1
|
Pierce CF, Brown VR, Olsen SC, Boggiatto P, Pedersen K, Miller RS, Speidel SE, Smyser TJ. Loci Associated With Antibody Response in Feral Swine ( Sus scrofa) Infected With Brucella suis. Front Vet Sci 2020; 7:554674. [PMID: 33324693 PMCID: PMC7724110 DOI: 10.3389/fvets.2020.554674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Feral swine (Sus scrofa) are a destructive invasive species widespread throughout the United States that disrupt ecosystems, damage crops, and carry pathogens of concern for the health of domestic stock and humans including Brucella suis-the causative organism for swine brucellosis. In domestic swine, brucellosis results in reproductive failure due to abortions and infertility. Contact with infected feral swine poses spillover risks to domestic pigs as well as humans, companion animals, wildlife, and other livestock. Genetic factors influence the outcome of infectious diseases; therefore, genome wide association studies (GWAS) of differential immune responses among feral swine can provide an understanding of disease dynamics and inform management to prevent the spillover of brucellosis from feral swine to domestic pigs. We sought to identify loci associated with differential antibody responses among feral swine naturally infected with B. suis using a case-control GWAS. Tissue, serum, and genotype data (68,516 bi-allelic single nucleotide polymorphisms) collected from 47 feral swine were analyzed in this study. The 47 feral swine were culture positive for Brucella spp. Of these 47, 16 were antibody positive (cases) whereas 31 were antibody negative (controls). Single-locus GWAS were performed using efficient mixed-model association eXpedited (EMMAX) methodology with three genetic models: additive, dominant, and recessive. Eight loci associated with seroconversion were identified on chromosome 4, 8, 9, 10, 12, and 18. Subsequent bioinformatic analyses revealed nine putative candidate genes related to immune function, most notably phagocytosis and induction of an inflammatory response. Identified loci and putative candidate genes may play an important role in host immune responses to B. suis infection, characterized by a detectable bacterial presence yet a differential antibody response. Given that antibody tests are used to evaluate brucellosis infection in domestic pigs and for disease surveillance in invasive feral swine, additional studies are needed to fully understand the genetic component of the response to B. suis infection and to more effectively translate estimates of Brucella spp. antibody prevalence among feral swine to disease control management action.
Collapse
Affiliation(s)
- Courtney F. Pierce
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Vienna R. Brown
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Feral Swine Damage Management Program, Fort Collins, CO, United States
| | - Steven C. Olsen
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Diseases, National Animal Disease Center, Ames, IA, United States
| | - Paola Boggiatto
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Diseases, National Animal Disease Center, Ames, IA, United States
| | - Kerri Pedersen
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Raleigh, NC, United States
| | - Ryan S. Miller
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, United States
| | - Scott E. Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Timothy J. Smyser
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
| |
Collapse
|
2
|
Castro-Ochoa KF, Guerrero-Fonseca IM, Schnoor M. Hematopoietic cell-specific lyn substrate (HCLS1 or HS1): A versatile actin-binding protein in leukocytes. J Leukoc Biol 2019; 105:881-890. [DOI: 10.1002/jlb.mr0618-212r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Leukocytes are constantly produced in the bone marrow and released into the circulation. Many different leukocyte subpopulations exist that exert distinct functions. Leukocytes are recruited to sites of inflammation and combat the cause of inflammation via many different effector functions. Virtually all of these processes depend on dynamic actin remodeling allowing leukocytes to adhere, migrate, phagocytose, and release granules. However, actin dynamics are not possible without actin-binding proteins (ABP) that orchestrate the balance between actin polymerization, branching, and depolymerization. The homologue of the ubiquitous ABP cortactin in hematopoietic cells is hematopoietic cell-specific lyn substrate-1, often called hematopoietic cell-specific protein-1 (HCLS1 or HS1). HS1 has been reported in different leukocytes to regulate Arp2/3-dependent migration. However, more evidence is emerging that HS1 functions go far beyond just being a direct actin modulator. For example, HS1 is important for the activation of GTPases and integrins, and mediates signaling downstream of many receptors including BCR, TCR, and CXCR4. In this review, we summarize current knowledge on HS1 functions and discuss them in a pathophysiologic context.
Collapse
Affiliation(s)
| | | | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN , Mexico City, Mexico
| |
Collapse
|
3
|
Plani-Lam JHC, Slavova-Azmanova NS, Kucera N, Louw A, Satiaputra J, Singer P, Lam KP, Hibbs ML, Ingley E. Csk-binding protein controls red blood cell development via regulation of Lyn tyrosine kinase activity. Exp Hematol 2016; 46:70-82.e10. [PMID: 27751872 DOI: 10.1016/j.exphem.2016.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 11/29/2022]
Abstract
Erythropoiesis is controlled principally through erythropoietin (Epo) receptor signaling, which involves Janus kinase 2 (JAK2) and Lyn tyrosine kinase, both of which are important for regulating red blood cell (RBC) development. Negative regulation of Lyn involves C-Src kinase (Csk)-mediated phosphorylation of its C-terminal tyrosine, which is facilitated by the transmembrane adaptor Csk-binding protein (Cbp). Although Cbp has significant functions in controlling Lyn levels and activity in erythroid cells in vitro, its importance to primary erythroid cell development and signaling has remained unclear. To address this, we assessed the consequence of loss of Cbp on the erythroid compartment in vivo and whether Epo-responsive cells isolated from Cbp-knockout mice exhibited altered signaling. Our data show that male Cbp-/- mice display a modest but significant alteration to late erythroid development in bone marrow with evidence of increased erythrocytes in the spleen, whereas female Cbp-/- mice exhibit a moderate elevation in early erythroid progenitors (not seen in male mice) that does not influence the later steps in RBC development. In isolated primary erythroid cells and cell lines generated from Cbp-/- mice, survival signaling through Lyn/Akt/FoxO3 was elevated, resulting in sustained viability during differentiation. The high Akt activity disrupted GAB2/SHP-2 feedback inhibition of Lyn; however, the elevated Lyn activity also increased inhibitory signaling via SHP-1 to restrict the Erk1/2 pathway. Interestingly, whereas loss of Cbp led to mild changes to late RBC development in male mice, this was not apparent in female Cbp-/- mice, possibly due to their elevated estrogen, which is known to facilitate early progenitor self-renewal.
Collapse
Affiliation(s)
- Janice H C Plani-Lam
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Neli S Slavova-Azmanova
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Nicole Kucera
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Alison Louw
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jiulia Satiaputra
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Peter Singer
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Margaret L Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Evan Ingley
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
4
|
Liepelt A, Naarmann-de Vries IS, Simons N, Eichelbaum K, Föhr S, Archer SK, Castello A, Usadel B, Krijgsveld J, Preiss T, Marx G, Hentze MW, Ostareck DH, Ostareck-Lederer A. Identification of RNA-binding Proteins in Macrophages by Interactome Capture. Mol Cell Proteomics 2016; 15:2699-714. [PMID: 27281784 DOI: 10.1074/mcp.m115.056564] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
Pathogen components, such as lipopolysaccharides of Gram-negative bacteria that activate Toll-like receptor 4, induce mitogen activated protein kinases and NFκB through different downstream pathways to stimulate pro- and anti-inflammatory cytokine expression. Importantly, post-transcriptional control of the expression of Toll-like receptor 4 downstream signaling molecules contributes to the tight regulation of inflammatory cytokine synthesis in macrophages. Emerging evidence highlights the role of RNA-binding proteins (RBPs) in the post-transcriptional control of the innate immune response. To systematically identify macrophage RBPs and their response to LPS stimulation, we employed RNA interactome capture in LPS-induced and untreated murine RAW 264.7 macrophages. This combines RBP-crosslinking to RNA, cell lysis, oligo(dT) capture of polyadenylated RNAs and mass spectrometry analysis of associated proteins. Our data revealed 402 proteins of the macrophage RNA interactome including 91 previously not annotated as RBPs. A comparison with published RNA interactomes classified 32 RBPs uniquely identified in RAW 264.7 macrophages. Of these, 19 proteins are linked to biochemical activities not directly related to RNA. From this group, we validated the HSP90 cochaperone P23 that was demonstrated to exhibit cytosolic prostaglandin E2 synthase 3 (PTGES3) activity, and the hematopoietic cell-specific LYN substrate 1 (HCLS1 or HS1), a hematopoietic cell-specific adapter molecule, as novel macrophage RBPs. Our study expands the mammalian RBP repertoire, and identifies macrophage RBPs that respond to LPS. These RBPs are prime candidates for the post-transcriptional regulation and execution of LPS-induced signaling pathways and the innate immune response. Macrophage RBP data have been deposited to ProteomeXchange with identifier PXD002890.
Collapse
Affiliation(s)
- Anke Liepelt
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Isabel S Naarmann-de Vries
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Nadine Simons
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Katrin Eichelbaum
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Sophia Föhr
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Stuart K Archer
- ¶EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Garran Rd, Acton (Canberra) ACT 2601, Australia
| | - Alfredo Castello
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Björn Usadel
- ‖Institute of Biology I, RWTH Aachen, Worringer Weg 2, 52074 Aachen, Germany
| | - Jeroen Krijgsveld
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Thomas Preiss
- ¶EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Garran Rd, Acton (Canberra) ACT 2601, Australia; **Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia
| | - Gernot Marx
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Matthias W Hentze
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Dirk H Ostareck
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany;
| | - Antje Ostareck-Lederer
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany;
| |
Collapse
|
5
|
Shakhidzhanov SS, Shaturny VI, Panteleev MA, Sveshnikova AN. Modulation and pre-amplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation. Biochim Biophys Acta Gen Subj 2015; 1850:2518-29. [PMID: 26391841 DOI: 10.1016/j.bbagen.2015.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/01/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Two major soluble blood platelet activators are thrombin and ADP. Of these two, only thrombin can induce mitochondrial collapse and programmed cell death leading to phosphatidylserine (PS) exposure required for blood clotting reactions acceleration. Thrombin can also greatly potentiate collagen-induced PS exposure. However, ADP acting through the P2Y12 receptor was shown to increase the PS-exposing (PS+) platelets fraction produced by thrombin or thrombin-plus-collagen via an unknown mechanism. METHODS We developed a comprehensive multicompartmental computational model of platelet PAR1-and-P2Y12 calcium signal transduction that included cytoplasmic signaling, dense tubular system and mitochondria. To test model predictions, flow cytometry experiments with washed, annexin V-labeled platelets were performed. RESULTS Stimulation of thrombin receptor PAR1 in the model induced cytoplasmic calcium oscillations, calcium uptake by mitochondria, opening of the permeability transition pore and collapse of the mitochondrial membrane potential. ADP stimulation of P2Y12 led to cAMP decrease that, in turn, caused changes in phospholipase C phosphorylation by protein kinase A, increase in cytoplasmic calcium level and, consequently, PS+ platelet formation. ADP addition before stimulation of PAR1 produced much greater increase of the PS+ fraction because cAMP concentration had time to go down prior to calcium oscillations; this prediction was also tested and confirmed experimentally. CONCLUSION These results suggest a mechanism of ADP-dependent PS exposure regulation and show a likely mode of action that could be important for the PS exposure regulation in thrombi, where ADP is released before thrombin formation.
Collapse
Affiliation(s)
- S S Shakhidzhanov
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia.
| | - V I Shaturny
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia.
| | - M A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia; Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela St, Moscow 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow 119991, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudnyi, 141700, Russia.
| | - A N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia; Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela St, Moscow 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow 119991, Russia.
| |
Collapse
|
6
|
Vohidov F, Knudsen SE, Leonard PG, Ohata J, Wheadon MJ, Popp BV, Ladbury JE, Ball ZT. Potent and selective inhibition of SH3 domains with dirhodium metalloinhibitors. Chem Sci 2015; 6:4778-4783. [PMID: 29142714 PMCID: PMC5667506 DOI: 10.1039/c5sc01602a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/03/2015] [Indexed: 01/23/2023] Open
Abstract
Src-family kinases (SFKs) play important roles in human biology and are key drug targets as well. However, achieving selective inhibition of individual Src-family kinases is challenging due to the high similarity within the protein family. We describe rhodium(ii) conjugates that deliver both potent and selective inhibition of Src-family SH3 domains. Rhodium(ii) conjugates offer dramatic affinity enhancements due to interactions with specific and unique Lewis-basic histidine residues near the SH3 binding interface, allowing predictable, structure-guided inhibition of SH3 targets that are recalcitrant to traditional inhibitors. In one example, a simple metallopeptide binds the Lyn SH3 domain with 6 nM affinity and exhibits functional activation of Lyn kinase under biologically relevant concentrations (EC50 ∼ 200 nM).
Collapse
Affiliation(s)
- Farrukh Vohidov
- Department of Chemistry , Rice University , 6100 Main St. , Houston , Texas , USA .
| | - Sarah E Knudsen
- Department of Chemistry , Rice University , 6100 Main St. , Houston , Texas , USA .
| | - Paul G Leonard
- Department of Genomic Medicine , Core for Biomolecular Structure and Function , University of Texas , M.D. Anderson Cancer Center , Houston , Texas , USA
| | - Jun Ohata
- Department of Chemistry , Rice University , 6100 Main St. , Houston , Texas , USA .
| | - Michael J Wheadon
- Department of Chemistry , Rice University , 6100 Main St. , Houston , Texas , USA .
| | - Brian V Popp
- Eugene Bennett Department of Chemistry , West Virginia University , 217 Clark Hall , Morgantown , West Virginia , USA
| | - John E Ladbury
- Department of Molecular and Cellular Biology , University of Leeds , LS2 9JT , UK
| | - Zachary T Ball
- Department of Chemistry , Rice University , 6100 Main St. , Houston , Texas , USA .
| |
Collapse
|
7
|
Regulation of sarcoma cell migration, invasion and invadopodia formation by AFAP1L1 through a phosphotyrosine-dependent pathway. Oncogene 2015. [DOI: 10.1038/onc.2015.272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Eldeeb MA, Fahlman RP. The anti-apoptotic form of tyrosine kinase Lyn that is generated by proteolysis is degraded by the N-end rule pathway. Oncotarget 2015; 5:2714-22. [PMID: 24798867 PMCID: PMC4058039 DOI: 10.18632/oncotarget.1931] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The activation of apoptotic pathways results in the caspase cleavage of the Lyn tyrosine kinase to generate the N-terminal truncated LynΔN. This LynΔN fragment has been demonstrated to exert negative feedback on imatinib induced apoptosis in chronic myelogenous leukemia (CML) K562 cells. Our investigations focus on LynΔN stability and how reduced stability reduces imatinib resistance. As the proteolytical generated LynΔN has a leucine as an N-terminal amino acid, we hypothesized that LynΔN would be degraded by the N-end rule pathway. We demonstrated that LynΔN is unstable and that its stability is dependent on the identity of its N-terminus. Additionally we established that LynΔN degradation could be inhibited by either inhibiting the proteasome or knocking down the UBR1 and UBR2 ubiquitin E3 ligases. Importantly, we also demonstrate that LynΔN degradation by the N-end rule counters the imatinib resistance of K562 cells provided by LynΔN expression. Together our data suggest a possible mechanism for the N-end rule pathway having a link to imatinib resistance in CML. With LynΔN being an N-end rule substrate, it provides the first example that this pathway can also provide a pro-apoptotic function as previous reports have currently only demonstrated anti-apoptotic roles for the N-end rule pathway.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Department of Biochemistry, University of Alberta, Edmonton Alberta Canada
| | | |
Collapse
|
9
|
Lettau M, Kabelitz D, Janssen O. SDF1α-induced interaction of the adapter proteins Nck and HS1 facilitates actin polymerization and migration in T cells. Eur J Immunol 2014; 45:551-61. [PMID: 25359136 DOI: 10.1002/eji.201444473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 10/07/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022]
Abstract
Noncatalytic region of tyrosine kinase (Nck) is an adapter protein that comprises one SH2 (Src homology) domain and three SH3 domains. Nck links receptors and receptor-associated tyrosine kinases or adapter proteins to proteins that regulate the actin cytoskeleton. Whereas the SH2 domain binds to phosphorylated receptors or associated phosphoproteins, individual interactions of the SH3 domains with proline-based recognition motifs result in the formation of larger protein complexes. In T cells, changes in cell polarity and morphology during T-cell activation and effector function require the T-cell receptor-mediated recruitment and activation of actin-regulatory proteins to initiate cytoskeletal reorganization at the immunological synapse. We previously identified the adapter protein HS1 as a putative Nck-interacting protein. We now demonstrate that the SH2 domain of Nck specifically interacts with HS1 upon phosphorylation of its tyrosine residue 378. We report that in human T cells, ligation of the chemokine receptor CXCR4 by stromal cell-derived factor 1α (SDF1α) induces a rapid and transient phosphorylation of tyrosine 378 of HS1 resulting in an increased association with Nck. Consequently, siRNA-mediated downregulation of HS1 and/or Nck impairs SDF1α-induced actin polymerization and T-cell migration.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | |
Collapse
|
10
|
Lyn kinase plays important roles in erythroid expansion, maturation and erythropoietin receptor signalling by regulating inhibitory signalling pathways that control survival. Biochem J 2014; 459:455-66. [DOI: 10.1042/bj20130903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In erythroid cells both positive viability signals and feedback inhibitory signalling require the Src family kinase Lyn, influencing cell survival and their ability to differentiate. This illustrates that Lyn is critical for normal erythropoiesis and erythroid cell development.
Collapse
|
11
|
Skokowa J, Welte K. Defective G-CSFR Signaling Pathways in Congenital Neutropenia. Hematol Oncol Clin North Am 2013; 27:75-88, viii. [DOI: 10.1016/j.hoc.2012.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Interactions among HCLS1, HAX1 and LEF-1 proteins are essential for G-CSF-triggered granulopoiesis. Nat Med 2012; 18:1550-9. [PMID: 23001182 DOI: 10.1038/nm.2958] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/27/2012] [Indexed: 11/09/2022]
Abstract
We found that hematopoietic cell-specific Lyn substrate 1 (HCLS1 or HS1) is highly expressed in human myeloid cells and that stimulation with granulocyte colony-stimulating factor (G-CSF) leads to HCLS1 phosphorylation. HCLS1 binds the transcription factor lymphoid-enhancer binding factor 1 (LEF-1), transporting LEF-1 into the nucleus upon G-CSF stimulation and inducing LEF-1 autoregulation. In patients with severe congenital neutropenia, inherited mutations in the gene encoding HCLS1-associated protein X-1 (HAX1) lead to profound defects in G-CSF-triggered phosphorylation of HCLS1 and subsequently to reduced autoregulation and expression of LEF-1. Consistent with these results, HCLS1-deficient mice are neutropenic. In bone marrow biopsies of the majority of tested patients with acute myeloid leukemia, HCLS1 protein expression is substantially elevated, associated with high levels of G-CSF synthesis and, in some individuals, a four-residue insertion in a proline-rich region of HCLS1 protein known to accelerate intracellular signaling. These data demonstrate the importance of HCLS1 in myelopoiesis in vitro and in vivo.
Collapse
|
13
|
Ingley E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun Signal 2012; 10:21. [PMID: 22805580 PMCID: PMC3464935 DOI: 10.1186/1478-811x-10-21] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/04/2012] [Indexed: 12/24/2022] Open
Abstract
Src family kinases such as Lyn are important signaling intermediaries, relaying and modulating different inputs to regulate various outputs, such as proliferation, differentiation, apoptosis, migration and metabolism. Intriguingly, Lyn can mediate both positive and negative signaling processes within the same or different cellular contexts. This duality is exemplified by the B-cell defect in Lyn-/- mice in which Lyn is essential for negative regulation of the B-cell receptor; conversely, B-cells expressing a dominant active mutant of Lyn (Lynup/up) have elevated activities of positive regulators of the B-cell receptor due to this hyperactive kinase. Lyn has well-established functions in most haematopoietic cells, viz. progenitors via influencing c-kit signaling, through to mature cell receptor/integrin signaling, e.g. erythrocytes, platelets, mast cells and macrophages. Consequently, there is an important role for this kinase in regulating hematopoietic abnormalities. Lyn is an important regulator of autoimmune diseases such as asthma and psoriasis, due to its profound ability to influence immune cell signaling. Lyn has also been found to be important for maintaining the leukemic phenotype of many different liquid cancers including acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML) and B-cell lymphocytic leukaemia (BCLL). Lyn is also expressed in some solid tumors and here too it is establishing itself as a potential therapeutic target for prostate, glioblastoma, colon and more aggressive subtypes of breast cancer. LAY To relay information, a cell uses enzymes that put molecular markers on specific proteins so they interact with other proteins or move to specific parts of the cell to have particular functions. A protein called Lyn is one of these enzymes that regulate information transfer within cells to modulate cell growth, survival and movement. Depending on which type of cell and the source of the information input, Lyn can positively or negatively regulate the information output. This ability of Lyn to be able to both turn on and turn off the relay of information inside cells makes it difficult to fully understand its precise function in each specific circumstance. Lyn has important functions for cells involved in blood development, including different while blood cells as well as red blood cells, and in particular for the immune cells that produce antibodies (B-cells), as exemplified by the major B-cell abnormalities that mice with mutations in the Lyn gene display. Certain types of leukaemia and lymphoma appear to have too much Lyn activity that in part causes the characteristics of these diseases, suggesting it may be a good target to develop new anti-leukaemia drugs. Furthermore, some specific types, and even specific subtypes, of solid cancers, e.g. prostate, brain and breast cancer can also have abnormal regulation of Lyn. Consequently, targeting this protein in these cancers could also prove to be beneficial.
Collapse
Affiliation(s)
- Evan Ingley
- Cell Signalling Group, Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Centre for Medical Research, The University of Western Australia, Rear 50 Murray Street, Perth, WA, 6000, Australia.
| |
Collapse
|
14
|
Targeting Lyn tyrosine kinase through protein fusions encompassing motifs of Cbp (Csk-binding protein) and the SOCS box of SOCS1. Biochem J 2012; 442:611-20. [DOI: 10.1042/bj20111485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The tyrosine kinase Lyn is involved in oncogenic signalling in several leukaemias and solid tumours, and we have previously identified a pathway centred on Cbp [Csk (C-terminal Src kinase)-binding protein] that mediates both enzymatic inactivation, as well as proteasomal degradation of Lyn via phosphorylation-dependent recruitment of Csk (responsible for phosphorylating the inhibitory C-terminal tyrosine of Lyn) and SOCS1 (suppressor of cytokine signalling 1; an E3 ubiquitin ligase). In the present study we show that fusing specific functional motifs of Cbp and domains of SOCS1 together generates a novel molecule capable of directing the proteasomal degradation of Lyn. We have characterized the binding of pY (phospho-tyrosine) motifs of Cbp to SFK (Src-family kinase) SH2 (Src homology 2) domains, identifying those with high affinity and specificity for the SH2 domain of Lyn and that are preferred substrates of active Lyn. We then fused them to the SB (SOCS box) of SOCS1 to facilitate interaction with the ubiquitination-promoting elongin B/C complex. As an eGFP (enhanced green fluorescent protein) fusion, these proteins can direct the polyubiquitination and proteasomal degradation of active Lyn. Expressing this fusion protein in DU145 cancer cells (but not LNCaP or MCF-7 cells), that require Lyn signalling for survival, promotes loss of Lyn, loss of caspase 3, appearance of an apoptotic morphology and failure to survive/expand. These findings show how functional domains of Cbp and SOCS1 can be fused together to generate molecules capable of inhibiting the growth of cancer cells that express high levels of active Lyn.
Collapse
|
15
|
Magno AL, Ingley E, Brown SJ, Conigrave AD, Ratajczak T, Ward BK. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling. Biochem Biophys Res Commun 2011; 412:584-9. [DOI: 10.1016/j.bbrc.2011.07.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 07/30/2011] [Indexed: 11/15/2022]
|
16
|
|
17
|
Agosti V, Karur V, Sathyanarayana P, Besmer P, Wojchowski DM. A KIT juxtamembrane PY567 -directed pathway provides nonredundant signals for erythroid progenitor cell development and stress erythropoiesis. Exp Hematol 2008; 37:159-71. [PMID: 19100679 DOI: 10.1016/j.exphem.2008.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 10/06/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE KITL/KIT can elicit diverse sets of signals within lymphoid, myeloid, mast, and erythroid lineages, and exert distinct effects on growth, survival, migration, adhesion, and secretory responses. Presently, we have applied a PY-mutant allele knockin approach to specifically assess possible roles for KIT-PY567 and KIT-PY719 sites, and coupled pathways, during erythropoiesis. MATERIALS AND METHODS Mouse models used to investigate this problem include those harboring knocked-in KIT(Y567F/Y567F), KIT(Y569F/Y569F), KIT(Y719F,Y719F), and KIT(Y567F/Y567F:Y569F/Y569F) alleles. The erythron was stressed by myelosuppression using 5-fluorouracil, and by phenylhydrazine-induced hemolysis. In addition, optimized systems for ex vivo analyses of bone marrow and splenic erythropoiesis were employed to more directly analyze possible stage-specific effects on erythroid cell growth, survival, development and KIT signaling events. RESULTS In Kit(Y567F/Y567F) mice, steady-state erythropoiesis was unperturbed while recovery from anemia due to 5-fluorouracil or phenylhydrazine was markedly impaired. Deficiencies in erythroid progenitor expansion occurred both in the bone marrow and the spleen. Responses to chronic erythropoietin dosing were also compromised. Ex vivo, Kit(Y567F/Y567F) (pro)erythroblast development was skewed from a Kit(pos)CD71(high) stage toward a subsequent Kit(neg)CD71(high) compartment. Proliferation and, to an extent, survival capacities were also compromised. Similar stage-specific defects existed for erythroid progenitors from Kit(Y567F/Y567F:Y569F/Y569F) but not KIT(Y719F/Y719F) mice. Kit(Y567F/Y567F) erythroblasts were used further to analyze KIT-PY567-dependent signals. MEK-1,2/ERK-1,2 signaling was unaffected while AKT, p70S6K, and especially JNK2/p54 pathways were selectively attenuated. CONCLUSIONS Nonredundant KIT-PY567-directed erythroblast-intrinsic signals are selectively critical for stress erythropoiesis. Investigations also add to an understanding of how KIT directs distinct outcomes among diverse progenitors and lineages.
Collapse
Affiliation(s)
- Valter Agosti
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | | | | | | | |
Collapse
|
18
|
Ingley E. Csk-binding protein can regulate Lyn signals controlling cell morphology. Int J Biochem Cell Biol 2008; 41:1332-43. [PMID: 19124084 DOI: 10.1016/j.biocel.2008.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 11/26/2008] [Accepted: 12/08/2008] [Indexed: 11/25/2022]
Abstract
The Src family kinase Lyn is involved in differentiation signals emanating from activated erythropoietin (Epo) receptors, it interacts with COOH-terminal Src kinase-binding protein (Cbp), an adaptor protein that recruits negative regulators COOH-terminal Src kinase (Csk) and suppressor of cytokine signaling-1 (SOCS1). Lyn phosphorylates Cbp on several tyrosine residues, including Tyr314, which recruits Csk/SOCS1, as well as Tyr381 and Tyr409 that bind Lyns own SH2 domain. We show that Cbp alters not only the ability of erythroid cells to differentiate but also their colony morphology. Consequently, we detailed the ability of Cbp to interact with and influence Lyns ability to initiate changes in cellular architecture, which affect cell-cell and cell-substratum interactions. Over-expression of active Lyn promotes filopodia formation while inactive Lyn promotes lamellipodia formation. Conversely, Cbp over-expression, which inhibits Lyn activity, promotes lamellipodia formation, while Cbp mutants preventing its interaction/signaling consequently allow Lyn to promote filopodia formation. Thus, the Lyn-Cbp pathway and subsequent regulation of Lyn signaling and cell morphology involves a dynamic and complex series of interactions.
Collapse
Affiliation(s)
- Evan Ingley
- Cell Signalling Group, Laboratory for Cancer Medicine, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Australia.
| |
Collapse
|
19
|
Liar, a novel Lyn-binding nuclear/cytoplasmic shuttling protein that influences erythropoietin-induced differentiation. Blood 2008; 113:3845-56. [PMID: 19064729 DOI: 10.1182/blood-2008-04-153452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Erythropoiesis is primarily controlled by erythropoietin (Epo), which stimulates proliferation, differentiation, and survival of erythroid precursors. We have previously shown that the tyrosine kinase Lyn is critical for transducing differentiation signals emanating from the activated Epo receptor. A yeast 2-hybrid screen for downstream effectors of Lyn identified a novel protein, Liar (Lyn-interacting ankyrin repeat), which forms a multiprotein complex with Lyn and HS1 in erythroid cells. Interestingly, 3 of the ankyrin repeats of Liar define a novel SH3 binding region for Lyn and HS1. Liar also contains functional nuclear localization and nuclear export sequences and shuttles rapidly between the nucleus and cytoplasm. Ectopic expression of Liar inhibited the differentiation of normal erythroid progenitors, as well as immortalized erythroid cells. Significantly, Liar affected Epo-activated signaling molecules including Erk2, STAT5, Akt, and Lyn. These results show that Liar is a novel Lyn-interacting molecule that plays an important role in regulating intracellular signaling events associated with erythroid terminal differentiation.
Collapse
|
20
|
Williams NK, Lucet IS, Klinken SP, Ingley E, Rossjohn J. Crystal structures of the Lyn protein tyrosine kinase domain in its Apo- and inhibitor-bound state. J Biol Chem 2008; 284:284-291. [PMID: 18984583 DOI: 10.1074/jbc.m807850200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Src-family protein-tyrosine kinase (PTK) Lyn is the most important Src-family kinase in B cells, having both inhibitory and stimulatory activity that is dependent on the receptor, ligand, and developmental context of the B cell. An important role for Lyn has been reported in acute myeloid leukemia and chronic myeloid leukemia, as well as certain solid tumors. Although several Src-family inhibitors are available, the development of Lyn-specific inhibitors, or inhibitors with reduced off-target activity to Lyn, has been hampered by the lack of structural data on the Lyn kinase. Here we report the crystal structure of the non-liganded form of Lyn kinase domain, as well as in complex with three different inhibitors: the ATP analogue AMP-PNP; the pan Src kinase inhibitor PP2; and the BCR-Abl/Src-family inhibitor Dasatinib. The Lyn kinase domain was determined in its "active" conformation, but in the unphosphorylated state. All three inhibitors are bound at the ATP-binding site, with PP2 and Dasatinib extending into a hydrophobic pocket deep in the substrate cleft, thereby providing a basis for the Src-specific inhibition. Analysis of sequence and structural differences around the active site region of the Src-family PTKs were evident. Accordingly, our data provide valuable information for the further development of therapeutics targeting Lyn and the important Src-family of kinases.
Collapse
Affiliation(s)
- Neal K Williams
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia, and the Laboratory for Cancer Medicine and Cell Signalling Group, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6000, Australia
| | - Isabelle S Lucet
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia, and the Laboratory for Cancer Medicine and Cell Signalling Group, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6000, Australia
| | - S Peter Klinken
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia, and the Laboratory for Cancer Medicine and Cell Signalling Group, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6000, Australia
| | - Evan Ingley
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia, and the Laboratory for Cancer Medicine and Cell Signalling Group, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6000, Australia; Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia, and the Laboratory for Cancer Medicine and Cell Signalling Group, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6000, Australia
| | - Jamie Rossjohn
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia, and the Laboratory for Cancer Medicine and Cell Signalling Group, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6000, Australia.
| |
Collapse
|
21
|
Abstract
Abstract
Thyroid hormone and its cognate receptor (TR) have been implicated in the production of red blood cells. Here, we show mice deficient for TRα have compromised fetal and adult erythropoiesis. Erythroid progenitor numbers were significantly reduced in TRα−/− fetal livers, and transit through the final stages of maturation was impeded. In addition, immortalized TRα−/− erythroblasts displayed increased apoptosis and reduced capacity for proliferation and differentiation. Adult TRα−/− mice had lower hematocrit levels, elevated glucocorticoid levels, and an altered stress erythropoiesis response to hemolytic anemia. Most TRα−/− animals contained markedly altered progenitor numbers in their spleens. Strikingly, 20% of TRα−/− mice failed to elicit a stress erythropoiesis response and recovered very poorly from hemolytic anemia. We conclude that an underlying erythroid defect exists in TRα−/− mice, demon-strating the importance of TRα to the erythroid compartment.
Collapse
|
22
|
Csk-binding Protein Mediates Sequential Enzymatic Down-regulation and Degradation of Lyn in Erythropoietin-stimulated Cells. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84106-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Ingley E, Schneider JR, Payne CJ, McCarthy DJ, Harder KW, Hibbs ML, Klinken SP. Csk-binding protein mediates sequential enzymatic down-regulation and degradation of Lyn in erythropoietin-stimulated cells. J Biol Chem 2006; 281:31920-9. [PMID: 16920712 DOI: 10.1074/jbc.m602637200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have shown previously that the Src family kinase Lyn is involved in differentiation signals emanating from activated erythropoietin (Epo) receptors. The importance of Lyn to red cell maturation has been highlighted by Lyn-/- mice developing anemia. Here we show that Lyn interacts with C-terminal Src kinase-binding protein (Cbp), an adaptor protein that recruits negative regulators C-terminal Src kinase (Csk)/Csk-like protein-tyrosine kinase (Ctk). Lyn phosphorylated Cbp on several tyrosine residues, including Tyr314, which recruited Csk/Ctk to suppress Lyn kinase activity. Intriguingly, phosphorylated Tyr314 also bound suppressor of cytokine signaling 1 (SOCS1), another well characterized negative regulator of cell signaling, resulting in elevated ubiquitination, and degradation of Lyn. In Epo-responsive primary cells and cell lines, Lyn rapidly phosphorylated Cbp, suppressing Lyn kinase activity via Csk/Ctk within minutes of Epo stimulation; hours later, SOCS1 bound to Cbp and was involved in the ubiquitination and turnover of Lyn protein. Thus, a single phosphotyrosine residue on Cbp coordinates a two-phase process involving distinct negative regulatory pathways to inactivate, then degrade, Lyn.
Collapse
Affiliation(s)
- Evan Ingley
- Cell Signalling Group, Western Australian Institute for Medical Research, Perth, WA 6000 Australia.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Members of the Janus kinase (JAK) family, JAK1, JAK2, JAK3 and Tyk2 are intimately involved in the signalling events initiated by cytokines activating cell surface receptors. They are responsible for phosphorylating these receptors, which create docking sites for downstream molecules such as the signal transducer and activator of transcription family members. In addition, cytokine receptors associate with members of the Src family kinase (SFK). JAKs and SFK work in concert to activate many of the signalling molecules, with both kinase families required for optimal transmission of intracellular signals. JAKs and SFK are also required for the activation and recruitment of negative regulators of cytokine signalling, e.g., protein tyrosine phosphatases (PTPs) and suppressors of cytokine signalling. Aberrant activity of the JAK-Src kinase duet can result in hemopoietic abnormalities including leukaemia. Additionally, the recent identification of a somatic JAK2 mutation as the cause of polycythema vera, further highlights the clinical importance of these molecules.
Collapse
Affiliation(s)
- Evan Ingley
- Western Australian Institute for Medical Research and UWA Centre for Medical Research, The University of Western Australia, Laboratory for Cancer Medicine, Perth, WA, Australia
| | | |
Collapse
|
25
|
Brunati AM, Deana R, Folda A, Massimino ML, Marin O, Ledro S, Pinna LA, Donella-Deana A. Thrombin-induced tyrosine phosphorylation of HS1 in human platelets is sequentially catalyzed by Syk and Lyn tyrosine kinases and associated with the cellular migration of the protein. J Biol Chem 2005; 280:21029-35. [PMID: 15795233 DOI: 10.1074/jbc.m412634200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thrombin stimulation of platelets triggers Tyr phosphorylation of several signaling proteins, most of which remain unidentified. In this study, we demonstrate for the first time that hematopoietic lineage cell-specific protein 1 (HS1) undergoes a transient Tyr phosphorylation in human platelets stimulated with thrombin. The protein is synergistically phosphorylated by Syk and Lyn tyrosine kinases according to a sequential phosphorylation mechanism. By means of specific inhibitors (PP2, SU6656, and piceatannol) and phosphopeptide-specific antibodies, as well as by coimmunoprecipitation and binding competition experiments, we show that Syk acts as the primary kinase that phosphorylates HS1 at Tyr397 and that Syk phosphorylation is required for HS1 interaction with the Lyn SH2 domain. Upon docking to Syk-phosphorylated HS1, Lyn catalyzes the secondary phosphorylation of the protein at Tyr222. Once the secondary Tyr phosphorylation of HS1 is accomplished the protein dissociates from Lyn and undergoes a dephosphorylation process. HS1 Tyr phosphorylation does not occur when thrombin-induced actin assembly is inhibited by cytochalasin D even under conditions in which Syk and Lyn are still active. Immunofluorescence microscopic analysis shows that the agonist promotes HS1 migration to the plasma membrane and that the inhibition of Lyn-mediated secondary phosphorylation of HS1 abrogates the subcellular translocation of the protein. All together these results indicate that HS1 Tyr phosphorylation catalyzed by Syk and Lyn plays a crucial role in the translocation of the protein to the membrane and is involved in the cytoskeleton rearrangement triggered by thrombin in human platelets.
Collapse
Affiliation(s)
- Anna Maria Brunati
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ingley E, McCarthy DJ, Pore JR, Sarna MK, Adenan AS, Wright MJ, Erber W, Tilbrook PA, Klinken SP. Lyn deficiency reduces GATA-1, EKLF and STAT5, and induces extramedullary stress erythropoiesis. Oncogene 2005; 24:336-43. [PMID: 15516974 DOI: 10.1038/sj.onc.1208199] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In vitro studies have implicated the Lyn tyrosine kinase in erythropoietin signaling. In this study, we show that J2E erythroid cells lacking Lyn have impaired signaling and reduced levels of transcription factors STAT5a, EKLF and GATA-1. Since mice lacking STAT5, EKLF or GATA-1 have red cell abnormalities, this study also examined the erythroid compartment of Lyn(-/-) mice. Significantly, STAT5, EKLF and GATA-1 levels were appreciably lower in Lyn(-/-) erythroblasts, and the phenotype of Lyn(-/-) animals was remarkably similar to GATA-1(low) animals. Although young adult Lyn-deficient mice had normal hematocrits, older mice developed anemia. Grossly enlarged erythroblasts and florid erythrophagocytosis were detected in the bone marrow of mice lacking Lyn. Markedly elevated erythroid progenitors and precursor levels were observed in the spleens, but not bone marrow, of Lyn(-/-) animals indicating that extramedullary erythropoiesis was occurring. These data indicate that Lyn(-/-) mice display extramedullary stress erythropoiesis to compensate for intrinsic and extrinsic erythroid defects.
Collapse
Affiliation(s)
- Evan Ingley
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, WA, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
van Rossum AGSH, Schuuring-Scholtes E, Seggelen VVBV, Kluin PM, Schuuring E. Comparative genome analysis of cortactin and HS1: the significance of the F-actin binding repeat domain. BMC Genomics 2005; 6:15. [PMID: 15710041 PMCID: PMC554100 DOI: 10.1186/1471-2164-6-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 02/14/2005] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In human carcinomas, overexpression of cortactin correlates with poor prognosis. Cortactin is an F-actin-binding protein involved in cytoskeletal rearrangements and cell migration by promoting actin-related protein (Arp)2/3 mediated actin polymerization. It shares a high amino acid sequence and structural similarity to hematopoietic lineage cell-specific protein 1 (HS1) although their functions differ considerable. In this manuscript we describe the genomic organization of these two genes in a variety of species by a combination of cloning and database searches. Based on our analysis, we predict the genesis of the actin-binding repeat domain during evolution. RESULTS Cortactin homologues exist in sponges, worms, shrimps, insects, urochordates, fishes, amphibians, birds and mammalians, whereas HS1 exists in vertebrates only, suggesting that both genes have been derived from an ancestor cortactin gene by duplication. In agreement with this, comparative genome analysis revealed very similar exon-intron structures and sequence homologies, especially over the regions that encode the characteristic highly conserved F-actin-binding repeat domain. Cortactin splice variants affecting this F-actin-binding domain were identified not only in mammalians, but also in amphibians, fishes and birds. In mammalians, cortactin is ubiquitously expressed except in hematopoietic cells, whereas HS1 is mainly expressed in hematopoietic cells. In accordance with their distinct tissue specificity, the putative promoter region of cortactin is different from HS1. CONCLUSIONS Comparative analysis of the genomic organization and amino acid sequences of cortactin and HS1 provides inside into their origin and evolution. Our analysis shows that both genes originated from a gene duplication event and subsequently HS1 lost two repeats, whereas cortactin gained one repeat. Our analysis genetically underscores the significance of the F-actin binding domain in cytoskeletal remodeling, which is of importance for the major role of HS1 in apoptosis and for cortactin in cell migration.
Collapse
MESH Headings
- Actin-Related Protein 2/chemistry
- Actin-Related Protein 3/chemistry
- Actins/chemistry
- Adaptor Proteins, Signal Transducing
- Alternative Splicing
- Animals
- Apoptosis
- Blood Proteins/chemistry
- Cell Line, Tumor
- Cell Lineage
- Cell Movement
- Cloning, Molecular
- Cortactin/chemistry
- Cytoskeleton/metabolism
- DNA, Complementary/metabolism
- Databases as Topic
- Databases, Factual
- Databases, Genetic
- Evolution, Molecular
- Exons
- Gene Duplication
- Genome
- Hematopoietic Stem Cells/cytology
- Humans
- Introns
- Models, Genetic
- Prognosis
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proteins/chemistry
Collapse
Affiliation(s)
- Agnes GSH van Rossum
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ellen Schuuring-Scholtes
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | | | - Philip M Kluin
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
- Department of Pathology, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Ed Schuuring
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
- Department of Pathology, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
28
|
Court NW, Ingley E, Klinken SP, Bogoyevitch MA. Outer membrane protein 25-a mitochondrial anchor and inhibitor of stress-activated protein kinase-3. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1744:68-75. [PMID: 15878399 DOI: 10.1016/j.bbamcr.2004.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2004] [Revised: 11/29/2004] [Accepted: 11/29/2004] [Indexed: 10/26/2022]
Abstract
Stress-activated protein kinase-3 (SAPK3) is unique amongst the mitogen-activated protein kinase (MAPK) family with its C-terminal 5 amino acids directing interaction with the PDZ domain-containing substrates alpha1-Syntrophin and SAP90/PSD95. Here, we identify three additional PDZ domain-containing binding partners, Lin-7C, Scribble, and outer membrane protein 25 (OMP25). This latter protein is localised together with SAPK3 at the mitochondria but it is not a SAPK3 substrate. Instead, OMP25 inhibits SAPK3 activity towards PDZ domain-containing substrates such as alpha1-Syntrophin and substrates without PDZ domains such as the mitochondrial protein Sab. This is a new mechanism for the regulation of SAPK3 and suggests that its intracellular activity should not be solely assessed by its phosphorylation status.
Collapse
Affiliation(s)
- Naomi W Court
- Cell Signalling Laboratory, Biochemistry and Molecular Biology (M310), University of Western Australia, Western Australia 6009, Australia
| | | | | | | |
Collapse
|
29
|
Harder KW, Quilici C, Naik E, Inglese M, Kountouri N, Turner A, Zlatic K, Tarlinton DM, Hibbs ML. Perturbed myelo/erythropoiesis in Lyn-deficient mice is similar to that in mice lacking the inhibitory phosphatases SHP-1 and SHIP-1. Blood 2004; 104:3901-10. [PMID: 15339845 DOI: 10.1182/blood-2003-12-4396] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Lyn tyrosine kinase plays essential inhibitory signaling roles within hematopoietic cells by recruiting inhibitory phosphatases such as SH2-domain containing phosphatase-1 (SHP-1), SHP-2, and SH2-domain containing 5'-inositol phosphatase (SHIP-1) to the plasma membrane in response to specific stimuli. Lyn-deficient mice display a collection of hematopoietic defects, including autoimmune disease as a result of autoantibody production, and perturbations in myelopoiesis that ultimately lead to splenomegaly and myeloid neoplasia. In this study, we demonstrate that loss of Lyn results in a stem/progenitor cell-intrinsic defect leading to an age-dependent increase in myeloid, erythroid, and primitive hematopoietic progenitor numbers that is independent of autoimmune disease. Despite possessing increased numbers of erythroid progenitors, and a more robust expansion of these cells following phenylhydrazine challenge, Lyn-deficient mice are more severely affected by the chemotherapeutic drug 5-fluorouracil, revealing a greater proportion of cycling progenitors. We also show that mice lacking SHIP-1 have defects in the erythroid and myeloid compartments similar to those in mice lacking Lyn or SHP-1, suggesting an intimate relationship between Lyn, SHP-1, and SHIP-1 in regulating hematopoiesis.
Collapse
Affiliation(s)
- Kenneth W Harder
- Ludwig Institute for Cancer Research, PO Box 2008, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hao JJ, Carey GB, Zhan X. Syk-mediated tyrosine phosphorylation is required for the association of hematopoietic lineage cell-specific protein 1 with lipid rafts and B cell antigen receptor signalosome complex. J Biol Chem 2004; 279:33413-20. [PMID: 15166239 DOI: 10.1074/jbc.m313564200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hematopoietic lineage cell-specific protein 1 (HS1) is an F-actin- and actin-related proteins 2 and 3 (Arp2/3)-binding protein that undergoes a rapid tyrosine phosphorylation upon B cell antigen receptor (BCR) activation. Density gradient centrifugation of Triton X-100 lysates from B lymphocytes demonstrated that HS1 was translocated in response to BCR cross-linking into lipid raft microdomain along with Arp2/3 complex and Wiskott-Aldrich syndrome protein. HS1-green fluorescent protein was localized in membrane patches enriched with GM1 gangliosides and BCR in the cells treated with anti-IgM antibody. Colocalization of HS1-green fluorescent protein with BCR was also correlated with tyrosine phosphorylation of HS1. Interestingly a murine HS1 mutant at the tyrosine residues Tyr388 and Tyr405 targeted by Syk failed to respond to BCR cross-linking for either translocation into lipid rafts or colocalization with BCR within cells. Furthermore HS1 was unable to translocate into lipid rafts in a chicken B cell line deficient in Syk. Reintroducing a Syk construct into the Syk knock-out cells recovered effectively both tyrosine phosphorylation and translocation of HS1 into lipid rafts. In contrast, translocation of HS1 into rafts was normal in a Lyn knock-out B cell line, and an HS1 mutant at the tyrosine residue Tyr222 targeted by Lyn maintained the ability to partition into rafts upon BCR cross-linking. These data indicate that Syk plays an important role in the translocation of HS1 into lipid rafts and may be responsible for actin assembly recruitment to rafts and subsequent antigen presentations.
Collapse
Affiliation(s)
- Jian-Jiang Hao
- Departments of Experimental Pathology and Immunology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | |
Collapse
|
31
|
Scicchitano MS, McFarland DC, Tierney LA, Narayanan PK, Schwartz LW. In vitro expansion of human cord blood CD36+ erythroid progenitors: temporal changes in gene and protein expression. Exp Hematol 2003; 31:760-9. [PMID: 12962721 DOI: 10.1016/s0301-472x(03)00185-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Erythropoiesis involves proliferation and differentiation of committed erythroid progenitors to mature red blood cells. The objective of this study was to characterize growth characteristics of human CD36+ erythroid progenitors and to profile temporal expression of lineage-specific transcription factors, structural proteins, and growth factor receptors involved in erythropoiesis. MATERIALS AND METHODS Erythropoietin-induced differentiation of human cord blood CD36+ erythroid progenitors was profiled for GATA-1, GATA-2, NFE2, EKLF, SCL, PU.1, Id1, Evi-1, c-myb, Hox2.2, c-kit, EpoR, glycophorin A (GPA), CD71, beta- and gamma-globin, and protein 4.2 gene and/or protein expression and DNA content analysis on days 4, 7, and 15 of culture. RESULTS Real-time RT-PCR analysis revealed upregulation of GATA-1, Id1, glycophorin A, and protein 4.2 mRNA expression on day 7 when compared to day 4 and decreased expression on day 15. EKLF, GATA-2, Hox2.2, c-myb, Evi-1, c-kit, and PU.1 mRNA expression decreased on days 7 and 15. NFE2, CD71, SCL, and EPO-R mRNA expression remained similar on days 4 and 7 but decreased on day 15. Expression of globin genes beta- and gamma-globin increased on both day 7 and day 15 compared to day 4. Values from flow cytometric quantitation of glycophorin A, transferrin receptor (CD71), and hemoglobin A proteins correlated with gene expression results. DNA analysis demonstrated that most cells lacked DNA content by day 15, a finding consistent with enucleation and terminal erythroid differentiation. CONCLUSION These data indicate that in vitro liquid cultures of committed CD36+ erythroid progenitor cells retain, in part, many features of erythropoiesis at the cellular and molecular level and may provide a useful model for assessment of disease-related or drug-induced erythropoietic abnormalities.
Collapse
|
32
|
Uruno T, Zhang P, Liu J, Hao JJ, Zhan X. Haematopoietic lineage cell-specific protein 1 (HS1) promotes actin-related protein (Arp) 2/3 complex-mediated actin polymerization. Biochem J 2003; 371:485-93. [PMID: 12534372 PMCID: PMC1223309 DOI: 10.1042/bj20021791] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2002] [Revised: 01/03/2003] [Accepted: 01/20/2003] [Indexed: 11/17/2022]
Abstract
HS1 (haematopoietic lineage cell-specific gene protein 1), a prominent substrate of intracellular protein tyrosine kinases in haematopoietic cells, is implicated in the immune response to extracellular stimuli and in cell differentiation induced by cytokines. Although HS1 contains a 37-amino acid tandem repeat motif and a C-terminal Src homology 3 domain and is closely related to the cortical-actin-associated protein cortactin, it lacks the fourth repeat that has been shown to be essential for cortactin binding to filamentous actin (F-actin). In this study, we examined the possible role of HS1 in the regulation of the actin cytoskeleton. Immunofluorescent staining demonstrated that HS1 co-localizes in the cytoplasm of cells with actin-related protein (Arp) 2/3 complex, the primary component of the cellular machinery responsible for de novo actin assembly. Furthermore, recombinant HS1 binds directly to Arp2/3 complex with an equilibrium dissociation constant (K(d)) of 880 nM. Although HS1 is a modest F-actin-binding protein with a K(d) of 400 nM, it increases the rate of the actin assembly mediated by Arp2/3 complex, and promotes the formation of branched actin filaments induced by Arp2/3 complex and a constitutively activated peptide of N-WASP (neural Wiskott-Aldrich syndrome protein). Our data suggest that HS1, like cortactin, plays an important role in the modulation of actin assembly.
Collapse
Affiliation(s)
- Takehito Uruno
- Department of Experimental Pathology, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, USA
| | | | | | | | | |
Collapse
|
33
|
Blower PE, Yang C, Fligner MA, Verducci JS, Yu L, Richman S, Weinstein JN. Pharmacogenomic analysis: correlating molecular substructure classes with microarray gene expression data. THE PHARMACOGENOMICS JOURNAL 2003; 2:259-71. [PMID: 12196914 DOI: 10.1038/sj.tpj.6500116] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2002] [Accepted: 04/08/2002] [Indexed: 12/31/2022]
Abstract
Genomic studies are producing large databases of molecular information on cancers and other cell and tissue types. Hence, we have the opportunity to link these accumulating data to the drug discovery processes. Our previous efforts at 'information-intensive' molecular pharmacology have focused on the relationship between patterns of gene expression and patterns of drug activity. In the present study, we take the process a step further-relating gene expression patterns, not just to the drugs as entities, but to approximately 27,000 substructures and other chemical features within the drugs. This coupling of genomic information with structure-based data mining can be used to identify classes of compounds for which detailed experimental structure-activity studies may be fruitful. Using a systematic substructure analysis coupled with statistical correlations of compound activity with differential gene expression, we have identified two subclasses of quinones whose patterns of activity in the National Cancer Institute's 60-cell line screening panel (NCI-60) correlate strongly with the expression patterns of particular genes: (i) The growth inhibitory patterns of an electron-withdrawing subclass of benzodithiophenedione-containing compounds over the NCI-60 are highly correlated with the expression patterns of Rab7 and other melanoma-specific genes; (ii) the inhibitory patterns of indolonaphthoquinone-containing compounds are highly correlated with the expression patterns of the hematopoietic lineage-specific gene HS1 and other leukemia genes. As illustrated by these proof-of-principle examples, we introduce here a set of conceptual tools and fluent computational methods for projecting directly from gene expression patterns to drug substructures and vice versa. The analysis is presented in terms of the NCI-60 cell lines and microarray-based gene expression patterns, but the concept and methods are broadly applicable to other large-scale pharmacogenomic database sets as well. The approach (SAT for Structure-Activity-Target) provides a systematic way to mine databases for the design of further structure-activity studies, particularly to aid in target and lead identification.
Collapse
|
34
|
Xu Y, Seet LF, Hanson B, Hong W. The Phox homology (PX) domain, a new player in phosphoinositide signalling. Biochem J 2001; 360:513-30. [PMID: 11736640 PMCID: PMC1222253 DOI: 10.1042/0264-6021:3600513] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphoinositides are key regulators of diverse cellular processes. The pleckstrin homology (PH) domain mediates the action of PtdIns(3,4)P(2), PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), while the FYVE domain relays the pulse of PtdIns3P. The recent establishment that the Phox homology (PX) domain interacts with PtdIns3P and other phosphoinositides suggests another mechanism by which phosphoinositides can regulate/integrate multiple cellular events via a spectrum of PX domain-containing proteins. Together with the recent discovery that the epsin N-terminal homologue (ENTH) domain interacts with PtdIns(4,5)P(2), it is becoming clear that phosphoinositides regulate diverse cellular events through interactions with several distinct structural motifs present in many different proteins.
Collapse
Affiliation(s)
- Y Xu
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
35
|
Tilbrook PA, Colley SM, McCarthy DJ, Marais R, Klinken SP. Erythropoietin-stimulated Raf-1 tyrosine phosphorylation is associated with the tyrosine kinase Lyn in J2E erythroleukemic cells. Arch Biochem Biophys 2001; 396:128-32. [PMID: 11716471 DOI: 10.1006/abbi.2001.2577] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The serine/threonine kinase Raf-1 is crucial for transducing intracellular signals emanating from numerous growth factors. Here we used the J2E erythroid cell line transformed by the nu-raf/nu-myc oncogenes to examine the effects of erythropoietin on endogenous Raf-1 activity. Despite the presence of constitutively active v-raf in these cells, Raf-1 exokinase activity increased after erythropoietin stimulation. This increase in enzymatic activity coincided with tyrosine phosphorylation of Raf-1 on residue Y341. Significantly, the tyrosine kinase Lyn coimmunoprecipitated with Raf-1, and Raf-1 was not tyrosine-phosphorylated in a J2E subclone lacking Lyn. Therefore, it was concluded that Lyn may be the kinase responsible for tyrosine phosphorylating Raf-1 and increasing its exokinase activity in response to erythropoietin.
Collapse
Affiliation(s)
- P A Tilbrook
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital, Department of Biochemistry, The University of Western Australia, Western Australia 6000, Australia
| | | | | | | | | |
Collapse
|
36
|
Ingley E, Chappell D, Poon SY, Sarna MK, Beaumont JG, Williams JH, Stillitano JP, Tsai S, Leedman PJ, Tilbrook PA, Klinken SP. Thyroid hormone receptor-interacting protein 1 modulates cytokine and nuclear hormone signaling in erythroid cells. J Biol Chem 2001; 276:43428-34. [PMID: 11544260 DOI: 10.1074/jbc.m106645200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (Epo) and thyroid hormone (T(3)) are key molecules in the development of red blood cells. We have shown previously that the tyrosine kinase Lyn is involved in differentiation signals emanating from an activated erythropoietin receptor. Here we demonstrate that Lyn interacts with thyroid hormone receptor-interacting protein 1 (Trip-1), a transcriptional regulator associated with the T(3) receptor, providing a link between the Epo and T(3) signaling pathways. Trip-1 co-localized with Lyn and the T(3) receptor alpha in the cytoplasm/plasma membrane of erythroid cells but translocated to discrete nuclear foci shortly after Epo-induced differentiation. Our data reveal that T(3) stimulated the proliferation of immature erythroid cells, and inhibited maturation promoted by erythropoietin. Removal of T(3) reduced cell division and enhanced terminal differentiation. This was accompanied by large increases in the cell cycle inhibitor p27(Kip1) and by increasing expression of erythroid transcription factors GATA-1, EKLF, and NF-E2. Strikingly, a truncated Trip-1 inhibited both erythropoietin-induced maturation and T(3)-initiated cell division. This mutant Trip-1 acted in a dominant negative fashion by eliminating endogenous Lyn, elevating p27(Kip1), and blocking T(3) response elements. These data demonstrate that Trip-1 can simultaneously modulate responses involving both cytokine and nuclear receptors.
Collapse
Affiliation(s)
- E Ingley
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and the Department of Biochemistry, University of Western Australia, Perth, Western Australia 6000, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen YR, Kori R, John B, Tan TH. Caspase-mediated cleavage of actin-binding and SH3-domain-containing proteins cortactin, HS1, and HIP-55 during apoptosis. Biochem Biophys Res Commun 2001; 288:981-9. [PMID: 11689006 DOI: 10.1006/bbrc.2001.5862] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reorganization of the actin cytoskeleton occurs during apoptosis. We found that actin-binding and Src homology 3 (SH3)-domain-containing proteins cortactin, hematopoietic-specific protein 1 (HS1), and hematopoietic progenitor kinase 1-interacting protein of 55 kDa (HIP-55, also called SH3P7 and Abp1) were degraded in a caspase-dependent manner during apoptosis. Cortactin, HS1, and HIP-55 were direct substrates of caspase 3. Cortactin and HS1 have two clusters of potential caspase cleavage sites; one is in their actin-binding domains, and the other is close to their carboxy-terminal SH3 domains. HIP-55 has one caspase recognition site, EHID(361). The HIP-55 (D361A) mutant was resistant to caspase cleavage. Cleavage of HIP-55 by caspases dissociated its actin-binding domain from its SH3 domain. The cleavage of these actin-binding and SH3 domain-containing proteins may affect cell signaling to and from the actin cytoskeleton and may be involved in the morphological change of cells during apoptosis.
Collapse
Affiliation(s)
- Y R Chen
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
38
|
Park GB, Kim MJ, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Han J, Lee HS, Kim D, Jeong JY. Comparison of two-stage epidermal carcinogenesis initiated by 7,12-dimethylbenz(a)anthracene or N-methyl-N'-nitro-N-nitrosoguanidine in newborn and adult SENCAR and BALB/c mice. Cancer Res 1981; 17:md17090526. [PMID: 31505769 PMCID: PMC6780187 DOI: 10.3390/md17090526] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022]
Abstract
In order to define factors which determine susceptibility to chemical carcinogenesis, mice sensitive (SENCAR) and resistant (BALB/c) to epidermal carcinogenesis were studied under several treatment conditions for sensitivity to initiation by 7,12-dimethylbenz(a)anthracene or N-methyl-N'-nitro-N-nitrosoguanidine and promotion by 12-O-tetradecanoylphorbol-13-acetate. In newborns of both strains, topical application of initiator was much less effective than in adults. However, initiation by i.p. injection of 7,12-dimethylbenz(a)anthracene is at least as effective in newborns as in adults, which may indicate that topically applied carcinogen is not delivered effectively to target cells in newborns. Thus, newborn epidermis can respond to 7,12-dimethylbenz(a)anthracene as well as adult epidermis when the initiator is appropriately administered. SENCAR mice are much more sensitive than are BALB/c mice to both initiators, which suggests that enhanced metabolic activation of hydrocarbon carcinogens by SENCAR mice is unlikely to account for their sensitivity. Newborn male SENCAR's developed approximately 50% more papillomas than did females in all groups. BALB/c newborn mice developed so few tumors that a meaningful comparison of sensitivity of males and females could not be made. Thus, the increased sensitivity of SENCAR's was apparent regardless of route of administration of initiator or the age or sex of the mice. SENCAR mice also developed a significant number of papillomas and squamous cell carcinomas with 12-O-tetradecanoylphorbol-13-acetate promotion in the absence of an exogenous initiator. Therefore, the skin of SENCAR mice may contain an initiated population of cells capable of responding to tumor promoters.
Collapse
Affiliation(s)
- Ga-Bin Park
- Department of Biochemistry, Cancer Research Institute, Kosin University College of Medicine, Busan 49267, Korea
| | - Min-Jung Kim
- Department of Biochemistry, Cancer Research Institute, Kosin University College of Medicine, Busan 49267, Korea
| | - Elena A Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia.
| | - Natalia P Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia.
| | - Sergey A Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia.
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia.
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University College of Medicine, Busan 47392, Korea.
| | - Ho Sup Lee
- Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, Korea.
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Korea.
| | - Jee-Yeong Jeong
- Department of Biochemistry, Cancer Research Institute, Kosin University College of Medicine, Busan 49267, Korea.
| |
Collapse
|