1
|
de Oliveira Micheletti T, Cassia dos Santos A, Rocha GZ, Silva VRR, Quaresma PGF, Assalin HB, Junqueira FS, Ropelle ER, Oliveira AG, Saad MJA, Prada PDO. Acute exercise reduces feeding by activating IL-6/Tubby axis in the mouse hypothalamus. Front Physiol 2022; 13:956116. [PMID: 36452038 PMCID: PMC9702993 DOI: 10.3389/fphys.2022.956116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2025] Open
Abstract
Background: Acute exercise contributes to decreased feeding through leptin and interleukin/Janus kinase 2/signal transducers and activators of transcription 3 (IL-6/JAK2/STAT3) signaling. Considering the pleiotropic use of substrates by JAK2 and that JAK2 can phosphorylate the Tubby protein (TUB) in CHO-IR cells, we speculated that acute exercise can activate the IL-6/JAK2/TUB pathway to decrease food intake. Aims: We investigated whether acute exercise induced tyrosine phosphorylation and the association of TUB and JAK2 in the hypothalamus and if IL-6 is involved in this response, whether acute exercise increases the IL-6/TUB axis to regulate feeding, and if leptin has an additive effect over this mechanism. Methods: We applied a combination of genetic, pharmacological, and molecular approaches. Key findings: The in vivo experiments showed that acute exercise increased the tyrosine phosphorylation and association of JAK2/TUB in the hypothalamus, which reduced feeding. This response was dependent on IL-6. Leptin had no additive effect on this mechanism. Significance: The results of this study suggest a novel hypothalamic pathway by which IL-6 released by exercise regulates feeding and reinforces the beneficial effects of exercise.
Collapse
Affiliation(s)
- Thayana de Oliveira Micheletti
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Andressa Cassia dos Santos
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Zweig Rocha
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Heloisa Balan Assalin
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Felipe Silva Junqueira
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Eduardo Rochete Ropelle
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Alexandre Gabarra Oliveira
- Department of Physical Education, Biosciences Institute, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia de Oliveira Prada
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
2
|
Xu HR, Liu Y, Yu TF, Hou ZH, Zheng JC, Chen J, Zhou YB, Chen M, Fu JD, Ma YZ, Wei WL, Xu ZS. Comprehensive Profiling of Tubby-Like Proteins in Soybean and Roles of the GmTLP8 Gene in Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:844545. [PMID: 35548296 PMCID: PMC9083326 DOI: 10.3389/fpls.2022.844545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/15/2022] [Indexed: 05/24/2023]
Abstract
Tubby-like proteins (TLPs) are transcription factors that are widely present in eukaryotes and generally participate in growth and developmental processes. Using genome databases, a total of 22 putative TLP genes were identified in the soybean genome, and unevenly distributed across 13 chromosomes. Phylogenetic analysis demonstrated that the predicted GmTLP proteins were divided into five groups (I-V). Gene structure, protein motifs, and conserved domains were analyzed to identify differences and common features among the GmTLPs. A three-dimensional protein model was built to show the typical structure of TLPs. Analysis of publicly available gene expression data showed that GmTLP genes were differentially expressed in response to abiotic stresses. Based on those data, GmTLP8 was selected to further explore the role of TLPs in soybean drought and salt stress responses. GmTLP8 overexpressors had improved tolerance to drought and salt stresses, whereas the opposite was true of GmTLP8-RNAi lines. 3,3-diaminobenzidine and nitro blue tetrazolium staining and physiological indexes also showed that overexpression of GmTLP8 enhanced the tolerance of soybean to drought and salt stresses; in addition, downstream stress-responsive genes were upregulated in response to drought and salt stresses. This study provides new insights into the function of GmTLPs in response to abiotic stresses.
Collapse
Affiliation(s)
- Hong-Ru Xu
- College of Agriculture, Yangtze University/Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ying Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ze-Hao Hou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jia-Cheng Zheng
- College of Agronomy, Anhui Science and Technology University, Fengyang, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University/Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
3
|
Distinct roles of stereociliary links in the nonlinear sound processing and noise resistance of cochlear outer hair cells. Proc Natl Acad Sci U S A 2020; 117:11109-11117. [PMID: 32358189 DOI: 10.1073/pnas.1920229117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Outer hair cells (OHCs) play an essential role in hearing by acting as a nonlinear amplifier which helps the cochlea detect sounds with high sensitivity and accuracy. This nonlinear sound processing generates distortion products, which can be measured as distortion-product otoacoustic emissions (DPOAEs). The OHC stereocilia that respond to sound vibrations are connected by three kinds of extracellular links: tip links that connect the taller stereocilia to shorter ones and convey force to the mechanoelectrical transduction channels, tectorial membrane-attachment crowns (TM-ACs) that connect the tallest stereocilia to one another and to the overlying TM, and horizontal top connectors (HTCs) that link adjacent stereocilia. While the tip links have been extensively studied, the roles that the other two types of links play in hearing are much less clear, largely because of a lack of suitable animal models. Here, while analyzing genetic combinations of tubby mice, we encountered models missing both HTCs and TM-ACs or HTCs alone. We found that the tubby mutation causes loss of both HTCs and TM-ACs due to a mislocalization of stereocilin, which results in OHC dysfunction leading to severe hearing loss. Intriguingly, the addition of the modifier allele modifier of tubby hearing 1 in tubby mice selectively rescues the TM-ACs but not the HTCs. Hearing is significantly rescued in these mice with robust DPOAE production, indicating an essential role of the TM-ACs but not the HTCs in normal OHC function. In contrast, the HTCs are required for the resistance of hearing to damage caused by noise stress.
Collapse
|
4
|
Xu J, Xing S, Sun Q, Zhan C, Liu X, Zhang S, Wang X. The expression of a tubby-like protein from Malus domestica (MdTLP7) enhances abiotic stress tolerance in Arabidopsis. BMC PLANT BIOLOGY 2019; 19:60. [PMID: 30727953 PMCID: PMC6366083 DOI: 10.1186/s12870-019-1662-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/24/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Tubby-like proteins (TLPs), characterized by a signature tubby domain, are widespread in plants and animals. To date, only plant TLPs involved in multifarious stress responses and male gametophyte development have been identified. However, studies on the molecular functions of plant TLPs are largely unknown. RESULTS In this investigation, the roles of a TLP from Malus domestica (MdTLP7) in response to abiotic stresses were characterized by expressing it in Arabidopsis. The expression of wild-type full-length MdTLP7 (FL) significantly increased the stress tolerance of Arabidopsis seedlings to osmotic, salt, cold and heat stress, while the expression of truncated MdTLP7 containing only the tubby domain (Tub) also showed some function. Located on a central α helix surrounded by 12 anti-parallel β strands in the tubby domain, the K190/R192 site may be involved in fixation to the plasma membrane, as shown by 3D homology modelling with animal TLPs. This site might play a crucial role in anti-stress functions since site-directed mutagenesis of MdTLP7 reduced stress tolerance. Subcellular localization showed that MdTLP7 was mainly localized in the plasma membrane in plant cells, suggesting that it might participate in the transduction of stress signals. CONCLUSIONS The results of this study showed that MdTLP7 could improve abiotic stress tolerance not only in bacteria but also in plants. The K190/R192 residues in the tubby domain were not only the plasma membrane binding site of MdTLP7 but also played a key role in stress tolerance. These results may provide a basis for further exploring the mechanism of anti-stress functioning and downstream target genes of plant TLPs.
Collapse
Affiliation(s)
- Jianing Xu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| | - Shanshan Xing
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| | - Qinghua Sun
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| | - Chunyan Zhan
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| | - Xin Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| | - Shizhong Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| |
Collapse
|
5
|
Tub and β-catenin play a key role in insulin and leptin resistance-induced pancreatic beta-cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1934-1944. [DOI: 10.1016/j.bbamcr.2018.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 02/06/2023]
|
6
|
Wang M, Xu Z, Kong Y. The tubby-like proteins kingdom in animals and plants. Gene 2018; 642:16-25. [PMID: 29109004 DOI: 10.1016/j.gene.2017.10.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/15/2017] [Accepted: 10/27/2017] [Indexed: 11/28/2022]
|
7
|
Nies VJM, Struik D, Wolfs MGM, Rensen SS, Szalowska E, Unmehopa UA, Fluiter K, van der Meer TP, Hajmousa G, Buurman WA, Greve JW, Rezaee F, Shiri-Sverdlov R, Vonk RJ, Swaab DF, Wolffenbuttel BHR, Jonker JW, van Vliet-Ostaptchouk JV. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans. Int J Obes (Lond) 2017; 42:376-383. [PMID: 28852204 DOI: 10.1038/ijo.2017.214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVES Mutations in the Tubby gene (TUB) cause late-onset obesity and insulin resistance in mice and syndromic obesity in humans. Although TUB gene function has not yet been fully elucidated, studies in rodents indicate that TUB is involved in the hypothalamic pathways regulating food intake and adiposity. Aside from the function in central nervous system, TUB has also been implicated in energy metabolism in adipose tissue in rodents. We aimed to determine the expression and distribution patterns of TUB in man as well as its potential association with obesity. SUBJECTS/METHODS In situ hybridization was used to localize the hypothalamic regions and cells expressing TUB mRNA. Using RT-PCR, we determined the mRNA expression level of the two TUB gene alternative splicing isoforms, the short and the long transcript variants, in the hypothalami of 12 obese and 12 normal-weight subjects, and in biopsies from visceral (VAT) and subcutaneous (SAT) adipose tissues from 53 severely obese and 24 non-obese control subjects, and correlated TUB expression with parameters of obesity and metabolic health. RESULTS Expression of both TUB transcripts was detected in the hypothalamus, whereas only the short TUB isoform was found in both VAT and SAT. TUB mRNA was detected in several hypothalamic regions involved in body weight regulation, including the nucleus basalis of Meynert and the paraventricular, supraoptic and tuberomammillary nuclei. We found no difference in the hypothalamic TUB expression between obese and control groups, whereas the level of TUB mRNA was significantly lower in adipose tissue of obese subjects as compared to controls. Also, TUB expression was negatively correlated with indices of body weight and obesity in a fat-depot-specific manner. CONCLUSIONS Our results indicate high expression of TUB in the hypothalamus, especially in areas involved in body weight regulation, and the correlation between TUB expression in adipose tissue and obesity. These findings suggest a role for TUB in human obesity.
Collapse
Affiliation(s)
- V J M Nies
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D Struik
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M G M Wolfs
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - S S Rensen
- Department of General Surgery, Maastricht University Medical Center, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - E Szalowska
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - U A Unmehopa
- Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - K Fluiter
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
| | - T P van der Meer
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Hajmousa
- Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W A Buurman
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J W Greve
- Department of Surgery, Zuyderland Medical Center Heerlen; Dutch Obesity Clinic South, Heerlen, The Netherlands
| | - F Rezaee
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R Shiri-Sverdlov
- Departments of Molecular Genetics, School of Nutrition & Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - R J Vonk
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - B H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Kim S, Sung HJ, Lee JW, Kim YH, Oh YS, Yoon KA, Heo K, Suh PG. C-terminally mutated tubby protein accumulates in aggresomes. BMB Rep 2017; 50:37-42. [PMID: 27697107 PMCID: PMC5319663 DOI: 10.5483/bmbrep.2017.50.1.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/24/2022] Open
Abstract
The tubby protein (Tub), a putative transcription factor, plays important roles in the maintenance and function of neuronal cells. A splicing defect-causing mutation in the 3′-end of the tubby gene, which is predicted to disrupt the carboxy-terminal region of the Tub protein, causes maturity-onset obesity, blindness, and deafness in mice. Although this pathological Tub mutation leads to a loss of function, the precise mechanism has not yet been investigated. Here, we found that the mutant Tub proteins were mostly localized to puncta found in the perinuclear region and that the C-terminus was important for its solubility. Immunocytochemical analysis revealed that puncta of mutant Tub co-localized with the aggresome. Moreover, whereas wild-type Tub was translocated to the nucleus by extracellular signaling, the mutant forms failed to undergo such translocation. Taken together, our results suggest that the malfunctions of the Tub mutant are caused by its misfolding and subsequent localization to aggresomes.
Collapse
Affiliation(s)
- Sunshin Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Ho Jin Sung
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Ji Won Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Yun Hee Kim
- Research Institute and Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Kyun Heo
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Pann-Ghill Suh
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
9
|
Yoon EJ, Jeong YT, Lee JE, Moon SJ, Kim CH. Tubby domain superfamily protein is required for the formation of the 7S SNARE complex in Drosophila. Biochem Biophys Res Commun 2016; 482:814-820. [PMID: 27888110 DOI: 10.1016/j.bbrc.2016.11.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022]
Abstract
Tubby domain superfamily protein (TUSP) is a distant member of the Tubby-like protein (TULP) family. Although other TULPs play important roles in sensation, metabolism, and development, the molecular functions of TUSP are completely unknown. Here, we explore the function of TUSP in the Drosophila nervous system where it is expressed in all neurons. Tusp mutant flies exhibit a temperature-sensitive paralysis. This paralysis can be rescued by tissue-specific expression of Tusp in the giant fibers and peripherally synapsing interneurons of the giant fiber system, a well-characterized neuronal circuit that mediates rapid escape behavior in flies. Consistent with this paralytic phenotype, we observed a profound reduction in the assembly of the ternary 7S SNARE complex that is required for neurotransmitter release despite seeing no changes in the expression of each individual SNARE complex component. Together, these data suggest TUSP is a novel regulator of SNARE assembly and, therefore, of neurotransmitter release.
Collapse
Affiliation(s)
- Eun Jang Yoon
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yong Taek Jeong
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, #81 Ilwon-dong, Gangnam-gu, Seoul, 06351, South Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
10
|
|
11
|
Andersen MK, Sandholt CH. Recent Progress in the Understanding of Obesity: Contributions of Genome-Wide Association Studies. Curr Obes Rep 2015; 4:401-10. [PMID: 26374640 DOI: 10.1007/s13679-015-0173-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since 2007, discovery of genetic variants associated with general obesity and fat distribution has advanced tremendously through genome-wide association studies (GWAS). Currently, the number of robustly associated loci is 190. Even though these loci explain <3 % of the variance, they have provided us a still emerging picture of genomic localization, frequency and effect size spectra, and hints of functional implications. The translation into biological knowledge has turned out to be an immense task. However, in silico enrichment analyses of genes involved in specific pathways or expressed in specific tissues have the power to suggest biological mechanisms underlying obesity. Inspired by this, we highlight genes in five loci potentially mechanistically linked to leptin-receptor trafficking and signaling in primary cilia. The clinical application of genetic knowledge as prediction, prevention, or treatment strategies is unfortunately still far from reality. Thus, despite major advances, further research is warranted to solve one of the greatest health problems in modern society.
Collapse
Affiliation(s)
- Mette Korre Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2.sal, 2100, Copenhagen, Denmark.
| | - Camilla Helene Sandholt
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2.sal, 2100, Copenhagen, Denmark.
| |
Collapse
|
12
|
Genome-wide identification and comparative analysis of the TUBBY-like protein gene family in maize. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0338-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Kim JW, Kim HS, Kim SD, Park JY. Insulin Phosphorylates Tyrosine Residue 464 of Tub and Translocates Tubby into the Nucleus in HIRcB Cells. Endocrinol Metab (Seoul) 2014; 29:163-8. [PMID: 25031889 PMCID: PMC4091484 DOI: 10.3803/enm.2014.29.2.163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 02/17/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The tubby protein has a motif that might be relevant for its action in the insulin signaling pathway. Previous studies have indicated that tubby undergoes phosphorylation on tyrosine residues in response to several stimuli and is known to localize in the nucleus as well as in the plasma membrane. However, the relationship between phosphorylation and nuclear translocation is not well understood. Here, we report that insulin directly phosphorylates tubby, which translocates into the nucleus. METHODS The effects of insulin on Tubby were performed with Western blot. The immunoprecipitation and confocal microscopy were performed to prove phosphorylation and nuclear translocation. RESULTS Mutation study reveals that tyrosine residue 464 of tubby gene (Tub) is a phosphorylation site activated by insulin. In addition, major portions of tubby protein in the plasma membrane are translocated into the nucleus after insulin treatment. Tyrosine kinase inhibitor pretreatment blocked insulin-induced tubby translocation, suggesting that phosphorylation is important for nuclear translocation. Moreover, mutant tyrosine residue 464 did not translocate into the nucleus in respond to insulin. These findings demonstrate that insulin phosphorylates tyrosine residue 464 of Tub, and this event is important for insulin-induced tubby nuclear translocation. CONCLUSION Insulin phosphorylates tyrosine residue 464 of Tub and translocates tubby into the nuclei of HIRcB cells.
Collapse
Affiliation(s)
- Jin Wook Kim
- Department of Neurosurgery, Gachon University Gil Medical Center, Incheon, Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Sang Dae Kim
- Department of Neurosurgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Jung Yul Park
- Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
An obesity-like gene MdTLP7 from apple (Malus×domestica) enhances abiotic stress tolerance. Biochem Biophys Res Commun 2014; 445:394-7. [DOI: 10.1016/j.bbrc.2014.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/04/2014] [Indexed: 11/23/2022]
|
15
|
Park J, Lee J, Shim J, Han W, Lee J, Bae YC, Chung YD, Kim CH, Moon SJ. dTULP, the Drosophila melanogaster homolog of tubby, regulates transient receptor potential channel localization in cilia. PLoS Genet 2013; 9:e1003814. [PMID: 24068974 PMCID: PMC3778012 DOI: 10.1371/journal.pgen.1003814] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/23/2013] [Indexed: 12/27/2022] Open
Abstract
Mechanically gated ion channels convert sound into an electrical signal for the sense of hearing. In Drosophila melanogaster, several transient receptor potential (TRP) channels have been implicated to be involved in this process. TRPN (NompC) and TRPV (Inactive) channels are localized in the distal and proximal ciliary zones of auditory receptor neurons, respectively. This segregated ciliary localization suggests distinct roles in auditory transduction. However, the regulation of this localization is not fully understood. Here we show that the Drosophila Tubby homolog, King tubby (hereafter called dTULP) regulates ciliary localization of TRPs. dTULP-deficient flies show uncoordinated movement and complete loss of sound-evoked action potentials. Inactive and NompC are mislocalized in the cilia of auditory receptor neurons in the dTulp mutants, indicating that dTULP is required for proper cilia membrane protein localization. This is the first demonstration that dTULP regulates TRP channel localization in cilia, and suggests that dTULP is a protein that regulates ciliary neurosensory functions.
Collapse
Affiliation(s)
- Jina Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seodaemun-gu, Seoul, Korea
| | - Jeongmi Lee
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Jaewon Shim
- Department of Oral Biology, Yonsei University College of Dentistry, Seodaemun-gu, Seoul, Korea
| | - Woongsu Han
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jinu Lee
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Inchon, Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, BK21, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Yun Doo Chung
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (CHK); (SJM)
| | - Seok Jun Moon
- Department of Oral Biology, Yonsei University College of Dentistry, Seodaemun-gu, Seoul, Korea
- * E-mail: (CHK); (SJM)
| |
Collapse
|
16
|
Tsou RC, Bence KK. Central regulation of metabolism by protein tyrosine phosphatases. Front Neurosci 2013; 6:192. [PMID: 23308070 PMCID: PMC3538333 DOI: 10.3389/fnins.2012.00192] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/17/2012] [Indexed: 11/13/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are important regulators of intracellular signaling pathways via the dephosphorylation of phosphotyrosyl residues on various receptor and non-receptor substrates. The phosphorylation state of central nervous system (CNS) signaling components underlies the molecular mechanisms of a variety of physiological functions including the control of energy balance and glucose homeostasis. In this review, we summarize the current evidence implicating PTPs as central regulators of metabolism, specifically highlighting their interactions with the neuronal leptin and insulin signaling pathways. We discuss the role of a number of PTPs (PTP1B, SHP2, TCPTP, RPTPe, and PTEN), reviewing the findings from genetic mouse models and in vitro studies which highlight these phosphatases as key central regulators of energy homeostasis.
Collapse
Affiliation(s)
- Ryan C Tsou
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
17
|
Prada PO, Quaresma PG, Caricilli AM, Santos AC, Guadagnini D, Morari J, Weissmann L, Ropelle ER, Carvalheira JBC, Velloso LA, Saad MJ. Tub has a key role in insulin and leptin signaling and action in vivo in hypothalamic nuclei. Diabetes 2013; 62:137-148. [PMID: 22966070 PMCID: PMC3526052 DOI: 10.2337/db11-1388] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 05/07/2012] [Indexed: 01/08/2023]
Abstract
Mutation of tub gene in mice induces obesity, suggesting that tub could be an important regulator of energy balance. In the current study, we investigated whether insulin, leptin, and obesity can modulate Tub in vivo in hypothalamic nuclei, and we investigated possible consequences on energy balance, neuropeptide expression, and hepatic glucose metabolism. Food intake, metabolic characteristics, signaling proteins, and neuropeptide expression were measured in response to fasting and refeeding, intracerebroventricular insulin and leptin, and Tub antisense oligonucleotide (ASO). Tub tyrosine phosphorylation (Tub-p-tyr) is modulated by nutritional status. Tub is a substrate of insulin receptor tyrosine kinase (IRTK) and leptin receptor (LEPR)-Janus kinase 2 (JAK2) in hypothalamic nuclei. After leptin or insulin stimulation, Tub translocates to the nucleus. Inhibition of Tub expression in hypothalamus by ASO increased food intake, fasting blood glucose, and hepatic glucose output, decreased O(2) consumption, and blunted the effect of insulin or leptin on proopiomelanocortin, thyroid-releasing hormone, melanin-concentrating hormone, and orexin expression. In hypothalamus of mice administered a high-fat diet, there is a reduction in leptin and insulin-induced Tub-p-tyr and nuclear translocation, which is reversed by reducing protein tyrosine phosphatase 1B expression. These results indicate that Tub has a key role in the control of insulin and leptin effects on food intake, and the modulation of Tub may contribute to insulin and leptin resistance in DIO mice.
Collapse
Affiliation(s)
- Patrícia O. Prada
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Paula G.F. Quaresma
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Andrea M. Caricilli
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Andressa C. Santos
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Joseane Morari
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Laís Weissmann
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Eduardo R. Ropelle
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | | | - Lício A. Velloso
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Mario J.A. Saad
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| |
Collapse
|
18
|
Molecular Mechanisms of Insulin Resistance in Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:240-51. [DOI: 10.1007/978-1-4614-5441-0_19] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Snyder EE, Walts B, Pérusse L, Chagnon YC, Weisnagel SJ, Rankinen T, Bouchard C. The Human Obesity Gene Map: The 2003 Update. ACTA ACUST UNITED AC 2012; 12:369-439. [PMID: 15044658 DOI: 10.1038/oby.2004.47] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This is the tenth update of the human obesity gene map, incorporating published results up to the end of October 2003 and continuing the previous format. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome-wide scans and animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. Transgenic and knockout murine models relevant to obesity are also incorporated (N = 55). As of October 2003, 41 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. QTLs reported from animal models currently number 183. There are 208 human QTLs for obesity phenotypes from genome-wide scans and candidate regions in targeted studies. A total of 35 genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 272 studies reporting positive associations with 90 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, more than 430 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Eric E Snyder
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808-4124, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Wardhan V, Jahan K, Gupta S, Chennareddy S, Datta A, Chakraborty S, Chakraborty N. Overexpression of CaTLP1, a putative transcription factor in chickpea (Cicer arietinum L.), promotes stress tolerance. PLANT MOLECULAR BIOLOGY 2012; 79:479-93. [PMID: 22644439 DOI: 10.1007/s11103-012-9925-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/10/2012] [Indexed: 05/15/2023]
Abstract
Dehydration is the most crucial environmental constraint on plant growth and development, and agricultural productivity. To understand the underlying mechanism of stress tolerance, and to identify proteins for improving such important trait, we screened the dehydration-responsive proteome of chickpea and identified a tubby-like protein, referred to as CaTLP1. The CaTLP1 was found to predominantly bind to double-stranded DNA but incapable of transcriptional activation. We investigated the gene structure and organization and demonstrated, for the first time, that CaTLP1 may be involved in osmotic stress response in plants. The transcripts are strongly expressed in vegetative tissues but weakly in reproductive tissues. CaTLP1 is upregulated by dehydration and high salinity, and by treatment with abscisic acid (ABA), suggesting that its stress-responsive function might be associated with ABA-dependent network. Overexpression of CaTLP1 in transgenic tobacco plants conferred dehydration, salinity and oxidative stress tolerance along with improved shoot and root architecture. Molecular genetic analysis showed differential expression of CaTLP1 under normal and stress condition, and its preferential expression in the nucleus might be associated with enhanced stress tolerance. Our work suggests important roles of CaTLP1 in stress response as well as in the regulation of plant development.
Collapse
Affiliation(s)
- Vijay Wardhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | | | | | | | |
Collapse
|
21
|
Maddox DM, Ikeda S, Ikeda A, Zhang W, Krebs MP, Nishina PM, Naggert JK. An allele of microtubule-associated protein 1A (Mtap1a) reduces photoreceptor degeneration in Tulp1 and Tub Mutant Mice. Invest Ophthalmol Vis Sci 2012; 53:1663-9. [PMID: 22323461 DOI: 10.1167/iovs.11-8871] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify genes that modify photoreceptor cell loss in the retinas of homozygous Tulp1(tm1Pjn) and Tub(tub) mice, which exhibit juvenile retinitis pigmentosa. METHODS Modifier loci were identified by genetic quantitative trait locus analysis. F2 Tulp1(tm1Pjn/tm1Pjn) mutant mice from a B6-Tulp1(tm1Pjn/tm1Pjn) × AKR/J intercross were genotyped with a panel of single nucleotide polymorphism markers and phenotyped by histology for photoreceptor nuclei remaining at 9 weeks of age. Genotype and phenotype data were correlated and examined with Pseudomarker 2.02 using 128 imputations to map modifier loci. Thresholds for the 63%, 10%, 5%, and 1% significance levels were obtained from 100 permutations. A significant, protective candidate modifier was identified by bioinformatic analysis and confirmed by crossing transgenic mice bearing a protective allele of this gene with Tulp1- and Tub-deficient mice. RESULTS A significant, protective modifier locus on chromosome 2 and a suggestive locus on chromosome 13 that increases photoreceptor loss were identified in a B6-Tulp1(tm1Pjn/tm1Pjn) × AKR/J intercross. The chromosome 2 locus mapped near Mtap1a, which encodes a protein associated with microtubule-based intracellular transport and synapse function. The protective Mtap1a(129P2/OlaHsd) allele was shown to reduce photoreceptor loss in both Tulp1(tm1Pjn/tm1Pjn) and Tub(tub/tub) mice. CONCLUSIONS It was demonstrated that the gene Mtap1a, which modifies hearing loss in Tub(tub/tub) mice, also modifies retinal degeneration in Tub(tub/tub) and Tulp1(tm1Pjn/tm1Pjn) mice. These results suggest that functionally nonredundant members of the TULP family (TUB and TULP1) share a common functional interaction with MTAP1A.
Collapse
|
22
|
Abstract
The tubby mouse shows a tripartite syndrome characterized by maturity-onset obesity, blindness and deafness. The causative gene Tub is the founding member of a family of related proteins present throughout the animal and plant kingdoms, each characterized by a signature carboxy-terminal tubby domain. This domain consists of a β barrel enclosing a central α helix and binds selectively to specific membrane phosphoinositides. The vertebrate family of tubby-like proteins (TULPs) includes the founding member TUB and the related TULPs, TULP1 to TULP4. Tulp1 is expressed in the retina and mutations in TULP1 cause retinitis pigmentosa in humans; Tulp3 is expressed ubiquitously in the mouse embryo and is important in sonic hedgehog (Shh)-mediated dorso-ventral patterning of the spinal cord. The amino terminus of these proteins is diverse and directs distinct functions. In the best-characterized example, the TULP3 amino terminus binds to the IFT-A complex, a complex important in intraflagellar transport in the primary cilia, through a short conserved domain. Thus, the tubby family proteins seem to serve as bipartite bridges through their phosphoinositide-binding tubby and unique amino-terminal functional domains, coordinating multiple signaling pathways, including ciliary G-protein-coupled receptor trafficking and Shh signaling. Molecular studies on this functionally diverse protein family are beginning to provide us with remarkable insights into the tubby-mouse syndrome and other related diseases.
Collapse
Affiliation(s)
- Saikat Mukhopadhyay
- Department of Cell Regulation, Genentech Inc., South San Francisco, CA 94080, USA.
| | | |
Collapse
|
23
|
Stretton C, Litherland GJ, Moynihan A, Hajduch E, Hundal HS. Expression and modulation of TUB by insulin and thyroid hormone in primary rat and murine 3T3-L1 adipocytes. Biochem Biophys Res Commun 2009; 390:1328-33. [PMID: 19887065 DOI: 10.1016/j.bbrc.2009.10.147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 11/26/2022]
Abstract
tub encodes a protein of poorly understood function, but one implicated strongly in the control of energy balance and insulin sensitivity. Whilst tub expression is particularly prominent in neurones it is also detectable in extraneuronal tissues. We show here, for the first time, expression of TUB protein in rat adipocytes and the murine adipocyte model 3T3-L1 and demonstrate that insulin induces its tyrosine phosphorylation and association with the insulin receptor. TUB expression is regulated developmentally during adipogenic differentiation of 3T3-L1 cells and in response to cell treatment with thyroid hormone or induction of insulin resistance. TUB was upregulated 5- to 10-fold in adipocytes from obese Zucker rats and 3T3-L1 adipocytes that had been rendered insulin resistant, a response that could be antagonised by rosiglitasone, an insulin-sensitising drug. Our data are consistent with a previously unforeseen role for TUB in insulin signalling and fuel homeostasis in adipocytes.
Collapse
Affiliation(s)
- Clare Stretton
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
24
|
Kou Y, Qiu D, Wang L, Li X, Wang S. Molecular analyses of the rice tubby-like protein gene family and their response to bacterial infection. PLANT CELL REPORTS 2009; 28:113-21. [PMID: 18818927 DOI: 10.1007/s00299-008-0620-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/05/2008] [Accepted: 09/12/2008] [Indexed: 05/15/2023]
Abstract
Tubby-like protein family has been identified in various multicellular organisms, indicating its fundamental functions in the organisms. However, the roles of plant tubby-like proteins are unknown. In this study, we have defined the tubby-like protein gene (OsTLP) family with 14 members in rice. Most of the OsTLPs harbor a tubby domain in their carboxyl terminus and an F-box domain in the amino terminus. The expression of all the OsTLPs was induced on infection of Xanthomonas oryzae pv. oryzae, which causes bacterial blight, one of the most devastating diseases of rice worldwide. The maximal expression levels were observed at 2-8 h after infection for all the genes. Eight of the 14 OsTLPs were also responsive to wounding. All the OsTLPs showed differential expression in different tissues at different developmental stages. However, four pairs of the 14 OsTLPs, with each pair having high sequence similarity and distributing on the similar position of different chromosomes, showed similar expression pattern in different tissues, indicating their direct relationship in evolution. These results suggest that the OsTLP family is involved in host-pathogen interaction and it may be also associated with other physiological and developmental activities.
Collapse
Affiliation(s)
- Yanjun Kou
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | | | | | | | | |
Collapse
|
25
|
Genua M, Pandini G, Cassarino MF, Messina RL, Frasca F. c-Abl and insulin receptor signalling. VITAMINS AND HORMONES 2009; 80:77-105. [PMID: 19251035 DOI: 10.1016/s0083-6729(08)00604-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Insulin Receptor (IR) and IGF-I receptor (IGF-IR) are homolog but display distinct functions: IR is mainly metabolic, while IGF-IR is mitogenic. However, in some conditions like foetal growth, cancer and diabetes, IR may display some non-metabolic effects like proliferation and migration. The molecular mechanisms underlying this 'functional switch of IR' have been attributed to several factors including overexpression of ligands and receptors, predominant IR isoform expression, preferential recruitment of intracellular substrates. Here, we report that c-Abl, a cytoplasmic tyrosine kinase regulating several signal transduction pathways, is involved in this functional switch of IR. Indeed, c-Abl tyrosine kinase is involved in IR signalling as it shares with IR some substrates like Tub and SORBS1 and is activated upon insulin stimulation. Inhibition of c-Abl tyrosine kinase by STI571 attenuates the effect of insulin on Akt/GSK-3beta phosphorylation and glycogen synthesis, and at the same time, it enhances the effect of insulin on ERK activation, cell proliferation and migration. This effect of STI571 is specific to c-Abl inhibition, because it does not occur in Abl-null cells and is restored in c-Abl-reconstituted cells. Numerous evidences suggest that focal adhesion kinase (FAK) is involved in mediating this c-Abl effect. First, c-Abl tyrosine kinase activation is concomitant with FAK dephosphorylation in response to insulin, whereas c-Abl inhibition is accompanied by FAK phosphorylation in response to insulin, a response similar to that observed with IGF-I. Second, the c-Abl effects on insulin signalling are not observed in cells devoid of FAK (FAK(-/-) cells). Taken together these results suggest that c-Abl activation by insulin, via a modification of FAK response, may play an important role in directing mitogenic versus metabolic insulin receptor signalling.
Collapse
Affiliation(s)
- Marco Genua
- Department of Internal Medicine, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
26
|
Pathway analysis of seven common diseases assessed by genome-wide association. Genomics 2008; 92:265-72. [PMID: 18722519 DOI: 10.1016/j.ygeno.2008.07.011] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 02/07/2023]
Abstract
Recent genome-wide association studies (GWAS) have identified DNA sequence variations that exhibit unequivocal statistical associations with many common chronic diseases. However, the vast majority of these studies identified variations that explain only a very small fraction of disease burden in the population at large, suggesting that other factors, such as multiple rare or low-penetrance variations and interacting environmental factors, are major contributors to disease susceptibility. Identifying multiple low-penetrance variations (or "polygenes") contributing to disease susceptibility will be difficult. We present a pathway analysis approach to characterizing the likely polygenic basis of seven common diseases using the Wellcome Trust Case Control Consortium (WTCCC) GWAS results. We identify numerous pathways implicated in disease predisposition that would have not been revealed using standard single-locus GWAS statistical analysis criteria. Many of these pathways have long been assumed to contain polymorphic genes that lead to disease predisposition. Additionally, we analyze the genetic relationships between the seven diseases, and based upon similarities with respect to the associated genes and pathways affected in each, propose a new way of categorizing the diseases.
Collapse
|
27
|
Coyle CA, Strand SC, Good DJ. Reduced activity without hyperphagia contributes to obesity in Tubby mutant mice. Physiol Behav 2008; 95:168-75. [PMID: 18619628 DOI: 10.1016/j.physbeh.2008.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 10/22/2022]
Abstract
The Tub gene was originally identified as a spontaneous mutation in C57Bl/6J mice, and associated with adult-onset obesity (Tub MUT mice). Although the original Tub MUT mouse was identified over 15 years ago, there have been few reports on the animal's food intake, body fat percentage or energy expenditure. In this study, we report food intake, body weight from 5-20 weeks, body fat, body temperature and three different measures of physical activity behavior. Tub MUT mice display reduced food intake, uncharacteristic of many obese mouse models, and reduced voluntary wheel running with normal home cage ambulatory behavior. We conclude that motivation for food and exercise is an underlying defect in TUB MUT mice.
Collapse
Affiliation(s)
- Christopher A Coyle
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | | | | |
Collapse
|
28
|
Schlegel A, Stainier DYR. Lessons from "lower" organisms: what worms, flies, and zebrafish can teach us about human energy metabolism. PLoS Genet 2008; 3:e199. [PMID: 18081423 PMCID: PMC2098794 DOI: 10.1371/journal.pgen.0030199] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A pandemic of metabolic diseases (atherosclerosis, diabetes mellitus, and obesity), unleashed by multiple social and economic factors beyond the control of most individuals, threatens to diminish human life span for the first time in the modern era. Given the redundancy and inherent complexity of processes regulating the uptake, transport, catabolism, and synthesis of nutrients, magic bullets to target these diseases will be hard to find. Recent studies using the worm Caenorhabditis elegans, the fly Drosophila melanogaster, and the zebrafish Danio rerio indicate that these “lower” metazoans possess unique attributes that should help in identifying, investigating, and even validating new pharmaceutical targets for these diseases. We summarize findings in these organisms that shed light on highly conserved pathways of energy homeostasis.
Collapse
Affiliation(s)
- Amnon Schlegel
- Department of Biochemistry and Biophysics, Division of Endocrinology at the University of California San Francisco, San Francisco, California, United States of America.
| | | |
Collapse
|
29
|
Polymorphisms of the TUB gene are associated with body composition and eating behavior in middle-aged women. PLoS One 2008; 3:e1405. [PMID: 18183286 PMCID: PMC2157487 DOI: 10.1371/journal.pone.0001405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 10/01/2007] [Indexed: 11/23/2022] Open
Abstract
Background The TUB gene, encoding an evolutionary conserved protein, is highly expressed in the hypothalamus and might act as a transcription factor. Mutations in TUB cause late-onset obesity, insulin-resistance and neurosensory deficits in mice. An association of common variants in the TUB gene with body weight in humans has been reported. Methods/Findings The aim was to investigate the relationship of single nucleotide polymorphisms (SNPs) of the TUB gene (rs2272382, rs2272383 and rs1528133) with both anthropometry and self-reported macronutrient intake from a validated food frequency questionnaire. These associations were studied in a population-based, cross-sectional study of 1680 middle-aged Dutch women, using linear regression analysis. The minor allele C of the rs1528133 SNP was significantly associated with increased weight (+1.88 kg, P = 0.022) and BMI (+0.56 units, P = 0.05). Compared with non-carriers, both AG heterozygotes and AA homozygotes of the rs2272382 SNP derived less energy from fat (AG: −0.55±0.28%, P = 0.05, AA: −0.95±0.48%, P = 0.047). However, both genotypes were associated with an increased energy intake from carbohydrates (0.69±0.33%, P = 0.04 and 1.68±0.56%, P = 0.003, respectively), mainly because of a higher consumption of mono- and disaccharides. Both these SNPs, rs2272382 and rs1528133, were also associated with a higher glycemic load in the diet. The glycemic load was higher among those with AG and AA genotypes for the variant rs2272382 than among the wild types (+1.49 (95% CI: −0.27–3.24) and +3.89 (95% CI: 0.94–6.85) units, respectively). Carriers of the minor allele C of rs1528133 were associated with an increased glycemic load of 1.85 units compared with non-carriers. Conclusions Genetic variation of the TUB gene was associated with both body composition and macronutrient intake, suggesting that TUB might influence eating behavior.
Collapse
|
30
|
Snieder H, Wang X, Shiri-Sverdlov R, van Vliet-Ostaptchouk JV, Hofker MH, Perks U, Spector TD, O'Dell SD. TUB is a candidate gene for late-onset obesity in women. Diabetologia 2008; 51:54-61. [PMID: 17955208 DOI: 10.1007/s00125-007-0851-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESES We recently reported significant associations between BMI and three TUB single nucleotide polymorphisms (SNPs) in two Dutch cohorts enriched for type 2 diabetes. Here, we attempted a replication of these associations in a large population-based cohort of female twins comprehensively phenotyped for measures of general and central obesity. METHODS Two TUB SNPs (rs2272382, rs2272383) and a third (rs1528133), 22 kb distal to RIC3, were genotyped in 2694 Europid women from the St Thomas' UK Adult Twin Registry (Twins UK) (mean age +/- SD: 47.6 +/- 12.7 years; 42.8% postmenopausal). We explored the hypothesis that TUB is a candidate gene for late-onset obesity in humans through testing the interaction of the SNPs by menopausal status. RESULTS In the whole cohort, none of the three SNPs showed a significant main effect on measures of general or central obesity. However, for central obesity the rs2272382 SNP showed a significant interaction with menopausal status (p = 0.036). Postmenopausal women homozygous for the minor allele of rs2272382 showed significantly more general obesity (p = 0.022) and central obesity (p = 0.009) than carriers of the major allele. Differences (beta [95% CI]) between the two genotype groups were 0.92 kg/m2 (0.03-1.81) for BMI (p = 0.036), 2.73 cm (0.62-4.84) for waist circumference (p = 0.013) and 2.43% (0.27-4.60) for per cent central fat (p = 0.027). These associations were confirmed by a sibling transmission disequilibrium test for central obesity, waist circumference and per cent central fat. CONCLUSIONS/INTERPRETATION We have replicated associations of TUB SNP rs2272382 with measures of general and central obesity in normal postmenopausal women. These findings confirm TUB as a candidate gene for late-onset obesity in humans.
Collapse
Affiliation(s)
- H Snieder
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Frasca F, Pandini G, Malaguarnera R, Mandarino A, Messina RL, Sciacca L, Belfiore A, Vigneri R. Role of c-Abl in Directing Metabolic versus Mitogenic Effects in Insulin Receptor Signaling. J Biol Chem 2007; 282:26077-88. [PMID: 17620332 DOI: 10.1074/jbc.m705008200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Abl is a cytoplasmic tyrosine kinase involved in several signal transduction pathways. Here we report that c-Abl is involved also in insulin receptor signaling. Indeed, c-Abl tyrosine kinase is activated upon insulin stimulation. Inhibition of c-Abl tyrosine kinase by STI571 attenuates the effect of insulin on Akt/GSK-3beta phosphorylation and glycogen synthesis, and at the same time, it enhances the effect of insulin on ERK activation, cell proliferation, and migration. This effect of STI571 is specific to c-Abl inhibition, because it does not occur in Abl-null cells and is restored in c-Abl-reconstituted cells. Numerous evidences suggest that focal adhesion kinase (FAK) is involved in mediating this c-Abl effect. First, anti-phosphotyrosine blots indicate that c-Abl tyrosine kinase activation is concomitant with FAK dephosphorylation in response to insulin, whereas c-Abl inhibition is accompanied by FAK phosphorylation in response to insulin, a response similar to that observed with IGF-I. Second, the c-Abl effects on insulin signaling are not observed in cells devoid of FAK (FAK(-/-) cells). Taken together these results suggest that c-Abl activation by insulin, via a modification of FAK response, may play an important role in directing mitogenic versus metabolic insulin receptor signaling.
Collapse
Affiliation(s)
- Francesco Frasca
- Endocrinologia, Dipartimento di Medicina Interna e di Medicina Specialistica, Università di Catania, Ospedale Garibaldi, Nesima, 95122 Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mukhopadhyay A, Pan X, Lambright DG, Tissenbaum HA. An endocytic pathway as a target of tubby for regulation of fat storage. EMBO Rep 2007; 8:931-8. [PMID: 17762880 PMCID: PMC2002550 DOI: 10.1038/sj.embor.7401055] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/05/2007] [Accepted: 07/26/2007] [Indexed: 01/17/2023] Open
Abstract
The tubby loci provide a unique opportunity to study adult-onset obesity. Mutation in either mammalian tubby or its homologue in Caenorhabditis elegans, tub-1, results in increased fat storage. Previously, we have shown that TUB-1 interacts with a new Rab GTPase-activating protein, RBG-3, for the regulation of fat storage. To understand further the molecular mechanism of TUB-1, we identified the Rab GTPase downstream of RBG-3. We found that RBG-3 preferentially stimulates the intrinsic GTPase activity of RAB-7 in both human and C. elegans. Importantly, either mutation or RNA interference knockdown in rab-7 reduces stored fat in wild type and tub-1 mutants. In addition, the small GTPase rab-5 and genes that regulate Rab membrane localization and nucleotide recycling are required for the regulation of fat storage, thereby defining a role for endocytic recycling in this process. We propose that TUB-1 controls receptor or sensory molecule degradation in neurons by regulating a RAB-7-mediated endocytic pathway.
Collapse
Affiliation(s)
- Arnab Mukhopadhyay
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Xiaojing Pan
- Program in Molecular Medicine, University of Massachusetts Medical School, Two Biotech, 373 Plantation Street, Worcester, Massachusetts 01605, USA
| | - David G Lambright
- Program in Molecular Medicine, University of Massachusetts Medical School, Two Biotech, 373 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Heidi A Tissenbaum
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Two Biotech, 373 Plantation Street, Worcester, Massachusetts 01605, USA
- Tel: +1 508 854 5840; Fax: +1 508 856 5460; E-mail:
| |
Collapse
|
34
|
Xi Q, Pauer GJT, Ball SL, Rayborn M, Hollyfield JG, Peachey NS, Crabb JW, Hagstrom SA. Interaction between the photoreceptor-specific tubby-like protein 1 and the neuronal-specific GTPase dynamin-1. Invest Ophthalmol Vis Sci 2007; 48:2837-44. [PMID: 17525220 PMCID: PMC3021943 DOI: 10.1167/iovs.06-0059] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Tubby-like proteins (TULPs) are a family of four proteins, two of which have been linked to neurosensory disease phenotypes. TULP1 is a photoreceptor-specific protein that is mutated in retinitis pigmentosa, an inherited retinal disease characterized by the degeneration of rod and cone photoreceptor cells. To investigate the function of TULP1 in maintaining the health of photoreceptors, the authors sought the identification of interacting proteins. METHODS Immunoprecipitation from retinal lysates, followed by liquid chromatography tandem mass spectrometry and in vitro binding assays, were used to identify TULP1 binding partners. RT-PCR was performed on total RNA from wild-type mouse retina to identify the Dynamin-1 isoform expressed in the retina. Immunocytochemistry was used to determine the localization of TULP1 and Dynamin-1 in photoreceptor cells. Electroretinography (ERG) and light microscopy were used to phenotype tulp1-/- mice at a young age. RESULTS Immunoprecipitation from retinal lysate identified Dynamin-1 as a possible TULP1 binding partner. GST pull-down assays further supported an interaction between TULP1 and Dynamin-1. In photoreceptor cells, Dynamin-1 and TULP1 colocalized primarily to the outer plexiform layer, where photoreceptor terminals synapse on second-order neurons and, to a lesser extent, to the inner segments, where polarized protein translocation occurs. ERG analyses in young tulp1-/- mice indicated a decreased b-wave at ages when the retina retained a full complement of photoreceptor cells. CONCLUSIONS These data indicated that TULP1 interacts with Dynamin-1 and suggested that TULP1 is involved in the vesicular trafficking of photoreceptor proteins, both at the nerve terminal during synaptic transmission and at the inner segment during protein translocation to the outer segment. These results also raised the possibility that normal synaptic function requires TULP1, and they motivate a closer look at synaptic architecture in the developing tulp1-/- retina.
Collapse
Affiliation(s)
- Quansheng Xi
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Gayle J. T. Pauer
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Sherry L. Ball
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Cleveland Veterans Administration Medical Center, Cleveland, Ohio
| | - Mary Rayborn
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Joe G. Hollyfield
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Cleveland Veterans Administration Medical Center, Cleveland, Ohio
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - John W. Crabb
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Stephanie A. Hagstrom
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
35
|
Giannaccini G, Giusti L, Santini F, Marsili A, Betti L, Mascia G, Pelosini C, Baroni S, Ciregia F, Fabbrini L, Lucacchini A, Vitti P, Pinchera A. Tubby protein in human lymphocytes from normal weight and obese subjects. Clin Biochem 2007; 40:806-9. [PMID: 17498679 DOI: 10.1016/j.clinbiochem.2007.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 03/27/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The presence of tubby protein in human lymphocytes was investigated and their electrophoretic mobility property between normal weight and obese subjects was compared. DESIGN AND METHODS 2-DE proteome map of lymphocytes has been generated and western blot analysis was conducted using anti-tub polyclonal antibody. RESULTS AND CONCLUSIONS We found the presence of tubby protein both in normal weight and in obese subjects; however in the latter an isoelectric point shift toward the acidic end was observed.
Collapse
Affiliation(s)
- Gino Giannaccini
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, Environment and Endocrine and Nervous Systems High Technology Center for the Study of the Effects of Harmful Agents, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang Y, Seburn K, Bechtel L, Lee BY, Szatkiewicz JP, Nishina PM, Naggert JK. Defective carbohydrate metabolism in mice homozygous for the tubby mutation. Physiol Genomics 2006; 27:131-40. [PMID: 16849632 DOI: 10.1152/physiolgenomics.00239.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tub is a member of a small gene family, the tubby-like proteins (TULPs), with predominant expression in neurons. Mice carrying a mutation in Tub develop retinal and cochlear degeneration as well as late-onset obesity with insulin resistance. During behavioral and metabolic testing, we found that homozygous C57BL/6J-Tub(tub) mice have a lower respiratory quotient than C57BL/6J controls before the onset of obesity, indicating that tubby homozygotes fail to activate carbohydrate metabolism and instead rely on fat metabolism for energy needs. In concordance with this, tubby mice show higher excretion of ketone bodies and accumulation of glycogen in the liver. Quantitation of liver mRNA levels shows that, during the transition from light to dark period, tubby mice fail to induce glucose-6-phosphate dehydrogenase (G6pdh), the rate-limiting enzyme in the pentose phosphate pathway that normally supplies NADPH for de novo fatty acid synthesis and glutathione reduction. Reduced G6PDH protein levels and enzymatic activity in tubby mice lead accordingly to lower levels of NADPH and reduced glutathione (GSH), respectively. mRNA levels for the lipolytic enzymes acetyl-CoA synthetase and carnitine palmitoyltransferase are increased during the dark cycle and decreased during the light period, and several citric acid cycle genes are dysregulated in tubby mice. Examination of hypothalamic gene expression showed high levels of preproorexin mRNA leading to accumulation of orexin peptide in the lateral hypothalamus. We hypothesize that abnormal hypothalamic orexin expression leads to changes in liver carbohydrate metabolism and may contribute to the moderate obesity observed in tubby mice.
Collapse
Affiliation(s)
- Yun Wang
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Xi Q, Pauer GJ, Traboulsi EI, Hagstrom SA. Mutation screen of the TUB gene in patients with retinitis pigmentosa and Leber congenital amaurosis. Exp Eye Res 2006; 83:569-73. [PMID: 16643894 PMCID: PMC3023989 DOI: 10.1016/j.exer.2006.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 02/08/2006] [Accepted: 02/11/2006] [Indexed: 11/17/2022]
Abstract
TUB is the first identified member of the TULP family of four proteins with unknown function. A spontaneous mutation in murine tub causes retinal degeneration, obesity, and deafness. Mutations in another member of the TULP family, TULP1, are a cause of autosomal recessive retinitis pigmentosa (RP). These findings prompted us to investigate TUB as a candidate gene for RP and Leber congenital amaurosis (LCA). A mutation screen of the entire coding region of the TUB gene in 159 unrelated patients with autosomal recessive RP, 114 unrelated patients with simplex RP, and 21 unrelated patients with LCA uncovered 18 sequence variations. Of these, seven were missense mutations, six were isocoding changes, and five were intronic polymorphisms. All seven missense mutations were identified as heterozygous changes and no defect could be found in the other allele. None of the isocoding variants or intronic polymorphisms are predicted to create or destroy splice donor or acceptor sites based on splice-site prediction software. Although variant alleles of the TUB gene were found, none could be definitively associated with a specific retinal disease.
Collapse
Affiliation(s)
| | | | | | - Stephanie A. Hagstrom
- Corresponding author. Ophthalmic Research - i31, Cole Eye Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA. Tel.: +1 216 445 4133; fax: +1 216 445 3670. (S.A. Hagstrom)
| |
Collapse
|
38
|
Xi Q, Pauer GJT, Marmorstein AD, Crabb JW, Hagstrom SA. Tubby-like protein 1 (TULP1) interacts with F-actin in photoreceptor cells. Invest Ophthalmol Vis Sci 2006; 46:4754-61. [PMID: 16303976 PMCID: PMC3026440 DOI: 10.1167/iovs.05-0693] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE TULP1 is a photoreceptor-specific protein of unknown function that, when mutated, can cause retinitis pigmentosa in humans and photoreceptor degeneration in mice. Toward a better understanding of the role of TULP1 in retinal disease, its subcellular localization was sought and the TULP1 protein binding partners identified. METHODS Immunocytochemistry and subcellular fractionation were used to determine the localization of TULP1 and actin in COS7 cells and photoreceptor cells. Immunoprecipitation from retinal lysates followed by liquid chromatography tandem mass spectrometry and in vitro binding assays was used to identify TULP1-binding partners. Phospholipid binding assays were performed with a commercially available kit. RESULTS TULP1 localizes at or near the plasma membrane and associates with the membranous fraction of COS7 cells, probably through binding phosphorylated phospholipids. In addition, TULP1 partitions to the aqueous phase during Triton X-114 extraction. Immunoprecipitation from retinal lysate identified F-actin as a possible TULP1-binding partner. Co-sedimentation assays further support an interaction between TULP1 and actin. In photoreceptor cells, actin and TULP1 colocalize at the inner segment, connecting cilium, and outer limiting membrane. CONCLUSIONS TULP1 is a cytoplasmic protein that associates with cellular membranes and the cytoskeleton. TULP1 and actin appear to interact and colocalize in photoreceptor cells of the retina. TULP1 may be involved in actin cytoskeletal functions such as protein trafficking that takes place at or near the plasma membrane from the inner segment through the connecting cilium into the outer segment of photoreceptor cells.
Collapse
Affiliation(s)
- Quansheng Xi
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Alan D. Marmorstein
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
| | - John W. Crabb
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | |
Collapse
|
39
|
Mukhopadhyay A, Deplancke B, Walhout AJM, Tissenbaum HA. C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell Metab 2005; 2:35-42. [PMID: 16054097 DOI: 10.1016/j.cmet.2005.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 05/11/2005] [Accepted: 06/14/2005] [Indexed: 01/16/2023]
Abstract
In C. elegans, similar to in mammals, mutations in the tubby homolog, tub-1, promote increased fat deposition. Here, we show that mutation in tub-1 also leads to life span extension dependent on daf-16/FOXO. Interestingly, function of tub-1 in fat storage is independent of daf-16. A yeast two-hybrid screen identified a novel TUB-1 interaction partner (RBG-3); a RabGTPase-activating protein. Both TUB-1 and RBG-3 localize to overlapping neurons. Importantly, RNAi of rbg-3 decreases fat deposition in tub-1 mutants but does not affect life span. We demonstrate that TUB-1 is expressed in ciliated neurons and undergoes both dendritic and ciliary transport. Additionally, tub-1 mutants are chemotaxis defective. Thus, tub-1 may regulate fat storage either by modulating transport, sensing, or responding to signals in ciliated neurons. Taken together, we define a role for tub-1 in regulation of life span and show that tub-1 regulates life span and fat storage by two independent mechanisms.
Collapse
|
40
|
Hard ML, Abdolell M, Robinson BH, Koren G. Gene-expression analysis after alcohol exposure in the developing mouse. ACTA ACUST UNITED AC 2005; 145:47-54. [PMID: 15668661 DOI: 10.1016/j.lab.2004.11.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure to alcohol in the embryonic mouse can lead to structural and neurophysiologic changes. The cause of these changes is poorly understood, but they are likely the result of numerous mechanisms. Here we investigate ethanol-induced alterations in gene expression in the fetal brain. Using complementary-DNA microarrays, we identified 25 genes that were down-regulated by prenatal ethanol exposure on days 7 and 9 of gestation. None were found to be up-regulated. Of those that were repressed, 6 (Timp4, Bmp15, Rnf25, Akt1, Tulp4, Dexras1) have been identified, and they are discussed here in the context of the developing fetus. The identified genes have been shown to be involved in cell proliferation, differentiation, and apoptosis, and they contribute to tissue growth and remodeling, as well as neuronal growth and survival. Microarray studies may be useful in the identification of a genetic marker for fetal alcohol syndrome, the discovery of novel pathways that may be involved in its origin, or both.
Collapse
Affiliation(s)
- Marjie L Hard
- The Hospital for Sick Children, the Department of Pharmaceutical Sciences, University of Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
41
|
Figlewicz DP, Zavosh A, Sexton T, Neumaier JF. Catabolic action of insulin in rat arcuate nucleus is not enhanced by exogenous "tub" expression. Am J Physiol Endocrinol Metab 2004; 286:E1004-10. [PMID: 14749205 DOI: 10.1152/ajpendo.00427.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central nervous system (CNS) protein "tub" has been identified from the genetically obese "tubby" mouse. Although the native function of tub in situ is not understood, cell-based studies suggest that one of its roles may be as an intracellular signaling target for insulin. In normal animals, insulin acts at the hypothalamic arcuate nucleus (ARC) to regulate energy balance. Here we used a Herpes Simplex viral expression system to evaluate whether tub overexpression in the ARC of normal rats enhances this action of insulin. In chow-fed rats, tub overexpression had no effect on insulin action. In rats fed a high-fat diet snack in addition to chow, simulating the diet of Westernized societies, the body weight regulatory action of insulin was impaired, and tub overexpression further impaired insulin action. Thus an excess of tub at the ARC does not enhance the in vivo effectiveness of insulin and is not able to compensate for the "downstream" consequences of a high-fat diet to impair CNS body weight regulatory mechanisms.
Collapse
Affiliation(s)
- Dianne P Figlewicz
- Metabolism/Endocrinology, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | |
Collapse
|
42
|
Bäckberg M, Meister B. Abnormal cholinergic and GABAergic vascular innervation in the hypothalamic arcuate nucleus of obesetub/tubmice. Synapse 2004; 52:245-57. [PMID: 15103691 DOI: 10.1002/syn.20024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tubby and tubby-like proteins (TULPs) are encoded by members of a small gene family. An autosomal recessive mutation in the mouse tub gene leads to blindness, deafness, and maturity-onset obesity. The mechanisms by which the mutation causes the obesity syndrome has not been established. We compared obese tub/tub mice and their lean littermates in order to find abnormalities within the mediobasal hypothalamus, a region intimately associated with the regulation of body weight. Using an antiserum to the vesicular acetylcholine transporter (VAChT), a marker for cholinergic neurons, many unusually large VAChT-immunoreactive (-ir) nerve terminals, identified by colocalization with the synaptic vesicle protein synaptophysin, were demonstrated in the hypothalamic arcuate nucleus of obese tub/tub mice. Double-labeling showed that VAChT-ir nerve endings also contained glutamic acid decarboxylase (GAD), a marker for gamma-aminobutyric acid (GABA) neurons. The VAChT- and GAD-ir nerve terminals were in close contact with blood vessels, identified with antisera to platelet endothelial cell adhesion molecule-1 (PECAM; also called CD31), laminin, smooth muscle actin (SMA), and glucose transporter-1 (GLUT1). Such large cholinergic and GABAergic nerve terminals surrounding blood vessels were not seen in the arcuate nucleus of lean tub/+ mice. The presence of abnormal cholinergic/GABAergic vascular innervation in the arcuate nucleus suggests that alterations in this region, which contains neurons that receive information from the periphery and which relays information about the energy status to other parts of the brain, may be central in the development of the obese phenotype in animals with an autosomal recessive mutation in the tub gene.
Collapse
Affiliation(s)
- Matilda Bäckberg
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
43
|
Abstract
The tubby mouse, which shows late-onset obesity and neurosensory deficits, arises from a mutation in the Tub gene. Tub shares homology with the genes for tubby-like proteins Tulp1, Tulp2 and Tulp3. Ablation of Tub, Tulp1 or Tulp3 causes disease phenotypes that are indicative of their importance in nervous-system function and development. Despite this importance, the biochemical functions of tubby-like proteins are only now beginning to be understood. At present, data indicate that tubby-like proteins might function as heterotrimeric-G-protein-responsive intracellular signalling factors, although an array of data also implicates them in other processes.
Collapse
Affiliation(s)
- Kilpatrick Carroll
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, Room 712, New York, New York 10032, USA
| | | | | |
Collapse
|
44
|
Chagnon YC, Rankinen T, Snyder EE, Weisnagel SJ, Pérusse L, Bouchard C. The human obesity gene map: the 2002 update. OBESITY RESEARCH 2003; 11:313-67. [PMID: 12634430 DOI: 10.1038/oby.2003.47] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This is the ninth update of the human obesity gene map, incorporating published results through October 2002 and continuing the previous format. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome-wide scans and various animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. For the first time, transgenic and knockout murine models exhibiting obesity as a phenotype are incorporated (N = 38). As of October 2002, 33 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and the causal genes or strong candidates have been identified for 23 of these syndromes. QTLs reported from animal models currently number 168; there are 68 human QTLs for obesity phenotypes from genome-wide scans. Additionally, significant linkage peaks with candidate genes have been identified in targeted studies. Seven genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 222 studies reporting positive associations with 71 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. More than 300 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Yvon C Chagnon
- Psychiatric Genetic Unit, Laval University Robert-Giffard Research Center, Beauport, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
45
|
Williamson DE, Coleman K, Bacanu SA, Devlin BJ, Rogers J, Ryan ND, Cameron JL. Heritability of fearful-anxious endophenotypes in infant rhesus macaques: a preliminary report. Biol Psychiatry 2003; 53:284-91. [PMID: 12586447 DOI: 10.1016/s0006-3223(02)01601-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Research efforts to discover the genetic underpinnings of anxiety and depression is challenging because of the etiologic heterogeneity inherent to these disorders. These efforts might be aided by the study of related behavioral phenotypes in model organisms, such as monkeys. METHODS Eighty-five rhesus monkeys (Macaca mulatta) from the Oregon National Primate Research Center were drawn from a standard matriarchal colony and tested for behavioral response in four testing paradigms designed to elicit fearful-anxious reactions. Heritabilities were estimated using variance component-based quantitative genetic analyses with much of the genetic information arising from paternal half-sibs. RESULTS Individual behaviors reflecting increased distress responses (e.g., vocalizations and teeth grinding) and behavioral inhibition (e.g., latency to leave mother, latency to inspect novel fruit) showed significant heritability, even though a small number of monkeys were assessed. Exploratory factor analyses identified seven clusters of behaviors across tests, some of which were found to be heritable. CONCLUSIONS These results indicate that several specific fearful-anxious behaviors in infant rhesus monkeys are heritable within this colony. Accordingly, these phenotypes, which are believed to represent the genetic liability for anxiety and depression, are good candidates for further genetic investigation in this population.
Collapse
Affiliation(s)
- Douglas E Williamson
- Department of Psychiatry, University of Pittsburgh Medical Center, Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Energy homeostasis is controlled by a complex neuroendocrine system consisting of peripheral signals like leptin and central signals, in particular, neuropeptides. Several neuropeptides with anorexigenic (POMC, CART, and CRH) as well as orexigenic (NPY, AgRP, and MCH) actions are involved in this complex (partly redundant) controlling system. Starvation as well as overfeeding lead to changes in expression levels of these neuropeptides, which act downstream of leptin, resulting in a physiological response. In this review the role of several anorexigenic and orexigenic (hypothalamic) neuropeptides on food intake and body weight regulation is summarized.
Collapse
Affiliation(s)
- J J G Hillebrand
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
47
|
Ronshaugen M, McGinnis N, Inglis D, Chou D, Zhao J, McGinnis W. Structure and expression patterns of Drosophila TULP and TUSP, members of the tubby-like gene family. Mech Dev 2002; 117:209-15. [PMID: 12204260 DOI: 10.1016/s0925-4773(02)00211-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tubby is a mouse gene that may provide a model for adult-onset obesity in humans. It is a member of a four gene family in mammals that collectively encode the Tubby-like proteins (TULPs), putative transcription factors which share similar 260 amino acid 'tubby domains' at their C-termini. The mammalian genome also encodes distant relatives of TULPs, which have been called TUSPs (tubby domain superfamily proteins). We have characterized the transcription unit of the single Drosophila TULP homolog, analyzed the expression pattern of the Drosophila TULP and TUSP genes, and determined the evolutionary relationships between the Drosophila proteins and members of the tubby domain superfamily in other organisms. Interestingly, like its mammalian homologs, Drosophila TULP is principally expressed in the embryonic central and peripheral nervous systems. This suggests that mammalian and Drosophila TULPs may possess some conserved functional properties in the nervous system. The Drosophila TUSP gene is also expressed in the central nervous system and olfactory organ but in few other peripheral sensory organs.
Collapse
Affiliation(s)
- Matthew Ronshaugen
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0349, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Bcr-Abl is an oncogene that arises from fusion of the Bcr gene with the c-Abl proto-oncogene. Three different Bcr-Abl variants can be formed, depending on the amount of Bcr gene included: p185, p210, and p230. The three variants are associated with distinct types of human leukemias. Examination of the signaling pathways differentially regulated by the Bcr-Abl proteins will help us gain better insight into Bcr-Abl mediated leukemogenesis.
Collapse
Affiliation(s)
- Anjali S Advani
- Departments of Hematology and Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
49
|
Abstract
Mice that carry the recessive mutation tub develop neurosensory defects including retinal and cochlear degeneration, as well as maturity-onset obesity associated with insulin resistance. The biological function of the gene and the mechanism by which it induces its phenotypes are still unclear. In order to elucidate the pathways through which tub functions, in the current study, QTL modifiers were identified in an F2 intercross between (C57BL/6J- tub/tub and AKR/J-+/+) F1 hybrids (AKR intercross). The thickness of the outer nuclear layer of the retina and the number of photoreceptor nuclei were assessed in F2 mice homozygous for the tub mutation. A genome-wide scan revealed a significant linkage on chromosome 11 (named motr1) and two suggestive linkages on chromosomes 2 and 8. Interestingly, the same chromosome 2 region identified for the hearing modifier of tubby, the moth1 locus, showed a peak lod score of 2.3 for protection from retinal degeneration. This result suggests that the gene responsible for the QTL on chromosome 2 might be involved in a common pathway through which retinal and cochlear degeneration are induced in tubby mice.
Collapse
Affiliation(s)
- Akihiro Ikeda
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
50
|
Ikeda A, Zheng QY, Zuberi AR, Johnson KR, Naggert JK, Nishina PM. Microtubule-associated protein 1A is a modifier of tubby hearing (moth1). Nat Genet 2002; 30:401-5. [PMID: 11925566 PMCID: PMC2862212 DOI: 10.1038/ng838] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Once a mutation in the gene tub was identified as the cause of obesity, retinal degeneration and hearing loss in tubby mice, it became increasingly evident that the members of the tub gene family (tulps) influence maintenance and function of the neuronal cell lineage. Suggested molecular functions of tubby-like proteins include roles in vesicular trafficking, mediation of insulin signaling and gene transcription. The mechanisms through which tub functions in neurons, however, have yet to be elucidated. Here we report the positional cloning of an auditory quantitative trait locus (QTL), the modifier of tubby hearing 1 gene (moth1), whose wildtype alleles from strains AKR/J, CAST/Ei and 129P2/OlaHsd protect tubby mice from hearing loss. Through a transgenic rescue experiment, we verified that sequence polymorphisms in the neuron-specific microtubule-associated protein 1a gene (Mtap1a) observed in the susceptible strain C57BL/6J (B6) are crucial for the hearing-loss phenotype. We also show that these polymorphisms change the binding efficiency of MTAP1A to postsynaptic density molecule 95 (PSD95), a core component in the cytoarchitecture of synapses. This indicates that at least some of the observed polymorphisms are functionally important and that the hearing loss in C57BL/6J-tub/tub (B6-tub/tub) mice may be caused by impaired protein interactions involving MTAP1A. We therefore propose that tub may be associated with synaptic function in neuronal cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Alleles
- Animals
- Cell Line
- Cloning, Molecular
- DNA, Complementary/metabolism
- Disks Large Homolog 4 Protein
- Gene Library
- Genetic Markers
- Guanylate Kinases
- Immunoblotting
- Insulin/metabolism
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Microtubule-Associated Proteins/physiology
- Models, Genetic
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/physiology
- Neurons/metabolism
- Phenotype
- Polymorphism, Genetic
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Proteins/genetics
- Quantitative Trait, Heritable
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Synapses/metabolism
- Transcription, Genetic
- Transgenes
Collapse
Affiliation(s)
- Akihiro Ikeda
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | |
Collapse
|