1
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Selenoproteins: Zoom-In to Their Metal-Binding Properties in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:1305. [PMID: 39941073 PMCID: PMC11818150 DOI: 10.3390/ijms26031305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Selenoproteins contain selenium (Se), which is included in the 21st proteinogenic amino acid selenocysteine (Sec). Selenium (Se) is an essential trace element that exerts its biological actions mainly through selenoproteins. Selenoproteins have crucial roles in maintaining healthy brain activity. At the same time, brain-function-associated selenoproteins may also be involved in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The selenoproteins GPx4 (glutathione peroxidase 4), GPx1 (glutathione peroxidase 1), SELENOP (selenoprotein P), SELENOK (selenoprotein K), SELENOS (selenoprotein S), SELENOW (selenoprotein W), and SELENOT (selenoprotein T) are highly expressed, specifically in AD-related brain regions being closely correlated to brain function. Only a few selenoproteins, mentioned above (especially SELENOP), can bind transition and heavy metals. Metal ion homeostasis accomplishes the vital physiological function of the brain. Dyshomeostasis of these metals induces and entertains neurodegenerative diseases. In this review, we described some of the proposed and established mechanisms underlying the actions and properties of the above-mentioned selenoproteins having the characteristic feature of binding transition or heavy metals.
Collapse
Affiliation(s)
| | | | - Carmen Beatrice Dogaru
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (C.M.); (I.S.)
| | | |
Collapse
|
2
|
Bodart-Santos V, Ruan Z, Melvin BC, Pandey I, Ikezu S, Ikezu T. Selenoprotein P is a target for regulating extracellular vesicle biogenesis and secretion from activated microglia in vivo. Cell Rep 2024; 43:115025. [PMID: 39616613 PMCID: PMC11834494 DOI: 10.1016/j.celrep.2024.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2024] [Revised: 09/22/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
Microglia, brain innate immune cells, participate in the spread of inflammatory signals and aggregated proteins through secretion of extracellular vesicles (EVs). Selenoprotein P (Sepp1) is a potential regulator of microglial EV secretion. Here, we investigate the effect of Sepp1 silencing on microglial transcriptomics to elucidate the Sepp1 regulatory mechanism of EV secretion and validate this effect in APPNL-G-F knockin mice. Silencing of Sepp1 significantly reduces EV secretion and CD63 loading to EVs from BV-2 microglia, as determined by single-vesicle flow cytometry and super-resolution microscopy. Sepp1 deficiency downregulates EV biogenesis machinery, accompanied by increased lysosomal activity and lipid metabolism. Silencing of Sepp1 in astrocytes but not neurons suppresses EV secretion in vitro. Finally, Sepp1 silencing reduces EV secretion from activated neurodegenerative microglia associated with amyloid plaques in APPNL-G-F mouse brains in vivo. Sepp1 is thus an emerging therapeutic target for ameliorating microglia-mediated disease spread through EV secretion in neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Zhi Ruan
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Bridgette C Melvin
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Ikshu Pandey
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Seiko Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; Regenerative Science Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA; Robert and Alene Kogod Center on Aging, Mayo Clinic, Jacksonville, FL 32224, USA; Alzheimer's Disease Research Center, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
3
|
Dogaru CB, Muscurel C, Duță C, Stoian I. "Alphabet" Selenoproteins: Their Characteristics and Physiological Roles. Int J Mol Sci 2023; 24:15992. [PMID: 37958974 PMCID: PMC10650576 DOI: 10.3390/ijms242115992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Selenium (Se) is a metalloid that is recognized as one of the vital trace elements in our body and plays multiple biological roles, largely mediated by proteins containing selenium-selenoproteins. Selenoproteins mainly have oxidoreductase functions but are also involved in many different molecular signaling pathways, physiological roles, and complex pathogenic processes (including, for example, teratogenesis, neurodegenerative, immuno-inflammatory, and obesity development). All of the selenoproteins contain one selenocysteine (Sec) residue, with only one notable exception, the selenoprotein P (SELENOP), which has 10 Sec residues. Although these mechanisms have been studied intensely and in detail, the characteristics and functions of many selenoproteins remain unknown. This review is dedicated to the recent data describing the identity and the functions of several selenoproteins that are less known than glutathione peroxidases (Gpxs), iodothyronine deiodinases (DIO), thioredoxin reductases (TRxRs), and methionine sulfoxide reductases (Msrs) and which are named after alphabetical letters (i.e., F, H, I, K, M, N, O, P, R, S, T, V, W). These "alphabet" selenoproteins are involved in a wide range of physiological and pathogenetic processes such as antioxidant defense, anti-inflammation, anti-apoptosis, regulation of immune response, regulation of oxidative stress, endoplasmic reticulum (ER) stress, immune and inflammatory response, and toxin antagonism. In selenium deficiency, the "alphabet" selenoproteins are affected hierarchically, both with respect to the particular selenoprotein and the tissue of expression, as the brain or endocrine glands are hardly affected by Se deficiency due to their equipment with LRP2 or LRP8.
Collapse
Affiliation(s)
| | | | - Carmen Duță
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
4
|
Dogaru CB, Duță C, Muscurel C, Stoian I. "Alphabet" Selenoproteins: Implications in Pathology. Int J Mol Sci 2023; 24:15344. [PMID: 37895024 PMCID: PMC10607139 DOI: 10.3390/ijms242015344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Selenoproteins are a group of proteins containing selenium in the form of selenocysteine (Sec, U) as the 21st amino acid coded in the genetic code. Their synthesis depends on dietary selenium uptake and a common set of cofactors. Selenoproteins accomplish diverse roles in the body and cell processes by acting, for example, as antioxidants, modulators of the immune function, and detoxification agents for heavy metals, other xenobiotics, and key compounds in thyroid hormone metabolism. Although the functions of all this protein family are still unknown, several disorders in their structure, activity, or expression have been described by researchers. They concluded that selenium or cofactors deficiency, on the one hand, or the polymorphism in selenoproteins genes and synthesis, on the other hand, are involved in a large variety of pathological conditions, including type 2 diabetes, cardiovascular, muscular, oncological, hepatic, endocrine, immuno-inflammatory, and neurodegenerative diseases. This review focuses on the specific roles of selenoproteins named after letters of the alphabet in medicine, which are less known than the rest, regarding their implications in the pathological processes of several prevalent diseases and disease prevention.
Collapse
Affiliation(s)
| | | | - Corina Muscurel
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
5
|
Mizuno A, Toyama T, Ichikawa A, Sakai N, Yoshioka Y, Nishito Y, Toga R, Amesaka H, Kaneko T, Arisawa K, Tsutsumi R, Mita Y, Tanaka SI, Noguchi N, Saito Y. An efficient selenium transport pathway of selenoprotein P utilizing a high-affinity ApoER2 receptor variant and being independent of selenocysteine lyase. J Biol Chem 2023; 299:105009. [PMID: 37406814 PMCID: PMC10407282 DOI: 10.1016/j.jbc.2023.105009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Selenoprotein P (SeP, encoded by the SELENOP gene) is a plasma protein that contains selenium in the form of selenocysteine residues (Sec, a cysteine analog containing selenium instead of sulfur). SeP functions for the transport of selenium to specific tissues in a receptor-dependent manner. Apolipoprotein E receptor 2 (ApoER2) has been identified as a SeP receptor. However, diverse variants of ApoER2 have been reported, and the details of its tissue specificity and the molecular mechanism of its efficiency remain unclear. In the present study, we found that human T lymphoma Jurkat cells have a high ability to utilize selenium via SeP, while this ability was low in human rhabdomyosarcoma cells. We identified an ApoER2 variant with a high affinity for SeP in Jurkat cells. This variant had a dissociation constant value of 0.67 nM and a highly glycosylated O-linked sugar domain. Moreover, the acidification of intracellular vesicles was necessary for selenium transport via SeP in both cell types. In rhabdomyosarcoma cells, SeP underwent proteolytic degradation in lysosomes and transported selenium in a Sec lyase-dependent manner. However, in Jurkat cells, SeP transported selenium in Sec lyase-independent manner. These findings indicate a preferential selenium transport pathway involving SeP and high-affinity ApoER2 in a Sec lyase-independent manner. Herein, we provide a novel dynamic transport pathway for selenium via SeP.
Collapse
Affiliation(s)
- Ayako Mizuno
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Atsuya Ichikawa
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Naoko Sakai
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Yuya Yoshioka
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Yukina Nishito
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Renya Toga
- Laboratory of Biostructural Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Hiroshi Amesaka
- Laboratory of Biostructural Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Takayuki Kaneko
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kotoko Arisawa
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryouhei Tsutsumi
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuichiro Mita
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Shun-Ichi Tanaka
- Laboratory of Biostructural Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Noriko Noguchi
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
| |
Collapse
|
6
|
Pilat JM, Brown RE, Chen Z, Berle NJ, Othon AP, Washington MK, Anant SA, Kurokawa S, Ng VH, Thompson JJ, Jacobse J, Goettel JA, Lee E, Choksi YA, Lau KS, Short SP, Williams CS. SELENOP modifies sporadic colorectal carcinogenesis and WNT signaling activity through LRP5/6 interactions. J Clin Invest 2023; 133:e165988. [PMID: 37166989 PMCID: PMC10313376 DOI: 10.1172/jci165988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2022] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Although selenium deficiency correlates with colorectal cancer (CRC) risk, the roles of the selenium-rich antioxidant selenoprotein P (SELENOP) in CRC remain unclear. In this study, we defined SELENOP's contributions to sporadic CRC. In human single-cell cRNA-Seq (scRNA-Seq) data sets, we discovered that SELENOP expression rose as normal colon stem cells transformed into adenomas that progressed into carcinomas. We next examined the effects of Selenop KO in a mouse adenoma model that involved conditional, intestinal epithelium-specific deletion of the tumor suppressor adenomatous polyposis coli (Apc) and found that Selenop KO decreased colon tumor incidence and size. We mechanistically interrogated SELENOP-driven phenotypes in tumor organoids as well as in CRC and noncancer cell lines. Selenop-KO tumor organoids demonstrated defects in organoid formation and decreases in WNT target gene expression, which could be reversed by SELENOP restoration. Moreover, SELENOP increased canonical WNT signaling activity in noncancer and CRC cell lines. In defining the mechanism of action of SELENOP, we mapped protein-protein interactions between SELENOP and the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6). Last, we confirmed that SELENOP-LRP5/6 interactions contributed to the effects of SELENOP on WNT activity. Overall, our results position SELENOP as a modulator of the WNT signaling pathway in sporadic CRC.
Collapse
Affiliation(s)
| | - Rachel E. Brown
- Program in Cancer Biology
- Medical Scientist Training Program, and
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
| | - Nathaniel J. Berle
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | | | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Suguru Kurokawa
- Department of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | | | | | - Justin Jacobse
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Jeremy A. Goettel
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| | - Ethan Lee
- Program in Cancer Biology
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yash A. Choksi
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| | - Ken S. Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Department of Surgery, VUMC, Nashville, Tennessee, USA
| | - Sarah P. Short
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christopher S. Williams
- Program in Cancer Biology
- Medical Scientist Training Program, and
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Prabhu KS. The selenoprotein P-LRP5/6-WNT3A complex promotes tumorigenesis in sporadic colorectal cancer. J Clin Invest 2023; 133:e171885. [PMID: 37395277 DOI: 10.1172/jci171885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/04/2023] Open
Abstract
Some studies suggest that the trace element selenium protects against colorectal cancer (CRC). However, the contribution of selenoprotein P (SELENOP), a unique selenocysteine-containing protein, to sporadic colorectal carcinogenesis challenges this paradigm. SELENOP is predominately secreted by the liver but is also expressed in various cells of the small intestine and colon in mice and humans. In this issue of the JCI, Pilat et al. demonstrate that increased SELENOP expression promoted the progression of conventional adenomas to carcinoma. SELENOP functioned as a modulator of canonical WNT signaling activity through interactions with WNT3A and its coreceptor LDL receptor-related protein 5/6 (LRP5/6). Secreted SELENOP formed a concentration gradient along the gut crypt axis, which might amplify WNT signaling activity by binding to LRPL5/6. The mechanism for WNT control via SELENOP may affect colorectal tumorigenesis and provide therapeutic targets for CRC.
Collapse
|
8
|
Forceville X, Van Antwerpen P, Annane D, Vincent JL. Selenocompounds and Sepsis-Redox Bypass Hypothesis: Part B-Selenocompounds in the Management of Early Sepsis. Antioxid Redox Signal 2022; 37:998-1029. [PMID: 35287478 DOI: 10.1089/ars.2020.8062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Significance: Endothelial barrier damage, which is in part caused by excess production of reactive oxygen, halogen and nitrogen species (ROHNS), especially peroxynitrite (ONOO-), is a major event in early sepsis and, with leukocyte hyperactivation, part of the generalized dysregulated immune response to infection, which may even become a complex maladaptive state. Selenoenzymes have major antioxidant functions. Their synthesis is related to the need to limit deleterious oxidant redox cycling by small selenocompounds, which may be of therapeutic cytotoxic interest. Plasma selenoprotein-P is crucial for selenium transport from the liver to the tissues and for antioxidant endothelial protection, especially against ONOO-. Above micromolar concentrations, sodium selenite (Na2SeO3) becomes cytotoxic, with a lower cytotoxicity threshold in activated cells, which has led to cancer research. Recent Advances: Plasma selenium (<2% of total body selenium) is mainly contained in selenoprotein-P, and concentrations decrease rapidly in the early phase of sepsis, because of increased selenoprotein-P binding and downregulation of hepatic synthesis and excretion. At low concentrations, Na2SeO3 acts as a selenium donor, favoring selenoprotein-P synthesis in physiology, but probably not in the acute phase of sepsis. Critical Issues: The cytotoxic effects of Na2SeO3 against hyperactivated leukocytes, especially the most immature forms that liberate ROHNS, may be beneficial, but they may also be harmful for activated endothelial cells. Endothelial protection against ROHNS by selenoprotein-P may reduce Na2SeO3 toxicity, which is increased in sepsis. Future Direction: The combination of selenoprotein-P for endothelial protection and the cytotoxic effects of Na2SeO3 against hyperactivated leukocytes may be a promising intervention for early sepsis. Antioxid. Redox Signal. 37, 998-1029.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-surgical Intensive Care Unit, Great Hospital of East Francilien - Meaux site, Meaux, France.,Clinical Investigation Centre (CIC Inserm1414) CHU de Rennes - Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Univesité libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Djillali Annane
- Service de Réanimation Médicale, Hôpital Raymond Poincaré (APHP), Garches, France.,U1173 Lab. of Inflammation & Infection, (Fédération Hospitalo-Universitaire) FHU SEPSIS, Université Paris Saclay-campus (Université de Versailles Saint-Quentin-en-Yvelines) UVSQ, Versailles, France
| | - Jean Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
9
|
Schomburg L. Selenoprotein P - Selenium transport protein, enzyme and biomarker of selenium status. Free Radic Biol Med 2022; 191:150-163. [PMID: 36067902 DOI: 10.1016/j.freeradbiomed.2022.08.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
The habitual intake of selenium (Se) varies strongly around the world, and many people are at risk of inadequate supply and health risks from Se deficiency. Within the human organism, efficient transport mechanisms ensure that organs with a high demand and relevance for reproduction and survival are preferentially supplied. To this end, selenoprotein P (SELENOP) is synthesized in the liver and mediates Se transport to essential tissues such as the endocrine glands and the brain, where the "SELENOP cycle" maintains a privileged Se status. Mouse models indicate that SELENOP is not essential for life, as supplemental Se supply was capable of preventing the development of severe symptoms. However, knockout mice died under limiting supply, arguing for an essential role of SELENOP in Se deficiency. Many clinical studies support this notion, pointing to close links between health risks and low SELENOP levels. Accordingly, circulating SELENOP concentrations serve as a functional biomarker of Se supply, at least until a saturated status is achieved and SELENOP levels reach a plateau. Upon toxic intake, a further increase in SELENOP is observed, i.e., SELENOP provides information about possible selenosis. The SELENOP transcripts predict an insertion of ten selenocysteine residues. However, the decoding is imperfect, and not all these positions are ultimately occupied by selenocysteine. In addition to the selenocysteine residues near the C-terminus, one selenocysteine resides central within an enzyme-like environment. SELENOP proved capable of catalyzing peroxide degradation in vitro and protecting e.g. LDL particles from oxidation. An enzymatic activity in the intact organism is unclear, but an increasing number of clinical studies provides evidence for a direct involvement of SELENOP-dependent Se transport as an important and modifiable risk factor of disease. This interaction is particularly strong for cardiovascular and critical disease including COVID-19, cancer at various sites and autoimmune thyroiditis. This review briefly highlights the links between the growing knowledge of Se in health and disease over the last 50 years and the specific advances that have been made in our understanding of the physiological and clinical contribution of SELENOP to the current picture.
Collapse
Affiliation(s)
- Lutz Schomburg
- Charité-Universitätsmedizin Berlin, Institute for Experimental Endocrinology, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Hessische Straße 3-4, 10115 Berlin, Germany.
| |
Collapse
|
10
|
Tremblay CY, Kirsch ZJ, Vachet RW. Epitope Mapping with Diethylpyrocarbonate Covalent Labeling-Mass Spectrometry. Anal Chem 2022; 94:1052-1059. [PMID: 34932327 PMCID: PMC8785103 DOI: 10.1021/acs.analchem.1c04038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
Abstract
Antigen-antibody epitope mapping is essential for understanding binding mechanisms and developing new protein therapeutics. In this study, we investigate diethylpyrocarbonate (DEPC) covalent labeling-mass spectrometry as a means of analyzing antigen-antibody interactions using the well-characterized model system of TNFα in complex with three different antibodies. Results show that residues buried in the epitope undergo substantial decreases in labeling, as expected. Interestingly, serine, threonine, and tyrosine residues at the edges of the epitope undergo unexpected increases in labeling. The increased labeling of these weakly nucleophilic residues is caused by the formation of hydrophobic pockets upon antibody binding that presumably increase local DEPC concentrations. Residues that are distant from the epitope generally do not undergo changes in labeling extent; however, some that do change experience variations in their local microenvironment due to side-chain reorganization or stabilization of the TNFα trimer that occurs upon binding. Overall, DEPC labeling of antigen-antibody complexes is found to depend on both changes in solvent exposure and changes to the residue microenvironment.
Collapse
|
11
|
Forceville X, Van Antwerpen P, Preiser JC. Selenocompounds and Sepsis: Redox Bypass Hypothesis for Early Diagnosis and Treatment: Part A-Early Acute Phase of Sepsis: An Extraordinary Redox Situation (Leukocyte/Endothelium Interaction Leading to Endothelial Damage). Antioxid Redox Signal 2021; 35:113-138. [PMID: 33567962 DOI: 10.1089/ars.2020.8063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a health disaster. In sepsis, an initial, beneficial local immune response against infection evolves rapidly into a generalized, dysregulated response or a state of chaos, leading to multiple organ failure. Use of life-sustaining supportive therapies creates an unnatural condition, enabling the complex cascades of the sepsis response to develop in patients who would otherwise die. Multiple attempts to control sepsis at an early stage have been unsuccessful. Recent Advances: Major events in early sepsis include activation and binding of leukocytes and endothelial cells in the microcirculation, damage of the endothelial surface layer (ESL), and a decrease in the plasma concentration of the antioxidant enzyme, selenoprotein-P. These events induce an increase in intracellular redox potential and lymphocyte apoptosis, whereas apoptosis is delayed in monocytes and neutrophils. They also induce endothelial mitochondrial and cell damage. Critical Issues: Neutrophil production increases dramatically, and aggressive immature forms are released. Leukocyte cross talk with other leukocytes and with damaged endothelial cells amplifies the inflammatory response. The release of large quantities of reactive oxygen, halogen, and nitrogen species as a result of the leukocyte respiratory burst, endothelial mitochondrial damage, and ischemia/reperfusion processes, along with the marked decrease in selenoprotein-P concentrations, leads to peroxynitrite damage of the ESL, reducing flow and damaging the endothelial barrier. Future Directions: Endothelial barrier damage by activated leukocytes is a time-sensitive event in sepsis, occurring within hours and representing the first step toward organ failure and death. Reducing or stopping this event is necessary before irreversible damage occurs.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-Surgical Intensive Care Unit, Great Hospital of East Francilien-Meaux Site, Hôpital Saint Faron, Meaux, France.,Clinical Investigation Center (CIC Inserm 1414), CHU de Rennes, Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | | |
Collapse
|
12
|
Lamarche J, Ronga L, Szpunar J, Lobinski R. Characterization and Quantification of Selenoprotein P: Challenges to Mass Spectrometry. Int J Mol Sci 2021; 22:ijms22126283. [PMID: 34208081 PMCID: PMC8230778 DOI: 10.3390/ijms22126283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.
Collapse
Affiliation(s)
- Jérémy Lamarche
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- Correspondence:
| | - Luisa Ronga
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Joanna Szpunar
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Ryszard Lobinski
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Chair of Analytical Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
13
|
Solovyev N, Drobyshev E, Blume B, Michalke B. Selenium at the Neural Barriers: A Review. Front Neurosci 2021; 15:630016. [PMID: 33613188 PMCID: PMC7892976 DOI: 10.3389/fnins.2021.630016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined.
Collapse
Affiliation(s)
| | - Evgenii Drobyshev
- Institut für Ernährungswissenschaft, Universität Potsdam, Potsdam, Germany
| | - Bastian Blume
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
14
|
Jin Y, Chung YW, Jung MK, Lee JH, Ko KY, Jang JK, Ham M, Kang H, Pack CG, Mihara H, Kim IY. Apolipoprotein E-mediated regulation of selenoprotein P transportation via exosomes. Cell Mol Life Sci 2020; 77:2367-2386. [PMID: 31471680 PMCID: PMC11104972 DOI: 10.1007/s00018-019-03287-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
Selenoprotein P (SELENOP), secreted from the liver, functions as a selenium (Se) supplier to other tissues. In the brain, Se homeostasis is critical for physiological function. Previous studies have reported that SELENOP co-localizes with the apolipoprotein E receptor 2 (ApoER2) along the blood-brain barrier (BBB). However, the mechanism underlying SELENOP transportation from hepatocytes to neuronal cells remains unclear. Here, we found that SELENOP was secreted from hepatocytes as an exosomal component protected from plasma kallikrein-mediated cleavage. SELENOP was interacted with apolipoprotein E (ApoE) through heparin-binding sites of SELENOP, and the interaction regulated the secretion of exosomal SELENOP. Using in vitro BBB model of transwell cell culture, exosomal SELENOP was found to supply Se to brain endothelial cells and neuronal cells, which synthesized selenoproteins by a process regulated by ApoE and ApoER2. The regulatory role of ApoE in SELENOP transport was also observed in vivo using ApoE-/- mice. Exosomal SELENOP transport protected neuronal cells from amyloid β (Aβ)-induced cell death. Taken together, our results suggest a new delivery mechanism for Se to neuronal cells by exosomal SELENOP.
Collapse
Affiliation(s)
- Yunjung Jin
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Youn Wook Chung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Kyo Jung
- Asan Institute for Life Sciences, Asan Medical Center & Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, 41068, South Korea
| | - Jea Hwang Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts General Hospital, and Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA
| | - Kwan Young Ko
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jun Ki Jang
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Minju Ham
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunwoo Kang
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Chan Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center & Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Ick Young Kim
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Saito Y. Selenoprotein P as a significant regulator of pancreatic β cell function. J Biochem 2020; 167:119-124. [PMID: 31373634 DOI: 10.1093/jb/mvz061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2019] [Accepted: 08/01/2019] [Indexed: 02/05/2023] Open
Abstract
Selenoprotein P (SeP; encoded by SELENOP) is selenium (Se)-rich plasma protein that is mainly produced in the liver. SeP functions as a Se-transport protein to deliver Se from the liver to other tissues, such as the brain and testis. The protein plays a pivotal role in Se metabolism and antioxidative defense, and it has been identified as a 'hepatokine' that causes insulin resistance in type 2 diabetes. SeP levels are increased in type 2 diabetes patients, and excess SeP impairs insulin signalling, promoting insulin resistance. Furthermore, increased levels of SeP disturb the functioning of pancreatic β cells and inhibit insulin secretion. This review focuses on the biological function of SeP and the molecular mechanisms associated with the adverse effects of excess SeP on pancreatic β cells' function, particularly with respect to redox reactions. Interactions between the liver and pancreas are also discussed.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, C301, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
16
|
Saito Y. Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess. J Clin Biochem Nutr 2019; 66:1-7. [PMID: 32001950 PMCID: PMC6983434 DOI: 10.3164/jcbn.19-31] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023] Open
Abstract
Selenoprotein P (encoded by SELENOP) contains the essential trace element selenium in the form of selenocysteine, which is an analog of cysteine that contains selenium instead of sulfur. Selenoprotein P is a major selenium-containing protein in human plasma and is mainly synthesized in the liver. It functions as a selenium-transporter to maintain antioxidative selenoenzymes in several tissues, such as the brain and testis, and plays a pivotal role in selenium-metabolism and antioxidative defense. A decrease of selenoprotein P and selenoproteins causes various dysfunctions related to oxidative stress. On the other hand, recent studies indicate that excess selenoprotein P exacerbates glucose metabolism and promotes type 2 diabetes. This review focuses on the biological functions of selenoprotein P, particularly its role in selenium-metabolism and antioxidative defense. Furthermore, the effects of excess selenoprotein P on glucose metabolism, and resulting diseases are described. The development of a therapeutic agent that targets excess selenoprotein P is discussed.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
17
|
Schomburg L, Orho-Melander M, Struck J, Bergmann A, Melander O. Selenoprotein-P Deficiency Predicts Cardiovascular Disease and Death. Nutrients 2019; 11:nu11081852. [PMID: 31404994 PMCID: PMC6723215 DOI: 10.3390/nu11081852] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023] Open
Abstract
Selenoprotein-P (SELENOP) is the main carrier of selenium to target organs and reduces tissue oxidative stress both directly and by delivering selenium to protective selenoproteins. We tested if the plasma concentration of SELENOP predicts cardiovascular morbidity and mortality in the primary preventive setting. SELENOP was measured from the baseline exam in 2002–2006 of the Malmö Preventive Project, a population-based prospective cohort study, using a validated ELISA. Quintiles of SELENOP concentration were related to the risk of all-cause mortality, cardiovascular mortality, and a first cardiovascular event in 4366 subjects during a median (interquartile range) follow-up time of 9.3 (8.3–11) years using Cox proportional Hazards Model adjusting for cardiovascular risk factors. Compared to subjects in the lowest quintile of SELENOP, the risk of all three endpoints was significantly lower in quintiles 2–5. The risk (multivariate adjusted hazard ratio, 95% CI) decreased gradually with the lowest risk in quintile 4 for all-cause mortality (0.57, 0.48–0.69) (p < 0.001), cardiovascular mortality (0.52, 0.37–0.72) (p < 0.001), and first cardiovascular event (0.56, 0.44–0.71) (p < 0.001). The lower risk of a first cardiovascular event in quintiles 2–5 as compared to quintile 1 was significant for both coronary artery disease and stroke. We conclude that the 20% with lowest SELENOP concentrations in a North European population without history of cardiovascular disease have markedly increased risk of cardiovascular morbidity and mortality, and preventive selenium supplementation studies stratified for these subjects are warranted.
Collapse
Affiliation(s)
- Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-13353 Berlin, Germany
| | - Marju Orho-Melander
- Department of Clinical Sciences, Malmö, Lund University, SE 214 28 Malmö, Sweden
| | - Joachim Struck
- Sphingotec GmbH, Neuendorfstrasse 15A, D-16761 Hennigsdorf, Germany
| | - Andreas Bergmann
- Sphingotec GmbH, Neuendorfstrasse 15A, D-16761 Hennigsdorf, Germany
| | - Olle Melander
- Department of Clinical Sciences, Malmö, Lund University, SE 214 28 Malmö, Sweden.
- Department of Internal Medicine, Clinical Research Center, Skåne University Hospital, Jan Waldenströms gata 35, Bldg. 91, SE 214 28 Malmö, Sweden.
| |
Collapse
|
18
|
Pohl MAN, Wang T, Pohl T, Sweetman J, Martin SAM, Secombes CJ. Four selenoprotein P genes exist in salmonids: Analysis of their origin and expression following Se supplementation and bacterial infection. PLoS One 2018; 13:e0209381. [PMID: 30571741 PMCID: PMC6301783 DOI: 10.1371/journal.pone.0209381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023] Open
Abstract
The following research was conducted to elucidate the evolution and expression of salmonid selenoprotein P (SelP), a selenoprotein that is unique in having multiple selenocysteine (Sec) residues, following supranutritional selenium supplementation and infection in rainbow trout. We show that in salmonids SelP is present as four paralogues and that the diversification of SelP genes during vertebrate evolution relates to whole genome duplication events. With 17 and 16 selenocysteine residues for rainbow trout (Oncorhynchus mykiss)/Atlantic salmon (Salmo salar) SelPa1 and SelPa2 proteins respectively and 1 or 2 (trout or salmon) and 4 or 3 (trout or salmon) selenocysteine residues for salmonid SelPb1 and SelPb2 proteins respectively, this is the highest number of (predicted) multiple selenocysteine containing SelP proteins reported for any vertebrate species to date. To investigate the effects of selenium form on SelP expression we added different concentrations (1 nM– 10 μM) of organic or inorganic selenium to a trout cell line (RTG-2 cells) and analysed changes in mRNA abundance. We next studied the impact of supplementation on the potential modulation of these transcripts by PAMPs and proinflammatory cytokines in RTG-2 and RTS-11 cells. These experiments revealed that selenium type influenced the responses, and that SelP gene subfunctionalisation was apparent. To get an insight into the expression patterns in vivo we conducted a feeding trial with 2 diets differing in selenium content and 5 weeks later challenged the trout with a bacterial pathogen (Aeromonas salmonicida). Four tissues were analysed for SelP paralogue expression. The results show a significant induction of SelPa1 in gills and intestine following infection in selenium supplemented fish and for SelPa2 in gills. SelPb1 was significantly reduced in head kidney of both diet groups following infection, whilst SelPb2 was significantly upregulated in skin of both diet groups post infection. Overall these findings reveal differential expression profiles for the SelPa/SelPb paralogues in trout, influenced by selenium supply, cell type/tissue and stimulant. The increase of multiple Sec containing SelP proteins in salmonids could indicate an enhanced requirement for selenium in this lineage.
Collapse
Affiliation(s)
- Moritz A. N. Pohl
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: (M.A.N.P.); (C.J.S.)
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Thitiya Pohl
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - John Sweetman
- Alltech, Springcroft, Mosshill, Brora, United Kingdom
| | - Samuel A. M. Martin
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: (M.A.N.P.); (C.J.S.)
| |
Collapse
|
19
|
Del’Guidice T, Lepetit-Stoffaes JP, Bordeleau LJ, Roberge J, Théberge V, Lauvaux C, Barbeau X, Trottier J, Dave V, Roy DC, Gaillet B, Garnier A, Guay D. Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR-Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells. PLoS One 2018; 13:e0195558. [PMID: 29617431 PMCID: PMC5884575 DOI: 10.1371/journal.pone.0195558] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2017] [Accepted: 03/23/2018] [Indexed: 12/15/2022] Open
Abstract
Delivery of recombinant proteins to therapeutic cells is limited by a lack of efficient methods. This hinders the use of transcription factors or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) ribonucleoproteins to develop cell therapies. Here, we report a soluble peptide designed for the direct delivery of proteins to mammalian cells including human stem cells, hard-to-modify primary natural killer (NK) cells, and cancer cell models. This peptide is composed of a 6x histidine-rich domain fused to the endosomolytic peptide CM18 and the cell penetrating peptide PTD4. A less than two-minute co-incubation of 6His-CM18-PTD4 peptide with spCas9 and/or asCpf1 CRISPR ribonucleoproteins achieves robust gene editing. The same procedure, co-incubating with the transcription factor HoxB4, achieves transcriptional regulation. The broad applicability and flexibility of this DNA- and chemical-free method across different cell types, particularly hard-to-transfect cells, opens the way for a direct use of proteins for biomedical research and cell therapy manufacturing.
Collapse
Affiliation(s)
| | - Jean-Pascal Lepetit-Stoffaes
- Feldan Therapeutics, Québec, Québec, Canada
- Université Laval, Département de Génie Chimique, Québec, Québec, Canada
| | | | | | | | | | - Xavier Barbeau
- Feldan Therapeutics, Québec, Québec, Canada
- Université Laval, Département de Génie Chimique, Québec, Québec, Canada
| | - Jessica Trottier
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Vibhuti Dave
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Denis-Claude Roy
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Bruno Gaillet
- Université Laval, Département de Génie Chimique, Québec, Québec, Canada
| | - Alain Garnier
- Université Laval, Département de Génie Chimique, Québec, Québec, Canada
| | - David Guay
- Feldan Therapeutics, Québec, Québec, Canada
| |
Collapse
|
20
|
Mita Y, Nakayama K, Inari S, Nishito Y, Yoshioka Y, Sakai N, Sotani K, Nagamura T, Kuzuhara Y, Inagaki K, Iwasaki M, Misu H, Ikegawa M, Takamura T, Noguchi N, Saito Y. Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat Commun 2017; 8:1658. [PMID: 29162828 PMCID: PMC5698464 DOI: 10.1038/s41467-017-01863-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2016] [Accepted: 10/20/2017] [Indexed: 02/05/2023] Open
Abstract
Selenoprotein P (SeP) functions as a selenium (Se)-supply protein. SeP is identified as a hepatokine, promoting insulin resistance in type 2 diabetes. Thus, the suppression of Se-supply activity of SeP might improve glucose metabolism. Here, we develop an anti-human SeP monoclonal antibody AE2 as with neutralizing activity against SeP. Administration of AE2 to mice significantly improves glucose intolerance and insulin resistance that are induced by human SeP administration. Furthermore, excess SeP administration significantly decreases pancreas insulin levels and high glucose-induced insulin secretion, which are improved by AE2 administration. Epitope mapping reveals that AE2 recognizes a region of human SeP adjacent to the first histidine-rich region (FHR). A polyclonal antibody against the mouse SeP FHR improves glucose intolerance and insulin secretion in a mouse model of diabetes. This report describes a novel molecular strategy for the development of type 2 diabetes therapeutics targeting SeP.
Collapse
Affiliation(s)
- Yuichiro Mita
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences,, Doshisha University, Kyoto, 610-0394, Japan
- Organization for Advanced Research and Education, Doshisha University, Kyoto, 610-0394, Japan
| | - Kaho Nakayama
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences,, Doshisha University, Kyoto, 610-0394, Japan
| | - Shogo Inari
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences,, Doshisha University, Kyoto, 610-0394, Japan
| | - Yukina Nishito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences,, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuya Yoshioka
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences,, Doshisha University, Kyoto, 610-0394, Japan
| | - Naoko Sakai
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences,, Doshisha University, Kyoto, 610-0394, Japan
| | - Kanade Sotani
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences,, Doshisha University, Kyoto, 610-0394, Japan
| | - Takahiro Nagamura
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences,, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuki Kuzuhara
- Genomics, Proteomics and Biomedical Functions, Department of Life and Medical Systems, Faculty of Life and Medical Sciences,, Doshisha University,, Kyoto, 610-0394, Japan
| | - Kumi Inagaki
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences,, Doshisha University, Kyoto, 610-0394, Japan
| | - Miki Iwasaki
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences,, Doshisha University, Kyoto, 610-0394, Japan
| | - Hirofumi Misu
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masaya Ikegawa
- Genomics, Proteomics and Biomedical Functions, Department of Life and Medical Systems, Faculty of Life and Medical Sciences,, Doshisha University,, Kyoto, 610-0394, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-1192, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences,, Doshisha University, Kyoto, 610-0394, Japan
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences,, Doshisha University, Kyoto, 610-0394, Japan.
| |
Collapse
|
21
|
Zhao Y, Banerjee S, Huang P, Wang X, Gladson CL, Heston WD, Foster CB. Selenoprotein P neutralizes lipopolysaccharide and participates in hepatic cell endoplasmic reticulum stress response. FEBS Lett 2016; 590:4519-4530. [PMID: 27859223 DOI: 10.1002/1873-3468.12494] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 11/08/2022]
Abstract
Low serum selenium or selenoprotein P (SePP) levels have been repetitively observed in severe sepsis. The role of SePP in sepsis is incompletely characterized. To test the hypothesis that lipopolysaccharide (LPS) interacts with SePP, we investigated the interaction between LPS and the histidine-rich (His-rich) regions of SePP. We demonstrate that both purified SePP and synthetic peptides corresponding to the His-rich motifs neutralized LPS. In addition, we used a hepatocyte model to study the fate of SePP in response to LPS or endoplasmic reticulum (ER) stress. Our findings indicate that ER stress increases the cellular level of SePP and promotes its nuclear localization.
Collapse
Affiliation(s)
- Yongzhong Zhao
- Department of Cancer Biology, Cleveland Clinic, OH, USA.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ping Huang
- Department of Cancer Biology, Cleveland Clinic, OH, USA
| | - Xinning Wang
- Department of Cancer Biology, Cleveland Clinic, OH, USA
| | | | | | - Charles B Foster
- Department of Cancer Biology, Cleveland Clinic, OH, USA.,Center for Pediatric Infectious Diseases, Cleveland Clinic, OH, USA
| |
Collapse
|
22
|
Abstract
Adequate intake of the essential trace element and micronutrient selenium is thought to be beneficial for maintaining human health. Selenium may modulate a broad spectrum of key biological processes, including the cellular response to oxidative stress, redox signalling, cellular differentiation, the immune response, and protein folding. Biochemical and cellular effects of selenium are achieved through activities of selenocysteine-containing selenoproteins. This small yet essential group comprises proteins encoded by 25 genes in humans, e.g. oxidoreductases such as glutathione peroxidases (GPx) and thioredoxin reductases (TrxR), as well as the iodothyronine deiodinases (DIO) and the plasma selenium transport protein, selenoprotein P (SePP1). Synthetic selenoorganic compounds, including the GPx mimetic ebselen, have also been applied in biological systems in vitro and in vivo; antioxidant and anti-inflammatory actions of ebselen and its history as a drug candidate are summarised here. Furthermore, we discuss several aspects of selenoprotein biochemistry, ranging from their well-known importance for cellular protection against oxidative damage to more recent data that link selenoprotein expression/activity to enterocyte and adipocyte differentiation and function and to (dys)regulation of insulin action and secretion.
Collapse
|
23
|
Deochand DK, Meariman JK, Grove A. pH-Dependent DNA Distortion and Repression of Gene Expression by Pectobacterium atrosepticum PecS. ACS Chem Biol 2016; 11:2049-56. [PMID: 27213700 DOI: 10.1021/acschembio.6b00168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
Transcriptional activity is exquisitely sensitive to changes in promoter DNA topology. Transcription factors may therefore control gene activity by modulating the relative positioning of -10 and -35 promoter elements. The plant pathogen Pectobacterium atrosepticum, which causes soft rot in potatoes, must alter gene expression patterns to ensure growth in planta. In the related soft-rot enterobacterium Dickeya dadantii, PecS functions as a master regulator of virulence gene expression. Here, we report that P. atrosepticum PecS controls gene activity by altering promoter DNA topology in response to pH. While PecS binds the pecS promoter with high affinity regardless of pH, it induces significant DNA distortion only at neutral pH, the pH at which the pecS promoter is repressed in vivo. At pH ∼8, DNA distortions are attenuated, and PecS no longer represses the pecS promoter. A specific histidine (H142) located in a crevice between the dimerization- and DNA-binding regions is required for pH-dependent changes in DNA distortion and repression of gene activity, and mutation of this histidine renders the mutant protein incapable of repressing the pecS promoter. We propose that protonated PecS induces a DNA conformation at neutral pH in which -10 and -35 promoter elements are suboptimally positioned for RNA polymerase binding; on deprotonation of PecS, binding is no longer associated with significant changes in DNA conformation, allowing gene expression. We suggest that this mode of gene regulation leads to differential expression of the PecS regulon in response to alkalinization of the plant apoplast.
Collapse
Affiliation(s)
- Dinesh K. Deochand
- Department
of Biological
Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jacob K. Meariman
- Department
of Biological
Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Anne Grove
- Department
of Biological
Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
24
|
Nguyen K, Rabenstein DL. Interaction of the Heparin-Binding Consensus Sequence of β-Amyloid Peptides with Heparin and Heparin-Derived Oligosaccharides. J Phys Chem B 2016; 120:2187-97. [PMID: 26872053 DOI: 10.1021/acs.jpcb.5b12235] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid plaques in the AD brain. Comprised primarily of the 40- and 42-residue β-amyloid (Aβ) peptides, there is evidence that the heparan sulfate (HS) of heparan sulfate proteoglycans (HSPGs) plays a role in amyloid plaque formation and stability; however, details of the interaction of Aβ peptides with HS are not known. We have characterized the interaction of heparin and heparin-derived oligosaccharides with a model peptide for the heparin- and HS-binding domain of Aβ peptides (Ac-VHHQKLV-NH2; Aβ(12-18)), with mutants of Aβ(12-18), and with additional histidine-containing peptides. The nature of the binding interaction was characterized by NMR, binding constants and other thermodynamic parameters were determined by isothermal titration calorimetry (ITC), and relative binding affinities were determined by heparin affinity chromatography. The binding of Aβ(12-18) by heparin and heparin-derived oligosaccharides is pH-dependent, with the imidazolium groups of the histidine side chains interacting site-specifically within a cleft created by a trisaccharide sequence of heparin, the binding is mediated by electrostatic interactions, and there is a significant entropic contribution to the binding free energy as a result of displacement of Na(+) ions from heparin upon binding of cationic Aβ(12-18). The binding constant decreases as the size of the heparin-derived oligosaccharide decreases and as the concentration of Na(+) ion in the bulk solution increases. Structure-binding relationships characterized in this study are analyzed and discussed in terms of the counterion condensation theory of the binding of cationic peptides by anionic polyelectrolytes.
Collapse
Affiliation(s)
- Khanh Nguyen
- Department of Chemistry University of California, Riverside , Riverside, California 92521, United States
| | - Dallas L Rabenstein
- Department of Chemistry University of California, Riverside , Riverside, California 92521, United States
| |
Collapse
|
25
|
Penglase S, Hamre K, Ellingsen S. The selenium content of SEPP1 versus selenium requirements in vertebrates. PeerJ 2015; 3:e1244. [PMID: 26734501 PMCID: PMC4699779 DOI: 10.7717/peerj.1244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2015] [Accepted: 08/25/2015] [Indexed: 11/30/2022] Open
Abstract
Selenoprotein P (SEPP1) distributes selenium (Se) throughout the body via the circulatory system. For vertebrates, the Se content of SEPP1 varies from 7 to 18 Se atoms depending on the species, but the reason for this variation remains unclear. Herein we provide evidence that vertebrate SEPP1 Sec content correlates positively with Se requirements. As the Se content of full length SEPP1 is genetically determined, this presents a unique case where a nutrient requirement can be predicted based on genomic sequence information.
Collapse
Affiliation(s)
- Sam Penglase
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway; Department of Biology, University of Bergen, Bergen, Norway; Current affiliation: Aquaculture Research Solutions (ARS), Mundingburra, Australia
| | - Kristin Hamre
- National Institute of Nutrition and Seafood Research (NIFES) , Bergen , Norway
| | - Ståle Ellingsen
- National Institute of Nutrition and Seafood Research (NIFES) , Bergen , Norway
| |
Collapse
|
26
|
Du X, Zheng Y, Wang Z, Chen Y, Zhou R, Song G, Ni J, Liu Q. Inhibitory Act of Selenoprotein P on Cu+/Cu2+-Induced Tau Aggregation and Neurotoxicity. Inorg Chem 2014; 53:11221-30. [DOI: 10.1021/ic501788v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiubo Du
- Department
of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology
and Ecology and ‡College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Youbiao Zheng
- Department
of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology
and Ecology and ‡College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhi Wang
- Department
of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology
and Ecology and ‡College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yijing Chen
- Department
of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology
and Ecology and ‡College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rui Zhou
- Department
of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology
and Ecology and ‡College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guoli Song
- Department
of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology
and Ecology and ‡College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiazuan Ni
- Department
of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology
and Ecology and ‡College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qiong Liu
- Department
of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology
and Ecology and ‡College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic
Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
27
|
Kurokawa S, Eriksson S, Rose KL, Wu S, Motley AK, Hill S, Winfrey VP, McDonald WH, Capecchi MR, Atkins JF, Arnér ESJ, Hill KE, Burk RF. Sepp1(UF) forms are N-terminal selenoprotein P truncations that have peroxidase activity when coupled with thioredoxin reductase-1. Free Radic Biol Med 2014; 69:67-76. [PMID: 24434121 PMCID: PMC3960317 DOI: 10.1016/j.freeradbiomed.2014.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/17/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 01/18/2023]
Abstract
Mouse selenoprotein P (Sepp1) consists of an N-terminal domain (residues 1-239) that contains one selenocysteine (U) as residue 40 in a proposed redox-active motif (-UYLC-) and a C-terminal domain (residues 240-361) that contains nine selenocysteines. Sepp1 transports selenium from the liver to other tissues by receptor-mediated endocytosis. It also reduces oxidative stress in vivo by an unknown mechanism. A previously uncharacterized plasma form of Sepp1 is filtered in the glomerulus and taken up by renal proximal convoluted tubule (PCT) cells via megalin-mediated endocytosis. We purified Sepp1 forms from the urine of megalin(-/-) mice using a monoclonal antibody to the N-terminal domain. Mass spectrometry revealed that the purified urinary Sepp1 consisted of N-terminal fragments terminating at 11 sites between residues 183 and 208. They were therefore designated Sepp1(UF). Because the N-terminal domain of Sepp1 has a thioredoxin fold, Sepp1(UF) were compared with full-length Sepp1, Sepp1(Δ240-361), and Sepp1(U40S) as a substrate of thioredoxin reductase-1 (TrxR1). All forms of Sepp1 except Sepp1(U40S), which contains serine in place of the selenocysteine, were TrxR1 substrates, catalyzing NADPH oxidation when coupled with H2O2 or tert-butylhydroperoxide as the terminal electron acceptor. These results are compatible with proteolytic cleavage freeing Sepp1(UF) from full-length Sepp1, the form that has the role of selenium transport, allowing Sepp1(UF) to function by itself as a peroxidase. Ultimately, plasma Sepp1(UF) and small selenium-containing proteins are filtered by the glomerulus and taken up by PCT cells via megalin-mediated endocytosis, preventing loss of selenium in the urine and providing selenium for the synthesis of glutathione peroxidase-3.
Collapse
Affiliation(s)
- Suguru Kurokawa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sofi Eriksson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Kristie L Rose
- Vanderbilt Proteomics Laboratory in the Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sen Wu
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Amy K Motley
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Salisha Hill
- Vanderbilt Proteomics Laboratory in the Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Virginia P Winfrey
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Vanderbilt Proteomics Laboratory in the Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - John F Atkins
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University College Cork, Cork, Ireland
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Kristina E Hill
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Raymond F Burk
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
28
|
Kurokawa S, Bellinger FP, Hill KE, Burk RF, Berry MJ. Isoform-specific binding of selenoprotein P to the β-propeller domain of apolipoprotein E receptor 2 mediates selenium supply. J Biol Chem 2014; 289:9195-207. [PMID: 24532792 DOI: 10.1074/jbc.m114.549014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023] Open
Abstract
Sepp1 supplies selenium to tissues via receptor-mediated endocytosis. Mice, rats, and humans have 10 selenocysteines in Sepp1, which are incorporated via recoding of the stop codon, UGA. Four isoforms of rat Sepp1 have been identified, including full-length Sepp1 and three others, which terminate at the second, third, and seventh UGA codons. Previous studies have shown that the longer Sepp1 isoforms bind to the low density lipoprotein receptor apoER2, but the mechanism remains unclear. To identify the essential residues for apoER2 binding, an in vitro Sepp1 binding assay was developed using different Sec to Cys substituted variants of Sepp1 produced in HEK293T cells. ApoER2 was found to bind the two longest isoforms. These results suggest that Sepp1 isoforms with six or more selenocysteines are taken up by apoER2. Furthermore, the C-terminal domain of Sepp1 alone can bind to apoER2. These results indicate that apoER2 binds to the Sepp1 C-terminal domain and does not require the heparin-binding site, which is located in the N-terminal domain. Site-directed mutagenesis identified three residues of Sepp1 that are necessary for apoER2 binding. Sequential deletion of extracellular domains of apoER2 surprisingly identified the YWTD β-propeller domain as the Sepp1 binding site. Finally, we show that apoER2 missing the ligand-binding repeat region, which can result from cleavage at a furin cleavage site present in some apoER2 isoforms, can act as a receptor for Sepp1. Thus, longer isoforms of Sepp1 with high selenium content interact with a binding site distinct from the ligand-binding domain of apoER2 for selenium delivery.
Collapse
Affiliation(s)
- Suguru Kurokawa
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813 and
| | | | | | | | | |
Collapse
|
29
|
Steinbrenner H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med 2013; 65:1538-1547. [PMID: 23872396 DOI: 10.1016/j.freeradbiomed.2013.07.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/10/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 01/26/2023]
Abstract
An assumed link between supranutritional intake of the micronutrient selenium (Se) and type 2 diabetes mellitus is discussed controversially. Se concentrations in the habitual diet and in dietary supplements are probably not sufficient to induce overt diabetes in healthy individuals. On the other hand, high plasma Se and selenoprotein P (Sepp1) levels have been found to be associated with biomarkers of an impaired carbohydrate and lipid homeostasis in humans. Moreover, abundant expression of antioxidant selenoproteins due to dietary Se oversupply resulted in hyperinsulinemia and decreased insulin sensitivity in animal models. This review discusses findings from animal and cell culture studies in search of molecular mechanisms underlying an interference of Se and selenproteins such as the Se transport and supply protein Sepp1 and the hydrogen peroxide-reducing selenoenzyme glutathione peroxidase 1 (GPx1) with insulin-controlled metabolic pathways. A probable rationale derives from the positive and negative regulation of both glucose-induced insulin secretion and insulin-induced signaling by hydrogen peroxide. Se status and GPx1 expression have been reported to affect the activity of insulin-antagonistic phosphatases that are regulated by hydrogen peroxide-mediated reversible oxidation of catalytic cysteine residues. GPx1 and/or Sepp1 inhibited phosphorylation (activation) of key mediators in energy metabolism such as protein kinase B (Akt) and AMP-activated protein kinase (AMPK) in liver and/or skeletal muscle. Conversely, a dys-regulated carbohydrate metabolism in diabetes might affect plasma Se and Sepp1 levels, as the hepatic biosynthesis of Sepp1 is suppressed by insulin and stimulated under hyperglycemic conditions.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-Universität, Düsseldorf, Germany.
| |
Collapse
|
30
|
Speckmann B, Bidmon HJ, Borchardt A, Sies H, Steinbrenner H. Intestinal selenoprotein P in epithelial cells and in plasma cells. Arch Biochem Biophys 2013; 541:30-6. [PMID: 24157689 DOI: 10.1016/j.abb.2013.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2013] [Revised: 10/09/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
The micronutrient selenium and selenium-containing selenoproteins are involved in prevention of inflammation and carcinogenesis in the gut. Selenoprotein P (Sepp1), the plasma selenium transport protein, is secreted primarily from hepatocytes, but Sepp1 mRNA is also abundant in the intestine. By immunofluorescence analysis, we show that Sepp1 levels in epithelial cells of the rat jejunum increase along the crypt-to-villus axis. A different Sepp1 distribution pattern was observed in the rat colon, where the epithelial cells located at the base and at the top of the crypts were similarly positive for Sepp1. In addition, we found pronounced Sepp1 immunoreactivity in CD138-positive plasma cells scattered within the lamina propria of the colon. This hitherto unrecognized presence in terminally differentiated B-cells was corroborated by detection of Sepp1 in plasma cells residing in the rat spleen. Following supplementation with dietary selenium compounds, polarized intestinal epithelial Caco-2 cells secreted Sepp1 into the culture medium across the basolateral membrane. Our data suggest that Sepp1 secreted from epithelial cells may support the intestinal immune system by providing immune cells (including plasma cells) with selenium for the biosynthesis of endogenous selenoproteins.
Collapse
Affiliation(s)
- Bodo Speckmann
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hans-Jürgen Bidmon
- C & O Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Andrea Borchardt
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, 40225 Düsseldorf, Germany; Leibniz-Institut für Umweltmedizinische Forschung (IUF), Heinrich-Heine-University, 40225 Düsseldorf, Germany; College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| |
Collapse
|
31
|
Steinbrenner H, Sies H. Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys 2013; 536:152-7. [PMID: 23500141 DOI: 10.1016/j.abb.2013.02.021] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2013] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
The essential trace element selenium, as selenocysteine, is incorporated into antioxidant selenoproteins such as glutathione peroxidases (GPx), thioredoxin reductases (TrxR) and selenoprotein P (Sepp1). Although comparatively low in selenium content, the brain exhibits high priority for selenium supply and retention under conditions of dietary selenium deficiency. Liver-derived Sepp1 is the major transport protein in plasma to supply the brain with selenium, serving as a "survival factor" for neurons in culture. Sepp1 expression has also been detected within the brain. Presumably, astrocytes secrete Sepp1, which is subsequently taken up by neurons via the apolipoprotein E receptor 2 (ApoER2). Knock-out of Sepp1 or ApoER2 as well as neuron-specific ablation of selenoprotein biosynthesis results in neurological dysfunction in mice. Astrocytes, generally less vulnerable to oxidative stress than neurons, are capable of up-regulating the expression of antioxidant selenoproteins upon brain injury. Occurrence of neurological disorders has been reported occasionally in patients with inadequate nutritional selenium supply or a mutation in the gene encoding selenocysteine synthase, one of the enzymes involved in selenoprotein biosynthesis. In three large trials carried out among elderly persons, a low selenium status was associated with faster decline in cognitive functions and poor performance in tests assessing coordination and motor speed. Future research is required to better understand the role of selenium and selenoproteins in brain diseases including hepatic encephalopathy.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
32
|
Mitra J, Bhattacharyya D. Irreversible inactivation of snake venom l-amino acid oxidase by covalent modification during catalysis of l-propargylglycine. FEBS Open Bio 2013; 3:135-43. [PMID: 23772385 PMCID: PMC3668516 DOI: 10.1016/j.fob.2013.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 11/18/2022] Open
Abstract
Snake venom l-amino acid oxidase (SV-LAAO, a flavor-enzyme) has attracted considerable attention due to its multifunctional nature, which is manifest in diverse clinical and biological effects such as inhibition of platelet aggregation, induction of cell apoptosis and cytotoxicity against various cells. The majority of these effects are mediated by H2O2 generated during the catalytic conversion of l-amino acids. The substrate analog l-propargylglycine (LPG) irreversibly inhibited the enzyme from Crotalus adamanteus and Crotalus atrox in a dose- and time-dependent manner. Inactivation was irreversible which was significantly protected by the substrate l-phenylalanine. A Kitz-Wilson replot of the inhibition kinetics suggested formation of reversible enzyme-LPG complex, which occurred prior to modification and inactivation of the enzyme. UV-visible and fluorescence spectra of the enzyme and the cofactor strongly suggested formation of covalent adduct between LPG and an active site residue of the enzyme. A molecular modeling study revealed that the FAD-binding, substrate-binding and the helical domains are conserved in SV-LAAOs and both His223 and Arg322 are the important active site residues that are likely to get modified by LPG. Chymotrypsin digest of the LPG inactivated enzyme followed by RP-HPLC and MALDI mass analysis identified His223 as the site of modification. The findings reported here contribute towards complete inactivation of SV-LAAO as a part of snake envenomation management.
Collapse
Key Words
- CHD, 1,2-cyclohexanedione
- Crotalus adamanteus venom
- Crotalus atrox venom
- DEPC, diethylpyrocarbonate
- FAD, flavin adenine dinucleotide
- Gdn-HCl, guanidine hydrochloride
- Irreversible inactivation
- LAAO, l-amino acid oxidase (EC. 1.4.3.2)
- LPG, l-propargylglycine
- MALDI-TOF, matrix-assisted laser desorption ionization-time of flight
- Mechanism-based inhibitor
- TNBS, trinitrobenzene sulfonic acid.
- l-Amino acid oxidase
- l-Phe, l-phenylalaine
- l-Propargylglycine
Collapse
|
33
|
Krol MB, Gromadzinska J, Wasowicz W. SeP, ApoER2 and megalin as necessary factors to maintain Se homeostasis in mammals. J Trace Elem Med Biol 2012; 26:262-6. [PMID: 22683052 DOI: 10.1016/j.jtemb.2012.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/25/2011] [Accepted: 03/19/2012] [Indexed: 11/23/2022]
Abstract
Selenoprotein P (SeP) is an extracellular protein containing ten selenium atoms in the form of selenocysteine, secreted mainly from the liver. About 60% of the whole plasma selenium level is present in SeP, which makes it a useful biomarker of selenium nutritional status. The main functions of SeP are transport and storage of selenium in plasma. It is especially an important protein for the brain, testes and kidneys where the supplementation of the proper amount of Se ensures the synthesis of selenoenzymes with antioxidant properties.Recently, it has been found that SeP uptake in kidneys, testes and brain depends on the apolipoprotein receptor 2 (ApoER2) and lipoprotein megalin receptor (Lrp2). Megalin receptor represents a physiological SeP receptor in kidneys, mediating the re-uptake of secreted SeP from the primary urine. The absence of a functional megalin receptor causes a significant reduction of plasma selenium and the SeP levels as a result of Se excretion. ApoER2 is a SeP receptor in the brain and testes which uptakes Se from the extracellular fluid. Deletion of ApoER2 in mice leads to a lowered selenium level in the brain and testes, neurological dysfunction, production of abnormal spermatozoa, infertility and even death when the subjects are fed a low-selenium diet.
Collapse
Affiliation(s)
- Magdalena Beata Krol
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | | | | |
Collapse
|
34
|
Kurokawa S, Hill KE, McDonald WH, Burk RF. Long isoform mouse selenoprotein P (Sepp1) supplies rat myoblast L8 cells with selenium via endocytosis mediated by heparin binding properties and apolipoprotein E receptor-2 (ApoER2). J Biol Chem 2012; 287:28717-26. [PMID: 22761431 DOI: 10.1074/jbc.m112.383521] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
In vivo studies have shown that selenium is supplied to testis and brain by apoER2-mediated endocytosis of Sepp1. Although cultured cell lines have been shown to utilize selenium from Sepp1 added to the medium, the mechanism of uptake and utilization has not been characterized. Rat L8 myoblast cells were studied. They took up mouse Sepp1 from the medium and used its selenium to increase their glutathione peroxidase (Gpx) activity. L8 cells did not utilize selenium from Gpx3, the other plasma selenoprotein. Neither did they utilize it from Sepp1(Δ240-361), the isoform of Sepp1 that lacks the selenium-rich C-terminal domain. To identify Sepp1 receptors, a solubilized membrane fraction was passed over a Sepp1 column. The receptors apoER2 and Lrp1 were identified in the eluate by mass spectrometry. siRNA experiments showed that knockdown of apoER2, but not of Lrp1, inhibited (75)Se uptake from (75)Se-labeled Sepp1. The addition of protamine to the medium or treatment of the cells with chlorate also inhibited (75)Se uptake. Blockage of lysosome acidification did not inhibit uptake of Sepp1 but did prevent its digestion and thereby utilization of its selenium. These results indicate that L8 cells take up Sepp1 by an apoER2-mediated mechanism requiring binding to heparin sulfate proteoglycans. The presence of at least part of the selenium-rich C-terminal domain of Sepp1 is required for uptake. RT-PCR showed that mouse tissues express apoER2 in varying amounts. It is postulated that apoER2-mediated uptake of long isoform Sepp1 is responsible for selenium distribution to tissues throughout the body.
Collapse
Affiliation(s)
- Suguru Kurokawa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
35
|
A pH-sensitive heparin-binding sequence from Baculovirus gp64 protein is important for binding to mammalian cells but not to Sf9 insect cells. J Virol 2011; 86:484-91. [PMID: 22072779 DOI: 10.1128/jvi.06357-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.
Collapse
|
36
|
Christophersen OA, Haug A. Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology. Lipids Health Dis 2011; 10:16. [PMID: 21247506 PMCID: PMC3031257 DOI: 10.1186/1476-511x-10-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2010] [Accepted: 01/20/2011] [Indexed: 12/17/2022] Open
Abstract
Eicosanoids are major players in the pathogenesis of several common diseases, with either overproduction or imbalance (e.g. between thromboxanes and prostacyclins) often leading to worsening of disease symptoms. Both the total rate of eicosanoid production and the balance between eicosanoids with opposite effects are strongly dependent on dietary factors, such as the daily intakes of various eicosanoid precursor fatty acids, and also on the intakes of several antioxidant nutrients including selenium and sulphur amino acids. Even though the underlying biochemical mechanisms have been thoroughly studied for more than 30 years, neither the agricultural sector nor medical practitioners have shown much interest in making practical use of the abundant high-quality research data now available. In this article, we discuss some specific examples of the interactions between diet and drugs in the pathogenesis and therapy of various common diseases. We also discuss, using common pain conditions and cancer as specific examples, how a better integration between agricultural science, nutrition and pharmacology could lead to improved treatment for important diseases (with improved overall therapeutic effect at the same time as negative side effects and therapy costs can be strongly reduced). It is shown how an unnaturally high omega-6/omega-3 fatty acid concentration ratio in meat, offal and eggs (because the omega-6/omega-3 ratio of the animal diet is unnaturally high) directly leads to exacerbation of pain conditions, cardiovascular disease and probably most cancers. It should be technologically easy and fairly inexpensive to produce poultry and pork meat with much more long-chain omega-3 fatty acids and less arachidonic acid than now, at the same time as they could also have a similar selenium concentration as is common in marine fish. The health economic benefits of such products for society as a whole must be expected vastly to outweigh the direct costs for the farming sector.
Collapse
|
37
|
Konkle ME, Elsenheimer KN, Hakala K, Robicheaux JC, Weintraub ST, Hunsicker-Wang LM. Chemical modification of the Rieske protein from Thermus thermophilus using diethyl pyrocarbonate modifies ligating histidine 154 and reduces the [2FE-2S] cluster. Biochemistry 2010; 49:7272-81. [PMID: 20684561 DOI: 10.1021/bi1007904] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023]
Abstract
Rieske proteins are a class of electron transport proteins that are intricately involved in respiratory and photosynthetic processes. One unique property of Rieske proteins is that the reduction potential is pH-dependent. The ionizable groups responding to changes in pH have recently been shown to be the two histidine residues that ligate the [2Fe-2S] cluster. To probe the chemical reactivity toward and the accessibility of the ligating histidines to small molecules, akin to the substrate quinol and the inhibitor stigmatellin, the Thermus thermophilus Rieske protein was reacted with diethyl pyrocarbonate (DEPC) over a range of pH values. The modification was followed by UV-visible, circular dichroism, and EPR spectroscopies and the end product analyzed by mass spectrometry. The ligating His154, as well as the two nonligating histidines and surface-exposed lysines, were modified. Interestingly, modification of the protein by DEPC was also found to reduce the metal cluster. The ability to control the redox state was examined by the addition of oxidants and reductants and removal of the DEPC-histidine adduct by sodium hydroxide. Characterization of the DEPC-modified Rieske protein, which remains redox active, offers a probe to analyze the effects of small molecules that inhibit the function of the bc(1) complex and that have also been shown to interact with the ligating histidines of the Rieske [2Fe-2S] cluster in crystal structures of the complex.
Collapse
Affiliation(s)
- Mary E Konkle
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, USA
| | | | | | | | | | | |
Collapse
|
38
|
Wang J, Rabenstein DL. Interaction of heparin and heparin-derived oligosaccharides with synthetic peptide analogues of the heparin-binding domain of heparin/heparan sulfate-interacting protein. Biochim Biophys Acta Gen Subj 2009; 1790:1689-97. [PMID: 19747524 DOI: 10.1016/j.bbagen.2009.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2009] [Revised: 08/23/2009] [Accepted: 09/04/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Although protamine is effective as an antidote of heparin, there is a need to replace protamine due to its side effects. HIP peptide has been reported to neutralize the anticoagulant activity of heparin. The interaction of HIP analog peptides with heparin and heparin-derived oligosaccharides is investigated in this paper. METHODS Seven analogues of the heparin-binding domain of heparin/heparan sulfate-interacting protein (HIP) were synthesized, and their interaction with heparin was characterized by heparin affinity chromatography, isothermal titration calorimetry, and NMR. RESULTS NMR results indicate the imidazolium groups of the His side chains of histidine-containing Hip analog peptide interact site-specifically with heparin at pH 5.5. Heparin has identical affinities for HIP analog peptides of opposite chirality. Analysis by counterion condensation theory indicates the peptide AC-SRPKAKAKAKAKDQTK-NH2 makes on average approximately 3 ionic interactions with heparin that result in displacement of approximately 2 Na+ ions, and ionic interactions account for approximately 46% of the binding free energy at a Na+ concentration of 0.15 M. CONCLUSIONS The affinity of heparin for the peptides is strongly dependent on the nature of the cationic side chains and pH. The thermodynamic parameters measured for the interaction of HIP peptide analogs with heparin are strongly dependent on the peptide sequence and pH. GENERAL SIGNIFICANCE The information obtained in this research will be of use in the design of new agents for neutralization of the anticoagulant activity of heparin. The site-specific binding of protonated histidine side chains to heparin provides a molecular-level explanation for the pH-dependent binding of beta-amyloid peptides by heparin and heparan sulfate proteoglycan and may have implications for amyloid formation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
39
|
Mendoza VL, Vachet RW. Probing protein structure by amino acid-specific covalent labeling and mass spectrometry. MASS SPECTROMETRY REVIEWS 2009; 28:785-815. [PMID: 19016300 PMCID: PMC2768138 DOI: 10.1002/mas.20203] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/03/2023]
Abstract
For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies.
Collapse
Affiliation(s)
- Vanessa Leah Mendoza
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | |
Collapse
|
40
|
Steinbrenner H, Bilgic E, Alili L, Sies H, Brenneisen P. Selenoprotein P protects endothelial cells from oxidative damage by stimulation of glutathione peroxidase expression and activity. Free Radic Res 2009; 40:936-43. [PMID: 17015273 DOI: 10.1080/10715760600806248] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2022]
Abstract
A major fraction of the essential trace element selenium circulating in human blood plasma is present as selenoprotein P (SeP). As SeP associates with endothelial membranes, the participation of SeP in selenium-mediated protection against oxidative damage was investigated, using the human endothelial cell line Ea.hy926 as a model system. Hepatocyte-derived SeP prevented tert-butylhydroperoxide (t-BHP)-induced oxidative cell death of Ea.hy926 cells in a similar manner as did sodium selenite, counteracting a t-BHP-induced loss of cellular membrane integrity. Protection was detected after at least 10 h of SeP supplementation and it peaked at 24 h. SeP time-dependently stimulated the expression of cytosolic glutathione peroxidase (cGPx) and increased the enzymatic activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR). The cGPx inhibitor mercaptosuccinate as well as the gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine counteracted the SeP-mediated protection, while the TR inhibitors cisplatin and auranofin had no effect. The presented data suggest that selenium supplementation by SeP prevents oxidative damage of human endothelial cells by restoring expression and enzymatic activity of GPx.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
41
|
Elimova E, Kisilevsky R, Ancsin JB. Heparan sulfate promotes the aggregation of HDL‐associated serum amyloid A: evidence for a proamyloidogenic histidine molecular switch. FASEB J 2009; 23:3436-48. [DOI: 10.1096/fj.09-134981] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elena Elimova
- Department of Biochemistry Queen's University Kingston Ontario Canada
- Department of Medicine University of Ottawa Ottawa ON K1H 8L6 Canada
| | - Robert Kisilevsky
- Department of Biochemistry Queen's University Kingston Ontario Canada
- Department of Pathology and Molecular Medicine Queen's University Kingston Ontario Canada
- The Syl and Molly Apps Research Centre Kingston General Hospital Kingston Ontario Canada
| | - John B. Ancsin
- Department of Biochemistry Queen's University Kingston Ontario Canada
| |
Collapse
|
42
|
Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta Gen Subj 2009; 1790:1441-7. [PMID: 19345254 DOI: 10.1016/j.bbagen.2009.03.026] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2009] [Revised: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 11/23/2022]
Abstract
Selenoprotein P (Sepp1) is a secreted protein that is made up of 2 domains. The larger N-terminal domain contains 1 selenocysteine residue in a redox motif and the smaller C-terminal domain contains the other 9 selenocysteines. Sepp1 isoforms of varying lengths occur but quantitation of them has not been achieved. Hepatic synthesis of Sepp1 affects whole-body selenium content and the liver is the source of most plasma Sepp1. ApoER2, a member of the lipoprotein receptor family, binds Sepp1 and facilitates its uptake into the testis and retention of its selenium by the brain. Megalin, another lipoprotein receptor, facilitates uptake of filtered Sepp1 into proximal tubule cells of the kidney. Thus, Sepp1 serves in homeostasis and distribution of selenium. Mice with deletion of Sepp1 suffer greater morbidity and mortality from infection with Trypanosoma congolense than do wild-type mice. Mice that express only the N-terminal domain of Sepp1 have the same severity of illness as wild-type mice, indicating that the protective function of Sepp1 against the infection resides in the N-terminal (redox) domain. Thus, Sepp1 has several functions. In addition, plasma Sepp1 concentration falls in selenium deficiency and, therefore, it can be used as an index of selenium nutritional status.
Collapse
|
43
|
Steinbrenner H, Sies H. Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta Gen Subj 2009; 1790:1478-85. [PMID: 19268692 DOI: 10.1016/j.bbagen.2009.02.014] [Citation(s) in RCA: 520] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2009] [Accepted: 02/27/2009] [Indexed: 11/26/2022]
Abstract
Reactive oxygen species (ROS) are derived from cellular oxygen metabolism and from exogenous sources. An excess of ROS results in oxidative stress and may eventually cause cell death. ROS levels within cells and in extracellular body fluids are controlled by concerted action of enzymatic and non-enzymatic antioxidants. The essential trace element selenium exerts its antioxidant function mainly in the form of selenocysteine residues as an integral constituent of ROS-detoxifying selenoenzymes such as glutathione peroxidases (GPx), thioredoxin reductases (TrxR) and possibly selenoprotein P (SeP). In particular, the dual role of selenoprotein P as selenium transporter and antioxidant enzyme is highlighted herein. A cytoprotective effect of selenium supplementation has been demonstrated for various cell types including neurons and astrocytes as well as endothelial cells. Maintenance of full GPx and TrxR activity by adequate dietary selenium supply has been proposed to be useful for the prevention of several cardiovascular and neurological disorders. On the other hand, selenium supplementation at supranutritional levels has been utilised for cancer prevention: antioxidant selenoenzymes as well as prooxidant effects of selenocompounds on tumor cells are thought to be involved in the anti-carcinogenic action of selenium.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
44
|
Shigeta K, Matsumura K, Suzuki Y, Shinohara A, Furuta N. Distribution and dynamic pathway of selenium species in selenium-deficient mice injected with (82)Se-enriched selenite. ANAL SCI 2009; 24:1117-22. [PMID: 18781022 DOI: 10.2116/analsci.24.1117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
Abstract
In order to elucidate Se metabolism in a living body, (82)Se-enriched selenite was injected intravenously into mice fed Se-adequate and -deficient diets. We studied the time-dependent changes in the distribution of the labeled Se in organs, red blood cells, and plasma. The total Se was determined by flow-injection ICPMS, and Se speciation analysis was conducted by micro-affinity chromatography coupled with low-flow ICPMS. Total Se in almost all organs, including liver, showed the maximum at 1 h after injection. From speciation analysis, exogenous (82)Se as Se-containing proteins other than selenoprotein P (Sel-P) (selenium containing albumin (SeAlb) and extra cellular glutathione peroxidase (eGPx)), peaked at 1 h and quickly decreased from 1 to 6 h after injection, whereas that as Sel-P, peaked at 6 h, and gradually decreased from 6 to 72 h after injection. We found that there were two pathways for the transfer of Se in mice; one was as SeAlb until 1 h after injection, and the other was as Sel-P from 6 to 72 h after injection.
Collapse
Affiliation(s)
- Kaori Shigeta
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Bunkyo, Tokyo 112-8551, Japan
| | | | | | | | | |
Collapse
|
45
|
Bellinger FP, He QP, Bellinger MT, Lin Y, Raman AV, White LR, Berry MJ. Association of selenoprotein p with Alzheimer's pathology in human cortex. J Alzheimers Dis 2009; 15:465-72. [PMID: 18997300 DOI: 10.3233/jad-2008-15313] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Selenium is known for its antioxidant properties, making selenoproteins candidate molecules for mitigation of neurological disorders in which oxidative stress has been implicated. The selenium transport protein, selenoprotein P, is essential for neuronal survival and function. We sought to determine whether selenoprotein P expression is associated with Alzheimer's disease pathology. We examined postmortem tissue from individuals with the hallmark lesions of Alzheimer's disease and individuals without these lesions. Selenoprotein P immunoreactivity was co-localized with amyloid-beta plaques and neurofibrillary tangles. Dense-core and other non-diffuse amyloid-beta plaques were nearly always associated with selenoprotein P immunopositive cells. Analysis of spatial distribution showed a significant association between amyloid-beta plaques and selenoprotein P. Numerous cells also exhibited immunoreactivity to selenoprotein P and intraneuronal neurofibrillary tangles. Confocal microscopy confirmed co-localization of amyloid-beta protein and selenoprotein P. These findings suggest an association of selenoprotein P with Alzheimer's pathology.
Collapse
Affiliation(s)
- Frederick P Bellinger
- Department of Cell Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Bosschaerts T, Guilliams M, Noel W, Hérin M, Burk RF, Hill KE, Brys L, Raes G, Ghassabeh GH, De Baetselier P, Beschin A. Alternatively activated myeloid cells limit pathogenicity associated with African trypanosomiasis through the IL-10 inducible gene selenoprotein P. THE JOURNAL OF IMMUNOLOGY 2008; 180:6168-75. [PMID: 18424738 DOI: 10.4049/jimmunol.180.9.6168] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Uncontrolled inflammation is a major cause of tissue injury/pathogenicity often resulting in death of a host infected with African trypanosomes. Thus, comparing the immune response in hosts that develop different degrees of disease severity represents a promising approach to discover processes contributing to trypanosomiasis control. It is known that limitation of pathogenicity requires a transition in the course of infection, from an IFN-gamma-dependent response resulting in the development of classically activated myeloid cells (M1), to a counterbalancing IL-10-dependent response associated with alternatively activated myeloid cells (M2). Herein, mechanisms and downstream effectors by which M2 contribute to lower the pathogenicity and the associated susceptibility to African trypanosomiasis have been explored. Gene expression analysis in IL-10 knockout and wild-type mice, that are susceptible and relatively resistant to Trypanosoma congolense infection, respectively, revealed a number of IL-10-inducible genes expressed by M2, including Sepp1 coding for selenoprotein P. Functional analyses confirm that selenoprotein P contributes to limit disease severity through anti-oxidant activity. Indeed, Sepp1 knockout mice, but not Sepp1(Delta)(240-361) mice retaining the anti-oxidant motif but lacking the selenium transporter domain of selenoprotein P, exhibited increased tissue injury that associated with increased production of reactive oxygen species and increased apoptosis in the liver immune cells, reduced parasite clearance capacity of myeloid cells, and decreased survival. These data validate M2-associated molecules as functioning in reducing the impact of parasite infection on the host.
Collapse
Affiliation(s)
- Tom Bosschaerts
- Department of Molecular and Cellular Interactions, Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lobanov AV, Hatfield DL, Gladyshev VN. Reduced reliance on the trace element selenium during evolution of mammals. Genome Biol 2008; 9:R62. [PMID: 18377657 PMCID: PMC2397514 DOI: 10.1186/gb-2008-9-3-r62] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2008] [Revised: 03/05/2008] [Accepted: 03/31/2008] [Indexed: 01/21/2023] Open
Abstract
Evolution from fish to mammals was accompanied by decreased use of selenocysteine, raising questions about the need for selenium dietary supplements when pathology is not imminent. Background Selenium (Se) is an essential trace element that occurs in proteins in the form of selenocysteine (Sec). It is transported throughout the body in the form of Sec residues in Selenoprotein P (SelP), a plasma protein of unclear origin recently proposed as an experimental marker of dietary Se status. Results Here, we report that the amino-terminal domain of SelP is distantly related to ancestral bacterial thiol oxidoreductases of the thioredoxin superfamily, and that its carboxy-terminal Se transport domain may have originated in early metazoan evolution by de novo accumulation of Sec residues. Reconstruction of evolutionary changes in the Se transport domain indicates a decrease in Sec content of SelP specifically in the mammalian lineage via replacement of Sec with cysteine (Cys). Sec content of mammalian SelPs varies more than two-fold and is lowest in rodents and primates. Compared to mammals, fish show higher Sec content of SelP, larger selenoproteomes, elevated SelP gene expression, and higher levels of tissue Se. In addition, mammals replaced Sec with Cys in several proteins and lost several selenoproteins altogether, whereas such events are not found in fish. Conclusion These data suggest that evolution from fish to mammals was accompanied by decreased use of Sec and that analyses of SelP, selenoproteomes and Sec/Cys transitions provide a genetic marker of utilization of this trace element in vertebrates. The evolved reduced reliance on Se raises questions regarding the need to maximize selenoprotein expression by Se dietary supplements in situations when pathology is not imminent, a currently accepted practice.
Collapse
Affiliation(s)
- Alexey V Lobanov
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA.
| | | | | |
Collapse
|
48
|
Steinbrenner H, Alili L, Stuhlmann D, Sies H, Brenneisen P. Post-translational processing of selenoprotein P: implications of glycosylation for its utilisation by target cells. Biol Chem 2008; 388:1043-51. [PMID: 17937618 DOI: 10.1515/bc.2007.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023]
Abstract
Selenoprotein P (SeP) is a highly glycosylated plasma protein containing up to 10 selenocysteine residues. It is secreted by hepatocytes and also by the human hepatoma cell line HepG2. Pharmacological inhibitors interfering with N-glycosylation, intracellular trafficking and calcium homeostasis were applied to examine post-translational processing and secretion of SeP by HepG2 cells. In parallel, the prototypic secretory glycoprotein alpha1-antitrypsin was used as technical control. Secretion of SeP was stimulated by increasing the extracellular calcium concentration and by inhibiting the release of sequestered calcium through dantrolene or U-73122. In contrast, brefeldin A and thapsigargin suppressed SeP secretion. Tunicamycin and monensin induced the synthesis of truncated non-glycosylated and partially glycosylated forms of SeP, which were secreted in spite of their impaired glycosylation. Both non-glycosylated and partially glycosylated SeP is utilised as selenium donor by target cells: impaired glycosylation affected neither the ability of SeP to induce the synthesis of the selenoenzyme cytosolic glutathione peroxidase nor its capacity to protect endothelial cells from oxidative stress.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Universitätstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
49
|
Burk RF, Hill KE, Olson GE, Weeber EJ, Motley AK, Winfrey VP, Austin LM. Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed. J Neurosci 2007; 27:6207-11. [PMID: 17553992 PMCID: PMC6672153 DOI: 10.1523/jneurosci.1153-07.2007] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Selenoprotein P (Sepp1) is a plasma and extracellular protein that is rich in selenium. Deletion of Sepp1 results in sharp decreases of selenium levels in the brain and testis with dysfunction of those organs. Deletion of Sepp1 also causes increased urinary selenium excretion, leading to moderate depletion of whole-body selenium. The lipoprotein receptor apolipoprotein E receptor-2 (apoER2) binds Sepp1 and facilitates its uptake by Sertoli cells, thus providing selenium for spermatogenesis. Experiments were performed to assess the effect of apoER2 on the concentration and function of selenium in the brain and on whole-body selenium. ApoER2-/- and apoER2+/+ male mice were fed a semipurified diet with selenite added as the source of selenium. ApoER2-/- mice had depressed brain and testis selenium, but normal levels in liver, kidney, muscle, and the whole body. Feeding a selenium-deficient diet to apoER2-/- mice led to neurological dysfunction and death, with some of the characteristics exhibited by Sepp1-/- mice fed the same diet. Thus, although it does not affect whole-body selenium, apoER2 is necessary for maintenance of brain selenium and for prevention of neurological dysfunction and death under conditions of selenium deficiency, suggesting an interaction of apoER2 with Sepp1 in the brain.
Collapse
Affiliation(s)
- Raymond F Burk
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Lobiński R, Schaumlöffel D, Szpunar J. Mass spectrometry in bioinorganic analytical chemistry. MASS SPECTROMETRY REVIEWS 2006; 25:255-89. [PMID: 16273552 DOI: 10.1002/mas.20069] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/05/2023]
Abstract
A considerable momentum has recently been gained by in vitro and in vivo studies of interactions of trace elements in biomolecules due to advances in inductively coupled plasma mass spectrometry (ICP MS) used as a detector in chromatography and capillary and planar electrophoresis. The multi-isotopic (including non-metals such as S, P, or Se) detection capability, high sensitivity, tolerance to matrix, and large linearity range regardless of the chemical environment of an analyte make ICP MS a valuable complementary technique to electrospray MS and MALDI MS. This review covers different facets of the recent progress in metal speciation in biochemistry, including probing in vitro interactions between metals and biomolecules, detection, determination, and structural characterization of heteroatom-containing molecules in biological tissues, and protein monitoring and quantification via a heteroelement (S, Se, or P) signal. The application areas include environmental chemistry, plant and animal biochemistry, nutrition, and medicine.
Collapse
Affiliation(s)
- Ryszard Lobiński
- Equipe de Chimie Analytique Bio-Inorganique, CNRS UMR 5034, Hélioparc, 2, av. du Pr. Angot, F-64053 Pau, France.
| | | | | |
Collapse
|