1
|
Okumuş EB, Böke ÖB, Turhan SŞ, Doğan A. From development to future prospects: The adipose tissue & adipose tissue organoids. Life Sci 2024; 351:122758. [PMID: 38823504 DOI: 10.1016/j.lfs.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Living organisms store their energy in different forms of fats including lipid droplets, triacylglycerols, and steryl esters. In mammals and some non-mammal species, the energy is stored in adipose tissue which is the innervated specialized connective tissue that incorporates a variety of cell types such as macrophages, fibroblasts, pericytes, endothelial cells, adipocytes, blood cells, and several kinds of immune cells. Adipose tissue is so complex that the scope of its function is not only limited to energy storage, it also encompasses to thermogenesis, mechanical support, and immune defense. Since defects and complications in adipose tissue are heavily related to certain chronic diseases such as obesity, cardiovascular diseases, type 2 diabetes, insulin resistance, and cholesterol metabolism defects, it is important to further study adipose tissue to enlighten further mechanisms behind those diseases to develop possible therapeutic approaches. Adipose organoids are accepted as very promising tools for studying fat tissue development and its underlying molecular mechanisms, due to their high recapitulation of the adipose tissue in vitro. These organoids can be either derived using stromal vascular fractions or pluripotent stem cells. Due to their great vascularization capacity and previously reported incontrovertible regulatory role in insulin sensitivity and blood glucose levels, adipose organoids hold great potential to become an excellent candidate for the source of stem cell therapy. In this review, adipose tissue types and their corresponding developmental stages and functions, the importance of adipose organoids, and the potential they hold will be discussed in detail.
Collapse
Affiliation(s)
- Ezgi Bulut Okumuş
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Özüm Begüm Böke
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Selinay Şenkal Turhan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Ayşegül Doğan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey.
| |
Collapse
|
2
|
Jiang T, Su D, Liu X, Wang Y, Wang L. Transcriptomic Analysis Reveals Fibroblast Growth Factor 11 (FGF11) Role in Brown Adipocytes in Thermogenic Regulation of Goats. Int J Mol Sci 2023; 24:10838. [PMID: 37446019 DOI: 10.3390/ijms241310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Brown adipose tissue (BAT) is the main site of adaptive thermogenesis, generates heat to maintain body temperature upon cold exposure, and protects against obesity by promoting energy expenditure. RNA-seq analysis revealed that FGF11 is enriched in BAT. However, the functions and regulatory mechanisms of FGF11 in BAT thermogenesis are still limited. In this study, we found that FGF11 was significantly enriched in goat BAT compared with white adipose tissue (WAT). Gain- and loss-of-function experiments revealed that FGF11 promoted differentiation and thermogenesis in brown adipocytes. However, FGF11 had no effect on white adipocyte differentiation. Furthermore, FGF11 promoted the expression of the UCP1 protein and an EBF2 element was responsible for UCP1 promoter activity. Additionally, FGF11 induced UCP1 gene expression through promoting EBF2 binding to the UCP1 promoter. These results revealed that FGF11 promotes differentiation and thermogenesis in brown adipocytes but not in white adipocytes of goats. These findings provide evidence for FGF11 and transcription factor regulatory functions in controlling brown adipose thermogenesis of goats.
Collapse
Affiliation(s)
- Tingting Jiang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Duo Su
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Liu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Zhang X, Wen X, Hu G, Zhang Q, Sun Q, Jia Y, Liu Y, Lin H, Li H. The fibroblast growth factor receptor antagonist SSR128129E inhibits fat accumulation via suppressing adipogenesis in mice. Mol Biol Rep 2022; 49:8641-8649. [PMID: 35731366 DOI: 10.1007/s11033-022-07699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/09/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AS an allosteric inhibitor of fibroblast growth factor receptors (FGFRs), SSR128129E (SSR) extensively inhibits the fibroblast growth factor (FGF) signaling. Given the metabolic importance of FGFs and the global epidemic of obesity, we explored the effect of SSR on fat metabolism. METHODS AND RESULTS Three-week-old male mice were administered intragastrically with SSR (30 mg/kg/day) or PBS for 5 weeks. The effects of SSR on white and brown fat metabolism were investigated by respiratory metabolic monitoring, histological assessment and molecular analysis. Results indicated that SSR administration significantly reduced the body weight gain and the fat content of mice. SSR did not increase, but decreased the thermogenic capability of both brown and white fat. However, SSR markedly suppressed adipogenesis of adipose tissues. Further study demonstrated the involvement of ERK signaling in the action of SSR. CONCLUSIONS SSR may be a promising drug candidate for the prevention of obesity via suppressing adipogenesis. However, the influence of SSR on thermogenesis in humans should be further investigated before its clinical application.
Collapse
Affiliation(s)
- Xinzhi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin Wen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Geng Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qianying Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanxin Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Haifang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
4
|
Dordoe C, Chen K, Huang W, Chen J, Hu J, Wang X, Lin L. Roles of Fibroblast Growth Factors and Their Therapeutic Potential in Treatment of Ischemic Stroke. Front Pharmacol 2021; 12:671131. [PMID: 33967812 PMCID: PMC8102031 DOI: 10.3389/fphar.2021.671131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is the leading cause of death worldwide, and its treatment remains a challenge. Complex pathological processes are involved in stroke, which causes a reduction in the supply of oxygen and energy to the brain that triggers subsequent cascade events, such as oxidative stress, inflammatory responses and apoptosis, resulting in brain injury. Stroke is a devastating disease for which there are few treatments, but physical rehabilitation can help improve stroke recovery. Although there are very few treatments for stroke patients, the discovery of fibroblast growth factors (FGFs) in mammals has led to the finding that FGFs can effectively treat stroke in animal models. As presented in this review, FGFs play essential roles by functioning as homeostatic factors and controlling cells and hormones involved in metabolism. They could be used as effective therapeutic agents for stroke. In this review, we will discuss the pharmacological actions of FGFs on multiple targets, including their ability to directly promote neuron survival, enhance angiogenesis, protect against blood-brain barrier (BBB) disruption, and regulate microglial modulation, in the treatment of ischemic stroke and their theoretical mechanisms and actions, as well as the therapeutic potential and limitations of FGFs for the clinical treatment of stroke.
Collapse
Affiliation(s)
- Confidence Dordoe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Keyang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Neurology, The Second Affiliated Hospital and Yuying Children' Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
5
|
Delgado JDC, Hamilton TRDS, Mendes CM, Siqueira AFP, Goissis MD, Buratini J, Assumpção MEOD. Bone morphogenetic protein 15 supplementation enhances cumulus expansion, nuclear maturation and progesterone production of in vitro-matured bovine cumulus-oocyte complexes. Reprod Domest Anim 2021; 56:754-763. [PMID: 33565658 DOI: 10.1111/rda.13914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/05/2021] [Indexed: 11/28/2022]
Abstract
In vitro embryo production (IVP) efficiency is reduced when compared to in vivo. The basic knowledge of bovine in vitro oocyte maturation (IVM) mechanisms provides support to improve in vitro embryo production yields. The present study assessed the effects of bone morphogenetic protein 15 (BMP15), fibroblast growth factor 16 (FGF16) and their combined action on cumulus cells (CC) expansion, oocyte and CC DNA fragmentation, oocyte nuclear maturation, energetic metabolism and progesterone production in bovine IVM. Cumulus-oocyte complexes (COC) were matured in control or supplemented media containing BMP15 (100 ng/ml), FGF16 (10 ng/ml) or BMP15 combined with FGF16; and assessed at 0 and 22 hr of IVM. BMP15 alone or its association with FGF16 enhanced cumulus expansion. BMP15 decreased DNA fragmentation in both CC and oocytes, and improved oocyte nuclear maturation rate. In addition, BMP15 increased CC progesterone production, an effect not previously reported. The present study reinforces previous data pointing to a beneficial influence of BMP15 during IVM, while providing novel evidence that the underlying mechanisms involve increased progesterone production.
Collapse
Affiliation(s)
- Juliana de Carvalho Delgado
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Thais Rose Dos Santos Hamilton
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Camilla Mota Mendes
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriano Felipe Perez Siqueira
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Demarchi Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - José Buratini
- Department of Structural and Functional Biology, Institute of Biociences, State University of Sao Paulo, Botucatu, Brazil.,Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Monza, Italy
| | | |
Collapse
|
6
|
Molecular characterization of fibroblast growth factor-16 and its role in promoting the differentiation of intramuscular preadipocytes in goat. Animal 2020; 14:2351-2362. [PMID: 32624066 DOI: 10.1017/s1751731120001160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fat metabolism is an important and complex biochemical reaction in vivo and is regulated by many factors. Recently, the findings on high expression of fibroblast growth factor-16 (FGF16) in brown adipose tissue have led to an interest in exploring its role in lipogenesis and lipid metabolism. The study cloned the goat's FGF16 gene 624 bp long, including the complete open reading frame that encodes 207 amino acids. We found that FGF16 expression is highest in goat kidneys and hearts, followed by subcutaneous fat and triceps. Moreover, the expression of FGF16 reached its peak on the 2nd day of adipocyte differentiation (P < 0.01) and then decreased significantly. We used overexpression and interference to study the function of FGF16 gene in goat intramuscular preadipocytes. Silencing of FGF16 decreased adipocytes lipid droplet aggregation and triglyceride synthesis. This is in contrast to the situation where FGF16 is overexpressed. Furthermore, knockdown of FGF16 also caused down-regulated expression of genes associated with adipocyte differentiation including CCAAT enhancer-binding protein beta (P < 0.01), fatty acid-binding protein-2 (P < 0.01) and sterol regulatory element binding protein-1 (P < 0.05), but the preadipocyte factor-1 was up-regulated. At the same time, the genes adipose triglyceride lipase (P < 0.01) and hormone-sensitive lipase (P < 0.05) associated with triglyceride breakdown were highly expressed. Next, we locked the fibroblast growth factor receptor-4 (FGFR4) through the protein interaction network and interfering with FGF16 to significantly reduce FGFR4 expression. It was found that the expression profile of FGFR4 in adipocyte differentiation was highly similar to that of FGF16. Overexpression and interference methods confirmed that FGFR4 and FGF16 have the same promoting function in adipocyte differentiation. Finally, using co-transfection technology, pc-FGF16 and siRNA-FGFR4, siRNA2-FGF16 and siRNA-FGFR4 were combined to treat adipocytes separately. It was found that in the case of overexpression of FGF16, cell lipid secretion and triglyceride synthesis showed a trend of first increase and then decrease with increasing interference concentration. In the case of interference with FGF16, lipid secretion and triglyceride synthesis showed a downward trend with the increase of interference concentration. These findings illustrated that FGF16 mediates adipocyte differentiation via receptor FGFR4 expression and contributed to further study of the functional role of FGF16 in goat fat formation.
Collapse
|
7
|
Altered Transcription Factor Binding and Gene Bivalency in Islets of Intrauterine Growth Retarded Rats. Cells 2020; 9:cells9061435. [PMID: 32527043 PMCID: PMC7348746 DOI: 10.3390/cells9061435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth retardation (IUGR), which induces epigenetic modifications and permanent changes in gene expression, has been associated with the development of type 2 diabetes. Using a rat model of IUGR, we performed ChIP-Seq to identify and map genome-wide histone modifications and gene dysregulation in islets from 2- and 10-week rats. IUGR induced significant changes in the enrichment of H3K4me3, H3K27me3, and H3K27Ac marks in both 2-wk and 10-wk islets, which were correlated with expression changes of multiple genes critical for islet function in IUGR islets. ChIP-Seq analysis showed that IUGR-induced histone mark changes were enriched at critical transcription factor binding motifs, such as C/EBPs, Ets1, Bcl6, Thrb, Ebf1, Sox9, and Mitf. These transcription factors were also identified as top upstream regulators in our previously published transcriptome study. In addition, our ChIP-seq data revealed more than 1000 potential bivalent genes as identified by enrichment of both H3K4me3 and H3K27me3. The poised state of many potential bivalent genes was altered by IUGR, particularly Acod1, Fgf21, Serpina11, Cdh16, Lrrc27, and Lrrc66, key islet genes. Collectively, our findings suggest alterations of histone modification in key transcription factors and genes that may contribute to long-term gene dysregulation and an abnormal islet phenotype in IUGR rats.
Collapse
|
8
|
Liu J, Zhang C, Zhang B, Sheng Y, Xu W, Luo Y, He X, Huang K. Comprehensive Analysis of the Characteristics and Differences in Adult and Newborn Brown Adipose Tissue (BAT): Newborn BAT Is a More Active/Dynamic BAT. Cells 2020; 9:cells9010201. [PMID: 31947603 PMCID: PMC7017059 DOI: 10.3390/cells9010201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
Brown adipose tissue (BAT) plays an essential role in maintaining body temperature and in treating obesity and diabetes. The adult BAT (aBAT) and neonatal BAT (neBAT) vary greatly in capacity, but the characteristics and differences between them on the molecular level, as well as the related features of BAT as it develops post-delivery, have not yet been fully determined. In this study, we examined the morphological features of aBAT and neBAT of mice by using hematoxylin-eosin (H&E) staining, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). We found that neBAT contains a smaller number and size of lipid droplets, as well as more abundant mitochondria, compared with aBAT. The dynamic morphological changes revealed that the number and size of lipid droplets increase, but the number of mitochondria gradually decrease during the post-delivery development, which consisted of some differences in RNA or protein expression levels, such as gradually decreased uncoupling protein 1 (UCP1) expression levels and mitochondrial genes, such as mitochondrial transcription factor A (Tfam). The adipocyte differentiation-related genes, such as transcription factor CCAAT enhancer-binding protein β (CEBPβ), were also continuously upregulated. Additionally, the different features of aBAT and neBAT were analyzed from the global transcription (RNA-Seq) level, which included messenger RNA (mRNA), microRNA, long non-coding RNA (lncRNA), circRNA, and DNA methylation, as well as proteins (proteomics). Differentially methylated region (DMR) analysis identified 383 hyper- and 503 hypo-methylated genes, as well as 1221 new circRNA in ne-BAT and 1991 new circRNA in a-BAT, with significantly higher expression of circRNA in aBAT compared with neBAT. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that mitochondrial activity, protein synthesis, and cell life activity levels were higher in neBAT, and pathways related to ribosomes, spliceosomes, and metabolism were significantly activated in neBAT compared to aBAT. Collectively, this study describes the dynamic changes occurring throughout post-delivery development from the morphological, molecular and omics perspectives. Our study provides information that may be utilized in improving BAT functional activity through gene regulation and/or epigenetic regulation.
Collapse
Affiliation(s)
- Junyu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Chuanhai Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Yao Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Correspondence: (X.H.); (K.H.)
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Correspondence: (X.H.); (K.H.)
| |
Collapse
|
9
|
Abstract
Members of the fibroblast growth factor (FGF) family play pleiotropic roles in cellular and metabolic homeostasis. During evolution, the ancestor FGF expands into multiple members by acquiring divergent structural elements that enable functional divergence and specification. Heparan sulfate-binding FGFs, which play critical roles in embryonic development and adult tissue remodeling homeostasis, adapt to an autocrine/paracrine mode of action to promote cell proliferation and population growth. By contrast, FGF19, 21, and 23 coevolve through losing binding affinity for extracellular matrix heparan sulfate while acquiring affinity for transmembrane α-Klotho (KL) or β-KL as a coreceptor, thereby adapting to an endocrine mode of action to drive interorgan crosstalk that regulates a broad spectrum of metabolic homeostasis. FGF19 metabolic axis from the ileum to liver negatively controls diurnal bile acid biosynthesis. FGF21 metabolic axes play multifaceted roles in controlling the homeostasis of lipid, glucose, and energy metabolism. FGF23 axes from the bone to kidney and parathyroid regulate metabolic homeostasis of phosphate, calcium, vitamin D, and parathyroid hormone that are important for bone health and systemic mineral balance. The significant divergence in structural elements and multiple functional specifications of FGF19, 21, and 23 in cellular and organismal metabolism instead of cell proliferation and growth sufficiently necessitate a new unified and specific term for these three endocrine FGFs. Thus, the term "FGF Metabolic Axis," which distinguishes the unique pathways and functions of endocrine FGFs from other autocrine/paracrine mitogenic FGFs, is coined.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
10
|
Wang S, Li Y, Jiang C, Tian H. Fibroblast growth factor 9 subfamily and the heart. Appl Microbiol Biotechnol 2017; 102:605-613. [PMID: 29198068 DOI: 10.1007/s00253-017-8652-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
Abstract
The fibroblast growth factor (FGF) 9 subfamily is a member of the FGF family, including FGF9, 16, and 20, potentially sharing similar biochemical functions due to their high degree of sequence homology. Unlike other secreted proteins which have a cleavable N-terminal secreted signal peptide, FGF9/16/20 have non-cleaved N-terminal signal peptides. As an intercellular signaling molecule, they are involved in a variety of complex responses in animal development. Cardiogenesis is controlled by many members of the transcription factor family. Evidence suggests that FGF signaling, including the FGF9 subfamily, has a pretty close association with these cardiac-specific genes. In addition, recent studies have shown that the FGF9 subfamily maintains functional adaptation and survival after myocardial infarction in adult myocardium. Since FGF9/16/20 are secreted proteins, their function characterization in cardiac regeneration can promote their potential to be developed for the treatment of cardioprotection and revascularization. Here, we conclude that the FGF9 subfamily roles in cardiac development and maintenance of postnatal cardiac homeostasis, especially cardiac function maturation and functional maintenance of the heart after injury.
Collapse
Affiliation(s)
- Shen Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Chao Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China. .,Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Haishan Tian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
11
|
Rulifson IC, Collins P, Miao L, Nojima D, Lee KJ, Hardy M, Gupte J, Hensley K, Samayoa K, Cam C, Rottman JB, Ollmann M, Richards WG, Li Y. In Vitro and in Vivo Analyses Reveal Profound Effects of Fibroblast Growth Factor 16 as a Metabolic Regulator. J Biol Chem 2016; 292:1951-1969. [PMID: 28011645 DOI: 10.1074/jbc.m116.751404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/22/2016] [Indexed: 11/06/2022] Open
Abstract
The discovery of brown adipose tissue (BAT) as a key regulator of energy expenditure has sparked interest in identifying novel soluble factors capable of activating inducible BAT (iBAT) to combat obesity. Using a high content cell-based screen, we identified fibroblast growth factor 16 (FGF16) as a potent inducer of several physical and transcriptional characteristics analogous to those of both "classical" BAT and iBAT. Overexpression of Fgf16 in vivo recapitulated several of our in vitro findings, specifically the significant induction of the Ucp1 gene and UCP1 protein expression in inguinal white adipose tissue (iWAT), a common site for emergent active iBAT. Despite significant UCP1 up-regulation in iWAT and dramatic weight loss, the metabolic improvements observed due to Fgf16 overexpression in vivo were not the result of increased energy expenditure, as measured by indirect calorimetric assessment. Instead, a pattern of reduced food and water intake, combined with feces replete with lipid and bile acid, indicated a phenotype more akin to that of starvation and intestinal malabsorption. Gene expression analysis of the liver and ileum indicated alterations in several steps of bile acid metabolism, including hepatic synthesis and reabsorption. Histological analysis of intestinal tissue revealed profound abnormalities in support of this conclusion. The in vivo data, together with FGF receptor binding analysis, indicate that the in vivo outcome observed is the likely result of both direct and indirect mechanisms and probably involves multiple receptors. These results highlight the complexity of FGF signaling in the regulation of various metabolic processes.
Collapse
Affiliation(s)
- Ingrid C Rulifson
- From the Department of Cardiometabolic Disorders, South San Francisco, California 94080.
| | - Patrick Collins
- the Genome Analysis Unit, South San Francisco, California 94080
| | - Li Miao
- From the Department of Cardiometabolic Disorders, South San Francisco, California 94080
| | - Dana Nojima
- the Genome Analysis Unit, South San Francisco, California 94080
| | - Ki Jeong Lee
- the Genome Analysis Unit, Thousand Oaks, California 91320
| | - Miki Hardy
- the Genome Analysis Unit, South San Francisco, California 94080
| | - Jamila Gupte
- From the Department of Cardiometabolic Disorders, South San Francisco, California 94080
| | - Kelly Hensley
- the Department of Pathology, South San Francisco, California 94080
| | - Kim Samayoa
- the Department of Pathology, South San Francisco, California 94080
| | - Cynthia Cam
- the Department of Comparative Animal Research, Amgen Inc., South San Francisco, California 94080
| | - James B Rottman
- the Department of Pathology, Amgen Inc., Cambridge, Massachusetts 02142
| | - Mike Ollmann
- the Genome Analysis Unit, South San Francisco, California 94080
| | - William G Richards
- the Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, California 91320
| | - Yang Li
- From the Department of Cardiometabolic Disorders, South San Francisco, California 94080.
| |
Collapse
|
12
|
Zhang J, Li Y. Therapeutic uses of FGFs. Semin Cell Dev Biol 2016; 53:144-54. [DOI: 10.1016/j.semcdb.2015.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/07/2015] [Indexed: 01/23/2023]
|
13
|
Du W, Prochazka J, Prochazkova M, Klein OD. Expression of FGFs during early mouse tongue development. Gene Expr Patterns 2015; 20:81-7. [PMID: 26748348 DOI: 10.1016/j.gep.2015.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/13/2015] [Accepted: 12/29/2015] [Indexed: 02/05/2023]
Abstract
The fibroblast growth factors (FGFs) constitute one of the largest growth factor families, and several ligands and receptors in this family are known to play critical roles during tongue development. In order to provide a comprehensive foundation for research into the role of FGFs during the process of tongue formation, we measured the transcript levels by quantitative PCR and mapped the expression patterns by in situ hybridization of all 22 Fgfs during mouse tongue development between embryonic days (E) 11.5 and E14.5. During this period, Fgf5, Fgf6, Fgf7, Fgf9, Fgf10, Fgf13, Fgf15, Fgf16 and Fgf18 could all be detected with various intensities in the mesenchyme, whereas Fgf1 and Fgf2 were expressed in both the epithelium and the mesenchyme. Our results indicate that FGF signaling regulates tongue development at multiple stages.
Collapse
Affiliation(s)
- Wen Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jan Prochazka
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic
| | - Michaela Prochazkova
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
El Agha E, Kosanovic D, Schermuly RT, Bellusci S. Role of fibroblast growth factors in organ regeneration and repair. Semin Cell Dev Biol 2015; 53:76-84. [PMID: 26459973 DOI: 10.1016/j.semcdb.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023]
Abstract
In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.
Collapse
Affiliation(s)
- Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Djuro Kosanovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
15
|
Abstract
In mammals, a thermogenic mechanism exists that increases heat production and consumes energy. Recent work has shed light on the cellular and physiological mechanisms that control this thermogenic circuit. Thermogenically active adipocytes, namely brown and closely related beige adipocytes, differentiate from progenitor cells that commit to the thermogenic lineage but can arise from different cellular origins. Thermogenic differentiation shares some features with general adipogenesis, highlighting the critical role that common transcription factors may play in progenitors with divergent fates. However, thermogenic differentiation is also discrete from the common adipogenic program and, excitingly, cells with distinct origins possess thermogenic competency that allows them to differentiate into thermogenically active mature adipocytes. An understanding of this thermogenic differentiation program and the factors that can activate it has led to the development of assays that are able to measure thermogenic activity both indirectly and directly. By combining these assays with appropriate cell models, novel therapeutic approaches to combat obesity and its related metabolic disorders by enhancing the thermogenic circuit can be developed.
Collapse
Affiliation(s)
- Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Miyake A, Chitose T, Kamei E, Murakami A, Nakayama Y, Konishi M, Itoh N. Fgf16 is required for specification of GABAergic neurons and oligodendrocytes in the zebrafish forebrain. PLoS One 2014; 9:e110836. [PMID: 25357195 PMCID: PMC4214708 DOI: 10.1371/journal.pone.0110836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor (Fgf) signaling plays crucial roles in various developmental processes including those in the brain. We examined the role of Fgf16 in the formation of the zebrafish brain. The knockdown of fgf16 decreased cell proliferation in the forebrain and midbrain. fgf16 was also essential for development of the ventral telencephalon and diencephalon, whereas fgf16 was not required for dorsoventral patterning in the midbrain. fgf16 was additionally required for the specification and differentiation of γ-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes, but not for those of glutamatergic neurons in the forebrain. Cross talk between Fgf and Hedgehog (Hh) signaling was critical for the specification of GABAergic interneurons and oligodendrocytes. The expression of fgf16 in the forebrain was down-regulated by the inhibition of Hh and Fgf19 signaling, but not by that of Fgf3/Fgf8 signaling. The fgf16 morphant phenotype was similar to that of the fgf19 morphant and embryos blocked Hh signaling. The results of the present study indicate that Fgf16 signaling, which is regulated by the downstream pathways of Hh-Fgf19 in the forebrain, is involved in forebrain development.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
- * E-mail:
| | - Tatsuya Chitose
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Eriko Kamei
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Atsuko Murakami
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Yoshiaki Nakayama
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Morichika Konishi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
17
|
Tews D, Schwar V, Scheithauer M, Weber T, Fromme T, Klingenspor M, Barth TF, Möller P, Holzmann K, Debatin KM, Fischer-Posovszky P, Wabitsch M. Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue. Mol Cell Endocrinol 2014; 395:41-50. [PMID: 25102227 DOI: 10.1016/j.mce.2014.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/09/2014] [Accepted: 07/13/2014] [Indexed: 11/20/2022]
Abstract
Brown and white adipocytes have been shown to derive from different progenitors. In this study we sought to clarify the molecular differences between human brown and white adipocyte progenitors cells. To this end, we performed comparative gene array analysis on progenitor cells isolated from paired biopsies of deep and subcutaneous neck adipose tissue from individuals (n = 6) undergoing neck surgery. Compared with subcutaneous neck progenitors, cells from the deep neck adipose tissue displayed marked differences in gene expression pattern, including 355 differentially regulated (>1.5 fold) genes. Analysis of highest regulated genes revealed that STMN2, MME, ODZ2, NRN1 and IL13RA2 genes were specifically expressed in white progenitor cells, whereas expression of LRRC17, CNTNAP3, CD34, RGS7BP and ADH1B marked brown progenitor cells. In conclusion, progenitors from deep neck and subcutaneous neck adipose tissue are characterized by a distinct molecular signature, giving rise to either brown or white adipocytes. The newly identified markers may provide potential pharmacological targets facilitating brown adipogenesis.
Collapse
Affiliation(s)
- D Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - V Schwar
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - M Scheithauer
- Clinic of Otorhinolaryngology, University Medical Center Ulm, Ulm, Germany
| | - T Weber
- Department of Surgery, University Medical Center Ulm, Ulm, Germany
| | - T Fromme
- Else-Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, Munich, Germany
| | - M Klingenspor
- Else-Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, Munich, Germany
| | - T F Barth
- Department of Pathology, University Medical Center Ulm, Ulm, Germany
| | - P Möller
- Department of Pathology, University Medical Center Ulm, Ulm, Germany
| | - K Holzmann
- Core Facility Genomics, Ulm University, Ulm, Germany
| | - K M Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - P Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - M Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
18
|
Rajan S, Gupta A, Beg M, Shankar K, Srivastava A, Varshney S, Kumar D, Gaikwad AN. Adipocyte transdifferentiation and its molecular targets. Differentiation 2014; 87:183-92. [PMID: 25130315 DOI: 10.1016/j.diff.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/02/2014] [Accepted: 07/24/2014] [Indexed: 01/19/2023]
Abstract
According to the World Health Organization obesity is defined as the excessive accumulation of fat, which increases risk of other metabolic disorders such as insulin resistance, dyslipidemia, hypertension, cardiovascular diseases, etc. There are two types of adipose tissue, white and brown adipose tissue (BAT) and the latter has recently gathered interest of the scientific community. Discovery of BAT has opened avenues for a new therapeutic strategy for the treatment of obesity and related metabolic syndrome. BAT utilizes accumulated fatty acids for energy expenditure; hence it is seen as one of the possible alternates to the current treatment. Moreover, browning of white adipocyte on exposure to cold, as well as with some of the pharmacological agents presents exciting outcomes and indicates the feasibility of transdifferentiation. A better understanding of molecular pathways and differentiation factors, those that play a key role in transdifferentiation are of extreme importance in designing novel strategies for the treatment of obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031 UP, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031 UP, India
| | - Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031 UP, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031 UP, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031 UP, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031 UP, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031 UP, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031 UP, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India.
| |
Collapse
|
19
|
Shen Y, Liu X, Dong M, Lin J, Zhao Q, Lee H, Jin W. Recent advances in brown adipose tissue biology. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0386-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Laurell T, Nilsson D, Hofmeister W, Lindstrand A, Ahituv N, Vandermeer J, Amilon A, Annerén G, Arner M, Pettersson M, Jäntti N, Rosberg HE, Cattini PA, Nordenskjöld A, Mäkitie O, Grigelioniene G, Nordgren A. Identification of three novel FGF16 mutations in X-linked recessive fusion of the fourth and fifth metacarpals and possible correlation with heart disease. Mol Genet Genomic Med 2014; 2:402-11. [PMID: 25333065 PMCID: PMC4190875 DOI: 10.1002/mgg3.81] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 03/26/2014] [Accepted: 04/04/2014] [Indexed: 11/24/2022] Open
Abstract
Nonsense mutations in FGF16 have recently been linked to X-linked recessive hand malformations with fusion between the fourth and the fifth metacarpals and hypoplasia of the fifth digit (MF4; MIM#309630). The purpose of this study was to perform careful clinical phenotyping and to define molecular mechanisms behind X-linked recessive MF4 in three unrelated families. We performed whole-exome sequencing, and identified three novel mutations in FGF16. The functional impact of FGF16 loss was further studied using morpholino-based suppression of fgf16 in zebrafish. In addition, clinical investigations revealed reduced penetrance and variable expressivity of the MF4 phenotype. Cardiac disorders, including myocardial infarction and atrial fibrillation followed the X-linked FGF16 mutated trait in one large family. Our findings establish that a mutation in exon 1, 2 or 3 of FGF16 results in X-linked recessive MF4 and expand the phenotypic spectrum of FGF16 mutations to include a possible correlation with heart disease.
Collapse
Affiliation(s)
- Tobias Laurell
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet Stockholm, Sweden ; Department of Hand Surgery, Södersjukhuset Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Department of Clinical Genetics, Karolinska University Hospital Stockholm, Sweden ; Science for Life Laboratory, Karolinska Institutet Science Park Stockholm, Sweden
| | - Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Department of Clinical Genetics, Karolinska University Hospital Stockholm, Sweden
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco San Francisco ; Institute for Human Genetics, University of California San Francisco San Francisco
| | - Julia Vandermeer
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco San Francisco ; Institute for Human Genetics, University of California San Francisco San Francisco
| | - Anders Amilon
- Department of Hand Surgery, Örebro University Hospital Örebro, Sweden
| | - Göran Annerén
- Department of Immunology Genetics and Pathology Science for Life Laboratory, Uppsala University Uppsala, Sweden
| | - Marianne Arner
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet Stockholm, Sweden ; Department of Hand Surgery, Södersjukhuset Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden
| | - Nina Jäntti
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden
| | - Hans-Eric Rosberg
- Department of Clinical Sciences Malmö Section of Hand Surgery, Lund University Malmö, Sweden ; Department of Hand Surgery, Skåne University Hospital Malmö, Sweden
| | | | - Agneta Nordenskjöld
- Department of Women's and Children's Health and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Unit of Paediatric Surgery Astrid Lindgren Children's Hospital, Karolinska University Hospital Stockholm, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Department of Clinical Genetics, Karolinska University Hospital Stockholm, Sweden ; Folkhälsan Institute of Genetics Helsinki, Finland
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Department of Clinical Genetics, Karolinska University Hospital Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet Stockholm, Sweden ; Department of Clinical Genetics, Karolinska University Hospital Stockholm, Sweden
| |
Collapse
|
21
|
Basu M, Mukhopadhyay S, Chatterjee U, Roy SS. FGF16 promotes invasive behavior of SKOV-3 ovarian cancer cells through activation of mitogen-activated protein kinase (MAPK) signaling pathway. J Biol Chem 2014; 289:1415-28. [PMID: 24253043 PMCID: PMC3894325 DOI: 10.1074/jbc.m113.535427] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled cell growth and tissue invasion define the characteristic features of cancer. Several growth factors regulate these processes by inducing specific signaling pathways. We show that FGF16, a novel factor, is expressed in human ovary, and its expression is markedly increased in ovarian tumors. This finding indicated possible involvement of FGF16 in ovarian cancer progression. We observed that FGF16 stimulates the proliferation of human ovarian adenocarcinoma cells, SKOV-3 and OAW-42. Furthermore, through the activation of FGF receptor-mediated intracellular MAPK pathway, FGF16 regulates the expression of MMP2, MMP9, SNAI1, and CDH1 and thus facilitates cellular invasion. Inhibition of FGFR as well as MAPK pathway reduces the proliferative and invasive behavior of ovarian cancer cells. Moreover, ovarian tumors with up-regulated PITX2 expression also showed activation of Wnt/β-catenin pathway that prompted us to investigate possible interaction among FGF16, PITX2, and Wnt pathway. We identified that PITX2 homeodomain transcription factor interacts with and regulates FGF16 expression. Furthermore, activation of the Wnt/β-catenin pathway induces FGF16 expression. Moreover, FGF16 promoter possesses the binding elements of PITX2 as well as T-cell factor (Wnt-responsive), in close proximity, where PITX2 and β-catenin binds to and synergistically activates the same. A detail study showed that both PITX2 and T-cell factor elements and the interaction with their binding partners are necessary for target gene expression. Taken together, our findings indicate that FGF16 in conjunction with Wnt pathway contributes to the cancer phenotype of ovarian cells and suggests that modulation of its expression in ovarian cells might be a promising therapeutic strategy for the treatment of invasive ovarian cancers.
Collapse
Affiliation(s)
- Moitri Basu
- From the Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India and
| | | | - Uttara Chatterjee
- Department of Pathology, Institute of Post Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial Hospital, 244 AJC Bose Road, Kolkata 700020, India
| | - Sib Sankar Roy
- From the Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India and
| |
Collapse
|
22
|
Zhang J, Li Y. Fibroblast growth factor 21, the endocrine FGF pathway and novel treatments for metabolic syndrome. Drug Discov Today 2013; 19:579-89. [PMID: 24189035 DOI: 10.1016/j.drudis.2013.10.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/25/2013] [Accepted: 10/26/2013] [Indexed: 12/14/2022]
Abstract
Diabetes and associated metabolic conditions have reached pandemic proportions worldwide, and there is a clear unmet medical need for effective and safe therapies. Fibroblast growth factor (FGF)21 is an atypical member of the FGF family. The ability of FGF21 to normalize glucose, lipid and energy homeostasis has attracted considerable interest as a potential therapeutic for treating diabetes and obesity. Many different engineering approaches have successfully improved the plasma half life, protein stability and solubility, as well as 'manufacturability' of FGF21. Novel approaches such as agonist antibodies to FGF21 receptor complexes have opened new opportunities previously unavailable. This review summarizes recent advances in understanding the functions, target tissues and receptors for FGF21. Furthermore, it provides an up-to-date appraisal of the approaches on therapeutic development targeting this pathway.
Collapse
Affiliation(s)
- Jun Zhang
- Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Yang Li
- Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| |
Collapse
|
23
|
Schulz TJ, Tseng YH. Systemic control of brown fat thermogenesis: integration of peripheral and central signals. Ann N Y Acad Sci 2013; 1302:35-41. [PMID: 24111913 DOI: 10.1111/nyas.12277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brown adipose tissue (BAT) is of great scientific interest as a potential target to treat obesity. The development of novel strategies to quantify brown fat thermogenesis in adult humans now enables minimally invasive assessment of novel pharmacotherapeutics. Input from the central nervous system via sympathetic efferents is widely regarded as the key controller of BAT-mediated thermogenesis in response to changes in body temperature or nutrient availability. More recently, however, it has become clear that locally secreted signals and endocrine factors originating from multiple organs can control the recruitment of brown adipocytes and, more importantly, induce thermogenesis in brown fat. Thus, they provide an attractive strategy to fine-tune brown fat thermogenesis independent of classical temperature sensing. Here, we summarize recent findings on bone morphogenetic protein signaling as an example of secreted factors in the regulation of brown adipocyte formation and systemic control of energy metabolism. We further highlight endocrine communication routes between the different types of brown adipocytes and other organs that contribute to regulation of thermogenesis. Thus, emerging evidence suggests that the classical mechanisms of central temperature sensing and sympathetic nervous system-driven thermogenesis are complemented by local and endocrine signals to determine systemic energy homeostasis.
Collapse
Affiliation(s)
- Tim J Schulz
- Research Group Adipocyte Development, German Institute of Human Nutrition, Nuthetal, Germany
| | - Yu-Hua Tseng
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
24
|
Abstract
Obesity represents a major risk factor for the development of several of our most common medical conditions, including Type 2 diabetes, dyslipidaemia, non-alcoholic fatty liver, cardiovascular disease and even some cancers. Although increased fat mass is the main feature of obesity, not all fat depots are created equal. Adipocytes found in white adipose tissue contain a single large lipid droplet and play well-known roles in energy storage. By contrast, brown adipose tissue is specialized for thermogenic energy expenditure. Owing to its significant capacity to dissipate energy and regulate triacylglycerol (triglyceride) and glucose metabolism, and its demonstrated presence in adult humans, brown fat could be a potential target for the treatment of obesity and metabolic syndrome. Undoubtedly, fundamental knowledge about the formation of brown fat and regulation of its activity is imperatively needed to make such therapeutics possible. In the present review, we integrate the recent advancements on the regulation of brown fat formation and activity by developmental and hormonal signals in relation to its metabolic function.
Collapse
|
25
|
Abstract
One of the most promising areas in the therapeutics for metabolic diseases centers around activation of the pathways of energy expenditure. Brown adipose tissue is a particularly appealing target for increasing energy expenditure, given its amazing capacity to transform chemical energy into heat. In addition to classical brown adipose tissue, the last few years have seen great advances in our understanding of inducible thermogenic adipose tissue, also referred to as beige fat. A deeper understanding of the molecular processes involved in the development and function of these cell types may lead to new therapeutics for obesity, diabetes, and other metabolic diseases.
Collapse
|
26
|
Wu Z, Satterfield MC, Bazer FW, Wu G. Regulation of brown adipose tissue development and white fat reduction by L-arginine. Curr Opin Clin Nutr Metab Care 2012; 15:529-38. [PMID: 23075933 DOI: 10.1097/mco.0b013e3283595cff] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Brown adipose tissue (BAT), which is present in humans, plays an important role in oxidation of fatty acids and glucose. The purpose of this review is to highlight an important role for L-arginine in regulating BAT growth and development, thereby reducing obesity in mammals. RECENT FINDINGS Dietary supplementation with L-arginine reduces white adipose tissue in genetically or diet-induced obese rats, obese pregnant sheep, and obese humans with type II diabetes. L-arginine treatment enhances BAT growth in both fetuses and postnatal animals. At molecular and cellular levels, L-arginine stimulates expression of peroxisome proliferator-activated receptor-γ coactivator 1 (the master regulator of mitochondrial biogenesis), nitric oxide synthase, heme oxygenase, and adenosine monophosphate-activated protein kinase. At the whole body level, L-arginine increases blood flow to insulin-sensitive tissues, adipose tissue lipolysis, and the catabolism of glucose and fatty acids, but inhibits fatty acid synthesis and ameliorates oxidative stress, thereby improving metabolic profile. SUMMARY L-arginine increases mammalian BAT growth and development via mechanisms involving gene expression, nitric oxide signaling, and protein synthesis. This enhances the oxidation of energy substrates and, thus, reduces white fat accretion in the body. L-arginine holds great promise in preventing and treating obesity in humans.
Collapse
Affiliation(s)
- Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
27
|
Sun YL, Zeng S, Ye K, Yang C, Li MH, Huang BF, Sun LN, Zhou LY, Wang DS. Involvement of FGF9/16/20 subfamily in female germ cell development of the Nile tilapia, Oreochromis niloticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1427-1439. [PMID: 22451340 DOI: 10.1007/s10695-012-9630-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/03/2012] [Indexed: 05/31/2023]
Abstract
Fibroblast growth factors (FGFs) have been proved to participate in a wide variety of processes, including growth, differentiation, cell proliferation, migration, sex determination and sex differentiation. The roles of FGF9/16/20 subfamily members in the gonadal development of teleost fish have not yet been reported. Three FGFs (16, 20a and 20b) of the FGF9/16/20 subfamily were cloned from the Nile tilapia by RT-PCR and RACE. Phylogenetic, bioinformatic and syntenic analyses demonstrated that these cloned FGFs are genuine FGF16, 20a and 20b. Our analyses further supported the non-existence of FGF9 ortholog and the existence of two FGF20 paralogs in teleost genomes. Tissue distribution analysis by RT-PCR demonstrated that FGF16 was expressed in a wide range of tissues including the testis and ovary, FGF20b in the brain, pituitary, intestine and ovary, but not in the testis, while FGF20a in the brain, pituitary and spleen, but not in the gonad. These results were consistent with the Northern blot analysis. The expression profiles of FGF16 and FGF20b during normal and sex reversed gonadal development were investigated by real-time PCR. Both showed much higher expression in the XX ovary and 17 beta-estradiol induced XY ovary compared with the XY testis and fadrozole and tamoxifen induced XX testis, with the highest in both sexes at 120 dah. Strong signals of FGF16 and FGF20b were detected in phase II oocytes by in situ hybridization. These data suggest that FGF9/16/20 subfamily is involved in the early oocyte development of the female.
Collapse
Affiliation(s)
- Yun-Lv Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ribeiro R, Monteiro C, Catalán V, Hu P, Cunha V, Rodríguez A, Gómez-Ambrosi J, Fraga A, Príncipe P, Lobato C, Lobo F, Morais A, Silva V, Sanches-Magalhães J, Oliveira J, Pina F, Lopes C, Medeiros R, Frühbeck G. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue. BMC Med 2012; 10:108. [PMID: 23009291 PMCID: PMC3523039 DOI: 10.1186/1741-7015-10-108] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/25/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Periprostatic (PP) adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW) and prostate cancer patients. METHODS Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean) and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia). Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to investigate gene ontology, canonical pathways and functional networks. RESULTS In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH). Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. CONCLUSIONS Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment for prostate cancer progression.
Collapse
Affiliation(s)
- Ricardo Ribeiro
- Molecular Oncology Group, Portuguese Institute of Oncology, Ed, Laboratórios-Piso 4, Rua Dr, António Bernardino de Almeida 4200-072, Porto, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Townsend K, Tseng YH. Brown adipose tissue: Recent insights into development, metabolic function and therapeutic potential. Adipocyte 2012; 1:13-24. [PMID: 23700507 PMCID: PMC3661118 DOI: 10.4161/adip.18951] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Obesity is currently a global pandemic, and is associated with increased mortality and co-morbidities including many metabolic diseases. Obesity is characterized by an increase in adipose mass due to increased energy intake, decreased energy expenditure, or both. While white adipose tissue is specialized for energy storage, brown adipose tissue has a high concentration of mitochondria and uniquely expresses uncoupling protein 1, enabling it to be specialized for energy expenditure and thermogenesis. Although brown fat was once considered only necessary in babies, recent morphological and imaging studies have provided evidence that, contrary to prior belief, this tissue is present and active in adult humans. In recent years, the topic of brown adipose tissue has been reinvigorated with many new studies regarding brown adipose tissue differentiation, function and therapeutic promise. This review summarizes the recent advances, discusses the emerging questions and offers perspective on the potential therapeutic applications targeting this tissue.
Collapse
Affiliation(s)
- Kristy Townsend
- Joslin Diabetes Center and Harvard Medical School; Boston, MA USA
| | - Yu-Hua Tseng
- Joslin Diabetes Center and Harvard Medical School; Boston, MA USA
- Harvard Stem Cell Institute; Harvard University; Cambridge, MA USA
| |
Collapse
|
31
|
Betz MJ, Enerbäck S. Therapeutic prospects of metabolically active brown adipose tissue in humans. Front Endocrinol (Lausanne) 2011; 2:86. [PMID: 22649390 PMCID: PMC3355987 DOI: 10.3389/fendo.2011.00086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/12/2011] [Indexed: 12/23/2022] Open
Abstract
The world-wide obesity epidemic constitutes a severe threat to human health and wellbeing and poses a major challenge to health-care systems. Current therapeutic approaches, relying mainly on reduced energy intake and/or increased exercise energy expenditure, are generally of limited effectiveness. Previously believed to be present only in children, the existence of metabolically active brown adipose tissue (BAT) was recently demonstrated also in healthy human adults. The physiological role of BAT is to dissipate chemical energy, mainly from fatty acids, as heat to maintain body temperature in cold environments. Recent studies indicate that the activity of BAT is negatively correlated with overweight and obesity, findings that raise the exciting possibility of new and effective weight reduction therapies based on increased BAT energy expenditure, a process likely to be amenable to pharmacological intervention.
Collapse
Affiliation(s)
- Matthias J. Betz
- Department of Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of GöteborgGöteborg, Sweden
- Medizinische Klinik, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Sven Enerbäck
- Department of Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of GöteborgGöteborg, Sweden
- *Correspondence: Sven Enerbäck, Department of Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Göteborg, Medicinaregatan 9A, Box 440, Göteborg 40530, Sweden. e-mail:
| |
Collapse
|
32
|
Abstract
Obesity develops when energy intake exceeds energy expenditure. Although most current obesity therapies are focused on reducing calorific intake, recent data suggest that increasing cellular energy expenditure (bioenergetics) may be an attractive alternative approach. This is especially true for adaptive thermogenesis - the physiological process whereby energy is dissipated in mitochondria of brown fat and skeletal muscle in the form of heat in response to external stimuli. There have been significant recent advances in identifying the factors that control the development and function of these tissues, and in techniques to measure brown fat in human adults. In this article, we integrate these developments in relation to the classical understandings of cellular bioenergetics to explore the potential for developing novel anti-obesity therapies that target cellular energy expenditure.
Collapse
Affiliation(s)
- Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
33
|
Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat development. Cell Metab 2010; 11:257-62. [PMID: 20374957 PMCID: PMC2857670 DOI: 10.1016/j.cmet.2010.03.005] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/14/2010] [Accepted: 03/16/2010] [Indexed: 12/18/2022]
Abstract
Deconvoluting the natural pathway of BAT development has defined key molecular events, which enables researchers to manipulate the amount or activity of brown fat. We review recent advances on the transcriptional regulation of BAT development and discuss the emerging questions.
Collapse
Affiliation(s)
- Shingo Kajimura
- Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Human fat consists of white and brown adipose tissue (WAT and BAT). Though most fat is energy-storing WAT, the thermogenic capacity of even small amounts of BAT makes it an attractive therapeutic target for inducing weight loss through energy expenditure. This review evaluates the recent discoveries regarding the identification of functional BAT in adult humans and its potential as a therapy for obesity and diabetes. RECENT FINDINGS Over the past year, several independent research teams used a combination of positron-emission tomography and computed tomography (PET/CT) imaging, immunohistochemistry, and gene and protein expression assays to prove conclusively that adult humans have functional BAT. This has occurred against a backdrop of basic studies defining the origins of BAT, new components of its transcriptional regulation, and the role of hormones in stimulation of BAT growth and differentiation. SUMMARY Adult humans have functional BAT, a new target for antiobesity and antidiabetes therapies focusing on increasing energy expenditure. Future studies will refine the methodologies used to measure BAT mass and activity, expand our knowledge of critical-control points in BAT regulation, and focus on testing pharmacological agents that increase BAT thermogenesis and help achieve long-lasting weight loss and an improved metabolic profile.
Collapse
Affiliation(s)
- Aaron M Cypess
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, Massachusetts, 02215, USA
| | | |
Collapse
|
35
|
Mattson MP. Perspective: Does brown fat protect against diseases of aging? Ageing Res Rev 2010; 9:69-76. [PMID: 19969105 DOI: 10.1016/j.arr.2009.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 11/30/2009] [Indexed: 01/01/2023]
Abstract
The most commonly studied laboratory rodents possess a specialized form of fat called brown adipose tissue (BAT) that generates heat to help maintain body temperature in cold environments. In humans, BAT is abundant during embryonic and early postnatal development, but is absent or present in relatively small amounts in adults where it is located in paracervical and supraclavicular regions. BAT cells can 'burn' fatty acid energy substrates to generate heat because they possess large numbers of mitochondria in which oxidative phosphorylation is uncoupled from ATP production as a result of a transmembrane proton leak mediated by uncoupling protein 1 (UCP1). Studies of rodents in which BAT levels are either increased or decreased have revealed a role for BAT in protection against diet-induced obesity. Data suggest that individuals with low levels of BAT are prone to obesity, insulin resistance and cardiovascular disease, whereas those with higher levels of BAT maintain lower body weights and exhibit superior health as they age. BAT levels decrease during aging, and dietary energy restriction increases BAT activity and protects multiple organ systems including the nervous system against age-related dysfunction and degeneration. Future studies in which the effects of specific manipulations of BAT levels and thermogenic activity on disease processes in animal models (diabetes, cardiovascular disease, cancers, neurodegenerative diseases) are determined will establish if and how BAT affects the development and progression of age-related diseases. Data from animal studies suggest that BAT and mitochondrial uncoupling can be targeted for interventions to prevent and treat obesity and age-related diseases. Examples include: diet and lifestyle changes; specific regimens of mild intermittent stress; drugs that stimulate BAT formation and activity; induction of brown adipose cell progenitors in muscle and other tissues; and transplantation of brown adipose cells.
Collapse
|
36
|
Transcriptional control of brown adipocyte development and physiological function--of mice and men. Genes Dev 2009; 23:788-97. [PMID: 19339685 DOI: 10.1101/gad.1779209] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The last several years have seen an explosion of information relating to the transcriptional control of brown fat cell development. At the same time, new data have emerged that clearly demonstrate that adult humans do indeed have substantial amounts of functioning brown adipose tissue (BAT). Together, these advances are stimulating a reassessment of the role of brown adipose tissue in human physiology and pathophysiology. These data have also opened up exciting new opportunities for the development of entirely novel classes of therapeutics for metabolic diseases like obesity and type 2 diabetes.
Collapse
|
37
|
Hotta Y, Sasaki S, Konishi M, Kinoshita H, Kuwahara K, Nakao K, Itoh N. Fgf16 is required for cardiomyocyte proliferation in the mouse embryonic heart. Dev Dyn 2008; 237:2947-54. [DOI: 10.1002/dvdy.21726] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
38
|
Lu SY, Sontag DP, Detillieux KA, Cattini PA. FGF-16 is released from neonatal cardiac myocytes and alters growth-related signaling: a possible role in postnatal development. Am J Physiol Cell Physiol 2008; 294:C1242-9. [PMID: 18337564 DOI: 10.1152/ajpcell.00529.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
FGF-16 has been reported to be preferentially expressed in the adult rat heart. We have investigated the expression of FGF-16 in the perinatal and postnatal heart and its functional significance in neonatal rat cardiac myocytes. FGF-16 mRNA accumulation was observed by quantitative RT-PCR between neonatal days 1 and 7, with this increased expression persisting into adulthood. FGF-2 has been shown to increase neonatal rat cardiac myocyte proliferative potential via PKC activation. Gene array analysis revealed that FGF-16 inhibited the upregulation by FGF-2 of cell cycle promoting genes including cyclin F and Ki67. Furthermore, the CDK4/6 inhibitor gene Arf/INK4A was upregulated with the combination of FGF-16 and FGF-2 but not with either factor on its own. The effect on Ki67 was validated by protein immunodetection, which also showed that FGF-16 significantly decreased FGF-2-induced Ki67 labeling of cardiac myocytes, although it alone had no effect on Ki67 labeling. Inhibition of p38 MAPK potentiated cardiac myocyte proliferation induced by FGF-2 but did not alter the inhibitory action of FGF-16. Receptor binding assay showed that FGF-16 can compete with FGF-2 for binding sites including FGF receptor 1. FGF-16 had no effect on activated p38, ERK1/2, or JNK/SAPK after FGF-2 treatment. However, FGF-16 inhibited PKC-alpha and PKC-epsilon activation induced by FGF-2 and, importantly, IGF-1. Collectively, these data suggest that expression and release of FGF-16 in the neonatal myocardium interfere with cardiac myocyte proliferative potential by altering the local signaling environment via modulation of PKC activation and cell cycle-related gene expression.
Collapse
Affiliation(s)
- Shun Yan Lu
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | |
Collapse
|
39
|
Abstract
The development of obesity not only depends on the balance between food intake and caloric utilization but also on the balance between white adipose tissue, which is the primary site of energy storage, and brown adipose tissue, which is specialized for energy expenditure. In addition, some sites of white fat storage in the body are more closely linked than others to the metabolic complications of obesity, such as diabetes. In this Review, we consider how the developmental origins of fat contribute to its physiological, cellular, and molecular heterogeneity and explore how these factors may play a role in the growing epidemic of obesity.
Collapse
Affiliation(s)
- Stephane Gesta
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
40
|
Grothe C, Timmer M. The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. ACTA ACUST UNITED AC 2007; 54:80-91. [PMID: 17229467 DOI: 10.1016/j.brainresrev.2006.12.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/28/2006] [Accepted: 12/11/2006] [Indexed: 12/24/2022]
Abstract
Basic fibroblast growth factor (FGF-2) is a physiological relevant neurotrophic factor in the nigrostriatal system and hence a promising candidate for the establishment of alternative therapeutic strategies in Parkinson's disease. FGF-2 and its high-affinity receptors (FGFR) display an expression in the developing, postnatal, and adult substantia nigra (SN) and in the striatum. Exogenous application promoted survival, neurite outgrowth and protection from neurotoxin-induced death of dopaminergic (DA) neurons both in vitro and in vivo. In animal models of Parkinson's disease, co-transplantation of fetal DA cells with FGF-2 expressing cells increased survival and functional integration of the grafted DA neurons resulting in improved behavioral performance. Analyzing the physiological function of the endogenous FGF-2 system during development and after neurotoxin-induced lesion revealed for the DA neurons of the SNpc a dependence on FGFR3 signaling during development. In addition, in the absence of FGF-2 an increased number of DA neurons was found, whereas enhanced levels of FGF-2 resulted in a reduced DA cell density. Following neurotoxin-induced lesion of DA neurons, FGF-2-deleted mice displayed a higher extent of DA neuron death whereas in FGF-2 overexpressing mice more DA neurons were protected. According to the data, FGF-2 seems to promote DA neuron survival via FGFR3 during development, whereas absence of this ligand could be compensated by other members of the FGF family. In contrast, in the adult organism, FGF-2 cannot be compensated by other factors under lesion conditions suggesting a central role for this molecule in the nigrostriatal system.
Collapse
Affiliation(s)
- Claudia Grothe
- Department of Neuroanatomy, Hannover Medical School, OE 4140, Center for Systems Neuroscience Hannover (ZSN), Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | |
Collapse
|
41
|
Chapman SC, Cai Q, Bleyl SB, Schoenwolf GC. Restricted expression of Fgf16 within the developing chick inner ear. Dev Dyn 2006; 235:2276-81. [PMID: 16786592 PMCID: PMC2396527 DOI: 10.1002/dvdy.20872] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling is required for otic placode induction and patterning of the developing inner ear. We have cloned the chick ortholog of Fgf16 and analyzed its expression pattern in the early chick embryo. Expression is restricted to the otic placode and developing inner ear through all the stages examined. By the closed otocyst stage, expression has resolved to anterior and posterior domains that partially overlap with those of bone morphogenetic protein 4 (Bmp4), a marker of the developing sensory patches, the cristae of the anterior and posterior semicircular canals. Platelet-derived growth factor alpha (PDGFA), another growth factor with restricted otic expression, also overlaps with Fgf16 expression. The restricted expression pattern of Fgf16 suggests a role for FGF signaling in the patterning of the sensory cristae, together with BMP signaling.
Collapse
Affiliation(s)
- Susan C Chapman
- University of Utah, School of Medicine, Department of Neurobiology and Anatomy, and Children's Health Research Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
42
|
Nomura R, Kamei E, Hotta Y, Konishi M, Miyake A, Itoh N. Fgf16 is essential for pectoral fin bud formation in zebrafish. Biochem Biophys Res Commun 2006; 347:340-6. [PMID: 16815307 DOI: 10.1016/j.bbrc.2006.06.108] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 06/16/2006] [Indexed: 11/23/2022]
Abstract
Zebrafish pectoral fin bud formation is an excellent model for studying morphogenesis. Fibroblast growth factors (Fgfs) and sonic hedgehog (shh) are essential for pectoral fin bud formation. We found that Fgf16 was expressed in the apical ectodermal ridge (AER) of fin buds. A knockdown of Fgf16 function resulted in no fin bud outgrowth. Fgf16 is required for cell proliferation and differentiation in the mesenchyme and the AER of the fin buds, respectively. Fgf16 functions downstream of Fgf10, a mesenchymal factor, signaling to induce the expression of Fgf4 and Fgf8 in the AER. Fgf16 in the AER and shh in the zone of polarizing activity (ZPA) interact to induce and/or maintain each other's expression. These findings have revealed that Fgf16, a newly identified AER factor, plays a crucial role in pectoral fin bud outgrowth by mediating the interactions of AER-mesenchyme and AER-ZPA.
Collapse
Affiliation(s)
- Ryohei Nomura
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Yoshida-Shimoadachi, Sakyo, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Konishi M, Asaki T, Koike N, Miwa H, Miyake A, Itoh N. Role of Fgf10 in cell proliferation in white adipose tissue. Mol Cell Endocrinol 2006; 249:71-7. [PMID: 16513252 DOI: 10.1016/j.mce.2006.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/18/2006] [Accepted: 01/24/2006] [Indexed: 11/30/2022]
Abstract
The development of white adipose tissue (WAT) involves adipogenesis and cell proliferation. Although the adipogenesis has been well studied, the cell proliferation has not. Therefore, we examined the mechanism of the proliferation by analyzing Fgf10(-/-) mouse embryonic WAT, in which adipogenesis and proliferation were severely impaired. D-type cyclin expression and retinoblastoma family protein phosphorylation essential for cell proliferation were examined in WAT. Both cyclin D2 expression and p130 phosphorylation were impaired in the Fgf10(-/-) WAT. In mouse embryonic fibroblasts, Fgf10 stimulated cyclin D2 expression and p130 phosphorylation, which were inhibited by an inhibitor of the Ras/MAPK pathway. These results suggest that Fgf10 stimulates cell proliferation in WAT through the Ras/MAPK pathway followed by the cyclin D2-dependent phosphorylation of p130. In contrast, expression but not phosphorylation of pRb was impaired in the Fgf10(-/-) WAT. As pRb is essential for adipogenesis, Fgf10 might play a role in adipogenesis by inducing its expression.
Collapse
Affiliation(s)
- Morichika Konishi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115:1627-35. [PMID: 15902306 PMCID: PMC1088017 DOI: 10.1172/jci23606] [Citation(s) in RCA: 1642] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 03/23/2005] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a major health concern, affecting more than 5% of the population. Here we describe a potential novel therapeutic agent for this disease, FGF-21, which was discovered to be a potent regulator of glucose uptake in mouse 3T3-L1 and primary human adipocytes. FGF-21-transgenic mice were viable and resistant to diet-induced obesity. Therapeutic administration of FGF-21 reduced plasma glucose and triglycerides to near normal levels in both ob/ob and db/db mice. These effects persisted for at least 24 hours following the cessation of FGF-21 administration. Importantly, FGF-21 did not induce mitogenicity, hypoglycemia, or weight gain at any dose tested in diabetic or healthy animals or when overexpressed in transgenic mice. Thus, we conclude that FGF-21, which we have identified as a novel metabolic factor, exhibits the therapeutic characteristics necessary for an effective treatment of diabetes.
Collapse
Affiliation(s)
- Alexei Kharitonenkov
- Lilly Research Laboratories, Division of Eli Lilly and Co., Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The function of brown adipose tissue is to transfer energy from food into heat; physiologically, both the heat produced and the resulting decrease in metabolic efficiency can be of significance. Both the acute activity of the tissue, i.e., the heat production, and the recruitment process in the tissue (that results in a higher thermogenic capacity) are under the control of norepinephrine released from sympathetic nerves. In thermoregulatory thermogenesis, brown adipose tissue is essential for classical nonshivering thermogenesis (this phenomenon does not exist in the absence of functional brown adipose tissue), as well as for the cold acclimation-recruited norepinephrine-induced thermogenesis. Heat production from brown adipose tissue is activated whenever the organism is in need of extra heat, e.g., postnatally, during entry into a febrile state, and during arousal from hibernation, and the rate of thermogenesis is centrally controlled via a pathway initiated in the hypothalamus. Feeding as such also results in activation of brown adipose tissue; a series of diets, apparently all characterized by being low in protein, result in a leptin-dependent recruitment of the tissue; this metaboloregulatory thermogenesis is also under hypothalamic control. When the tissue is active, high amounts of lipids and glucose are combusted in the tissue. The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Collapse
Affiliation(s)
- Barbara Cannon
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
46
|
The subclavian artery and its branches in the ground squirrel, Citellus citellus. ACTA VET-BEOGRAD 2004. [DOI: 10.2298/avb0403227n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
47
|
Wright TJ, Hatch EP, Karabagli H, Karabagli P, Schoenwolf GC, Mansour SL. Expression of mouse fibroblast growth factor and fibroblast growth factor receptor genes during early inner ear development. Dev Dyn 2003; 228:267-72. [PMID: 14517998 DOI: 10.1002/dvdy.10362] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inner ear, which mediates hearing and equilibrium, develops from an ectodermal placode located adjacent to the developing hindbrain. Induction of the placode and its subsequent morphogenesis and differentiation into the inner ear epithelium and its sensory neurons, involves signalling interactions within and between otic and non-otic tissues. Several members of the fibroblast growth factor (FGF) family play important roles at various stages of otic development; however, there are additional family members that have not been evaluated. In this study, we surveyed the expression patterns of 18 mouse Fgf and 3 Fgf receptor (Fgfr) genes during early otic development. Two members of the Fgf family, Fgf4 and Fgf16, and all three tested members of the Fgfr family, Fgfr2c, Fgfr3c, and Fgfr4, were expressed in tissues relevant to inner ear development. Fgf4 transcripts were expressed in the preplacodal and placodal ectoderm, suggesting potential roles in placode induction and/or maintenance. Fgf16 was expressed in the posterior otic cup and vesicle, suggesting roles in otic cell fate decisions and/or axis formation.
Collapse
Affiliation(s)
- Tracy J Wright
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | | | | | | | |
Collapse
|
48
|
Miyakawa K, Imamura T. Secretion of FGF-16 requires an uncleaved bipartite signal sequence. J Biol Chem 2003; 278:35718-24. [PMID: 12851399 DOI: 10.1074/jbc.m300690200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor (FGF)-16 is one of the rare secreted proteins that do not possess a cleavable signal sequence. Here we describe our examination of the mechanism and structural requirements for the secretion of FGF-16 from COS-1 transfectants. Inhibition of its secretion by brefeldin A and identification of an N-glycan on the secreted form confirmed that FGF-16 is secreted by means of the endoplasmic reticulum and Golgi apparatus, as are secreted proteins having a conventional cleavable signal sequence. Deletion of its N terminus abolished secretion of FGF-16. When chimerized with prolactin, however, the N-terminal sequence of FGF-16 was not able to mediate secretion of the chimera. Point mutations that made the N terminus less hydrophobic had little effect on secretion of FGF-16, whereas making the central hydrophobic region less hydrophobic abolished secretion. Within cells, an unsecretable FGF-16 N-terminal deletion mutant was distributed in the perinuclear region and overlapped the distribution of the Golgi apparatus. Mutants with less hydrophobic central regions were distributed evenly throughout the cytosol. Collectively, these results indicate that FGF-16 employs a unique bipartite signal sequence (i.e. both the N-terminal region and central hydrophobic region) that is not cleaved, although it shares the same secretory machinery used by secreted proteins with cleavable signal sequences.
Collapse
Affiliation(s)
- Kazuko Miyakawa
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology and Institute for Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
49
|
Kono K, Ueba T, Takahashi JA, Murai N, Hashimoto N, Myoumoto A, Itoh N, Fukumoto M. In vitro growth suppression of human glioma cells by a 16-mer oligopeptide: a potential new treatment modality for malignant glioma. J Neurooncol 2003; 63:163-71. [PMID: 12825820 DOI: 10.1023/a:1023908307863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fibroblast growth factor-2 (FGF-2) is involved as an autocrine growth factor in the autonomous proliferation of glioma cells. To develop a new strategy for treating patients with glioma, we studied the effect on human glioma cells of a 16-mer oligopeptide with conformational similarity to the putative receptor-binding domain of FGF-2. A synthesized oligonucleotide was assessed its receptor-binding activity by BIAcore instrument. Its biological effect on glioma cell lines was examined in vitro by MTT assay. The peptide suppressed the in vitro growth of human glioma cells U87MG, T98G and U251MG cells, but not of A431 cells whose growth is not dependent on FGF-2. Apoptotic bodies were noted after 24-h incubation in the presence of the peptide; Ac-YVAD-CHO, a caspase-3 inhibitor, suppressed apoptosis. Furthermore, we examined the modulation of the cytotoxic effect of anticancer drugs by the oligopeptide. The addition of this oligopeptide to the chemotherapeutic agents CDDP, ACNU and VP16 had additive effects in vitro. These results suggest that the pathway of the FGF-2 autocrine loop through the FGF receptor plays an important role in the proliferation of glioma cells. New drugs targeting this loop may be highly effective in treating FGF-2-dependent tumors. Our results suggest that its addition to the therapeutic arsenal may lead to improved treatment regimens for patients with FGF-2-dependent tumors.
Collapse
Affiliation(s)
- Katsuhiko Kono
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Sakyoku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ohmachi S, Mikami T, Konishi M, Miyake A, Itoh N. Preferential neurotrophic activity of fibroblast growth factor-20 for dopaminergic neurons through fibroblast growth factor receptor-1c. J Neurosci Res 2003; 72:436-43. [PMID: 12704805 DOI: 10.1002/jnr.10592] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Degeneration of dopaminergic neurons of the substantia nigra causes Parkinson's disease. Therefore, neurotrophic factors for dopaminergic neurons are of substantial clinical interest. Fibroblast growth factor (FGF)-20 preferentially expressed in the substantia nigra pars compacta (SNPC) of the rat brain significantly enhanced the survival of midbrain dopaminergic neurons. Here we examined the mechanism of action of FGF-20 on dopaminergic neurons. FGF-20 slightly enhanced the survival of total neurons of the midbrain, indicating that it preferentially enhanced the survival of dopaminergic neurons. FGF receptor (FGFR)-1c was found to be expressed abundantly in dopaminergic neurons in the SNPC but at much lower levels in neurons of other midbrain regions by in situ hybridization. FGF-20 was also found to bind FGFR-1c with high affinity with the BIAcore system. Furthermore, FGF-20 activated the mitogen-activated protein kinase (MAPK) pathway, which is the major intracellular signaling pathway of FGFs. Both the FGFR-1 inhibitor SU5402 and the MAPK pathway inhibitor PD98059 also significantly inhibited the activation of the MAPK pathway by FGF-20 and the neurotrophic activity of FGF-20. The present findings indicate that the activation of the MAPK pathway by FGF-20 signaling through FGFR-1c plays important roles in the survival of dopaminergic neurons in the SNPC.
Collapse
Affiliation(s)
- Shigeki Ohmachi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | | | | | | | | |
Collapse
|