1
|
Kamata S, Honda A, Kashiwagi N, Shimamura A, Yashiro S, Komori Y, Hosoda A, Akahoshi N, Ishii I. Different Coactivator Recruitment to Human PPARα/δ/γ Ligand-Binding Domains by Eight PPAR Agonists to Treat Nonalcoholic Fatty Liver Disease. Biomedicines 2024; 12:624. [PMID: 38540237 PMCID: PMC10967972 DOI: 10.3390/biomedicines12030624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 10/12/2024] Open
Abstract
Three peroxisome proliferator-activated receptor subtypes, PPARα, PPAR(ß/)δ, and PPARγ, exert ligand-dependent transcriptional control in concert with retinoid X receptors (RXRs) on various gene sets harboring PPAR response elements (PPREs) in their promoter regions. Ligand-bound PPAR/RXR complexes do not directly regulate transcription; instead, they recruit multiprotein coactivator complexes to specific genomic regulatory loci to cooperatively activate gene transcription. Several coactivators are expressed in a single cell; however, a ligand-bound PPAR can be associated with only one coactivator through a consensus LXXLL motif. Therefore, altered gene transcription induced by PPAR subtypes/agonists may be attributed to the recruitment of various coactivator species. Using a time-resolved fluorescence resonance energy transfer assay, we analyzed the recruitment of four coactivator peptides (PGC1α, CBP, SRC1, and TRAP220) to human PPARα/δ/γ-ligand-binding domains (LBDs) using eight PPAR dual/pan agonists (bezafibrate, fenofibric acid, pemafibrate, pioglitazone, elafibranor, lanifibranor, saroglitazar, and seladelpar) that are/were anticipated to treat nonalcoholic fatty liver disease. These agonists all recruited four coactivators to PPARα/γ-LBD with varying potencies and efficacy. Only five agonists (bezafibrate, pemafibrate, elafibranor, lanifibranor, and seladelpar) recruited all four coactivators to PPARδ-LBD, and their concentration-dependent responses differed from those of PPARα/γ-LBD. These results indicate that altered gene expression through consensus PPREs by different PPAR subtypes/agonists may be caused, in part, by different coactivators, which may be responsible for the unique pharmacological properties of these PPAR agonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University, Machida 194-8543, Tokyo, Japan
| |
Collapse
|
2
|
Majou D, Dermenghem AL. Effects of DHA (omega-3 fatty acid) and estradiol on amyloid β-peptide regulation in the brain. Brain Res 2024; 1823:148681. [PMID: 37992797 DOI: 10.1016/j.brainres.2023.148681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In the early stages of sporadic Alzheimer's disease (SAD), there is a strong correlation between memory impairment and cortical levels of soluble amyloid-β peptide oligomers (Aβ). It has become clear that Aβ disrupt glutamatergic synaptic function, which can in turn lead to the characteristic cognitive deficits of SAD, but the actual pathways are still not well understood. This opinion article describes the pathogenic mechanisms underlying cerebral amyloidosis. These mechanisms are dependent on the amyloid precursor protein and concern the synthesis of Aβ peptides with competition between the non-amyloidogenic pathway and the amyloidogenic pathway (i.e. a competition between the ADAM10 and BACE1 enzymes), on the one hand, and the various processes of Aβ residue clearance, on the other hand. This clearance mobilizes both endopeptidases (NEP, and IDE) and removal transporters across the blood-brain barrier (LRP1, ABCB1, and RAGE). Lipidated ApoE also plays a major role in all processes. The disturbance of these pathways induces an accumulation of Aβ. The description of the mechanisms reveals two key molecules in particular: (i) free estradiol, which has genomic and non-genomic action, and (ii) free DHA as a preferential ligand of PPARα-RXRα and PPARɣ-RXRα heterodimers. DHA and free estradiol are also self-regulating, and act in synergy. When a certain level of chronic DHA and free estradiol deficiency is reached, a permanent imbalance is established in the central nervous system. The consequences of these deficits are revealed in particular by the presence of Aβ peptide deposits, as well as other markers of the etiology of SAD.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France.
| | | |
Collapse
|
3
|
Zhou P, VanDusen NJ, Zhang Y, Cao Y, Sethi I, Hu R, Zhang S, Wang G, Ye L, Mazumdar N, Chen J, Zhang X, Guo Y, Li B, Ma Q, Lee JY, Gu W, Yuan GC, Ren B, Chen K, Pu WT. Dynamic changes in P300 enhancers and enhancer-promoter contacts control mouse cardiomyocyte maturation. Dev Cell 2023; 58:898-914.e7. [PMID: 37071996 PMCID: PMC10231645 DOI: 10.1016/j.devcel.2023.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 04/20/2023]
Abstract
Cardiomyocyte differentiation continues throughout murine gestation and into the postnatal period, driven by temporally regulated expression changes in the transcriptome. The mechanisms that regulate these developmental changes remain incompletely defined. Here, we used cardiomyocyte-specific ChIP-seq of the activate enhancer marker P300 to identify 54,920 cardiomyocyte enhancers at seven stages of murine heart development. These data were matched to cardiomyocyte gene expression profiles at the same stages and to Hi-C and H3K27ac HiChIP chromatin conformation data at fetal, neonatal, and adult stages. Regions with dynamic P300 occupancy exhibited developmentally regulated enhancer activity, as measured by massively parallel reporter assays in cardiomyocytes in vivo, and identified key transcription factor-binding motifs. These dynamic enhancers interacted with temporal changes of the 3D genome architecture to specify developmentally regulated cardiomyocyte gene expressions. Our work provides a 3D genome-mediated enhancer activity landscape of murine cardiomyocyte development.
Collapse
Affiliation(s)
- Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Nathan J VanDusen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanchun Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Yangpo Cao
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Isha Sethi
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shuo Zhang
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Guangyu Wang
- Cardiovascular Department, Houston Methodist, Weill Cornell Medical College, Houston, TX, USA
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Neil Mazumdar
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Jian Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Yuxuan Guo
- Peking University Health Science Center, Beijing, China
| | - Bin Li
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Julianna Y Lee
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Weiliang Gu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
4
|
Vanderhaeghen T, Timmermans S, Eggermont M, Watts D, Vandewalle J, Wallaeys C, Nuyttens L, De Temmerman J, Hochepied T, Dewaele S, Berghe JV, Sanders N, Wielockx B, Beyaert R, Libert C. The impact of hepatocyte-specific deletion of hypoxia-inducible factors on the development of polymicrobial sepsis with focus on GR and PPARα function. Front Immunol 2023; 14:1124011. [PMID: 37006237 PMCID: PMC10060827 DOI: 10.3389/fimmu.2023.1124011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionPolymicrobial sepsis causes acute anorexia (loss of appetite), leading to lipolysis in white adipose tissue and proteolysis in muscle, and thus release of free fatty acids (FFAs), glycerol and gluconeogenic amino acids. Since hepatic peroxisome proliferator-activated receptor alpha (PPARα) and glucocorticoid receptor (GR) quickly lose function in sepsis, these metabolites accumulate (causing toxicity) and fail to yield energy-rich molecules such as ketone bodies (KBs) and glucose. The mechanism of PPARα and GR dysfunction is not known.Methods & resultsWe investigated the hypothesis that hypoxia and/or activation of hypoxia inducible factors (HIFs) might play a role in these issues with PPARα and GR. After cecal ligation and puncture (CLP) in mice, leading to lethal polymicrobial sepsis, bulk liver RNA sequencing illustrated the induction of the genes encoding HIF1α and HIF2α, and an enrichment of HIF-dependent gene signatures. Therefore, we generated hepatocyte-specific knock-out mice for HIF1α, HIF2α or both, and a new HRE-luciferase reporter mouse line. After CLP, these HRE-luciferase reporter mice show signals in several tissues, including the liver. Hydrodynamic injection of an HRE-luciferase reporter plasmid also led to (liver-specific) signals in hypoxia and CLP. Despite these encouraging data, however, hepatocyte-specific HIF1α and/or HIF2α knock-out mice suggest that survival after CLP was not dependent on the hepatocyte-specific presence of HIF proteins, which was supported by measuring blood levels of glucose, FFAs, and KBs. The HIF proteins were also irrelevant in the CLP-induced glucocorticoid resistance, but we found indications that the absence of HIF1α in hepatocytes causes less inactivation of PPARα transcriptional function.ConclusionWe conclude that HIF1α and HIF2α are activated in hepatocytes in sepsis, but their contribution to the mechanisms leading to lethality are minimal.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Timmermans
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Melanie Eggermont
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Deepika Watts
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
- Deutsche Forschungsgemeinschaft (DFG) Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jolien Vandewalle
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charlotte Wallaeys
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Louise Nuyttens
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joyca De Temmerman
- Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sylviane Dewaele
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joke Vanden Berghe
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
- Deutsche Forschungsgemeinschaft (DFG) Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Rudi Beyaert
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- *Correspondence: Claude Libert,
| |
Collapse
|
5
|
Wang Y, Tang T, Ren J, Zhao Y, Hou Y, Nie X. Hypoxia aggravates the burden of yellowstripe goby (Mugilogobius chulae) under atorvastatin exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106381. [PMID: 36587518 DOI: 10.1016/j.aquatox.2022.106381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In the present study, an estuarine benthic fish, Mugilogobius chulae (M. chulae), was exposed to hypoxia, atorvastatin (ATV), a highly used and widely detected lipid-lowering drug in aquatic environment, and the combination of hypoxia and ATV for 7 days, respectively, so as to address and compare the effects of the combination of hypoxia and ATV exposure on M. chulae. The results showed that lipid metabolism in M. chulae was greatly affected: lipid synthesis was blocked and catabolism was enhanced, exhibiting that lipids content were heavily depleted. The combined exposure of hypoxia and ATV caused oxidative stress and induced massive inflammatory response in the liver of M. chulae. Signaling pathways involving in energy metabolism and redox responses regulated by key factors such as HIF, PPAR, p53 and sirt1 play important regulatory roles in hypoxia-ATV stress. Critically, we found that the response of M. chulae to ATV was more sensitive under hypoxia than normoxia. ATV exposure to aquatic non-target organisms under hypoxic conditions may make a great impact on the detoxification and energy metabolism, especially lipid metabolism, and aggravate the oxidative pressure of the exposed organisms.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Tianli Tang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Dixit G, Prabhu A. The pleiotropic peroxisome proliferator activated receptors: Regulation and therapeutics. Exp Mol Pathol 2021; 124:104723. [PMID: 34822814 DOI: 10.1016/j.yexmp.2021.104723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The Peroxisome proliferator-activated receptors (PPARs) are key regulators of metabolic events in our body. Owing to their implication in maintenance of homeostasis, both PPAR agonists and antagonists assume therapeutic significance. Understanding the molecular mechanisms of each of the PPAR isotypes in the healthy body and during disease is crucial to exploiting their full therapeutic potential. This article is an attempt to present a rational analysis of the multifaceted therapeutic effects and underlying mechanisms of isotype-specific PPAR agonists, dual PPAR agonists, pan PPAR agonists as well as PPAR antagonists. A holistic understanding of the mechanistic dimensions of these key metabolic regulators will guide future efforts to identify novel molecules in the realm of metabolic, inflammatory and immunotherapeutic diseases.
Collapse
Affiliation(s)
- Gargi Dixit
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
7
|
Sanborn AL, Yeh BT, Feigerle JT, Hao CV, Townshend RJ, Lieberman Aiden E, Dror RO, Kornberg RD. Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator. eLife 2021; 10:68068. [PMID: 33904398 PMCID: PMC8137143 DOI: 10.7554/elife.68068] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/25/2021] [Indexed: 01/07/2023] Open
Abstract
Gene activator proteins comprise distinct DNA-binding and transcriptional activation domains (ADs). Because few ADs have been described, we tested domains tiling all yeast transcription factors for activation in vivo and identified 150 ADs. By mRNA display, we showed that 73% of ADs bound the Med15 subunit of Mediator, and that binding strength was correlated with activation. AD-Mediator interaction in vitro was unaffected by a large excess of free activator protein, pointing to a dynamic mechanism of interaction. Structural modeling showed that ADs interact with Med15 without shape complementarity (‘fuzzy’ binding). ADs shared no sequence motifs, but mutagenesis revealed biochemical and structural constraints. Finally, a neural network trained on AD sequences accurately predicted ADs in human proteins and in other yeast proteins, including chromosomal proteins and chromatin remodeling complexes. These findings solve the longstanding enigma of AD structure and function and provide a rationale for their role in biology. Cells adapt and respond to changes by regulating the activity of their genes. To turn genes on or off, they use a family of proteins called transcription factors. Transcription factors influence specific but overlapping groups of genes, so that each gene is controlled by several transcription factors that act together like a dimmer switch to regulate gene activity. The presence of transcription factors attracts proteins such as the Mediator complex, which activates genes by gathering the protein machines that read the genes. The more transcription factors are found near a specific gene, the more strongly they attract Mediator and the more active the gene is. A specific region on the transcription factor called the activation domain is necessary for this process. The biochemical sequences of these domains vary greatly between species, yet activation domains from, for example, yeast and human proteins are often interchangeable. To understand why this is the case, Sanborn et al. analyzed the genome of baker’s yeast and identified 150 activation domains, each very different in sequence. Three-quarters of them bound to a subunit of the Mediator complex called Med15. Sanborn et al. then developed a machine learning algorithm to predict activation domains in both yeast and humans. This algorithm also showed that negatively charged and greasy regions on the activation domains were essential to be activated by the Mediator complex. Further analyses revealed that activation domains used different poses to bind multiple sites on Med15, a behavior known as ‘fuzzy’ binding. This creates a high overall affinity even though the binding strength at each individual site is low, enabling the protein complexes to remain dynamic. These weak interactions together permit fine control over the activity of several genes, allowing cells to respond quickly and precisely to many changes. The computer algorithm used here provides a new way to identify activation domains across species and could improve our understanding of how living things grow, adapt and evolve. It could also give new insights into mechanisms of disease, particularly cancer, where transcription factors are often faulty.
Collapse
Affiliation(s)
- Adrian L Sanborn
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States.,Department of Computer Science, Stanford University, Stanford, United States
| | - Benjamin T Yeh
- Department of Computer Science, Stanford University, Stanford, United States
| | - Jordan T Feigerle
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Cynthia V Hao
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | | | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, United States.,Center for Theoretical Biological Physics, Rice University, Houston, United States
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, United States
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
8
|
Martins VF, Dent JR, Svensson K, Tahvilian S, Begur M, Lakkaraju S, Buckner EH, LaBarge SA, Hetrick B, McCurdy CE, Schenk S. Germline or inducible knockout of p300 or CBP in skeletal muscle does not alter insulin sensitivity. Am J Physiol Endocrinol Metab 2019; 316:E1024-E1035. [PMID: 30888860 PMCID: PMC6620570 DOI: 10.1152/ajpendo.00497.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Akt is a critical mediator of insulin-stimulated glucose uptake in skeletal muscle. The acetyltransferases, E1A binding protein p300 (p300) and cAMP response element-binding protein binding protein (CBP) are phosphorylated and activated by Akt, and p300/CBP can acetylate and inactivate Akt, thus giving rise to a possible Akt-p300/CBP axis. Our objective was to determine the importance of p300 and CBP to skeletal muscle insulin sensitivity. We used Cre-LoxP methodology to generate mice with germline [muscle creatine kinase promoter (P-MCK and C-MCK)] or inducible [tamoxifen-activated, human skeletal actin promoter (P-iHSA and C-iHSA)] knockout of p300 or CBP. A subset of P-MCK and C-MCK mice were switched to a calorie-restriction diet (60% of ad libitum intake) or high-fat diet at 10 wk of age. For P-iHSA and C-iHSA mice, knockout was induced at 10 wk of age. At 13-15 wk of age, we measured whole-body energy expenditure, oral glucose tolerance, and/or ex vivo skeletal muscle insulin sensitivity. Although p300 and CBP protein abundance and mRNA expression were reduced 55%-90% in p300 and CBP knockout mice, there were no genotype differences in energy expenditure or fasting glucose and insulin concentrations. Moreover, neither loss of p300 or CBP impacted oral glucose tolerance or skeletal muscle insulin sensitivity, nor did their loss impact alterations in these parameters in response to a calorie restriction or high-fat diet. Muscle-specific loss of either p300 or CBP, be it germline or in adulthood, does not impact energy expenditure, glucose tolerance, or skeletal muscle insulin action.
Collapse
Affiliation(s)
- Vitor F Martins
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| | - Jessica R Dent
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Shahriar Tahvilian
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Maedha Begur
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Shivani Lakkaraju
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Elisa H Buckner
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Samuel A LaBarge
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Pierrot N, Ris L, Stancu IC, Doshina A, Ribeiro F, Tyteca D, Baugé E, Lalloyer F, Malong L, Schakman O, Leroy K, Kienlen-Campard P, Gailly P, Brion JP, Dewachter I, Staels B, Octave JN. Sex-regulated gene dosage effect of PPARα on synaptic plasticity. Life Sci Alliance 2019; 2:2/2/e201800262. [PMID: 30894406 PMCID: PMC6427998 DOI: 10.26508/lsa.201800262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Differences in PPARα expression between males and females affect the regulation of GluA1 expression and synaptic plasticity in mice. Mechanisms driving cognitive improvements following nuclear receptor activation are poorly understood. The peroxisome proliferator–activated nuclear receptor alpha (PPARα) forms heterodimers with the nuclear retinoid X receptor (RXR). We report that PPARα mediates the improvement of hippocampal synaptic plasticity upon RXR activation in a transgenic mouse model with cognitive deficits. This improvement results from an increase in GluA1 subunit expression of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, eliciting an AMPA response at the excitatory synapses. Associated with a two times higher PPARα expression in males than in females, we show that male, but not female, PPARα null mutants display impaired hippocampal long-term potentiation. Moreover, PPARα knockdown in the hippocampus of cognition-impaired mice compromises the beneficial effects of RXR activation on synaptic plasticity only in males. Furthermore, selective PPARα activation with pemafibrate improves synaptic plasticity in male cognition-impaired mice, but not in females. We conclude that striking sex differences in hippocampal synaptic plasticity are observed in mice, related to differences in PPARα expression levels.
Collapse
Affiliation(s)
- Nathalie Pierrot
- Université Catholique de Louvain, Brussels, Belgium .,Institute of Neuroscience, Brussels, Belgium
| | - Laurence Ris
- Laboratory of Neuroscience, Health Institute, University of Mons, Mons, Belgium
| | - Ilie-Cosmin Stancu
- Université Catholique de Louvain, Brussels, Belgium.,Institute of Neuroscience, Brussels, Belgium.,Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Anna Doshina
- Université Catholique de Louvain, Brussels, Belgium.,Institute of Neuroscience, Brussels, Belgium
| | - Floriane Ribeiro
- Université Catholique de Louvain, Brussels, Belgium.,Institute of Neuroscience, Brussels, Belgium
| | - Donatienne Tyteca
- Université Catholique de Louvain, Brussels, Belgium.,de Duve Institute, Brussels, Belgium
| | - Eric Baugé
- Université de Lille EGID, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Fanny Lalloyer
- Université de Lille EGID, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Liza Malong
- Université Catholique de Louvain, Brussels, Belgium.,Institute of Neuroscience, Brussels, Belgium
| | - Olivier Schakman
- Université Catholique de Louvain, Brussels, Belgium.,Institute of Neuroscience, Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Université Catholique de Louvain, Brussels, Belgium.,Institute of Neuroscience, Brussels, Belgium
| | - Philippe Gailly
- Université Catholique de Louvain, Brussels, Belgium.,Institute of Neuroscience, Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| | - Ilse Dewachter
- Université Catholique de Louvain, Brussels, Belgium.,Institute of Neuroscience, Brussels, Belgium.,Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Bart Staels
- Université de Lille EGID, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Jean-Noël Octave
- Université Catholique de Louvain, Brussels, Belgium.,Institute of Neuroscience, Brussels, Belgium
| |
Collapse
|
10
|
Piskacek M, Havelka M, Jendruchova K, Knight A. Nuclear hormone receptors: Ancient 9aaTAD and evolutionally gained NCoA activation pathways. J Steroid Biochem Mol Biol 2019; 187:118-123. [PMID: 30468856 DOI: 10.1016/j.jsbmb.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Abstract
In higher metazoans, the nuclear hormone receptors activate transcription trough their specific adaptors, nuclear hormone receptor adaptors NCoA, which are absent in lower metazoans. The Nine amino acid TransActivation Domain, 9aaTAD, was reported for a large number of the transcription activators that recruit general mediators of transcription. In this study, we demonstrated that the 9aaTAD from NHR-49 receptor of nematode C.elegans activates transcription as a small peptide. We showed that the ancient 9aaTAD domains are conserved in the nuclear hormone receptors including human HNF4, RARa, VDR and PPARg. Also their small 9aaTAD peptides effectively activated transcription in absence of the NCoA adaptors. We also showed that adjacent H11 domains in ancient and modern hormone receptors have an inhibitory effect on their 9aaTAD function.
Collapse
Affiliation(s)
- Martin Piskacek
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Czech Republic; Laboratory of Cancer Biology and Genetics, Czech Republic; Gamma Delta T Cell Laboratory, Czech Republic.
| | - Marek Havelka
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Czech Republic; Laboratory of Cancer Biology and Genetics, Czech Republic; Gamma Delta T Cell Laboratory, Czech Republic
| | - Kristina Jendruchova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Czech Republic; Laboratory of Cancer Biology and Genetics, Czech Republic; Gamma Delta T Cell Laboratory, Czech Republic
| | - Andrea Knight
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Czech Republic; Laboratory of Cancer Biology and Genetics, Czech Republic; Gamma Delta T Cell Laboratory, Czech Republic
| |
Collapse
|
11
|
Dutta D, Lai KY, Reyes-Ordoñez A, Chen J, van der Donk WA. Lanthionine synthetase C-like protein 2 (LanCL2) is important for adipogenic differentiation. J Lipid Res 2018; 59:1433-1445. [PMID: 29880530 DOI: 10.1194/jlr.m085274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/01/2018] [Indexed: 01/13/2023] Open
Abstract
Adipogenic differentiation is a highly regulated process that is necessary for metabolic homeostasis and nutrient sensing. The expression of PPARγ and the subsequent activation of adipogenic genes is critical for the process. In this study, we identified lanthionine synthetase C-like protein 2 (LanCL2) as a positive regulator of adipogenesis in 3T3-L1 cells. Knockdown of LanCL2, but not LanCL1, inhibited adipogenic differentiation, and this effect was not mediated through cAMP or Akt signaling pathways. The expression of early adipogenic markers CCAAT enhancer binding protein β (C/EBPβ) and C/EBPδ remained intact in LanCL2 knockdown cells, but levels of late adipogenic markers PPARγ and C/EBPα were suppressed. The addition of the naturally occurring PPARγ activator 15-deoxy-Δ12,14-prostaglandin J2 or conditioned medium from differentiating cells did not restore differentiation, implying that LanCL2 may not be involved in the production of a secreted endogenous PPARγ ligand. Pulldown assays demonstrated a direct physical interaction between LanCL2 and PPARγ. Consistent with a regulatory role of LanCL2, luciferase reporter assays revealed that full transcriptional activation by PPARγ was dependent on LanCL2. Taken together, our study reveals a novel role of LanCL2 in adipogenesis, specifically involved in PPARγ-mediated transactivation of downstream adipogenic genes.
Collapse
Affiliation(s)
- Debapriya Dutta
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kuan-Yu Lai
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Adriana Reyes-Ordoñez
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL .,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
12
|
Choi MJ, Lee EJ, Park JS, Kim SN, Park EM, Kim HS. Anti-inflammatory mechanism of galangin in lipopolysaccharide-stimulated microglia: Critical role of PPAR-γ signaling pathway. Biochem Pharmacol 2017; 144:120-131. [DOI: 10.1016/j.bcp.2017.07.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022]
|
13
|
Vignali PDA, Barbi J, Pan F. Metabolic Regulation of T Cell Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1011:87-130. [DOI: 10.1007/978-94-024-1170-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
SIK2 regulates fasting-induced PPARα activity and ketogenesis through p300. Sci Rep 2016; 6:23317. [PMID: 26983400 PMCID: PMC4794759 DOI: 10.1038/srep23317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/03/2016] [Indexed: 11/19/2022] Open
Abstract
Fatty acid oxidation and subsequent ketogenesis is one of the major mechanisms to maintain hepatic lipid homeostasis under fasting conditions. Fasting hormone glucagon has been shown to stimulate ketone body production through activation of PPARα; however, the signal pathway linking glucagon to PPARα is largely undiscovered. Here we report that a SIK2-p300-PPARα cascade mediates glucagon’s effect on ketogenesis. p300 interacts with PPARα through a conserved LXXLL motif and enhances its transcriptional activity. SIK2 disrupts p300-PPARα interaction by direct phosphorylation of p300 at Ser89, which in turn decreases PPARα-mediated ketogenic gene expression. Moreover, SIK2 phosphorylation defective p300 (p300 S89A) shows increased interaction with PPARα and abolishes suppression of SIK2 on PPARα-mediated ketogenic gene expression in liver. Taken together, our results unveil the signal pathway that mediates fasting induced ketogenesis to maintain hepatic lipid homeostasis.
Collapse
|
16
|
LaBarge SA, Migdal CW, Buckner EH, Okuno H, Gertsman I, Stocks B, Barshop BA, Nalbandian SR, Philp A, McCurdy CE, Schenk S. p300 is not required for metabolic adaptation to endurance exercise training. FASEB J 2015; 30:1623-33. [PMID: 26712218 DOI: 10.1096/fj.15-281741] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/11/2015] [Indexed: 11/11/2022]
Abstract
The acetyltransferase, E1a-binding protein (p300), is proposed to regulate various aspects of skeletal muscle development, metabolism, and mitochondrial function,viaits interaction with numerous transcriptional regulators and other proteins. Remarkably, however, the contribution of p300 to skeletal muscle function and metabolism,in vivo, is poorly understood. To address this, we used Cre-LoxP methodology to generate mice with skeletal muscle-specific knockout of E1a-binding protein (mKO). mKO mice were indistinguishable from their wild-type/floxed littermates, with no differences in lean mass, skeletal muscle structure, fiber type, respirometry flux, or metabolites of fatty acid and amino acid metabolism.Ex vivomuscle function in extensor digitorum longus and soleus muscles, including peak stress and time to fatigue, as well asin vivorunning capacity were also comparable. Moreover, expected adaptations to a 20 d voluntary wheel running regime were not compromised in mKO mice. Taken together, these findings demonstrate that p300 is not required for the normal development or functioning of adult skeletal muscle, nor is it required for endurance exercise-mediated mitochondrial adaptations.-LaBarge, S. A., Migdal, C. W., Buckner, E. H., Okuno, H., Gertsman, I., Stocks, B., Barshop, B. A., Nalbandian, S. R., Philp, A., McCurdy, C. E., Schenk, S. p300 is not required for metabolic adaptation to endurance exercise training.
Collapse
Affiliation(s)
- Samuel A LaBarge
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Christopher W Migdal
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Elisa H Buckner
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Hiroshi Okuno
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Ilya Gertsman
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Ben Stocks
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Bruce A Barshop
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Sarah R Nalbandian
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Andrew Philp
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Carrie E McCurdy
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Simon Schenk
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
17
|
Youssef J, Badr M. Peroxisome Proliferator-Activated Receptors Features, Functions, and Future. NUCLEAR RECEPTOR RESEARCH 2015. [DOI: 10.11131/2015/101188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
18
|
Zhao XR, Gonzales N, Aronowski J. Pleiotropic role of PPARγ in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and NF-κB. CNS Neurosci Ther 2014; 21:357-66. [PMID: 25430543 DOI: 10.1111/cns.12350] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke involving formation of hematoma within brain parenchyma, which accounts for 8-15% of all strokes in Western societies and 20-30% among Asian populations, and has a 1-year mortality rate >50%. The high mortality and severe morbidity make ICH a major public health problem. Only a few evidence-based targeted treatments are used for ICH management, and interventions focus primarily on supportive care and comorbidity prevention. Even in patients who survive the ictus, extravasated blood (including plasma components) and subsequent intrahematoma hemolytic products trigger a series of adverse events within the brain parenchyma, leading to secondary brain injury, edema and severe neurological deficits or death. Although the hematoma in humans gradually resolves within months, full restoration of neurological function can be slow and often incomplete, leaving survivors with devastating neurological deficits. During past years, peroxisome proliferator-activated receptor gamma (PPARγ) transcription factor and its agonists received recognition as important players in regulating not only glucose and lipid metabolism (which underlies its therapeutic effect in type 2 diabetes mellitus), and more recently, as an instrumental pleiotropic regulator of antiinflammation, antioxidative regulation, and phagocyte-mediated cleanup processes. PPARγ agonists have emerged as potential therapeutic target for stroke. The use of PPARγ as a therapeutic target appears to have particularly strong compatibility toward pathogenic components of ICH. In addition to its direct genomic effect, PPARγ may interact with transcription factor, NF-κB, which may underlie many aspects of the antiinflammatory effect of PPARγ. Furthermore, PPARγ appears to regulate expression of Nrf2, another transcription factor and master regulator of detoxification and antioxidative regulation. Finally, the synergistic costimulation of PPARγ and retinoid X receptor, RXR, may play an additional role in the therapeutic modulation of PPARγ function. In this article, we outline the main components of the role of PPARγ in ICH pathogenesis.
Collapse
Affiliation(s)
- Xiu-Rong Zhao
- Department of Neurology, Stroke Research Center, University of Texas Medical School - Houston, Houston, TX, USA
| | | | | |
Collapse
|
19
|
Ching J, Amiridis S, Stylli SS, Morokoff AP, O'Brien TJ, Kaye AH. A novel treatment strategy for glioblastoma multiforme and glioma associated seizures: increasing glutamate uptake with PPARγ agonists. J Clin Neurosci 2014; 22:21-8. [PMID: 25439749 DOI: 10.1016/j.jocn.2014.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The established role of glutamate in the pathogenesis of glioma-associated seizures (GAS) led us to investigate a novel treatment method using an established drug class, peroxisome proliferator activated receptor (PPAR) gamma agonists. Previously, sulfasalazine has been shown to prevent release of glutamate from glioma cells and prevent GAS in rodent models. However, raising protein mediated glutamate transport via excitatory amino acid transporter 2 (EAAT2) has not been investigated previously to our knowledge. PPAR gamma agonists are known to upregulate functional EAAT2 expression in astrocytes and prevent excitotoxicity caused by glutamate excess. These agents are also known to have anti-neoplastic mechanisms. Herein we discuss and review the potential mechanisms of these drugs and highlight a novel potential treatment for GAS.
Collapse
Affiliation(s)
- Jared Ching
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Stephanie Amiridis
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Andrew P Morokoff
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
20
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
21
|
Cocci P, Mosconi G, Palermo FA. Effects of 4-nonylphenol on hepatic gene expression of peroxisome proliferator-activated receptors and cytochrome P450 isoforms (CYP1A1 and CYP3A4) in juvenile sole (Solea solea). CHEMOSPHERE 2013; 93:1176-81. [PMID: 23866175 DOI: 10.1016/j.chemosphere.2013.06.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/10/2013] [Accepted: 06/18/2013] [Indexed: 05/20/2023]
Abstract
The objective of the present study was to investigate the modulatory effects of the xenoestrogen 4-nonylphenol (4-NP) on hepatic peroxisome proliferator-activated receptor (PPAR) α and β gene expression patterns in relation to the detoxification pathways mediated by cytochrome P450 isoforms (CYP1A1 and CYP3A4). Waterborne 4-NP-induced effects were compared with those of 10(-8)M 17β-estradiol (E2) by using in vivo dose-response experiments carried out with juvenile sole (Solea solea). Compared to the controls, significantly higher levels of PPARα mRNAs were found in fish treated with E2 or 4-NP (10(-6)M) 3 d after exposure; the highest dose of 4-NP also caused up-regulation of retinoid X receptor α (RXRα) transcript levels. On the contrary, PPARβ gene expression was not modulated by E2 or 4-NP. Our data show that 4-NP-induced PPARα mRNA levels coincide with suppression of CYP1A1 and CYP3A4 expression similarly to E2. The results from these in vivo studies suggest the presence of cross-talk between nuclear receptor-mediated signaling pathways and PPARα that may result in modulation of CYP450 isoforms expression following 4-NP treatment in sole liver.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Biotechnologies, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | | | | |
Collapse
|
22
|
Kaplan J, Nowell M, Chima R, Zingarelli B. Pioglitazone reduces inflammation through inhibition of NF-κB in polymicrobial sepsis. Innate Immun 2013; 20:519-28. [PMID: 24029145 DOI: 10.1177/1753425913501565] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/23/2013] [Indexed: 12/20/2022] Open
Abstract
The insulin sensitizing thiazolidinedione drugs, rosiglitazone and pioglitazone are specific peroxisome proliferator-activated receptor-gamma agonists and reduce pro-inflammatory responses in patients with type 2 diabetes and coronary artery disease, and may be beneficial in sepsis. Sepsis was induced in 8-10-wk-old C57BL/6 mice by cecal ligation and puncture (CLP) with a 22 -g double puncture technique. Mice received an i.p. injection of vehicle (DMSO:PBS) or pioglitazone (20 mg/kg) at 1 h and 6 h after CLP, and were sacrificed at various time points. In sepsis, vehicle-treated mice had hypoglycemia, increased lung injury and increased lung neutrophil infiltration. Pro-inflammatory plasma cytokines were increased, but the plasma adipokine, adiponectin, was decreased in vehicle-treated septic mice. This corresponded with inhibitor κB (IκBα) protein degradation and an increase in NF-κB activity in lung. Pioglitazone treatment improved plasma Glc and adiponectin levels, and decreased pro-inflammatory cytokines. Lung IκBα protein expression increased and corresponded with a decrease in NF-κB activity in the lung from pioglitazone-treated mice. Pioglitazone reduces the inflammatory response in polymicrobial sepsis in part through inhibition of NF-κB and may be a novel therapy in sepsis.
Collapse
Affiliation(s)
- Jennifer Kaplan
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marchele Nowell
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ranjit Chima
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
23
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 1062] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
24
|
PPAR-alpha cloning, expression, and characterization. Methods Mol Biol 2012; 952:7-34. [PMID: 23100222 DOI: 10.1007/978-1-62703-155-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a member of the nuclear/steroid receptor gene superfamily that also comprises β, δ, and γ isoforms. PPARα is a ligand-activated transcription factor that plays an important role in the regulation of many genes involved in key metabolic processes. Today, PPARα has been cloned from mammalian, marsupial, and a number of marine species and its expression has been found to be relatively tissue- and species-specific. Here, we describe the methods for cloning of PPARα genes by RT-PCR and RACE approaches and related protocols for studying the expression of cloned PPARα cDNAs in mammalian cell systems.
Collapse
|
25
|
Zhang LJ, Vogel WK, Liu X, Topark-Ngarm A, Arbogast BL, Maier CS, Filtz TM, Leid M. Coordinated regulation of transcription factor Bcl11b activity in thymocytes by the mitogen-activated protein kinase (MAPK) pathways and protein sumoylation. J Biol Chem 2012; 287:26971-88. [PMID: 22700985 DOI: 10.1074/jbc.m112.344176] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional regulatory protein Bcl11b is essential for T-cell development. We have discovered a dynamic, MAPK-regulated pathway involving sequential, linked, and reversible post-translational modifications of Bcl11b in thymocytes. MAPK-mediated phosphorylation of Bcl11b was coupled to its rapid desumoylation, which was followed by a subsequent cycle of dephosphorylation and resumoylation. Additionally and notably, we report the first instance of direct identification by mass spectrometry of a site of small ubiquitin-like modifier (SUMO) adduction, Lys-679 of Bcl11b, in a protein isolated from a native, mammalian cell. Sumoylation of Bcl11b resulted in recruitment of the transcriptional co-activator p300 to a Bcl11b-repressed promoter with subsequent induction of transcription. Prolonged treatment of native thymocytes with phorbol 12,13-dibutyrate together with the calcium ionophore A23187 also promoted ubiquitination and proteasomal degradation of Bcl11b, providing a mechanism for signal termination. A Bcl11b phospho-deSUMO switch was identified, the basis of which was phosphorylation-dependent recruitment of the SUMO hydrolase SENP1 to phospho-Bcl11b, coupled to hydrolysis of SUMO-Bcl11b. These results define a regulatory pathway in thymocytes that includes the MAPK pathways and upstream signaling components, Bcl11b and the associated nucleosome remodeling and deacetylation (NuRD) complex, SENP proteins, the Bcl11b protein phosphatase 6, the sumoylation machinery, the histone acetyltransferase p300, and downstream transcriptional machinery. This pathway appears to facilitate derepression of repressed Bcl11b target genes as immature thymocytes initiate differentiation programs, biochemically linking MAPK signaling with the latter stages of T-cell development.
Collapse
Affiliation(s)
- Ling-juan Zhang
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yao CX, Xiong CJ, Wang WP, Yang F, Zhang SF, Wang TQ, Wang SL, Yu HL, Wei ZR, Zang MX. Transcription Factor GATA-6 Recruits PPARα to Cooperatively Activate Glut4 Gene Expression. J Mol Biol 2012; 415:143-58. [DOI: 10.1016/j.jmb.2011.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 10/26/2011] [Accepted: 11/07/2011] [Indexed: 12/20/2022]
|
27
|
Calleri E, Fracchiolla G, Montanari R, Pochetti G, Lavecchia A, Loiodice F, Laghezza A, Piemontese L, Massolini G, Temporini C. Frontal affinity chromatography with MS detection of the ligand binding domain of PPARγ receptor: ligand affinity screening and stereoselective ligand-macromolecule interaction. J Chromatogr A 2011; 1232:84-92. [PMID: 22056242 DOI: 10.1016/j.chroma.2011.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 02/08/2023]
Abstract
In this study we report the development of new chromatographic tools for binding studies based on the gamma isoform ligand binding domain (LBD) of peroxisome proliferator-activated receptor (PPARγ) belonging to the nuclear receptor superfamily of ligand-activated transcription factors. PPARγ subtype plays important roles in the functions of adipocytes, muscles, and macrophages with a direct impact on type 2 diabetes, dyslipidemia, atherosclerosis, and cardiovascular disease. In order to set up a suitable immobilization chemistry, the LBD of PPARγ receptor was first covalently immobilized onto the surface of aminopropyl silica particles to create a PPARγ-Silica column for zonal elution experiments and then onto the surface of open tubular (OT) capillaries to create PPARγ-OT capillaries following different immobilization conditions. The capillaries were used in frontal affinity chromatography coupled to mass spectrometry (FAC-MS) experiments to determine the relative binding affinities of a series of chiral fibrates. The relative affinity orders obtained for these derivatives were consistent with the EC(50) values reported in literature. The optimized PPARγ-OT capillary was validated by determining the K(d) values of two selected compounds. Known the role of stereoselectivity in the binding of chiral fibrates, for the first time a detailed study was carried out by analysing two enantioselective couples on the LBD-PPARγ capillary by FAC and a characteristic two-stairs frontal profile was derived as the result of the two saturation events. All the obtained data indicate that the immobilized form of PPARγ-LBD retained the ability to specifically bind ligands.
Collapse
Affiliation(s)
- E Calleri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kaplan JM, Zingarelli B. Novel Therapeutic Agents in Pediatric Sepsis: Peroxisome Proliferator Receptor γ (PPAR γ) Agonists. ACTA ACUST UNITED AC 2011; 4:120-124. [PMID: 22259643 DOI: 10.2174/1875041901104010120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jennifer M Kaplan
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
29
|
Abstract
Nuclear receptors (NRs) represent a vital class of ligand-activated transcription factors responsible for coordinately regulating the expression of genes involved in numerous biological processes. Transcriptional regulation by NRs is conducted through interactions with multiple coactivator or corepressor complexes that modify the chromatin environment to facilitate or inhibit RNA polymerase II binding and transcription initiation. In recent years, studies have identified specific biological roles for cofactors mediating NR signaling through epigenetic modifications such as acetylation and methylation of histones. Intriguingly, genome-wide analysis of NR and cofactor localization has both confirmed findings from single-gene studies and revealed new insights into the relationships between NRs, cofactors and target genes in determining gene expression. Here, we review recent developments in the understanding of epigenetic regulation by NRs across the genome within the context of the well-established background of cofactor complexes and their roles in histone modification.
Collapse
Affiliation(s)
- Christopher D Green
- Chinese Academy of Sciences Key Laboratory of Molecular Developmental Biology, Center for Molecular Systems Biology, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing, 100101, China
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences–MaxPlanck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | | |
Collapse
|
30
|
Abstract
Peroxisome proliferator-activated receptor (PPAR)alpha, beta (also known as delta), and gamma function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-alpha bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.
Collapse
|
31
|
Youm YH, Yang H, Amin R, Smith SR, Leff T, Dixit VD. Thiazolidinedione treatment and constitutive-PPARgamma activation induces ectopic adipogenesis and promotes age-related thymic involution. Aging Cell 2010; 9:478-89. [PMID: 20374200 PMCID: PMC2910128 DOI: 10.1111/j.1474-9726.2010.00574.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Age-related thymic involution is characterized by reduction in T cell production together with ectopic adipocyte development within the hematopoietic and thymic niches. Peroxisome proliferator-activated receptor gamma (PPARgamma) is required for adipocyte development, glucose homeostasis and is a target for several insulin-sensitizing drugs. Our prior studies showed that age-related elevation of PPARgamma expression in thymic stromal cells is associated with thymic involution. Here, using clinically relevant pharmacological and genetic manipulations in mouse models, we provide evidence that activation of PPARgamma leads to reduction in thymopoiesis. Treatment of aged mice with antihyperglycemic PPARgamma-ligand class of thiazolidinedione drug, rosiglitazone caused robust thymic expression of classical pro-adipogenic transcripts. Rosiglitazone reduced thymic cellularity, lowered the naïve T cell number and T cell receptor excision circles (TRECs) indicative of compromised thymopoiesis. To directly investigate whether PPARgamma activation induces thymic involution, we created transgenic mice with constitutive-active PPARgamma (CA-PPARg) fusion protein in cells of adipogenic lineage. Importantly, CA-PPARgamma transgene was expressed in thymus and in fibroblast-specific protein-1/S100A4 (FSP1(+)) cells, a marker of secondary mesenchymal cells. The CAPPARgamma fusion protein mimicked the liganded PPARgamma receptor and the transgenic mice displayed increased ectopic thymic adipogenesis and reduced thymopoiesis. Furthermore, the reduction in thymopoiesis in CA-PPARgamma mice was associated with higher bone marrow adiposity and lower hematopoietic stem cell progenitor pool. Consistent with lower thymic output, CAPPARgamma transgenic mice had restricted T cell receptor repertoire diversity. Collectively, our data suggest that activation of PPARgamma accelerates thymic aging and thymus-specific PPARgamma antagonist may forestall age-related decline in T cell diversity.
Collapse
Affiliation(s)
- Yun-Hee Youm
- Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Hyunwon Yang
- Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Raj Amin
- Endocrinology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Steven R. Smith
- Endocrinology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Todd Leff
- Department of Pathology, Wayne State University, Detroit, MI 48201
| | - Vishwa Deep Dixit
- Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| |
Collapse
|
32
|
Randy LH, Guoying B. Agonism of Peroxisome Proliferator Receptor-Gamma may have Therapeutic Potential for Neuroinflammation and Parkinson's Disease. Curr Neuropharmacol 2010; 5:35-46. [PMID: 18615152 DOI: 10.2174/157015907780077123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 12/20/2006] [Accepted: 01/05/2007] [Indexed: 01/04/2023] Open
Abstract
Evidence suggests inflammation, mitochondria dysfunction, and oxidative stress play major roles in Parkinson's disease (PD), where the primary pathology is the significant loss of dopaminergic neurons in the substantia nigra (SN). Current methods used to treat PD focus mainly on replacing dopamine in the nigrostriatal system. However, with time these methods fail and worsen the symptoms of the disease. This implies there is more to the treatment of PD than just restoring dopamine or the dopaminergic neurons, and that a broader spectrum of factors must be changed in order to restore environmental homeostasis. Pharmacological agents that can protect against progressive neuronal degeneration, increase the level of dopamine in the nigrostriatal system, or restore the dopaminergic system offer various avenues for the treatment of PD. Drugs that reduce inflammation, restore mitochondrial function, or scavenge free radicals have also been shown to offer neuroprotection in various animal models of PD. The activation of peroxisome proliferator receptor- gamma (PPAR-gamma ) has been associated with altering insulin sensitivity, increasing dopamine, inhibiting inflammation, altering mitochondrial bioenergetics, and reducing oxidative stress - a variety of factors that are altered in PD. Therefore, PPAR-gamma activation may offer a new clinically relevant treatment approach to neuroinflammation and PD related neurodegeneration. This review will summarize the current understanding of the role of PPAR-gamma agonists in neuroinflammation and discuss their potential for the treatment of PD.
Collapse
Affiliation(s)
- L Hunter Randy
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington KY 40536, USA
| | | |
Collapse
|
33
|
Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol Cell 2010; 38:41-53. [PMID: 20385088 PMCID: PMC3641559 DOI: 10.1016/j.molcel.2010.01.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/11/2009] [Accepted: 01/25/2010] [Indexed: 12/23/2022]
Abstract
High-order chromatin was reconstituted in vitro. This species reflects the criteria associated with transcriptional regulation in vivo. Histone H1 was determinant to formation of condensed structures, with deacetylated histones giving rise to highly compacted chromatin that approximated 30 nm fibers as evidenced by electron microscopy. Using the PEPCK promoter, we validated the integrity of these templates that were refractory to transcription by attaining transcription through the progressive action of the pertinent factors. The retinoic acid receptor binds to highly compacted chromatin, but the NF1 transcription factor binds only after histone acetylation by p300 and SWI/SNF-mediated nucleosome mobilization, reflecting the in vivo case. Mapping studies revealed the same pattern of nucleosomal repositioning on the PEPCK promoter in vitro and in vivo, correlating with NF1 binding and transcription. The reconstitution of such highly compacted "30 nm" chromatin that mimics in vivo characteristics should advance studies of its conversion to a transcriptionally active form.
Collapse
|
34
|
Ehrenborg E, Krook A. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Pharmacol Rev 2010; 61:373-93. [PMID: 19805479 DOI: 10.1124/pr.109.001560] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Agonists directed against the alpha and gamma isoforms of the peroxisome proliferator-activated receptors (PPARs) have become important for the respective treatment of hypertriglyceridemia and insulin resistance associated with metabolic disease. PPARdelta is the least well characterized of the three PPAR isoforms. Skeletal muscle insulin resistance is a primary risk factor for the development of type 2 diabetes. There is increasing evidence that PPARdelta is an important regulator of skeletal muscle metabolism, in particular, muscle lipid oxidation, highlighting the potential utility of this isoform as a drug target. In addition, PPARdelta seems to be a key regulator of skeletal muscle fiber type and a possible mediator of the adaptations noted in skeletal muscle in response to exercise. In this review we summarize the current status regarding the regulation, and the metabolic effects, of PPARdelta in skeletal muscle.
Collapse
Affiliation(s)
- Ewa Ehrenborg
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
35
|
Nakagawa Y, Kuwahara K, Takemura G, Akao M, Kato M, Arai Y, Takano M, Harada M, Murakami M, Nakanishi M, Usami S, Yasuno S, Kinoshita H, Fujiwara M, Ueshima K, Nakao K. p300 plays a critical role in maintaining cardiac mitochondrial function and cell survival in postnatal hearts. Circ Res 2009; 105:746-54. [PMID: 19729597 DOI: 10.1161/circresaha.109.206037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE It is known that the transcriptional coactivator p300 is crucially involved in the differentiation and growth of cardiac myocytes during development. However, the physiological function of p300 in the postnatal hearts remains to be characterized. OBJECTIVE We have now investigated the physiological function of p300 in adult hearts. METHODS AND RESULTS We analyzed transgenic mice exhibiting cardiac-specific overexpression of a dominant-negative p300 mutant lacking the C/H3 domain (p300DeltaC/H3 transgenic [TG] mice). p300DeltaC/H3 significantly inhibited p300-induced activation of GATA- and myocyte enhancer factor 2-dependent promoters in cultured ventricular myocytes, and p300DeltaC/H3-TG mice showed cardiac dysfunction that was lethal by 20 weeks of age. The numbers of mitochondria in p300DeltaC/H3-TG myocytes were markedly increased, but the mitochondria were diminished in size. Moreover, cardiac mitochondrial gene expression, mitochondrial membrane potential and ATP contents were all significantly disrupted in p300DeltaC/H3-TG hearts, suggesting that mitochondrial dysfunction contributes to the progression of the observed cardiomyopathy. Transcription of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha, a master regulator of mitochondrial gene expression, and its target genes was significantly downregulated in p300DeltaC/H3-TG mice, and p300DeltaC/H3 directly repressed myocyte enhancer factor 2C-dependent PGC-1alpha promoter activity and disrupted the transcriptional activity of PGC-1alpha in cultured ventricular myocytes. In addition, myocytes showing features of autophagy were observed in p300DeltaC/H3-TG hearts. CONCLUSIONS Collectively, our findings suggest that p300 is essential for the maintenance of mitochondrial integrity and for myocyte survival in the postnatal left ventricular myocardium.
Collapse
Affiliation(s)
- Yasuaki Nakagawa
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara-cho, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cho MC, Lee S, Choi HS, Yang Y, Tae Hong J, Kim SJ, Yoon DY. Optimization of an enzyme-linked immunosorbent assay to screen ligand of Peroxisome proliferator-activated receptor alpha. Immunopharmacol Immunotoxicol 2009; 31:459-67. [DOI: 10.1080/08923970902785246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Zhang LJ, Liu X, Gafken PR, Kioussi C, Leid M. A chicken ovalbumin upstream promoter transcription factor I (COUP-TFI) complex represses expression of the gene encoding tumor necrosis factor alpha-induced protein 8 (TNFAIP8). J Biol Chem 2009; 284:6156-68. [PMID: 19112178 PMCID: PMC2649093 DOI: 10.1074/jbc.m807713200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/04/2008] [Indexed: 11/06/2022] Open
Abstract
The orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor I (COUP-TFI) plays key roles in development and homeostasis. A tandem affinity purification procedure revealed that COUP-TFI associated with a number of transcriptional regulatory proteins in HeLa S3 cells, including the nuclear receptor corepressor (NCoR), TIF1beta/KAP-1, HDAC1, and the SWI/SNF family member Brahma. The proapoptotic protein DBC1 was also identified in COUP-TFI complexes. In vitro experiments revealed that COUP-TFI interacted directly with NCoR but in a manner different from that of other nuclear receptors. DBC1 stabilized the interaction between COUP-TFI and NCoR by interacting directly with both proteins. The gene encoding the anti-apoptotic protein TNFAIP8 (tumor necrosis factor alpha (TNFalpha)-induced protein 8) was identified as being repressed by COUP-TFI in a manner that required several of the component proteins of the COUP-TFI complex. Finally, our studies highlight a central role for COUP-TFI in the induction of the TNFAIP8 promoter by TNFalpha. Together, these studies identify a novel COUP-TFI complex that functions as a repressor of transcription and may play a role in the TNFalpha signaling pathways.
Collapse
Affiliation(s)
- Ling-juan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
38
|
Collino M, Patel NSA, Thiemermann C. PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury. Ther Adv Cardiovasc Dis 2009; 2:179-97. [PMID: 19124421 DOI: 10.1177/1753944708090924] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of death and long-term disability in industrialized countries. Despite advances in understanding its pathophysiology, little progress has been made in the treatment of stroke. The currently available therapies have proven to be highly unsatisfactory (except thrombolysis) and attempts are being made to identify and characterize signaling proteins which could be exploited to design novel therapeutic modalities. The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that control lipid and glucose metabolism. PPARs regulate gene expression by binding with the retinoid X receptor (RXR) as a heterodimeric partner to specific DNA sequences, termed PPAR response elements. In addition, PPARs may modulate gene transcription also by directly interfering with other transcription factor pathways in a DNA-binding independent manner. To date, three different PPAR isoforms, designated alpha, beta/delta, and gamma, have been identified. Recently, they have been found to play an important role for the pathogenesis of various disorders of the central nervous system and accumulating data suggest that PPARs may serve as potential targets for treating ischemic stroke. Activation of all PPAR isoforms, but especially of PPARgamma, was shown to prevent post-ischemic inflammation and neuronal damage in several in vitro and in vivo models, negatively regulating the expression of genes induced by ischemia/ reperfusion (I/R). This paper reviews the evidence and recent developments relating to the potential therapeutic effects of PPAR-agonists in the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Massimo Collino
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Turin, Italy.
| | | | | |
Collapse
|
39
|
Guillou H, Martin PGP, Pineau T. Transcriptional regulation of hepatic fatty acid metabolism. Subcell Biochem 2008; 49:3-47. [PMID: 18751906 DOI: 10.1007/978-1-4020-8831-5_1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The liver is a major site of fatty acid synthesis and degradation. Transcriptional regulation is one of several mechanisms controlling hepatic metabolism of fatty acids. Two transcription factors, namely SREBP1-c and PPARalpha, appear to be the main players controlling synthesis and degradation of fatty acids respectively. This chapter briefly presents fatty acid metabolism. The first part focuses on SREBP1-c contribution to the control of gene expression relevant to fatty acid synthesis and the main mechanisms of activation for this transcriptional program. The second part reviews the evidence for the involvement of PPARalpha in the control of fatty acid degradation and the key features of this nuclear receptor. Finally, the third part aims at summarizing recent advances in our current understanding of how these two transcription factors fit in the regulatory networks that sense hormones or nutrients, including cellular fatty acids, and govern the transcription of genes implicated in hepatic fatty acid metabolism.
Collapse
Affiliation(s)
- Hervé Guillou
- Laboratoire de Pharmacologie et Toxicologie UR66, INRA, F-3100 Toulouse, France
| | | | | |
Collapse
|
40
|
Seo M, Inoue I, Ikeda M, Nakano T, Takahashi S, Katayama S, Komoda T. Statins Activate Human PPARalpha Promoter and Increase PPARalpha mRNA Expression and Activation in HepG2 Cells. PPAR Res 2008; 2008:316306. [PMID: 19125197 PMCID: PMC2610383 DOI: 10.1155/2008/316306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/17/2008] [Accepted: 10/02/2008] [Indexed: 11/17/2022] Open
Abstract
Statins increase peroxisome proliferator-activated receptor alpha (PPARalpha) mRNA expression, but the mechanism of this increased PPARalpha production remains elusive. To examine the regulation of PPARalpha production, we examined the effect of 7 statins (atorvastatin, cerivastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin) on human PPARalpha promoter activity, mRNA expression, nuclear protein levels, and transcriptional activity. The main results are as follows. (1) Majority of statins enhanced PPARalpha promoter activity in a dose-dependent manner in HepG2 cells transfected with the human PPARalpha promoter. This enhancement may be mediated by statin-induced HNF-4alpha. (2) PPARalpha mRNA expression was increased by statin treatment. (3) The PPARalpha levels in nuclear fractions were increased by statin treatment. (4) Simvastatin, pravastatin, and cerivastatin markedly enhanced transcriptional activity in 293T cells cotransfected with acyl-coenzyme A oxidase promoter and PPARalpha/RXRalpha expression vectors. In summary, these data demonstrate that PPARalpha production and activation are upregulated through the PPARalpha promoter activity by statin treatment.
Collapse
Affiliation(s)
- Makoto Seo
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Ikuo Inoue
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Masaaki Ikeda
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
- Molecular Clock Project, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Takanari Nakano
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Seiichiro Takahashi
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Shigehiro Katayama
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Tsugikazu Komoda
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| |
Collapse
|
41
|
O'Brien ML, Spear BT, Glauert HP. Role of Oxidative Stress in Peroxisome Proliferator-Mediated Carcinogenesis. Crit Rev Toxicol 2008; 35:61-88. [PMID: 15742903 DOI: 10.1080/10408440590905957] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, the evidence about the role of oxidative stress in the induction of hepatocellular carcinomas by peroxisome proliferators is examined. The activation of PPAR-alpha by peroxisome proliferators in rats and mice may produce oxidative stress, due to the induction of enzymes like fatty acyl coenzyme A (CoA) oxidase (AOX) and cytochrome P-450 4A1. The effect of peroxisome proliferators on the antioxidant defense system is reviewed, as is the effect on endpoints resulting from oxidative stress that may be important in carcinogenesis, such as lipid peroxidation, oxidative DNA damage, and transcription factor activation. Peroxisome proliferators clearly inhibit several enzymes in the antioxidant defense system, but studies examining effects on lipid peroxidation and oxidative DNA damage are conflicting. There is a profound species difference in the induction of hepatocellular carcinomas by peroxisome proliferators, with rats and mice being sensitive, whereas species such as nonhuman primates and guinea pigs are not susceptible to the effects of peroxisome proliferators. The possible role of oxidative stress in these species differences is also reviewed. Overall, peroxisome proliferators produce changes in oxidative stress, but whether these changes are important in the carcinogenic process is not clear at this time.
Collapse
Affiliation(s)
- Michelle L O'Brien
- Graduate Centerfor Toxicology, University of Kentucky, Lexington, Kentucky 40506-0054, USA
| | | | | |
Collapse
|
42
|
Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, DeLuca JG, Lai DY, McKee RH, Peters JM, Roberts RA, Fenner-Crisp PA. PPARα Agonist-Induced Rodent Tumors: Modes of Action and Human Relevance. Crit Rev Toxicol 2008; 33:655-780. [PMID: 14727734 DOI: 10.1080/713608372] [Citation(s) in RCA: 440] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Widely varied chemicals--including certain herbicides, plasticizers, drugs, and natural products--induce peroxisome proliferation in rodent liver and other tissues. This phenomenon is characterized by increases in the volume density and fatty acid oxidation of these organelles, which contain hydrogen peroxide and fatty acid oxidation systems important in lipid metabolism. Research showing that some peroxisome proliferating chemicals are nongenotoxic animal carcinogens stimulated interest in developing mode of action (MOA) information to understand and explain the human relevance of animal tumors associated with these chemicals. Studies have demonstrated that a nuclear hormone receptor implicated in energy homeostasis, designated peroxisome proliferator-activated receptor alpha (PPARalpha), is an obligatory factor in peroxisome proliferation in rodent hepatocytes. This report provides an in-depth analysis of the state of the science on several topics critical to evaluating the relationship between the MOA for PPARalpha agonists and the human relevance of related animal tumors. Topics include a review of existing tumor bioassay data, data from animal and human sources relating to the MOA for PPARalpha agonists in several different tissues, and case studies on the potential human relevance of the animal MOA data. The summary of existing bioassay data discloses substantial species differences in response to peroxisome proliferators in vivo, with rodents more responsive than primates. Among the rat and mouse strains tested, both males and females develop tumors in response to exposure to a wide range of chemicals including DEHP and other phthalates, chlorinated paraffins, chlorinated solvents such as trichloroethylene and perchloroethylene, and certain pesticides and hypolipidemic pharmaceuticals. MOA data from three different rodent tissues--rat and mouse liver, rat pancreas, and rat testis--lead to several different postulated MOAs, some beginning with PPARalpha activation as a causal first step. For example, studies in rodent liver identified seven "key events," including three "causal events"--activation of PPARalpha, perturbation of cell proliferation and apoptosis, and selective clonal expansion--and a series of associative events involving peroxisome proliferation, hepatocyte oxidative stress, and Kupffer-cell-mediated events. Similar in-depth analysis for rat Leydig-cell tumors (LCTs) posits one MOA that begins with PPARalpha activation in the liver, but two possible pathways, one secondary to liver induction and the other direct inhibition of testicular testosterone biosynthesis. For this tumor, both proposed pathways involve changes in the metabolism and quantity of related hormones and hormone precursors. Key events in the postulated MOA for the third tumor type, pancreatic acinar-cell tumors (PACTs) in rats, also begin with PPARalpha activation in the liver, followed by changes in bile synthesis and composition. Using the new human relevance framework (HRF) (see companion article), case studies involving PPARalpha-related tumors in each of these three tissues produced a range of outcomes, depending partly on the quality and quantity of MOA data available from laboratory animals and related information from human data sources.
Collapse
Affiliation(s)
- James E Klaunig
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu MH, Li J, Shen P, Husna B, Tai ES, Yong EL. A natural polymorphism in peroxisome proliferator-activated receptor-alpha hinge region attenuates transcription due to defective release of nuclear receptor corepressor from chromatin. Mol Endocrinol 2008; 22:1078-92. [PMID: 18292238 DOI: 10.1210/me.2007-0547] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor-alpha (PPARalpha) is a central regulator of lipid metabolism. Fibrate drugs act on PPARalpha to modulate dyslipidemias. A natural variant (V227A) affecting the PPARalpha hinge region was associated with perturbations in blood lipid levels in Asian populations. In this study, we investigated the functional significance of the V227A substitution. The variant significantly attenuated PPARalpha-mediated transactivation of the cytochrome P450 4A6 and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2) genes in the presence of fibrate ligands. Screening of a panel of PPARalpha coregulators revealed that V227A enhanced recruitment of the nuclear corepressor NCoR. Transactivation activity of V227A could be restored by silencing NCoR or by inhibition of its histone deacetylase activity. Deletion studies indicated that PPARalpha interacted with NCoR receptor-interacting domain 1 (ID1) but not ID2 or ID3. These interactions were dependent on the intact consensus nonapeptide nuclear receptor interaction motif in NCoR ID1 and were enhanced by the adjacent 24 N-terminal residues. Novel corepressor interaction determinants involving PPARalpha helices 1 and 2 were identified. In hepatic cells, the V227A substitution stabilized PPARalpha/NCoR interactions and caused defective release of NCoR in the presence of agonists on the HMGCS2 promoter. These results provide the first indication that defective function of a natural PPARalpha variant was due, at least partially, to increased corepressor binding. Our data suggest that the PPARalpha/NCoR interaction is physiologically relevant and can produce a discernable phenotype when the magnitude of the interaction is altered by a naturally occurring variation.
Collapse
Affiliation(s)
- Mei Hui Liu
- Department of Obstetrics and Gynecology, National University Hospital, Yong Loo Lin School of Medicine, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
44
|
Bento-Abreu A, Tabernero A, Medina JM. Peroxisome proliferator-activated receptor-alpha is required for the neurotrophic effect of oleic acid in neurons. J Neurochem 2007; 103:871-81. [PMID: 17683485 DOI: 10.1111/j.1471-4159.2007.04807.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Oleic acid synthesized by astrocytes behaves as a neurotrophic factor for neurons, up-regulating the molecular markers of axonal and dendritic outgrowth, growth-associated protein 43 and microtubule-associated protein 2. In this work, the nature of the receptor involved in this neurotrophic effect was investigated. As oleic acid has been reported to be a ligand and activator of the peroxisome proliferator-activated receptor (PPAR), we focus on this family of receptors. Our results show that PPARalpha, beta/delta, and gamma are expressed in neurons in culture. However, only the agonists of PPARalpha, Wy14643, GW7647 and oleoylethanolamide, promoted neuronal differentiation, while PPAR beta/delta and gamma agonists did not modify neuronal differentiation. Consequently, we investigated the involvement of PPARalpha (Nr1c1) in oleic acid-induced neuronal differentiation. Our results indicate that oleic acid activates PPARalpha in neurons. In addition, the effect of oleic acid on neuronal morphology, growth-associated protein 43 and microtubule-associated protein 2 expression decreases in neurons after PPARalpha has been silenced by small interfering RNA. Taken together, our results suggest that PPARalpha could be the receptor for oleic acid in neurons, further broadening the range of functions attributed to this family of transcription factors. Although several works have reported that PPARalpha could be involved in neuroprotection, the present work provides the first evidence suggesting a role of PPARalpha in neuronal differentiation.
Collapse
Affiliation(s)
- André Bento-Abreu
- Departamento de Bioquímica y Biología Molecular, INCYL, Universidad de Salamanca, Spain
| | | | | |
Collapse
|
45
|
Zahradka P. Cardiovascular Actions of the Peroxisome Proliferator-Activated Receptor-Alpha (PPAR?) Agonist Wy14,643. ACTA ACUST UNITED AC 2007; 25:99-122. [PMID: 17614934 DOI: 10.1111/j.1527-3466.2007.00008.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review examines the various effects of Wy14,643, a hypolipidemic agent that activates peroxisome proliferator-activated receptor-alpha (PPARalpha), on the cardiovascular system. An emphasis has been placed on the specific cellular processes affected by Wy14,643 as they relate to vascular and cardiac function. Although the topic of this discussion is limited to vascular and cardiac tissues, the importance of circulating lipids on cardiovascular disease requires that a description of the indirect actions of this compound on liver metabolism also be included. Finally, the pharmacology of Wy14,643 is discussed within the context of PPARalpha-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Peter Zahradka
- Institute of Cardiovascular Sciences, Department of Physiology, University of Manitoba and Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, MB, Canada.
| |
Collapse
|
46
|
Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, Palmer CNA, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2007; 58:726-41. [PMID: 17132851 DOI: 10.1124/pr.58.4.5] [Citation(s) in RCA: 726] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The three peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear hormone receptor superfamily. They share a high degree of structural homology with all members of the superfamily, particularly in the DNA-binding domain and ligand- and cofactor-binding domain. Many cellular and systemic roles have been attributed to these receptors, reaching far beyond the stimulation of peroxisome proliferation in rodents after which they were initially named. PPARs exhibit broad, isotype-specific tissue expression patterns. PPARalpha is expressed at high levels in organs with significant catabolism of fatty acids. PPARbeta/delta has the broadest expression pattern, and the levels of expression in certain tissues depend on the extent of cell proliferation and differentiation. PPARgamma is expressed as two isoforms, of which PPARgamma2 is found at high levels in the adipose tissues, whereas PPARgamma1 has a broader expression pattern. Transcriptional regulation by PPARs requires heterodimerization with the retinoid X receptor (RXR). When activated by a ligand, the dimer modulates transcription via binding to a specific DNA sequence element called a peroxisome proliferator response element (PPRE) in the promoter region of target genes. A wide variety of natural or synthetic compounds was identified as PPAR ligands. Among the synthetic ligands, the lipid-lowering drugs, fibrates, and the insulin sensitizers, thiazolidinediones, are PPARalpha and PPARgamma agonists, respectively, which underscores the important role of PPARs as therapeutic targets. Transcriptional control by PPAR/RXR heterodimers also requires interaction with coregulator complexes. Thus, selective action of PPARs in vivo results from the interplay at a given time point between expression levels of each of the three PPAR and RXR isotypes, affinity for a specific promoter PPRE, and ligand and cofactor availabilities.
Collapse
Affiliation(s)
- Liliane Michalik
- Center for Integrative Genomics, National Research Centre "Frontiers in Genetics," University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tudor C, Feige JN, Pingali H, Lohray VB, Wahli W, Desvergne B, Engelborghs Y, Gelman L. Association with Coregulators Is the Major Determinant Governing Peroxisome Proliferator-activated Receptor Mobility in Living Cells. J Biol Chem 2007; 282:4417-4426. [PMID: 17164241 DOI: 10.1074/jbc.m608172200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleus is an extremely dynamic compartment, and protein mobility represents a key factor in transcriptional regulation. We showed in a previous study that the diffusion of peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptors regulating major cellular and metabolic functions, is modulated by ligand binding. In this study, we combine fluorescence correlation spectroscopy, dual color fluorescence cross-correlation microscopy, and fluorescence resonance energy transfer to dissect the molecular mechanisms controlling PPAR mobility and transcriptional activity in living cells. First, we bring new evidence that in vivo a high percentage of PPARs and retinoid X receptors is associated even in the absence of ligand. Second, we demonstrate that coregulator recruitment (and not DNA binding) plays a crucial role in receptor mobility, suggesting that transcriptional complexes are formed prior to promoter binding. In addition, association with coactivators in the absence of a ligand in living cells, both through the N-terminal AB domain and the AF-2 function of the ligand binding domain, provides a molecular basis to explain PPAR constitutive activity.
Collapse
Affiliation(s)
- Cicerone Tudor
- Laboratory of Biomolecular Dynamics, Katholieke Universiteit, Leuven B-3001, Belgium
| | - Jérôme N Feige
- Center for Integrative Genomics, National Research Center "Frontiers in Genetics," University of Lausanne, Lausanne CH-1015, Switzerland, and
| | | | | | - Walter Wahli
- Center for Integrative Genomics, National Research Center "Frontiers in Genetics," University of Lausanne, Lausanne CH-1015, Switzerland, and
| | - Béatrice Desvergne
- Center for Integrative Genomics, National Research Center "Frontiers in Genetics," University of Lausanne, Lausanne CH-1015, Switzerland, and
| | - Yves Engelborghs
- Laboratory of Biomolecular Dynamics, Katholieke Universiteit, Leuven B-3001, Belgium.
| | - Laurent Gelman
- Center for Integrative Genomics, National Research Center "Frontiers in Genetics," University of Lausanne, Lausanne CH-1015, Switzerland, and.
| |
Collapse
|
48
|
Kim HJ, Woo IS, Kang ES, Eun SY, Kim HJ, Lee JH, Chang KC, Kim JH, Seo HG. Identification of a truncated alternative splicing variant of human PPARγ1 that exhibits dominant negative activity. Biochem Biophys Res Commun 2006; 347:698-706. [PMID: 16842753 DOI: 10.1016/j.bbrc.2006.06.147] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Accepted: 06/23/2006] [Indexed: 12/31/2022]
Abstract
We have identified a novel variant of human peroxisome proliferator-activated receptor gamma (hPPARgamma), derived from insertion of a novel exon 3'. Insertion leads to the introduction of a premature stop codon, resulting in the formation of a truncated splice variant of PPARgamma1 (PPARgamma1(tr)). Western blot analysis confirmed the presence of PPARgamma1(tr) in tumor-derived cell lines. Although PPARgamma1(tr) interfered with transcriptional activity of wild-type PPARgamma1 (PPARgamma1(wt)), activity could be rescued by cotransfection with a vector expressing p300. Overexpression of PPARgamma1(tr) protein in CHO cells greatly enhanced their proliferation and anchorage-independent colony growth on soft agar. These data demonstrate that PPARgamma1(tr) is an important physiologic isoform of PPARgamma that modulates cellular functions of PPARgamma1(wt).
Collapse
Affiliation(s)
- Hyo Jung Kim
- Department of Pharmacology, Gyeongsang Institute of Health Science, College of Medicine, National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Taubert S, Van Gilst MR, Hansen M, Yamamoto KR. A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 2006; 20:1137-49. [PMID: 16651656 PMCID: PMC1472473 DOI: 10.1101/gad.1395406] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Caenorhabditis elegans Nuclear Hormone Receptor NHR-49 coordinates expression of fatty acid (FA) metabolic genes during periods of feeding and in response to fasting. Here we report the identification of MDT-15, a subunit of the C. elegans Mediator complex, as an NHR-49-interacting protein and transcriptional coactivator. Knockdown of mdt-15 by RNA interference (RNAi) prevented fasting-induced mRNA accumulation of NHR-49 targets in vivo, and fasting-independent expression of other NHR-49 target genes, including two FA-Delta9-desaturases (fat-5, fat-7). Interestingly, mdt-15 RNAi affected additional FA-metabolism genes (including the third FA-Delta9-desaturase, fat-6) that are regulated independently of NHR-49, suggesting that distinct unidentified regulatory factors also recruit MDT-15 to selectively modulate metabolic gene expression. The deregulation of FA-Delta9-desaturases by knockdown of mdt-15 correlated with dramatically decreased levels of unsaturated FAs and multiple deleterious phenotypes (short life span, sterility, uncoordinated locomotion, and morphological defects). Importantly, dietary addition of specific polyunsaturated FAs partially suppressed these pleiotropic phenotypes. Thus, failure to properly govern FA-Delta9-desaturation contributed to decreased nematode viability. Our findings imply that a single subunit of the Mediator complex, MDT-15, integrates the activities of several distinct regulatory factors to coordinate metabolic and hormonal regulation of FA metabolism.
Collapse
Affiliation(s)
- Stefan Taubert
- Department of Cellular and Molecular Pharmacology, University of California, San Francicso, CA 94143, USA
| | | | | | | |
Collapse
|
50
|
Ou Z, Zhao X, Labiche LA, Strong R, Grotta JC, Herrmann O, Aronowski J. Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPARγ) and 15d-prostaglandin J2—Mediated protection of brain after experimental cerebral ischemia in rat. Brain Res 2006; 1096:196-203. [PMID: 16725118 DOI: 10.1016/j.brainres.2006.04.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 12/29/2022]
Abstract
Existing experimental evidence suggests that PPARgamma may play a beneficial role in neuroprotection from various brain pathologies. Here we found that focal cerebral ischemia induced by middle cerebral/common carotid arteries occlusion (MCA/CCAo) induced up-regulation of PPARgamma messenger RNA in the ischemic hemisphere as early as 6 h after the ischemic event. The increased PPARgamma mRNA expression was primarily associated with neurons in the ischemic penumbra, suggesting an important role for PPARgamma in neurons after ischemia. Intraventricular injection of 15d-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), a proposed endogenous PPARgamma agonist, into the ischemic rat brains significantly increased the PPARgamma-DNA-binding activity and reduced infarction volume at 24 h after reperfusion. We propose that PPARgamma up-regulation in response to ischemia may contribute to PPARgamma activation in the presence of PPARgamma agonists. Activation of PPARgamma in neurons at an early stage after ischemia may represent a pro-survival mechanism against ischemic injury.
Collapse
Affiliation(s)
- Zhishuo Ou
- University of Texas Health Science Center-Houston, Medical School, Department of Neurology, Stroke Program, Houston, 77030, USA
| | | | | | | | | | | | | |
Collapse
|