with a blockade of EGF-induced signalling. In addition, mass spectroscopy revealed that bv-sPLA2 cleaves PtdIns(3,4)P2 to generate lyso-PtdIns(3,4)P2. In conclusion, we suggest that the cytotoxic activity mediated by PtdIns(3,4)P2 and bv-sPLA2 is due to cell death that results from disruption of membrane integrity, abrogation of signal transduction and the generation of cytotoxic lyso-PtdIns(3,4)P2.
Collapse
Affiliation(s)
- Thomas Putz
- Department of Urology and kompetenzzentrum medizin tirol, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang Q, Li Y. Roles of PPARs on regulating myocardial energy and lipid homeostasis. J Mol Med (Berl) 2007; 85:697-706. [PMID: 17356846 DOI: 10.1007/s00109-007-0170-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/19/2007] [Accepted: 02/23/2007] [Indexed: 12/13/2022]
Abstract
Myocardial energy and lipid homeostasis is crucial for normal cardiac structure and function. Either shortage of energy or excessive lipid accumulation in the heart leads to cardiac disorders. Peroxisome proliferator-activated receptors (PPARalpha, -beta/delta and -gamma), members of the nuclear receptor transcription factor superfamily, play important roles in regulating lipid metabolic genes. All three PPAR subtypes are expressed in cardiomyocytes. PPARalpha has been shown to control transcriptional expression of key enzymes that are involved in fatty acid (FA) uptake and oxidation, triglyceride synthesis, mitochondrial respiration uncoupling, and glucose metabolism. Similarly, PPARbeta/delta is a transcriptional regulator of FA uptake and oxidation, mitochondrial respiration uncoupling, and glucose metabolism. On the other hand, the role of PPARgamma on transcriptional regulation of FA metabolism in the heart remains obscure. Therefore, both PPARalpha and PPARbeta/delta are important transcriptional regulators of myocardial energy and lipid homeostasis. Moreover, it appears that the heart needs to have two PPAR subtypes with seemingly overlapping functions in maintaining myocardial lipid and energy homeostasis. Further studies on the potential distinctive roles of each PPAR subtype in the heart should provide new therapeutic targets for treating heart disease.
Collapse
Affiliation(s)
- Qinglin Yang
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310, USA.
| | | |
Collapse
|
21
|
Weng T, Chen Z, Jin N, Gao L, Liu L. Gene expression profiling identifies regulatory pathways involved in the late stage of rat fetal lung development. Am J Physiol Lung Cell Mol Physiol 2006; 291:L1027-37. [PMID: 16798779 DOI: 10.1152/ajplung.00435.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fetal lung development is a complex biological process that involves temporal and spatial regulations of many genes. To understand the molecular mechanisms of this process, we investigated gene expression profiles of fetal lungs on gestational days 18, 19, 20, and 21, as well as newborn and adult rat lungs. For this analysis, we used an in-house rat DNA microarray containing 6,000 known genes and 4,000 expressed sequence tags (ESTs). Of these, 1,512 genes passed the statistical significance analysis of microarray (SAM) test; an at least twofold change was shown for 583 genes (402 known genes and 181 ESTs) between at least two time points. K-means cluster analysis revealed seven major expression patterns. In one of the clusters, gene expression increased from day 18 to day 20 and then decreased. In this cluster, which contained 10 known genes and 5 ESTs, 8 genes are associated with development. These genes can be integrated into regulatory pathways, including growth factors, plasma membrane receptors, adhesion molecules, intracellular signaling molecules, and transcription factors. Real-time PCR analysis of these 10 genes showed an 88% consistency with the microarray data. The mRNA of LIM homeodomain protein 3a (Lhx3), a transcription factor, was enriched in fetal type II cells. In contrast, pleiotrophin, a growth factor, had a much higher expression in fetal lung tissues than in fetal type II cells. Immunohistochemistry revealed that Lhx3 was localized in fetal lung epithelial cells and pleiotrophin in the mesenchymal cells adjacent to the developing epithelium and blood vessel. Using GenMAPP, we identified four regulatory pathways: transforming growth factor-beta signaling, inflammatory response, cell cycle, and G protein signaling. We also identified two metabolic pathways: glycolysis-gluconeogenesis and proteasome degradation. Our results may provide new insights into the complex regulatory pathways that control fetal lung development.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, 74078, USA
| | | | | | | | | |
Collapse
|
22
|
Jakobsen MA, Petersen RK, Kristiansen K, Lange M, Lillevang ST. Peroxisome proliferator-activated receptor alpha, delta, gamma1 and gamma2 expressions are present in human monocyte-derived dendritic cells and modulate dendritic cell maturation by addition of subtype-specific ligands. Scand J Immunol 2006; 63:330-7. [PMID: 16640656 DOI: 10.1111/j.1365-3083.2006.01745.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It has recently been shown by Chang et al. (J Immunol 2000;165:3584-91) that the maturation of dendritic cells (DC) in the presence of long-chain fatty acids redirects DC into Th0/Th2-inducing cells suggesting the involvement of a receptor for long-chain fatty acids like members of the peroxisome proliferator-activated receptors (PPAR) superfamily. Here, we show that immature and mature monocyte-derived DC (Mo-DC) express PPARalpha, PPARdelta, PPARgamma1 and PPARgamma2 mRNA with the highest level of PPARgamma1 mRNA. We were only able to observe the expression of PPARgamma1 protein by Western blotting probably because the protein level of the other subtypes is below the detection limit. Synthetic ligands specific for PPARalpha, PPARdelta or PPARgamma added at day 0-6 have similar effect on the maturation of Mo-DC driving the maturation of Mo-DC with atypical phenotype, reduced expression of IL-10, IL-12 p35 and IL-12 p40 mRNA and with reduced stimulatory effects in mixed leucocyte reaction (MLR). Our data suggest that naturally occurring PPAR ligands like fatty acids and fatty acid derivates have anti-inflammatory effects by redirecting DC into a less stimulatory mode.
Collapse
Affiliation(s)
- M A Jakobsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.
| | | | | | | | | |
Collapse
|
23
|
Menschikowski M, Hagelgans A, Siegert G. Secretory phospholipase A2 of group IIA: Is it an offensive or a defensive player during atherosclerosis and other inflammatory diseases? Prostaglandins Other Lipid Mediat 2006; 79:1-33. [PMID: 16516807 DOI: 10.1016/j.prostaglandins.2005.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 10/29/2005] [Accepted: 10/31/2005] [Indexed: 02/07/2023]
Abstract
Since its discovery in the serum of patients with severe inflammation and in rheumatoid arthritic fluids, the secretory phospholipase A2 of group IIA (sPLA2-IIA) has been chiefly considered as a proinflammatory enzyme, the result of which has been very intense interest in selective inhibitors of sPLA2-IIA in the hope of developing new and efficient therapies for inflammatory diseases. The recent discovery of the antibacterial properties of sPLA2-IIA, however, has raised the question of whether the upregulation of sPLA2-IIA during inflammation is to be considered uniformly negative and the hindrance of sPLA2-IIA in every instance beneficial. The aim of this review is for this reason, along with the results of various investigations which argue for the proinflammatory and proatherogenic effects of an upregulation of sPLA2-IIA, also to array data alongside which point to a protective function of sPLA2-IIA during inflammation. Thus, it could be shown that sPLA2-IIA, apart from the bactericidal effects, possesses also antithrombotic properties and indeed plays a possible role in the resolution of inflammation and the accelerated clearance of oxidatively modified lipoproteins during inflammation via the liver and adrenals. Based on these multipotent properties the knowledge of the function of sPLA2-IIA during inflammation is a fundamental prerequisite for the development and establishment of new therapeutic strategies to prevent and treat severe inflammatory diseases up to and including sepsis.
Collapse
Affiliation(s)
- Mario Menschikowski
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Klinische Chemie and Laboratoriumsmedizin, Fetscherstrasse 74, D-01307 Dresden, Germany.
| | | | | |
Collapse
|
24
|
Lee C, Lee J, Choi YA, Kang SS, Baek SH. cAMP elevating agents suppress secretory phospholipase A(2)-induced matrix metalloproteinase-2 activation. Biochem Biophys Res Commun 2006; 340:1278-83. [PMID: 16414357 DOI: 10.1016/j.bbrc.2005.12.136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 12/18/2005] [Indexed: 11/29/2022]
Abstract
Phospholipase A2 proteins are major regulators of the arachidonic acid cascade and are involved in various cellular responses. Previously, we reported that group IB PLA2 proteins stimulate MMP-2 activation and subsequent cell migration. Here, we describe a novel mechanism whereby sPLA2-induced proMMP-2 activation is regulated by intracellular cAMP in HT1080 cells, although sPLA2 itself had no effect on the regulation of cAMP levels. Exogenous dibutyryl cAMP (a cAMP analogue) strongly inhibited proMMP-2 activation, and cAMP elevating agents, namely, cholera toxin (a Gs activator) and forskolin (an adenylyl cyclase activator), abrogated basal and sPLA2-induced proMMP-2 activation. We also found that the down-regulation of TIMP-2 expression and extracellular signal-regulated kinase (ERK)1/2 activation by sPLA2 were blocked by increasing the intracellular cAMP level. Taken together, our data indicate that sPLA2-induced proMMP-2 activation is influenced by intracellular cAMP levels via the modulations of TIMP-2 expression and ERK1/2 activation.
Collapse
Affiliation(s)
- Chuhee Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-035, South Korea; Aging-Associated Vascular Disease Research Center, Daegu 705-035, South Korea
| | | | | | | | | |
Collapse
|
25
|
Shah RD, Gonzales F, Golez E, Augustin D, Caudillo S, Abbott A, Morello J, McDonough PM, Paolini PJ, Shubeita HE. The antidiabetic agent rosiglitazone upregulates SERCA2 and enhances TNF-alpha- and LPS-induced NF-kappaB-dependent transcription and TNF-alpha-induced IL-6 secretion in ventricular myocytes. Cell Physiol Biochem 2005; 15:41-50. [PMID: 15665514 DOI: 10.1159/000083637] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2004] [Indexed: 01/20/2023] Open
Abstract
Positive hemodynamic effects of the antidiabetic agent rosiglitazone on perfused whole hearts have recently been described, but the mechanisms regulating these effects are not well understood. This study reports the effects of rosiglitazone on calcium regulation in isolated neonatal rat ventricular myocytes by measurement of Ca2+ transient decay rates and SERCA2 gene expression, and shows that rosiglitazone enhances known cardioprotective signaling pathways. Myocyte treatment with 10 micromol/L rosiglitazone accelerated Ca2+ transient decay rates by approximately 30%, enhanced SERCA2 mRNA levels by approximately 1.5-fold and SERCA2 production by approximately 3-fold. Rosiglitazone treatment (1, 5, and 10 micromol/L) also led to a dose-dependent increase (approximately 1.2-1.5-fold) in SERCA2 promoter activity. Comparable levels of cardiac SERCA overexpression have been associated with physiologically relevant and compensatory effects in vivo. These data link thiazolidinedione-induced improvement in cardiac myocyte function to an upregulation of SERCA2 gene expression. Since NF-kappaB-dependent pathways, including the upregulation of IL-6 secretion, were shown to protect neonatal rat ventricular myocytes from apoptosis upon TNFalpha stimulation, additional experiments were designed to determine whether rosiglitazone enhances TNFalpha-induced NF-kappaB-dependent transcription and IL-6 secretion. Because the endotoxin stress response in ventricular myocytes involves the upregulation of TNFalpha, and the activation of NF-kappaB, the effects of rosiglitazone on lipopolysaccharide-induced NF-kappaB-dependent transcription were also investigated. Treatment of neonatal rat ventricular myocytes with 10 micromol/L rosiglitazone enhanced TNF-alpha- and lipopolysaccharide-induced NF-kappaB-dependent transcription by approximately 1.8- and approximately 1.4-fold respectively, and TNF-alpha-induced IL-6 secretion by n1.5-fold. Rosiglitazone had no significant effects on basal levels of NF-kappaB-dependent transcription and IL-6 secretion. Thus, cardioprotective effects of rosiglitazone may be partly mediated by NF-kappaB.
Collapse
Affiliation(s)
- Rajanya D Shah
- The Rees-Stealy Research Foundation Laboratory, San Diego, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Parhamifar L, Jeppsson B, Sjölander A. Activation of cPLA 2 is required for leukotriene D 4 -induced proliferation in colon cancer cells. Carcinogenesis 2005; 26:1988-98. [PMID: 15975962 DOI: 10.1093/carcin/bgi159] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well documented that prolonged inflammatory conditions, particularly those relating to the colon, have been shown to induce cancer. We have previously demonstrated that the pro-inflammatory mediator leukotriene D(4) (LTD(4)) induces survival and proliferation in intestinal cells and that its receptor, CysLT(1), is upregulated in human colon cancer tissue. Here we demonstrate, for the first time that in both Int 407 (a non-transformed human intestinal epithelial cell line) and Caco-2 cells (a human colorectal carcinoma cell line), cytosolic phospholipase A(2)alpha (cPLA(2)alpha) is activated and translocates to the nucleus upon LTD(4) stimulation via a calcium-dependent mechanism that involves activation of protein kinase C (PKC), and the mitogen-activated protein kinases ERK1/2 and p38. We also show with a cPLA(2)alpha promoter luciferase assay, that LTD(4) induces an increase in the transcriptional activity of cPLA(2)alpha via activation of cPLA(2)alpha and the transcription factor NFkappaB. Interestingly we demonstrate here that both the basal and the LTD(4)-induced cPLA(2)alpha activity is elevated approximately 3-fold in Caco-2 colon cancer cells compared with Int 407 cells. The difference in basal activity was confirmed in human colon tumor samples by the finding of a similar increase in cPLA(2)alpha activity when compared with normal colon tissue. A functional role of the increased cPLA(2)alpha activity in tumor cells was revealed by our findings that inhibition of this enzyme reduced both basal and LTD(4)-induced proliferation, the effects being most pronounced in Caco-2 tumor cells. The present data reveal that cPLA(2)alpha, an important intracellular signal activated by inflammatory mediators, is an important regulator of colon tumor growth.
Collapse
Affiliation(s)
- Ladan Parhamifar
- Experimental Pathology, The Department of Laboratory Medicine and Surgery, Lund University, Malmö University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
27
|
Downie MMT, Guy R, Kealey T. Advances in sebaceous gland research: potential new approaches to acne management. Int J Cosmet Sci 2004; 26:291-311. [DOI: 10.1111/j.1467-2494.2004.00238.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Choi YA, Lim HK, Kim JR, Lee CH, Kim YJ, Kang SS, Baek SH. Group IB secretory phospholipase A2 promotes matrix metalloproteinase-2-mediated cell migration via the phosphatidylinositol 3-kinase and Akt pathway. J Biol Chem 2004; 279:36579-85. [PMID: 15220345 DOI: 10.1074/jbc.m314235200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Secretory phospholipase A(2) (sPLA(2)), abundantly expressed in various cells including fibroblasts, is able to promote proliferation and migration. Degradation of collagenous extracellular matrix by matrix metalloproteinase (MMP) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, tumor invasion, and metastasis. Here we show that group IB PLA(2) increased pro-MMP-2 activation in NIH3T3 fibroblasts. MMP-2 activity was stimulated by group IB PLA(2) in a dose- and time-dependent manner. Consistent with MMP-2 activation, sPLA(2) decreased expression of type IV collagen. These effects are due to the reduction of tissue inhibitor of metalloproteinase-2 (TIMP-2) and the activation of the membrane type1-MMP (MT1-MMP). The decrease of TIMP-2 levels in conditioned media and the increase of MT1-MMP levels in plasma membrane were observed. In addition, treatment of cells with decanoyl Arg-Val-Lys-Arg-chloromethyl ketone, an inhibitor of pro-MT1-MMP, suppressed sPLA(2)-mediated MMP-2 activation, whereas treatment with bafilomycin A1, an inhibitor of H(+)-ATPase, sustained MMP-2 activation by sPLA(2). The involvement of phosphatidylinositol 3-kinase (PI3K) and Akt in the regulation of MMP-2 activity was further suggested by the findings that PI3K and Akt were phosphorylated by sPLA(2). Expression of p85alpha and Akt mutants, or pretreatment of cells with LY294002, a PI3K inhibitor, attenuated sPLA(2)-induced MMP-2 activation and migration. Taken together, these results suggest that sPLA(2) increases the pro-MMP-2 activation and migration of fibroblasts via the PI3K and Akt-dependent pathway. Because MMP-2 is an important factor directly involved in the control of cell migration and the turnover of extracellular matrix, our study may provide a mechanism for sPLA(2)-promoted fibroblasts migration.
Collapse
Affiliation(s)
- Young-Ae Choi
- Department of Biochemistry and Molecular Biology, Yeungnam University, 317-1 Daemyung 5-Dong, Nam-Gu, Daegu 705-717, South Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Mammalian cells contain several structurally different phospholipase (PLA2) enzymes that exhibit distinct localisation, function and mechanisms of regulation. PLA2 isozymes have been postulated to play significant roles in the parturition process. Both secretory and cytosolic PLA2 isozymes have been identified in human gestational tissues, and there is differential expression of these PLA2 isozymes in human fetal membranes and placenta obtained at preterm and term. The aims of this commentary are: (1) to review recent data concerning the expression, role and regulation of PLA2 isozymes in human gestational tissues; and (2) to present novel data demonstrating the regulation of PLA2 isozymes in human gestational tissues by nuclear factor-kappa B (NF-kappaB) and peroxisome proliferator-activated receptor (PPAR)-g.
Collapse
Affiliation(s)
- M Lappas
- Mercy Perinatal Research Center, Mercy Hospital for Women, 126 Clarendon Street, East Melbourne 3002, Australia.
| | | |
Collapse
|
30
|
Kolko M, Christoffersen NR, Barreiro SG, Bazan NG. Expression and location of mRNAs encoding multiple forms of secretory phospholipase A2 in the rat retina. J Neurosci Res 2004; 77:517-24. [PMID: 15264221 DOI: 10.1002/jnr.20187] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Low-molecular-weight secretory phospholipases A(2) (sPLA(2)s) are a subgroup of PLA(2)s, which are secreted, bind to receptors, and may act as intercellular signaling modulators. At least 10 different groups have been characterized in mammals, and there is expanding evidence of the significance of sPLA(2)s in neuronal signaling and survival [Kolko et al. (1996) J. Biol. Chem. 271: 32722-32728]. To date, no retinal sPLA(2)s have been cloned or characterized. We evaluated the existence and abundance of sPLA(2) subtypes in rat retina and explored their possible involvement in light-induced retinal damage. We designed primers to identify the sPLA(2)s in rat retina, based on known sequences of sPLA(2)-specific mRNAs in other tissues. RNA was isolated from rat retina, and cDNA was produced and used for PCR cloning to identify the novel subtypes of sPLA(2). Our study revealed the presence of mRNAs encoding sPLA(2)-IB, -X, -V, -IIE, -IIA, and -IIF in the retina, and quantification by real-time PCR revealed different abundances of the sPLA(2)s. We showed a time-dependent gene induction of sPLA(2)-X, -IB, and -V in light-induced retinal damage. We further explored the location of sPLA(2)-IB by in situ hybridization and immunohistochemistry. This study is the first to reveal the presence, abundance, and induction of mRNAs encoding sPLA(2)s in rat retina. We suggest that these enzymes are themselves intercellular signaling modulators of retinal cell function and perhaps also of retinal degeneration.
Collapse
Affiliation(s)
- Miriam Kolko
- Neuroscience Center of Excellence and Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
31
|
Henke BR. 1. Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands and their therapeutic utility. PROGRESS IN MEDICINAL CHEMISTRY 2004; 42:1-53. [PMID: 15003718 DOI: 10.1016/s0079-6468(04)42001-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Brad R Henke
- Metabolic and Viral Diseases Drug Discovery Research, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
32
|
Ryu Y, Oh Y, Yoon J, Cho W, Baek K. Molecular characterization of a gene encoding the Drosophila melanogaster phospholipase A2. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:206-10. [PMID: 12932833 DOI: 10.1016/s0167-4781(03)00143-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A gene encoding Drosophila melanogaster secretory phospholipase A2 (sPLA2) has been cloned and characterized(.) The coding region of the sPLA2 gene was interrupted by a short intron, and codes for a signal peptide of 18 amino acids, followed by a mature protein of 168 amino acids, containing the structural features of group III sPLA2. From a Northern blot analysis, about a 1.0-kb Drosophila sPLA2 transcript was found to be expressed throughout its development and in both the adult bodies and heads. The recombinant Drosophila sPLA2 expressed and purified in Escherichia coli was found to be Ca(+2)-dependent and maximally active at pH 5.
Collapse
Affiliation(s)
- Yoonseok Ryu
- Institute of Life Sciences and Resources, and Graduate School of Biotechnology, Kyung Hee University, Yongin 449-701, South Korea
| | | | | | | | | |
Collapse
|
33
|
Yu HG, Huang JA, Yang YN, Luo HS, Yu JP, Meier JJ, Schrader H, Bastian A, Schmidt WE, Schmitz F. Inhibition of cytosolic phospholipase A2 mRNA expression: a novel mechanism for acetylsalicylic acid-mediated growth inhibition and apoptosis in colon cancer cells. REGULATORY PEPTIDES 2003; 114:101-7. [PMID: 12832097 DOI: 10.1016/s0167-0115(03)00084-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acetylsalicylic acid (ASA) has been confirmed to inhibit proliferation and to induce apoptosis in human colorectal cancer cells in vitro. However, the mechanism by which ASA exhibits antiproliferative and proapoptotic effects in cyclooxygenase 2 (COX-2)-negative cells remains to be further elucidated. In the present study, SW480, a COX-2-negative colon cancer cell line, was treated with various concentrations of ASA (0, 2.5, 5, and 10 mM). The antiproliferative and proapoptotic effects of ASA were confirmed by MTT assay, flow cytometry of propidium iodide (PI)-stained cells, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. After treatment with ASA, intracellular cyclic AMP (cAMP) levels were increased and the production of prostaglandin E2 (PGE2) was decreased. RT-PCR analysis revealed that treatment of ASA induced a concentration-dependent downregulation of cytosolic phospholipase A2 (cPLA2) mRNA expression in SW480 cells and also in two other colorectal cancer cell lines, Colo320 and HT-29 cells. Intracellular calcium levels were unaffected by ASA treatment. Our results indicate that the ASA-induced downregulation of cytosolic phospholipase A2 mRNA expression might be a novel mechanism for ASA-mediated growth inhibition and apoptosis in colon cancer cells.
Collapse
Affiliation(s)
- Hong-Gang Yu
- Department of Gastroenterology, Renmin Hosptial of Wuhan University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Meadus W. A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression. Biol Proced Online 2003; 5:20-28. [PMID: 12734559 PMCID: PMC150388 DOI: 10.1251/bpo43] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Revised: 12/16/2002] [Accepted: 01/09/2003] [Indexed: 11/23/2022] Open
Abstract
Conjugated linoleic acid (CLA) can activate (in vitro) the nuclear transcription factors known as the peroxisome proliferators activated receptors (PPAR). CLA was fed at 11 g CLA/kg of feed for 45d to castrated male pigs (barrows) to better understand long term effects of PPAR activation in vivo. The barrows fed CLA had lean muscle increased by 3.5% and overall fat reduced by 9.2% but intramuscular fat (IMF %) was increased by 14% (P < 0.05). To measure the effect of long term feeding of CLA on porcine muscle gene expression, a semi-quantitative RT-PCR method was developed using cDNA normalized against the housekeeping genes cyclophilin and beta-actin. This method does not require radioactivity or expensive PCR instruments with real-time fluorescent detection. PPARgamma and the PPAR responsive gene AFABP but not PPARalpha were significantly increased (P < 0.05) in the CLA fed pig's muscle. PPARalpha and PPARgamma were also quantitatively tested for large differences in gene expression by western blot analysis but no significant difference was detected at this level. Although large differences in gene expression of the PPAR transcriptional factors could not be confirmed by western blotting techniques. The increased expression of AFABP gene, which is responsive to PPAR transcriptional factors, confirmed that dietary CLA can induce a detectable increase in basal PPAR transcriptional activity in the live animal.
Collapse
Affiliation(s)
- W.J. Meadus
- Meat Research Section, Agriculture and Agri-Food Canada, Lacombe Research Center. 6000 C&E Trail, Lacombe, Alberta, T4l 1W1. Canada
| |
Collapse
|
35
|
Rys-Sikora KE, Pentland AP, Konger RL. Pertussis toxin-sensitive secretory phospholipase A2 expression and motility in activated primary human keratinocytes. J Invest Dermatol 2003; 120:86-95. [PMID: 12535202 DOI: 10.1046/j.1523-1747.2003.12001.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Secretory phospholipase A2 and cycloxygenase-2 are coexpressed in activated primary keratinocytes. These proteins are known to be functionally linked, mediating proliferation of human keratinocytes during epidermal wound repair. Primary human keratinocytes grown at low densities (15-30%; nonconfluent) produce high levels of prostaglandin E2 important for proliferation and are a good model for studying activated keratinocytes after injury. In this study, we used this model to assess the role of secretory phospholipase A2 and cycloxygenase-2 in keratinocyte motility. Initial work showed 24 h pretreatment with 20 ng pertussis toxin per ml, an inhibitor of the inhibitory G-protein, decreased prostaglandin E2 production and both secretory phospholipase A2 and cycloxygenase-2 protein expression. This suggested that inhibitory G-protein may be involved in mediating expression of these proteins. Pertussis toxin also caused changes in cell morphology, actin organization, and keratinocyte motility. Pretreatment with 5 microm 12-epi-scalaradial, a secretory phospholipase A2 inhibitor, caused similar changes in cell motility and actin organization; however, the specific cycloxygenase-2 inhibitor, SC-58236 (20 nm) was much less effective. These results suggested that secretory phospholipase A2 plays a part in keratinocyte motility that is independent of its functional linkage to cycloxygenase-2 and prostaglandin E2 biosynthesis.
Collapse
Affiliation(s)
- Krystyna E Rys-Sikora
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | |
Collapse
|
36
|
Silliman CC, Moore EE, Zallen G, Gonzalez R, Johnson JL, Elzi DJ, Meng X, Hanasaki K, Ishizaki J, Arita H, Ao L, England KM, Banerjee A. Presence of the M-type sPLA(2) receptor on neutrophils and its role in elastase release and adhesion. Am J Physiol Cell Physiol 2002; 283:C1102-13. [PMID: 12225974 DOI: 10.1152/ajpcell.00608.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secretory phospholipase A(2) (sPLA(2)) produces lipids that stimulate polymorphonuclear neutrophils (PMNs). With the discovery of sPLA(2) receptors (sPLA(2)-R), we hypothesize that sPLA(2) stimulates PMNs through a receptor. Scatchard analysis was used to determine the presence of a sPLA(2) ligand. Lysates were probed with an antibody to the M-type sPLA(2)-R, and the immunoreactivity was localized. PMNs were treated with active and inactive (+EGTA) sPLA(2) (1-100 units of enzyme activity/ml, types IA, IB, and IIA), and elastase release and PMN adhesion were measured. PMNs incubated with inactive, FITC-linked sPLA(2)-IB, but not sPLA(2)-IA, demonstrated the presence of a sPLA(2)-R with saturation at 2.77 fM and a K(d) of 167 pM. sPLA(2)-R immunoreactivity was present at 185 kDa and localized to the membrane. Inactive sPLA(2)-IB activated p38 MAPK, and p38 MAPK inhibition attenuated elastase release. Active sPLA(2)-IA caused elastase release, but inactive type IA did not. sPLA(2)-IB stimulated elastase release independent of activity; inactive sPLA(2)-IIA partially stimulated PMNs. sPLA(2)-IB and sPLA(2)-IIA caused PMN adhesion. We conclude that PMNs contain a membrane M-type sPLA(2)-R that activates p38 MAPK.
Collapse
Affiliation(s)
- Christopher C Silliman
- Bonfils Blood Center, Department of Pediatrics, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yagami T, Ueda K, Asakura K, Hata S, Kuroda T, Sakaeda T, Kishino J, Sakaguchi G, Itoh N, Hori Y. Group IB secretory phospholipase A(2)induces cell death in the cultured cortical neurons: a possible involvement of its binding sites. Brain Res 2002; 949:197-201. [PMID: 12213316 DOI: 10.1016/s0006-8993(02)03144-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In primary cultures of rat cortical neurons, group IB secretory phospholipase A(2) (sPLA(2)-IB) induced cell death. In rat cortical membranes, there were high affinity binding sites of [125I]sPLA(2)-IB. The high-affinity binding sites were decreased by sPLA(2)-IB and anti-sPLA(2) receptor immunoglobulin G (anti-sPLA(2)R IgG). Furthermore, anti-sPLA(2)R IgG caused neuronal cell death in a concentration-dependent manner. The present study suggests that sPLA(2)-IB induces neuronal cell death via its high-affinity binding sites.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Discovery Research Laboratories, Shionogi and Co Ltd, 12-4 Sagisu 5-Chome, Fukushima-ku, Osaka 553-0002, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hanasaki K, Arita H. Phospholipase A2 receptor: a regulator of biological functions of secretory phospholipase A2. Prostaglandins Other Lipid Mediat 2002; 68-69:71-82. [PMID: 12432910 DOI: 10.1016/s0090-6980(02)00022-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The phospholipase A2 receptor (PLA2R) is a type I transmembrane glycoprotein related to the C-type animal lectin family that includes the mannose receptor. PLA2R regulates a variety of biological responses elicited by specific types of secretory PLA2s (sPLA2s). Group IB sPLA2 (sPLA2-IB) acts as an endogenous PLA2R ligand to induce cell proliferation, cell migration, and lipid mediator production. Analysis of PLA2R-deficient mice has suggested a potential role of the sPLA2-IB/PLA2R pathway in the production of pro-inflammatory cytokines in endotoxic shock. PLA2R is also involved in the clearance of sPLA2s, including group X sPLA2 (sPLA2-X) and a particular type of snake venom sPLA2, and clearance suppresses their potent enzymatic activities. In the circulation, the soluble form of PLA2R is constitutively present as anendogenous inhibitor of sPLA2s. This review will focus on recent findings on the roles of PLA2R in regulating sPLA2 functions and summarize what is known about the otherbinding proteins for mammalian and snake venom sPLA2s.
Collapse
Affiliation(s)
- Kohji Hanasaki
- Shionogi Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan.
| | | |
Collapse
|
39
|
Vardjan N, Sherman NE, Pungercar J, Fox JW, Gubensek F, Krizaj I. High-molecular-mass receptors for ammodytoxin in pig are tissue-specific isoforms of M-type phospholipase A(2) receptor. Biochem Biophys Res Commun 2001; 289:143-9. [PMID: 11708791 DOI: 10.1006/bbrc.2001.5940] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studying the molecular basis of presynaptic neurotoxicity of ammodytoxin C, a secretory phospholipase A(2) from the venom of Vipera a. ammodytes snake, we demonstrated the existence of two high-molecular-mass ammodytoxin C-binding proteins in porcine tissues, one in cerebral cortex and the other in liver. These proteins differ considerably in stability and Western blotting properties. However, as shown by immunological analysis and tandem mass spectrometry sequencing of several internal peptides derived from the purified receptors, both belong to secretory phospholipase A(2) receptors of the M type, which are Ca(2+)-dependent multilectins homologous to the macrophage mannose receptor. Based on Southern blot analysis of genomic DNA and deglycosylation of the receptors, the difference between the two proteins most likely stems from the different posttranscriptional and posttranslational modifications of a single gene product. Our findings raise the possibility that the M-type receptors for secretory phospholipases A(2) may display different physiological properties in different tissues.
Collapse
Affiliation(s)
- N Vardjan
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
40
|
Mizenina O, Musatkina E, Yanushevich Y, Rodina A, Krasilnikov M, de Gunzburg J, Camonis JH, Tavitian A, Tatosyan A. A novel group IIA phospholipase A2 interacts with v-Src oncoprotein from RSV-transformed hamster cells. J Biol Chem 2001; 276:34006-12. [PMID: 11427522 DOI: 10.1074/jbc.m011320200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a novel isoform of phospholipase A(2). This enzyme was designated srPLA(2) because it was discovered while analyzing the proteins interacting with different forms of the v-Src oncoproteins isolated from Rous sarcoma virus-transformed hamster cells. It contains all the functional regions of the PLA(2) group IIA proteins but differs at its C-terminal end where there is an additional stretch of 8 amino acids. The SrPLA(2) isoform was detected as a 17-kDa precursor in cells and as a mature 14-kDa form secreted in culture medium. A direct interaction of the 17-kDa precursor with the Src protein was observed in lysates of transformed cells. Both the 17- and 14-kDa forms were found to be phosphorylated on tyrosine. To our knowledge, this is the first report of a PLA(2) group II protein that is tyrosine phosphorylated. We surmise that srPLA(2) interacts with the Src protein at the cell membrane during the process of its maturation.
Collapse
Affiliation(s)
- O Mizenina
- Institute of Carcinogenesis, Cancer Research Center, Kashirskoye shosse, 24, 115 478, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mandal AK, Zhang Z, Chou JY, Mukherjee AB. Pancreatic phospholipase A2 via its receptor regulates expression of key enzymes of phospholipid and sphingolipid metabolism. FASEB J 2001; 15:1834-6. [PMID: 11481246 DOI: 10.1096/fj.00-0831fje] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- A K Mandal
- Section on Developmental Genetics, Section on Cellular Differentiation, Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1830, USA
| | | | | | | |
Collapse
|
42
|
Capper EA, Marshall LA. Mammalian phospholipases A(2): mediators of inflammation, proliferation and apoptosis. Prog Lipid Res 2001; 40:167-97. [PMID: 11275266 DOI: 10.1016/s0163-7827(01)00002-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- E A Capper
- SmithKline Beecham Pharmaceuticals, Department of Immunology, Upper Merion, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | |
Collapse
|
43
|
Kundu GC, Zhang Z, Mantile-Selvaggi G, Mandal A, Yuan CJ, Mukherjee AB. Uteroglobin binding proteins: regulation of cellular motility and invasion in normal and cancer cells. Ann N Y Acad Sci 2001; 923:234-48. [PMID: 11193760 DOI: 10.1111/j.1749-6632.2000.tb05533.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Uteroglobin (UG) is a multifunctional, secreted protein with anti-inflammatory and antichemotactic properties. While its anti-inflammatory effects, in part, stem from the inhibition of soluble phospholipase A2 (sPLA2) activity, the mechanism(s) of its antichemotactic effects is not clearly understood. Although specific binding of UG on microsomal and plasma membranes has been reported recently, how this binding affects cellular function is not clear. Here, we report that recombinant human UG (hUG) binds to both normal and cancer cells with high affinity (20-35 nM, respectively) and specificity. Affinity cross-linking studies revealed that 125I-hUG binds to the NIH 3T3 cell surface with two proteins of apparent molecular masses of 190 and 49 kDa, respectively. UG affinity chromatography yielded similar results. While both the 190- and 49-kDa proteins were expressed in the heart, liver, and spleen, the lung and trachea expressed only the 190-kDa protein. Some cancer cells (e.g., mastocytoma, sarcoma, and lymphoma) expressed both the 190- and 49-kDa proteins. Further, using functional assays, we found that UG dramatically suppressed the motility and extracellular matrix invasion of both NIH 3T3 and some cancer cells. In order to further characterize the anti-ECM-invasive properties of UG, we induced expression of hUG into cancer cell lines derived from organs that, under physiological circumstances, secrete UG at a high level. Interestingly, it has been reported that a high percentage of the adenocarcinomas arising from the same organs fail to express UG. Our results on induced hUG expression in these cells show that inhibition of motility and ECM invasion requires the expression of both UG and its binding proteins. Taken together, our data define receptor-mediated functions of UG in which this protein regulates vital cellular functions by both autocrine and paracrine pathways.
Collapse
Affiliation(s)
- G C Kundu
- Section on Developmental Genetics, Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1830, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Uteroglobin/Clara cell 10-kDa protein (UG/CC10) is a hormonally regulated small secretory protein that has a variety of in vitro and in vivo pharmacological effects. These include a potent anti-inflammatory activity and inhibitory effects on neutrophil migration, thrombin-induced platelet aggregation, in vitro chemoinvasion, as well as "tumor suppressor"-like effects and other properties. Several mechanisms of action have been proposed for these effects. Pharmacological properties suggest that UG itself or substances derived from it may be used as experimental drugs for several indications. The group of oligopeptides collectively known as "antiflammins" (AFs) were originally described in 1988. Their design was derived from the region of highest sequence similarity between UG and another group of proteins with anti-inflammatory properties, the lipocortins or annexins. Nanomolar concentrations of these peptides can reproduce several of the pharmacological activities of UG, including its in vivo anti-inflammatory effects and inhibition of platelet aggregation. The AFs have been safely and effectively used to suppress inflammation and fibrosis in several animal models. Progress in clarifying the mechanism of action of the AFs may facilitate the structure-based design of a novel class of potent anti-inflammatory, antichemotactic drugs.
Collapse
Affiliation(s)
- L Miele
- Cancer Immunology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
45
|
Gelb MH, Valentin E, Ghomashchi F, Lazdunski M, Lambeau G. Cloning and recombinant expression of a structurally novel human secreted phospholipase A2. J Biol Chem 2000; 275:39823-6. [PMID: 11031251 PMCID: PMC3422575 DOI: 10.1074/jbc.c000671200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammals contain a diverse set of secreted phospholipases A(2) (sPLA(2)s) that liberate arachidonic acid from phospholipids for the production of eicosanoids and exert a variety of physiological and pathological effects. We report the cloning, recombinant expression, and kinetic properties of a novel human sPLA(2) that defines a new structural class of sPLA(2)s called group XII. The human group XII (hGXII) cDNA contains a putative signal peptide of 22 residues followed by a mature protein of 167 amino acids that displays homology to all known sPLA(2)s only over a short stretch of amino acids in the active site region. Northern blot and reverse transcription-polymerase chain reaction analyses show that the tissue distribution of hGXII is distinct from the other human sPLA(2)s with strong expression in heart, skeletal muscle, kidney, and pancreas and weaker expression in brain, liver, small intestine, lung, placenta, ovaries, testis, and prostate. Catalytically active hGXII was produced in Escherichia coli and shown to be Ca(2+)-dependent despite the fact that it is predicted to have an unusual Ca(2+)-binding loop. Similar to the previously characterized mouse group IIE sPLA(2)s, the specific activity of hGXII is low in comparison to that of other mammalian sPLA(2), suggesting that hGXII could have novel functions that are independent of its phospholipase A(2) activity.
Collapse
Affiliation(s)
- Michael H. Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | - Emmanuel Valentin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, 660 route des Lucioles, Sophia Antipolis 06560 Valbonne, France
| | - Farideh Ghomashchi
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | - Michel Lazdunski
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, 660 route des Lucioles, Sophia Antipolis 06560 Valbonne, France
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, 660 route des Lucioles, Sophia Antipolis 06560 Valbonne, France
| |
Collapse
|
46
|
Deregnaucourt C, Schrével J. Bee venom phospholipase A2 induces stage-specific growth arrest of the intraerythrocytic Plasmodium falciparum via modifications of human serum components. J Biol Chem 2000; 275:39973-80. [PMID: 10988294 DOI: 10.1074/jbc.m006712200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secreted phospholipases A(2) (sPLA(2)s) from snake and insect venoms and from mammalian pancreas are structurally related enzymes that have been associated with several toxic, pathological, or physiological processes. We addressed the issue of whether toxic sPLA(2)s might exert specific effects on the Plasmodium falciparum intraerythrocytic development. We showed that both toxic and non-toxic sPLA(2)s are lethal to P. falciparum grown in vitro, with large discrepancies between respective IC(50) values; IC(50) values from toxic PLA(2)s ranged from 1.1 to 200 pm, and IC(50) values from non-toxic PLA(2)s ranged from 0.14 to 1 microm. Analysis of the molecular mechanisms responsible for cytotoxicity of bee venom PLA(2) (toxic) and hog pancreas PLA(2) (non-toxic) demonstrated that, in both cases, enzymatic hydrolysis of serum phospholipids present in the culture medium was responsible for parasite growth arrest. However, bee PLA(2)-lipolyzed serum induced stage-specific inhibition of P. falciparum development, whereas hog PLA(2)-lipolyzed serum killed parasites at either stage. Sensitivity to bee PLA(2)-treated serum appeared restricted to the 19-26-h period of the 48 h parasite cycle. Analysis of the respective role of the different lipoprotein classes as substrates of bee PLA(2) showed that enzyme treatment of high density lipoproteins, low density lipoproteins, and very low density lipoproteins/chylomicrons fractions induces cytotoxicity of either fraction. In conclusion, our results demonstrate that toxic and non-toxic PLA(2)s 1) are cytotoxic to P. falciparum via hydrolysis of lipoprotein phospholipids and 2) display different killing processes presumably involving lipoprotein by-products recognizing different targets on the infected red blood cell.
Collapse
Affiliation(s)
- C Deregnaucourt
- Laboratoire de Biologie Parasitaire, Muséum National d'Histoire Naturelle IFR 63, 61 rue Buffon, 75231 Paris Cedex 05 France
| | | |
Collapse
|
47
|
Secreted phospholipase A2 induces vascular endothelial cell migration. Blood 2000. [DOI: 10.1182/blood.v96.12.3809.h8003809_3809_3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secreted phospholipase A2 (sPLA2) regulates a variety of cellular functions. The present investigation was undertaken to elucidate the potential role of sPLA2 in endothelial cell (EC) migration. Bovine aortic endothelial cells (BAECs) exposed to sPLA2 placed in the lower compartment of a modified Boyden chamber displayed increased migration compared to cells exposed to vehicle. The effect of sPLA2 on EC migration was time and dose dependent. Migration of BAECs was observed at 30 minutes, increased over 1 to 2 hours, and declined thereafter. At 2 hours of stimulation, sPLA2 (0.01-2 μmol/L) induced 1.2- to 3-fold increased cell migration compared with media alone. Among the different sPLA2s tested, bee venom, Naja naja, and porcine and human pancreatic PLA2s all evoked a migratory response in ECs. Moreover, human synovial fluid, obtained from patients with arthritis and containing sPLA2 activity, induced EC migration. Migration of ECs was significantly reduced after exposure to a catalytic site mutant of pancreatic sPLA2with decreased lipolytic activity as compared to wild-type sPLA2. Similarly, pretreatment of human synovial fluid withp-bromophenacyl bromide, an irreversible inhibitor of sPLA2, markedly decreased the ability of human synovial fluid to stimulate EC migration. Moreover, migration of ECs was stimulated on exposure to hydrolytic products of sPLA2activity including arachidonic acid, lysophosphatidic acid, and lysophosphatidylcholine. These findings suggest that sPLA2plays a physiologic role in induction of EC migration. Moreover, the effects of sPLA2 on EC migration are mediated, at least in part, by its catalytic activity.
Collapse
|
48
|
Abstract
AbstractSecreted phospholipase A2 (sPLA2) regulates a variety of cellular functions. The present investigation was undertaken to elucidate the potential role of sPLA2 in endothelial cell (EC) migration. Bovine aortic endothelial cells (BAECs) exposed to sPLA2 placed in the lower compartment of a modified Boyden chamber displayed increased migration compared to cells exposed to vehicle. The effect of sPLA2 on EC migration was time and dose dependent. Migration of BAECs was observed at 30 minutes, increased over 1 to 2 hours, and declined thereafter. At 2 hours of stimulation, sPLA2 (0.01-2 μmol/L) induced 1.2- to 3-fold increased cell migration compared with media alone. Among the different sPLA2s tested, bee venom, Naja naja, and porcine and human pancreatic PLA2s all evoked a migratory response in ECs. Moreover, human synovial fluid, obtained from patients with arthritis and containing sPLA2 activity, induced EC migration. Migration of ECs was significantly reduced after exposure to a catalytic site mutant of pancreatic sPLA2with decreased lipolytic activity as compared to wild-type sPLA2. Similarly, pretreatment of human synovial fluid withp-bromophenacyl bromide, an irreversible inhibitor of sPLA2, markedly decreased the ability of human synovial fluid to stimulate EC migration. Moreover, migration of ECs was stimulated on exposure to hydrolytic products of sPLA2activity including arachidonic acid, lysophosphatidic acid, and lysophosphatidylcholine. These findings suggest that sPLA2plays a physiologic role in induction of EC migration. Moreover, the effects of sPLA2 on EC migration are mediated, at least in part, by its catalytic activity.
Collapse
|
49
|
Iijima N, Uchiyama S, Fujikawa Y, Esaka M. Purification, characterization, and molecular cloning of group I phospholipases A2 from the gills of the red sea bream, Pagrus major. Lipids 2000; 35:1359-70. [PMID: 11201998 DOI: 10.1007/s11745-000-0653-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipase A2 (PLA2) activity was investigated in various tissues of male and female red sea bream. In both male and female fishes, the specific activity of PLA2 in the gills was 70 times higher than that in other tissues, such as the adipose tissue, intestine, and hepatopancreas. Therefore, we tried to purify PLA2 from the gill filaments of red sea bream to near homogeneity by sequential chromatography on Q-Sepharose Fast Flow, Butyl-Cellulofine, and DEAE-Sepharose Fast Flow columns, and by reversed-phase high-performance liquid chromatography. Two minor and one major PLA2, tentatively named G-1, G-2 and G-3 PLA2, were purified, and all showed a single band with an apparent molecular mass of approximately 15 kDa by sodium dodecylsulfate-polyacrylamide gel electrophoresis. The exact molecular mass values of G-1, G-2, and G-3 PLA2 were 14,040, 14,040 and 14,005 Da, respectively. G-1, G-2, and G-3 PLA2 had a Cys 11 and were all identical in N-terminal amino acid sequences from Ala-1 to Glu-56. A full-length cDNA encoding G-3 PLA2 was cloned by reverse transcriptase-polymerase chain reaction and rapid amplification of cDNA ends methods, and G-3 PLA2 was found to be classified to group IB PLA2 from the deduced amino acid sequence. G-1, G-2, and G-3 PLA2 had a pH optimum in an alkaline region at around pH 9-10 and required Ca2+ essentially for enzyme activity, using a mixed-micellar phosphatidylcholine substrate with sodium cholate. These results demonstrate that three group I PLA2, G-1, G-2, and G-3 PLA2, are expressed in the gill filaments of red sea bream.
Collapse
MESH Headings
- Adipose Tissue/enzymology
- Amino Acid Sequence
- Animals
- Base Sequence
- Calcium/metabolism
- Chromatography, Agarose
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dialysis Solutions/metabolism
- Digestive System/enzymology
- Elapid Venoms/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Female
- Fishes/genetics
- Gills/enzymology
- Hydrogen-Ion Concentration
- Intestines/enzymology
- Male
- Micelles
- Molecular Sequence Data
- Pancreas/enzymology
- Phospholipases A/chemistry
- Phospholipases A/genetics
- Phospholipases A/metabolism
- Phospholipases A2
- Polymerase Chain Reaction
- Protein Isoforms
- RNA, Messenger/metabolism
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Sodium Cholate/pharmacology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Swine
- Time Factors
- Tissue Distribution
Collapse
Affiliation(s)
- N Iijima
- Faculty of Applied Biological Science, Hiroshima University, Higashihiroshima, Japan.
| | | | | | | |
Collapse
|
50
|
Peri A, Bonaccorsi L, Muratori M, Luconi M, Baldi E, Granchi S, Pesciullesi A, Mini E, Cioppi F, Forti G, Serio M, Miele L, Maggi M. Uteroglobin reverts the transformed phenotype in the endometrial adenocarcinoma cell line HEC-1A by disrupting the metabolic pathways generating platelet-activating factor. Int J Cancer 2000; 88:525-34. [PMID: 11058867 DOI: 10.1002/1097-0215(20001115)88:4<525::aid-ijc3>3.0.co;2-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Uteroglobin, originally named blastokinin, is a protein synthesized and secreted by most epithelia, including the endometrium. Uteroglobin has strong anti-inflammatory properties that appear to be due, at least in part, to its inhibitory effect on the activity of the enzyme phospholipase A(2). In addition, recent experimental evidence indicates that uteroglobin exerts antiproliferative and antimetastatic effects in different cancer cells via a membrane receptor. The human endometrial adenocarcinoma cell line HEC-1A does not express uteroglobin. Thus, we transfected HEC-1A cells with human uteroglobin cDNA. The transfectants showed a markedly reduced proliferative potential as assessed by impaired plating efficiency as well as by reduced growth in soft agar. Cytofluorimetric analysis clearly indicated that in uteroglobin-transfected cells the time for completion of the cell cycle was increased. We previously demonstrated that HEC-1A cells actively synthesize platelet-activating factor, one of the products of phospholipase A(2) activity. In addition, we demonstrated that platelet-activating factor stimulates the proliferation of these cells through an autocrine loop. In uteroglobin transfectants, the activity of phospholipase A(2) and platelet-activating factor acetyl-transferase, which are involved in the synthesis of platelet-activating factor, was significantly reduced compared with wild-type and vector-transfected cells (p < 0.05). Our results indicate that enforced expression of uteroglobin in HEC-1A cells markedly reduced their growth potential and significantly impaired the synthesis of platelet-activating factor, an autocrine growth factor for these cells. These data suggest that one possible mechanism for the recently observed antineoplastic properties of uteroglobin may be the inhibition of the synthesis of platelet-activating factor.
Collapse
Affiliation(s)
- A Peri
- Department of Clinical Physiopathology, Endocrinology Unit, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|