1
|
Kolbe MR, Hohmann T, Hohmann U, Maronde E, Golbik R, Prell J, Illert J, Strauss C, Dehghani F. Elucidation of GPR55-Associated Signaling behind THC and LPI Reducing Effects on Ki67-Immunoreactive Nuclei in Patient-Derived Glioblastoma Cells. Cells 2023; 12:2646. [PMID: 37998380 PMCID: PMC10670585 DOI: 10.3390/cells12222646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
GPR55 is involved in many physiological and pathological processes. In cancer, GPR55 has been described to show accelerating and decelerating effects in tumor progression resulting from distinct intracellular signaling pathways. GPR55 becomes activated by LPI and various plant-derived, endogenous, and synthetic cannabinoids. Cannabinoids such as THC exerted antitumor effects by inhibiting tumor cell proliferation or inducing apoptosis. Besides its effects through CB1 and CB2 receptors, THC modulates cellular responses among others via GPR55. Previously, we reported a reduction in Ki67-immunoreactive nuclei of human glioblastoma cells after GPR55 activation in general by THC and in particular by LPI. In the present study, we investigated intracellular mechanisms leading to an altered number of Ki67+ nuclei after stimulation of GPR55 by LPI and THC. Pharmacological analyses revealed a strongly involved PLC-IP3 signaling and cell-type-specific differences in Gα-, Gβγ-, RhoA-ROCK, and calcineurin signaling. Furthermore, immunochemical visualization of the calcineurin-dependent transcription factor NFAT revealed an unchanged subcellular localization after THC or LPI treatment. The data underline the cell-type-specific diversity of GPR55-associated signaling pathways in coupling to intracellular G proteins. Furthermore, this diversity might determine the outcome and the individual responsiveness of tumor cells to GPR55 stimulation by cannabin oids.
Collapse
Affiliation(s)
- Marc Richard Kolbe
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| | - Tim Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| | - Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| | - Erik Maronde
- Department of Anatomy II, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| | - Ralph Golbik
- Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany;
| | - Julian Prell
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (J.P.); (J.I.); (C.S.)
| | - Jörg Illert
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (J.P.); (J.I.); (C.S.)
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (J.P.); (J.I.); (C.S.)
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| |
Collapse
|
2
|
In Vivo Models and In Vitro Assays for the Assessment of Pertussis Toxin Activity. Toxins (Basel) 2021; 13:toxins13080565. [PMID: 34437436 PMCID: PMC8402560 DOI: 10.3390/toxins13080565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
One of the main virulence factors produced by Bordetella pertussis is pertussis toxin (PTx) which, in its inactivated form, is the major component of all marketed acellular pertussis vaccines. PTx ADP ribosylates Gαi proteins, thereby affecting the inhibition of adenylate cyclases and resulting in the accumulation of cAMP. Apart from this classical model, PTx also activates some receptors and can affect various ADP ribosylation- and adenylate cyclase-independent signalling pathways. Due to its potent ADP-ribosylation properties, PTx has been used in many research areas. Initially the research primarily focussed on the in vivo effects of the toxin, including histamine sensitization, insulin secretion and leukocytosis. Nowadays, PTx is also used in toxicology research, cell signalling, research involving the blood–brain barrier, and testing of neutralizing antibodies. However, the most important area of use is testing of acellular pertussis vaccines for the presence of residual PTx. In vivo models and in vitro assays for PTx often reflect one of the toxin’s properties or details of its mechanism. Here, the established and novel in vivo and in vitro methods used to evaluate PTx are reviewed, their mechanisms, characteristics and limitations are described, and their application for regulatory and research purposes are considered.
Collapse
|
3
|
Murthy S, Wannick M, Eleftheriadis G, Müller A, Luo J, Busch H, Dalmann A, Riemekasten G, Sadik CD. Immunoglobulin G of systemic sclerosis patients programs a pro-inflammatory and profibrotic phenotype in monocyte-like THP-1 cells. Rheumatology (Oxford) 2021; 60:3012-3022. [PMID: 33230552 DOI: 10.1093/rheumatology/keaa747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Functional IgG autoantibodies against diverse G protein-coupled receptors, i.e. antibodies with agonistic or antagonistic activity at these receptors, are abundant in human serum. Their levels are altered in patients with SSc, and autoantibodies against angiotensin II receptor 1 (ATR1) and endothelin receptor A (ETA) have been suggested to drive SSc by inducing the chemokines CXCL8 and CCL18 in the blood. The objective of our study is to profile the effect of IgG in SSc (SSc-IgG) on the production of soluble mediators in monocytic cells. METHODS Monocyte-like THP-1 cells were stimulated with SSc-IgG and their secretome was analysed. Furthermore, the significance of major pro-inflammatory pathways for the induction of CXCL8 and CCL18 in response to SSc-IgG was assessed by a pharmacological approach. RESULTS Stimulation with SSc-IgG significantly alters the secretome of THP-1 cells towards a general pro-inflammatory and profibrotic phenotype, which includes an increase of CCL18 and CXCL8. The consequent expression profiles vary depending on the individual donor of the SSc-IgG. CCL18 and CXCL8 expression is thus regulated differentially, with AP-1 driving the induction of both CCL18 and CXCL8 and the TAK/IKK-β/NF-κB pathway and ERK1/2 driving that of CXCL8. CONCLUSIONS Our results suggest that SSc-IgG contributes to the generation of the pro-inflammatory/profibrotic tissue milieu characteristic of SSc by its induction of a respective phenotype in monocytes. Furthermore, our results highlight AP-1 as a critical regulator of gene transcription of CCL18 in monocytic cells and as a promising pharmacological therapeutic target for the treatment of SSc.
Collapse
Affiliation(s)
- Sripriya Murthy
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Melanie Wannick
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Georgios Eleftheriadis
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Antje Müller
- Clinic for Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jiao Luo
- Clinic for Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany.,Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Anja Dalmann
- Clinic for Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Clinic for Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Auderset F, Ballester M, Mastelic-Gavillet B, Fontannaz P, Chabaud-Riou M, Reveneau N, Garinot M, Mistretta N, Liu Y, Lambert PH, Ochs M, Siegrist CA. Reactivating Immunity Primed by Acellular Pertussis Vaccines in the Absence of Circulating Antibodies: Enhanced Bacterial Control by TLR9 Rather Than TLR4 Agonist-Including Formulation. Front Immunol 2019; 10:1520. [PMID: 31333656 PMCID: PMC6618515 DOI: 10.3389/fimmu.2019.01520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022] Open
Abstract
Pertussis is still observed in many countries despite of high vaccine coverage. Acellular pertussis (aP) vaccination is widely implemented in many countries as primary series in infants and as boosters in school-entry/adolescents/adults (including pregnant women in some). One novel strategy to improve the reactivation of aP-vaccine primed immunity could be to include genetically- detoxified pertussis toxin and novel adjuvants in aP vaccine boosters. Their preclinical evaluation is not straightforward, as it requires mimicking the human situation where T and B memory cells may persist longer than vaccine-induced circulating antibodies. Toward this objective, we developed a novel murine model including two consecutive adoptive transfers of the memory cells induced by priming and boosting, respectively. Using this model, we assessed the capacity of three novel aP vaccine candidates including genetically-detoxified pertussis toxin, pertactin, filamentous hemagglutinin, and fimbriae adsorbed to aluminum hydroxide, supplemented—or not—with Toll-Like-Receptor 4 or 9 agonists (TLR4A, TLR9A), to reactivate aP vaccine-induced immune memory and protection, reflected by bacterial clearance. In the conventional murine immunization model, TLR4A- and TLR9A-containing aP formulations induced similar aP-specific IgG antibody responses and protection against bacterial lung colonization as current aP vaccines, despite IL-5 down-modulation by both TLR4A and TLR9A and IL-17 up-modulation by TLR4A. In the absence of serum antibodies at time of boosting or exposure, TLR4A- and TLR9A-containing formulations both enhanced vaccine antibody recall compared to current aP formulations. Unexpectedly, however, protection was only increased by the TLR9A-containing vaccine, through both earlier bacterial control and accelerated clearance. This suggests that TLR9A-containing aP vaccines may better reactivate aP vaccine-primed pertussis memory and enhance protection than current or TLR4A-adjuvanted aP vaccines.
Collapse
Affiliation(s)
- Floriane Auderset
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Marie Ballester
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Beatris Mastelic-Gavillet
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Paola Fontannaz
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | - Paul-Henri Lambert
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | | | - Claire-Anne Siegrist
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Singh MV, Cicha MZ, Nunez S, Meyerholz DK, Chapleau MW, Abboud FM. Angiotensin II-induced hypertension and cardiac hypertrophy are differentially mediated by TLR3- and TLR4-dependent pathways. Am J Physiol Heart Circ Physiol 2019; 316:H1027-H1038. [PMID: 30793936 DOI: 10.1152/ajpheart.00697.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLR) are key components of the innate immune system that elicit inflammatory responses through the adaptor proteins myeloid differentiation protein 88 (MyD88) and Toll-interleukin receptor domain-containing adaptor protein-inducing interferon-β (TRIF). Previously, we demonstrated that TRIF mediates the signaling of angiotensin II (ANG II)- induced hypertension and cardiac hypertrophy. Since TRIF is activated selectively by TLR3 and TLR4, our goals in this study were to determine the roles of TLR3 and TLR4 in mediating ANG II-induced hypertension and cardiac hypertrophy, and associated changes in proinflammatory gene expression in heart and kidney. In wild-type (WT) mice, ANG II infusion (1,000 ng·kg-1·min-1 for 3 wk) increased systolic blood pressure and caused cardiac hypertrophy. In ANG II-infused TLR4-deficient mice (Tlr4del), hypertrophy was significantly attenuated despite a preserved or enhanced hypertensive response. In contrast, in TLR3-deficient mice (Tlr3-/-), both ANG II-induced hypertension and hypertrophy were abrogated. In WT mice, ANG II increased the expression of several proinflammatory genes in hearts and kidneys that were attenuated in both TLR4- and TLR3-deficient mice compared with WT. We conclude that ANG II activates both TLR4-TRIF and TLR3-TRIF pathways in a nonredundant manner whereby hypertension is dependent on activation of the TLR3-TRIF pathway and cardiac hypertrophy is dependent on both TLR3-TRIF and TLR4-TRIF pathways. NEW & NOTEWORTHY Angiotensin II (ANG II)-induced hypertension is dependent on the endosomal Toll-like receptor 3 (TLR3)-Toll-interleukin receptor domain-containing adaptor protein-inducing interferon-β (TRIF) pathway of the innate immune system but not on cell membrane localized TLR4. However, ANG II-induced cardiac hypertrophy is regulated by both TLR4-TRIF and TLR3-TRIF pathways. Thus, ANG II-induced rise in systolic blood pressure is independent of TLR4-TRIF effect on cardiac hypertrophy. The TLR3-TRIF pathway may be a potential target of therapeutic intervention.
Collapse
Affiliation(s)
- Madhu V Singh
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Michael Z Cicha
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Sarah Nunez
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Mark W Chapleau
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Department of Internal Medicine, Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Veterans Affairs Medical Center , Iowa City, Iowa
| | - François M Abboud
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
6
|
Hoonakker M, Arciniega J, Hendriksen C. Safety testing of acellular pertussis vaccines: Use of animals and 3Rs alternatives. Hum Vaccin Immunother 2018; 13:2522-2530. [PMID: 28857652 PMCID: PMC5703371 DOI: 10.1080/21645515.2017.1349585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The current test of acellular Bordetella pertussis (aP) vaccines for residual pertussis toxin (PTx) is the Histamine Sensitization test (HIST), based on the empirical finding that PTx sensitizes mice to histamine. Although HIST has ensured the safety of aP vaccines for years, it is criticized for the limited understanding of how it works, its technical difficulty, and for animal welfare reasons. To estimate the number of mice used worldwide for HIST, we surveyed major aP manufacturers and organizations performing, requiring, or recommending the test. The survey revealed marked regional differences in regulatory guidelines, including the number of animals used for a single test. Based on information provided by the parties surveyed, we estimated the worldwide number of mice used for testing to be 65,000 per year: ∼48,000 by manufacturers and ∼17,000 by national control laboratories, although the latter number is more affected by uncertainty, due to confidentiality policies. These animals covered the release of approximately 850 final lots and 250 in-process lots of aP vaccines yearly. Although there are several approaches for HIST refinement and reduction, we discuss why the efforts needed for validation and implementation of these interim alternatives may not be worthwhile, when there are several in vitro alternatives in various stages of development, some already fairly advanced. Upon implementation, one or more of these replacement alternatives can substantially reduce the number of animals currently used for the HIST, although careful evaluation of each alternative's mechanism and its suitable validation will be necessary in the path to implementation.
Collapse
Affiliation(s)
- Marieke Hoonakker
- a Institute for Translational Vaccinology (Intravacc) , Bilthoven , The Netherlands
| | - Juan Arciniega
- b United States Food and Drug Administration Center for Biologics Evaluation and Research, Silver Spring , MD , USA
| | - Coenraad Hendriksen
- a Institute for Translational Vaccinology (Intravacc) , Bilthoven , The Netherlands
| |
Collapse
|
7
|
Chuaiphichai S, Rashbrook VS, Hale AB, Trelfa L, Patel J, McNeill E, Lygate CA, Channon KM, Douglas G. Endothelial Cell Tetrahydrobiopterin Modulates Sensitivity to Ang (Angiotensin) II-Induced Vascular Remodeling, Blood Pressure, and Abdominal Aortic Aneurysm. Hypertension 2018; 72:128-138. [PMID: 29844152 PMCID: PMC6012043 DOI: 10.1161/hypertensionaha.118.11144] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
Abstract
GTPCH (GTP cyclohydrolase 1, encoded by Gch1) is required for the synthesis of tetrahydrobiopterin; a critical regulator of endothelial NO synthase function. We have previously shown that mice with selective loss of Gch1 in endothelial cells have mild vascular dysfunction, but the consequences of endothelial cell tetrahydrobiopterin deficiency in vascular disease pathogenesis are unknown. We investigated the pathological consequence of Ang (angiotensin) II infusion in endothelial cell Gch1 deficient (Gch1fl/fl Tie2cre) mice. Ang II (0.4 mg/kg per day, delivered by osmotic minipump) caused a significant decrease in circulating tetrahydrobiopterin levels in Gch1fl/fl Tie2cre mice and a significant increase in the Nω-nitro-L-arginine methyl ester inhabitable production of H2O2 in the aorta. Chronic treatment with this subpressor dose of Ang II resulted in a significant increase in blood pressure only in Gch1fl/fl Tie2cre mice. This finding was mirrored with acute administration of Ang II, where increased sensitivity to Ang II was observed at both pressor and subpressor doses. Chronic Ang II infusion in Gch1fl/fl Tie2ce mice resulted in vascular dysfunction in resistance mesenteric arteries with an enhanced constrictor and decreased dilator response and medial hypertrophy. Altered vascular remodeling was also observed in the aorta with an increase in the incidence of abdominal aortic aneurysm formation in Gch1fl/fl Tie2ce mice. These findings indicate a specific requirement for endothelial cell tetrahydrobiopterin in modulating the hemodynamic and structural changes induced by Ang II, through modulation of blood pressure, structural changes in resistance vessels, and aneurysm formation in the aorta.
Collapse
Affiliation(s)
- Surawee Chuaiphichai
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Victoria S Rashbrook
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Ashley B Hale
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Lucy Trelfa
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Jyoti Patel
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Eileen McNeill
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Craig A Lygate
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Keith M Channon
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom.
| | - Gillian Douglas
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| |
Collapse
|
8
|
Nishida M, Nishimura A, Matsunaga T, Motohashi H, Kasamatsu S, Akaike T. Redox regulation of electrophilic signaling by reactive persulfides in cardiac cells. Free Radic Biol Med 2017; 109:132-140. [PMID: 28109891 DOI: 10.1016/j.freeradbiomed.2017.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/14/2017] [Accepted: 01/15/2017] [Indexed: 12/30/2022]
Abstract
Maintaining a redox balance by means of precisely controlled systems that regulate production, and elimination, and metabolism of electrophilic substances (electrophiles) is essential for normal cardiovascular function. Electrophilic signaling is mainly regulated by endogenous electrophiles that are generated from reactive oxygen species, nitric oxide, and the derivative reactive species of nitric oxide during stress responses, as well as by exogenous electrophiles including compounds in foods and environmental pollutants. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive persulfide species such as cysteine persulfides and polysulfides that are endogenously produced in cells are likely to be involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cardiovascular physiology and pathophysiology. In our review, we focus on the redox-dependent regulation of electrophilic signaling via reduction and metabolism of electrophiles by reactive persulfides in cardiac cells, and we include suggestions for a new therapeutic strategy for cardiovascular disease.
Collapse
Affiliation(s)
- Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan; Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan.
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Shingo Kasamatsu
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
9
|
Sunggip C, Nishimura A, Shimoda K, Numaga-Tomita T, Tsuda M, Nishida M. Purinergic P2Y 6 receptors: A new therapeutic target of age-dependent hypertension. Pharmacol Res 2017; 120:51-59. [PMID: 28336370 DOI: 10.1016/j.phrs.2017.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 01/04/2023]
Abstract
Aging has a remarkable effect on cardiovascular homeostasis and it is known as the major non-modifiable risk factor in the development of hypertension. Medications targeting sympathetic nerve system and/or renin-angiotensin-aldosterone system are widely accepted as a powerful therapeutic strategy to improve hypertension, although the control rates remain unsatisfactory especially in the elder patients with hypertension. Purinergic receptors, activated by adenine, uridine nucleotides and nucleotide sugars, play pivotal roles in many biological processes, including platelet aggregation, neurotransmission and hormone release, and regulation of cardiovascular contractility. Since clopidogrel, a selective inhibitor of G protein-coupled purinergic P2Y12 receptor (P2Y12R), achieved clinical success as an anti-platelet drug, P2YRs has been attracted more attention as new therapeutic targets of cardiovascular diseases. We have revealed that UDP-responsive P2Y6R promoted angiotensin type 1 receptor (AT1R)-stimulated vascular remodeling in mice, in an age-dependent manner. Moreover, the age-related formation of heterodimer between AT1R and P2Y6R was disrupted by MRS2578, a P2Y6R-selective inhibitor. These findings suggest that P2Y6R is a therapeutic target to prevent age-related hypertension.
Collapse
Affiliation(s)
- Caroline Sunggip
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Biomedical Science & Therapeutic, Faculty of Medicine and Health Sciences, University Malaysia Sabah, 88400 Kota Kinabalu Sabah, Malaysia
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kakeru Shimoda
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takuro Numaga-Tomita
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Okazaki Institute for Integrative Bioscience), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
10
|
Liu SY, Duan XC, Jin S, Teng X, Xiao L, Xue HM, Wu YM. Hydrogen Sulfide Improves Myocardial Remodeling via Downregulated Angiotensin Ⅱ/AT1R Pathway in Renovascular Hypertensive Rats. Am J Hypertens 2017; 30:67-74. [PMID: 27600580 DOI: 10.1093/ajh/hpw104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/08/2016] [Accepted: 08/05/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is an important endogenous gaseous transmitter in many physiological functions. Plasma H2S decreased, and angiotensin II (Ang II) type 1 receptor (AT1R) increased in the myocardial tissues in 2-kidney 1-clip (2K1C) rats than in normotensive rats. Accumulating evidences suggest that H2S inhibited Ang II/AT1R pathway to regulate cardiovascular function. Therefore, we hypothesized that H2S may exert beneficial effects on myocardial remodeling in 2K1C rat models of renovascular hypertension. METHODS AND RESULTS Sodium hydrosulfide (NaHS, 56 µmol/kg/day) was administered intraperitoneally to the rats from the 7th day after 2K1C operation. Systolic blood pressure was significantly increased from the first week after the operation and was lowered after NaHS treatment for 4 weeks. H2S could also inhibit the ratio of left ventricle and septum weight to body weight, improve cross-sectional area, and ameliorate ventricular dysfunction. Additionally, the protein expression of AT1R and Ang II serum content were downregulated, whereas superoxide dismutase (SOD) protein was upregulated in 2K1C rats by NaHS treatment for 4 weeks. Furthermore, the reactive oxygen species level and AT1R protein were increased, whereas SOD protein was decreased in cardiomyocytes treated with Ang II compared with the control group. NaHS could reverse these changes. Losartan and N-acetylcysteine could also reverse Ang II-induced changes. CONCLUSIONS The protective effect of H2S is attributable to the suppression of oxidative stress. This process involves the inhibition of the Ang II/AT1R pathway and upregulation of antioxidant enzymes in 2K1C rats.
Collapse
Affiliation(s)
- Shang-Yu Liu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Cui Duan
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xu Teng
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Lin Xiao
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Hong-Mei Xue
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yu-Ming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China;
| |
Collapse
|
11
|
Volpi C, Mondanelli G, Pallotta MT, Vacca C, Iacono A, Gargaro M, Albini E, Bianchi R, Belladonna ML, Celanire S, Mordant C, Heroux M, Royer-Urios I, Schneider M, Vitte PA, Cacquevel M, Galibert L, Poli SM, Solari A, Bicciato S, Calvitti M, Antognelli C, Puccetti P, Orabona C, Fallarino F, Grohmann U. Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells. Neuropharmacology 2015; 102:59-71. [PMID: 26522434 PMCID: PMC4720030 DOI: 10.1016/j.neuropharm.2015.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/05/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
Abstract
Metabotropic glutamate receptor 4 (mGluR4) possesses immune modulatory properties in vivo, such that a positive allosteric modulator (PAM) of the receptor confers protection on mice with relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE). ADX88178 is a newly-developed, one such mGluR4 modulator with high selectivity, potency, and optimized pharmacokinetics. Here we found that application of ADX88178 in the RR-EAE model system converted disease into a form of mild—yet chronic—neuroinflammation that remained stable for over two months after discontinuing drug treatment. In vitro, ADX88178 modulated the cytokine secretion profile of dendritic cells (DCs), increasing production of tolerogenic IL-10 and TGF-β. The in vitro effects required activation of a Gi-independent, alternative signaling pathway that involved phosphatidylinositol-3-kinase (PI3K), Src kinase, and the signaling activity of indoleamine 2,3-dioxygenase 1 (IDO1). A PI3K inhibitor as well as small interfering RNA targeting Ido1—but not pertussis toxin, which affects Gi protein-dependent responses—abrogated the tolerogenic effects of ADX88178-conditioned DCs in vivo. Thus our data indicate that, in DCs, highly selective and potent mGluR4 PAMs such as ADX88178 may activate a Gi-independent, long-lived regulatory pathway that could be therapeutically exploited in chronic autoimmune diseases such as multiple sclerosis. ADX88178, a selective mGluR4 PAM, exerts long-term therapeutic effects in RR-EAE. ADX88178 activates a noncanonical mGluR4 signaling in DCs. ADX88178 induces a tolerogenic functional phenotype in DCs via immunoregulatory IDO1. Highly selective mGluR4 PAMs may represent novel drugs in chronic neuroinflammation.
Collapse
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Maria T Pallotta
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Alberta Iacono
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Elisa Albini
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Maria L Belladonna
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Sylvain Celanire
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Céline Mordant
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Madeleine Heroux
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Isabelle Royer-Urios
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Manfred Schneider
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Pierre-Alain Vitte
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Mathias Cacquevel
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Laurent Galibert
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Sonia-Maria Poli
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Aldo Solari
- Department of Economics, Management, and Statistics, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano, Italy
| | - Silvio Bicciato
- Department of Life Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Mario Calvitti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy.
| |
Collapse
|
12
|
Brummelman J, Wilk MM, Han WGH, van Els CACM, Mills KHG. Roads to the development of improved pertussis vaccines paved by immunology. Pathog Dis 2015; 73:ftv067. [PMID: 26347400 PMCID: PMC4626578 DOI: 10.1093/femspd/ftv067] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 01/17/2023] Open
Abstract
Current acellular pertussis vaccines have various shortcomings, which may contribute to their suboptimal efficacy and waning immunity in vaccinated populations. This calls for the development of new pertussis vaccines capable of inducing long-lived protective immunity. Immunization with whole cell pertussis vaccines and natural infection with Bordetella pertussis induce distinct and more protective immune responses when compared with immunization with acellular pertussis vaccines. Therefore, the immune responses induced with whole cell vaccine or after infection can be used as a benchmark for the development of third-generation vaccines against pertussis. Here, we review the literature on the immunology of B. pertussis infection and vaccination and discuss the lessons learned that will help in the design of improved pertussis vaccines. To develop improved pertussis vaccines capable of inducing long-lived protective immunity, lessons have to be learned from immunology of Bordetella pertussis infection and current vaccination.
Collapse
Affiliation(s)
- Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Mieszko M Wilk
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Wanda G H Han
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
13
|
Karassek S, Starost L, Solbach J, Greune L, Sano Y, Kanda T, Kim K, Schmidt MA. Pertussis Toxin Exploits Specific Host Cell Signaling Pathways for Promoting Invasion and Translocation of Escherichia coli K1 RS218 in Human Brain-derived Microvascular Endothelial Cells. J Biol Chem 2015; 290:24835-43. [PMID: 26324705 DOI: 10.1074/jbc.m115.650101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 01/23/2023] Open
Abstract
Pertussis toxin (PTx), an AB5 toxin and major virulence factor of the whooping cough-causing pathogen Bordetella pertussis, has been shown to affect the blood-brain barrier. Dysfunction of the blood-brain barrier may facilitate penetration of bacterial pathogens into the brain, such as Escherichia coli K1 (RS218). In this study, we investigated the influence of PTx on blood-brain barrier permissiveness to E. coli infection using human brain-derived endothelial HBMEC and TY10 cells as in vitro models. Our results indicate that PTx acts at several key points of host cell intracellular signaling pathways, which are also affected by E. coli K1 RS218 infection. Application of PTx increased the expression of the pathogen binding receptor gp96. Further, we found an activation of STAT3 and of the small GTPase Rac1, which have been described as being essential for bacterial invasion involving host cell actin cytoskeleton rearrangements at the bacterial entry site. In addition, we showed that PTx induces a remarkable relocation of VE-cadherin and β-catenin from intercellular junctions. The observed changes in host cell signaling molecules were accompanied by differences in intracellular calcium levels, which might act as a second messenger system for PTx. In summary, PTx not only facilitates invasion of E. coli K1 RS218 by activating essential signaling cascades; it also affects intercellular barriers to increase paracellular translocation.
Collapse
Affiliation(s)
- Sascha Karassek
- From the Institute of Infectiology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Laura Starost
- From the Institute of Infectiology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Johanna Solbach
- From the Institute of Infectiology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Lilo Greune
- From the Institute of Infectiology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Yasuteru Sano
- the Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan, and
| | - Takashi Kanda
- the Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan, and
| | - KwangSik Kim
- the Pediatric Infectious Diseases Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - M Alexander Schmidt
- From the Institute of Infectiology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany,
| |
Collapse
|
14
|
Gαi1 and Gαi3 regulate macrophage polarization by forming a complex containing CD14 and Gab1. Proc Natl Acad Sci U S A 2015; 112:4731-6. [PMID: 25825741 DOI: 10.1073/pnas.1503779112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins have been implicated in Toll-like receptor 4 (TLR4) signaling in macrophages and endothelial cells. However, whether guanine nucleotide-binding protein G(i) subunit alpha-1 and alpha-3 (Gαi1/3) are required for LPS responses remains unclear, and if so, the underlying mechanisms need to be studied. In this study, we demonstrated that, in response to LPS, Gαi1/3 form complexes containing the pattern recognition receptor (PRR) CD14 and growth factor receptor binding 2 (Grb2)-associated binding protein (Gab1), which are required for activation of PI3K-Akt signaling. Gαi1/3 deficiency decreased LPS-induced TLR4 endocytosis, which was associated with decreased phosphorylation of IFN regulatory factor 3 (IRF3). Gαi1/3 knockdown in bone marrow-derived macrophage cells (Gαi1/3 KD BMDMs) exhibited an M2-like phenotype with significantly suppressed production of TNF-α, IL-6, IL-12, and NO in response to LPS. The altered polarization coincided with decreased Akt activation. Further, Gαi1/3 deficiency caused LPS tolerance in mice. In vitro studies revealed that, in LPS-tolerant macrophages, Gαi1/3 were down-regulated partially by the proteasome pathway. Collectively, the present findings demonstrated that Gαi1/3 can interact with CD14/Gab1, which modulates macrophage polarization in vitro and in vivo.
Collapse
|
15
|
Bondarenko AI. Endothelial atypical cannabinoid receptor: do we have enough evidence? Br J Pharmacol 2014; 171:5573-88. [PMID: 25073723 PMCID: PMC4290703 DOI: 10.1111/bph.12866] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1 , non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, O.O.Bogomoletz Institute of PhysiologyKiev, Ukraine
- Institute of Molecular Biology and Biochemistry, Medical University of GrazGraz, Austria
| |
Collapse
|
16
|
Raeven RHM, Brummelman J, Pennings JLA, Nijst OEM, Kuipers B, Blok LER, Helm K, van Riet E, Jiskoot W, van Els CACM, Han WGH, Kersten GFA, Metz B. Molecular signatures of the evolving immune response in mice following a Bordetella pertussis infection. PLoS One 2014; 9:e104548. [PMID: 25137043 PMCID: PMC4138111 DOI: 10.1371/journal.pone.0104548] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022] Open
Abstract
Worldwide resurgence of pertussis necessitates the need for improvement of pertussis vaccines and vaccination strategies. Since natural infections induce a longer-lasting immunity than vaccinations, detailed knowledge of the immune responses following natural infection can provide important clues for such improvement. The purpose was to elucidate the kinetics of the protective immune response evolving after experimental Bordetella pertussis (B. pertussis) infection in mice. Data were collected from (i) individual analyses, i.e. microarray, flow cytometry, multiplex immunoassays, and bacterial clearance; (ii) twelve time points during the infection; and (iii) different tissues involved in the immune responses, i.e. lungs, spleen and blood. Combined data revealed detailed insight in molecular and cellular sequence of events connecting different phases (innate, bridging and adaptive) of the immune response following the infection. We detected a prolonged acute phase response, broad pathogen recognition, and early gene signatures of subsequent T-cell recruitment in the lungs. Activation of particular transcription factors and specific cell markers provided insight into the time course of the transition from innate towards adaptive immune responses, which resulted in a broad spectrum of systemic antibody subclasses and splenic Th1/Th17 memory cells against B. pertussis. In addition, signatures preceding the local generation of Th1 and Th17 cells as well as IgA in the lungs, considered key elements in protection against B. pertussis, were established. In conclusion, molecular and cellular immunological processes in response to live B. pertussis infection were unraveled, which may provide guidance in selecting new vaccine candidates that should evoke local and prolonged protective immune responses.
Collapse
Affiliation(s)
- René H. M. Raeven
- Intravacc, Bilthoven, The Netherlands
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jeroen L. A. Pennings
- Centre for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Betsy Kuipers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Kina Helm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Cecile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Wanda G. H. Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Gideon F. A. Kersten
- Intravacc, Bilthoven, The Netherlands
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | | |
Collapse
|
17
|
Willinger T, Ferguson SM, Pereira JP, De Camilli P, Flavell RA. Dynamin 2-dependent endocytosis is required for sustained S1PR1 signaling. ACTA ACUST UNITED AC 2014; 211:685-700. [PMID: 24638168 PMCID: PMC3978280 DOI: 10.1084/jem.20131343] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endocytosis regulator dynamin 2 is required for the regulation of S1PR1 internalization and continued S1PR1 signaling in low S1P environments. Sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) is critical for lymphocyte egress from lymphoid organs. Lymphocytes encounter low S1P concentrations near exit sites before transmigration, yet S1PR1 signaling is rapidly terminated after exposure to S1P. How lymphocytes maintain S1PR1 signaling in a low S1P environment near egress sites is unknown. Here we identify dynamin 2, an essential component of endocytosis, as a novel regulator of T cell egress. Mice with T cell–specific dynamin 2 deficiency had profound lymphopenia and impaired egress from lymphoid organs. Dynamin 2 deficiency caused impaired egress through regulation of S1PR1 signaling, and transgenic S1PR1 overexpression rescued egress in dynamin 2 knockout mice. In low S1P concentrations, dynamin 2 was essential for S1PR1 internalization, which enabled continuous S1PR1 signaling and promoted egress from both thymus and lymph nodes. In contrast, dynamin 2–deficient cells were only capable of a pulse of S1PR1 signaling, which was insufficient for egress. Our results suggest a possible mechanism by which T lymphocytes positioned at exit portals sense low S1P concentrations, promoting their egress into circulatory fluids.
Collapse
Affiliation(s)
- Tim Willinger
- Department of Immunobiology, 2 Department of Cell Biology, 3 Program in Cellular Neuroscience, Neurodegeneration, and Repair, and 4 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| | | | | | | | | |
Collapse
|
18
|
Vaessen SFC, Bruysters MWP, Vandebriel RJ, Verkoeijen S, Bos R, Krul CAM, Akkermans AM. Toward a mechanism-based in vitro safety test for pertussis toxin. Hum Vaccin Immunother 2014; 10:1391-5. [PMID: 24553455 DOI: 10.4161/hv.28001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pertussis vaccines are routinely administered to infants to protect them from whooping cough. Still, an adequate safety test for pertussis toxin (PT), one of the main antigens in these vaccines, is not available. The histamine sensitization test is currently the only assay accepted by regulatory authorities to test for the absence of active PT in vaccines. This is however, a lethal animal test with poor reproducibility. In addition, it is not clear whether the assumed underlying mechanism, i.e., ADP-ribosylation of G proteins, is the only effect that should be considered in safety evaluation of PT. The in vitro safety test for PT that we developed is based on the clinical effects of PT in humans. For this, human cell lines were chosen based on the cell types involved in the clinical effects of PT. These cell lines were exposed to PT and analyzed by microarray. In this review, we discuss the clinical effects of PT and the mechanisms that underlie them. The approach taken may provide as an example for other situations in which an in vitro assay based on clinical effects in humans is required.
Collapse
Affiliation(s)
- Stefan F C Vaessen
- Research Centre Technology & Innovation; Innovative testing in Life sciences and Chemistry; University of Applied Sciences; Utrecht, the Netherlands
| | - Martijn W P Bruysters
- Center for Health Protection; National Institute for Public Health and the Environment; Bilthoven, the Netherlands
| | - Rob J Vandebriel
- Center for Health Protection; National Institute for Public Health and the Environment; Bilthoven, the Netherlands
| | - Saertje Verkoeijen
- Research Centre Technology & Innovation; Innovative testing in Life sciences and Chemistry; University of Applied Sciences; Utrecht, the Netherlands
| | - Rogier Bos
- Central Committee on Research Involving Human Subjects; Den Haag, the Netherlands
| | - Cyrille A M Krul
- Research Centre Technology & Innovation; Innovative testing in Life sciences and Chemistry; University of Applied Sciences; Utrecht, the Netherlands
| | - Arnoud M Akkermans
- Center for Health Protection; National Institute for Public Health and the Environment; Bilthoven, the Netherlands
| |
Collapse
|
19
|
Role of 8-nitro-cGMP and its redox regulation in cardiovascular electrophilic signaling. J Mol Cell Cardiol 2014; 73:10-7. [PMID: 24530900 DOI: 10.1016/j.yjmcc.2014.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 12/11/2022]
Abstract
Structural and morphological changes of the cardiovascular systems (cardiovascular remodeling) are a major clinical outcome of cardiovascular diseases. Many lines of evidences have implied that transfiguration of reduction/oxidation (redox) homeostasis due to excess production of reactive oxygen species (ROS) and/or ROS-derived electrophilic metabolites (electrophiles) is the main cause of cardiovascular remodeling. Gasotransmitters, such as nitric oxide (NO) and endogenous electrophiles, are considered major bioactive species and have been extensively studied in the context of physiological and pathological cardiovascular events. We have recently found that hydrogen sulfide-related reactive species function as potent nucleophiles to eliminate electrophilic modification of signaling proteins induced by NO-derived electrophilic byproducts (e.g., 8-nitroguanosine 3',5'-cyclic monophosphate and nitro-oleic acid). In this review, we discuss the current understanding of redox control of cardiovascular pathophysiology by electrophiles and nucleophiles. We propose that modulation of electrophile-mediated post-translational modification of protein cysteine thiols may be a new therapeutic strategy of cardiovascular diseases. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
|
20
|
Moreno G, Errea A, Van Maele L, Roberts R, Léger H, Sirard JC, Benecke A, Rumbo M, Hozbor D. Toll-like receptor 4 orchestrates neutrophil recruitment into airways during the first hours of Bordetella pertussis infection. Microbes Infect 2013; 15:708-18. [DOI: 10.1016/j.micinf.2013.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 01/16/2023]
|
21
|
The virulence factors of Bordetella pertussis: talented modulators of host immune response. Arch Immunol Ther Exp (Warsz) 2013; 61:445-57. [PMID: 23955529 DOI: 10.1007/s00005-013-0242-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 08/04/2013] [Indexed: 01/05/2023]
Abstract
Approximately 40 million whooping cough cases and between 200,000 and 400,000 pertussis-linked deaths are recorded each year. Although several types of vaccines are licensed and widely used, Bordetella pertussis continues to circulate in populations with high vaccine coverage of infants and children due to the waning of protection induced by the vaccination. B. pertussis typically expresses a wide array of virulence factors which promote bacterial adhesion and invasion by altering the local environment, including pertussis toxin, tracheal cytotoxin, adenylate cyclase toxin, filamentous hemagglutinin, and the lipooligosaccharide. The virulence factors of B. pertussis also possess immunomodulatory properties, exerted through their enzymatic and receptor-binding activities. Both pro- and anti-inflammatory effects are mediated, that can subvert host innate and adaptive immunity and favor the onset of a long-term infection. This review describes the capacities of B. pertussis virulence factors to modulate host immune responses and the mechanisms employed, which have been the subject of extensive research in the recent years, both in murine and human experimental systems. Knowledge of these mechanisms is gaining increasing importance, since it could provide in the near future the basis for the identification of therapeutic agents for modulating the immune system as well as novel molecular targets to treat pertussis.
Collapse
|
22
|
Alexander DB, Iigo M, Yamauchi K, Suzui M, Tsuda H. Lactoferrin: an alternative view of its role in human biological fluids. Biochem Cell Biol 2012; 90:279-306. [PMID: 22553915 DOI: 10.1139/o2012-013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lactoferrin is a major component of biologically important mucosal fluids and of the specific granules of neutrophils. Understanding its biological function is essential for understanding neutrophil- and mucosal-mediated immunity. In this review, we reevaluate the in vivo functions of human lactoferrin (hLF) emphasizing in vivo studies and in vitro studies performed in biologically relevant fluids. We discuss the evidence in the literature that supports (or does not support) proposed roles for hLF in mucosal immunity and in neutrophil function. We argue that the current literature supports a microbiostatic role, but not a microbicidal role, for hLF in vivo. The literature also supports a role for hLF in inhibiting colonization and infection of epithelial surfaces by microorganisms and in protecting tissues from neutrophil-mediated damage. Using this information, we briefly discuss hLF in the context of the complex biological fluids in which it is found.
Collapse
Affiliation(s)
- David B Alexander
- Laboratory of Nanotoxicology Project, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya 467-8603, Japan.
| | | | | | | | | |
Collapse
|
23
|
Zhang W, Chen XF, Huang YJ, Chen QQ, Bao YJ, Zhu W. 2,3,4′,5-Tetrahydroxystilbene-2-O-β-d-glucoside inhibits angiotensin II-induced cardiac fibroblast proliferation via suppression of the reactive oxygen species-extracellular signal-regulated kinase 1/2 pathway. Clin Exp Pharmacol Physiol 2012; 39:429-37. [DOI: 10.1111/j.1440-1681.2012.05692.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Zhang
- Department of Pharmacology; Nantong University Medical College; Nantong; China
| | - Xiang-Fan Chen
- Department of Pharmacology; Nantong University Medical College; Nantong; China
| | - Yan-Juan Huang
- Department of Pharmacology; Nantong University Medical College; Nantong; China
| | - Qing-Qing Chen
- Department of Pharmacology; Nantong University Medical College; Nantong; China
| | - Yuan-Jian Bao
- Department of Pharmacology; Nantong University Medical College; Nantong; China
| | - Weizhong Zhu
- Department of Pharmacology; Nantong University Medical College; Nantong; China
| |
Collapse
|
24
|
Franchi S, Moretti S, Castelli M, Lattuada D, Scavullo C, Panerai AE, Sacerdote P. Mu opioid receptor activation modulates Toll like receptor 4 in murine macrophages. Brain Behav Immun 2012; 26:480-8. [PMID: 22240038 DOI: 10.1016/j.bbi.2011.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 12/13/2022] Open
Abstract
Opioids have been shown to affect both innate and adaptive immunity. We previously showed that morphine affects the macrophage production of pro-inflammatory cytokines after LPS in a NFkB dependent manner. Toll like receptors (TLRs) play a crucial role in the signaling pathways which lead to NFkB activation. TLR4 is considered the Lipopolysaccaride (LPS) receptor. The data here presented show that, in murine macrophages, morphine impacts on the immune function acting on the early step of pathogen recognition. Morphine, when added to RAW 264.7 cells and when injected into mice (s.c. 20mg/kg) is in fact able to decrease TLR4 both at mRNA and protein level in RAW cells and peritoneal macrophages. In the same cells, the mu opioid receptor (MOR) antagonist Naltrexone increases TLR4 levels, thus suggesting a role of the endogenous opioid system in TLR4 regulation. The effect of the two drugs is moreover lost in case of co-administration. Experiments with MOR KO mice and with DAMGO (MOR specific agonist) confirm that the effect of morphine on TLR4 mRNA in peritoneal macrophages is due to the MOR activation. Moreover the effect on TLR4 is blocked by PTX thus indicating the involvement of a G(i) protein after MOR binding. This work unveils a clear link between MOR activation and TLR4, suggesting a new possible mechanism at the basis of the peripheral immunosuppressive effect of opioids.
Collapse
Affiliation(s)
- Silvia Franchi
- Dipartimento di Farmacologia Chemioterapia e Tossicologia medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Wong MH, Chapin OC, Johnson MD. LPS-stimulated cytokine production in type I cells is modulated by the renin-angiotensin system. Am J Respir Cell Mol Biol 2011; 46:641-50. [PMID: 22205632 DOI: 10.1165/rcmb.2011-0289oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The alveolar epithelium serves as a barrier to the entry of potential respiratory pathogens. Alveolar Type II (TII) cells have immunomodulatory functions, but whether Type I (TI) cells, which comprise approximately 95% of the alveolar epithelium, also play a role in immunity is unknown. Because the renin-angiotensin system (RAS) is emerging as an important mediator of inflammation, and angiotensin-converting enzyme 2 (ACE2), an element of the RAS, has been implicated in lung injury, we hypothesize that TI cells can produce cytokines in response to LPS stimulation, and that this inflammation can be modulated by the RAS. Alveolar TI cells were isolated from adult Sprague-Dawley rat lungs that had been injured with an intratracheal instillation of LPS. PCR was performed to determine whether TI cells expressed transcripts for TNF-α, IL-6, or IL-1β at baseline and after lung injury. Immunocytochemical and protein analysis detected angiotensin II (Ang II) and ACE2, as well as angiotensin Type 1 receptor (AT1R) and Type 2 receptor (AT2R), in TI cells. To separate cell-specific responses, primary TI cells were isolated, cultured, and exposed to LPS, Ang II, or specific inhibitors of AT1R or AT2R. Cytokine production was assayed by ELISA. LPS stimulated the production of all cytokines, whereas ACE2 and losartan, an AT1R inhibitor, blocked elements of the LPS-induced cytokine response. Primary TI cells produce cytokines when treated with LPS, contain important components of the RAS, and can modulate LPS-induced cytokine production via the RAS, suggesting a role for TI cells in the innate immune response of the lung.
Collapse
Affiliation(s)
- Mandi H Wong
- San Francisco VA Medical Center, 4150 Clement St., San Francisco, CA 94121, USA
| | | | | |
Collapse
|
26
|
Nishida M. Roles of heterotrimeric GTP-binding proteins in the progression of heart failure. J Pharmacol Sci 2011; 117:1-5. [PMID: 21821969 DOI: 10.1254/jphs.11r05cp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Heart failure is a major cause of death in developed countries, and the development of an epoch-making cure is desired from the viewpoint for improving the quality of life and reducing the medical cost of the patient. The importance of neurohumoral factors, such as angiotensin (Ang) II and catecholamine, for the progression of heart failure has been supported by a variety of evidence. These agonists stimulate seven transmembrane-spanning receptors that are coupled to heterotrimeric GTP-binding proteins (G proteins). Using specific pharmacological tools to assess the involvement of G protein signaling pathways, we have revealed that α subunit of G(q) (Gα(q)) activates Ca(2+)-dependent hypertrophic signaling through diacylglycerol-activated transient receptor potential canonical (TRPC) channels (TRPC3 and TRPC6: TRPC3/6). In contrast, activation of Gα(12) family proteins in cardiomyocytes confers pressure overload-induced cardiac fibrosis via stimulation of purinergic P2Y(6) receptors induced by extracellular nucleotides released from cardiomyocytes. In fact, direct or indirect inhibition of TRPC3/6 or P2Y(6) receptors attenuates pressure overload-induced cardiac dysfunction. These findings will provide a new insight into the molecular mechanisms underlying pathogenesis of heart failure.
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan.
| |
Collapse
|
27
|
Nishida M, Kitajima N, Saiki S, Nakaya M, Kurose H. Regulation of Angiotensin II receptor signaling by cysteine modification of NF-κB. Nitric Oxide 2011; 25:112-7. [DOI: 10.1016/j.niox.2010.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|
28
|
Mangmool S, Kurose H. G(i/o) protein-dependent and -independent actions of Pertussis Toxin (PTX). Toxins (Basel) 2011; 3:884-99. [PMID: 22069745 PMCID: PMC3202852 DOI: 10.3390/toxins3070884] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/22/2022] Open
Abstract
Pertussis toxin (PTX) is a typical A-B toxin. The A-protomer (S1 subunit) exhibits ADP-ribosyltransferase activity. The B-oligomer consists of four subunits (S2 to S5) and binds extracellular molecules that allow the toxin to enter the cells. The A-protomer ADP-ribosylates the α subunits of heterotrimeric Gi/o proteins, resulting in the receptors being uncoupled from the Gi/o proteins. The B-oligomer binds proteins expressed on the cell surface, such as Toll-like receptor 4, and activates an intracellular signal transduction cascade. Thus, PTX modifies cellular responses by at least two different signaling pathways; ADP-ribosylation of the Gαi/o proteins by the A-protomer (Gi/o protein-dependent action) and the interaction of the B-oligomer with cell surface proteins (Gi/o protein-independent action).
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhaya, Rajathevi, Bangkok 10400, Thailand;
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Author to whom correspondence should be addressed; ; Tel.: +81-92-642-6884; Fax: +81-92-642-6884
| |
Collapse
|
29
|
Heterologous down-regulation of angiotensin type 1 receptors by purinergic P2Y2 receptor stimulation through S-nitrosylation of NF-kappaB. Proc Natl Acad Sci U S A 2011; 108:6662-7. [PMID: 21464294 DOI: 10.1073/pnas.1017640108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cross-talk between G protein-coupled receptor (GPCR) signaling pathways serves to fine tune cellular responsiveness by neurohumoral factors. Accumulating evidence has implicated nitric oxide (NO)-based signaling downstream of GPCRs, but the molecular details are unknown. Here, we show that adenosine triphosphate (ATP) decreases angiotensin type 1 receptor (AT(1)R) density through NO-mediated S-nitrosylation of nuclear factor κB (NF-κB) in rat cardiac fibroblasts. Stimulation of purinergic P2Y(2) receptor by ATP increased expression of inducible NO synthase (iNOS) through activation of nuclear factor of activated T cells, NFATc1 and NFATc3. The ATP-induced iNOS interacted with p65 subunit of NF-κB in the cytosol through flavin-binding domain, which was indispensable for the locally generated NO-mediated S-nitrosylation of p65 at Cys38. β-Arrestins anchored the formation of p65/IκBα/β-arrestins/iNOS quaternary complex. The S-nitrosylated p65 resulted in decreases in NF-κB transcriptional activity and AT(1)R density. In pressure-overloaded mouse hearts, ATP released from cardiomyocytes led to decrease in AT(1)R density through iNOS-mediated S-nitrosylation of p65. These results show a unique regulatory mechanism of heterologous regulation of GPCRs in which cysteine modification of transcriptional factor rather than protein phosphorylation plays essential roles.
Collapse
|
30
|
|
31
|
Fan H, Li P, Zingarelli B, Borg K, Halushka PV, Birnbaumer L, Cook JA. Heterotrimeric Gα(i) proteins are regulated by lipopolysaccharide and are anti-inflammatory in endotoxemia and polymicrobial sepsis. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:466-72. [PMID: 21255617 PMCID: PMC3046305 DOI: 10.1016/j.bbamcr.2011.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 11/17/2022]
Abstract
Previous studies have implicated a role of heterotrimeric Gα(i) proteins in lipopolysaccharide (LPS)-induced inflammatory responses. We hypothesized that Toll-like receptor (TLR) signaling regulates Gα(i) proteins, which are anti-inflammatory in endotoxemia and polymicrobial sepsis. RAW 264.7 cells were stimulated with LPS and the Gα(i)-GTP protein complex was immunoprecipitated with a Gα(i) protein activation assay. In subsequent in vivo studies, the Gα(i) protein inhibitor pertussis toxin (PTx) or G(i) protein agonist mastoparan (MP-7) were administrated prior to endotoxemia. LPS-induced pro-inflammatory cytokines and mortality were determined. To examine the role of Gα(i2) in sepsis, Gα(i2) (-/-) and wildtype (WT) mice were subjected to cecal ligation and puncture (CLP) and monitored every 24 h for 120 h. Other mice were sacrificed 24 h after CLP. Peritoneal fluid, blood, and tissue samples were collected. Plasma pro-inflammatory cytokine production, bacterial load in peritoneal fluid, blood and lung tissue, myeloperoxidase (MPO) activity in lung and liver and different immune cell populations in spleen were studied. We found that Gα(i) proteins are rapidly activated by LPS followed by rapid inactivation. These studies provide the first direct evidence that Gα(i) proteins are modulated by TLR signaling. In following studies, PTx augmented LPS-induced plasma TNFα, IL-6, whereas MP-7 suppressed LPS-induced TNFα and decreased LPS-induced mortality. In sepsis studies, the survival rate post-CLP was significantly decreased in the Gα(i2) (-/-) mice compared to WT mice. CLP-induced plasma TNFα, IL-6, bacterial load in peritoneal fluid, blood and lung tissue and lung and liver MPO activity were significantly increased in Gα(i2) (-/-) compared to WT mice. Gα(i2) (-/-) mice also exhibited increased Th1 and Th2 responses compared to WT mice. Taken together, Gα(i) proteins are activated by LPS and negatively regulate endotoxemia and sepsis. Understanding the role of Gα(i2) protein in regulation of the inflammatory response in sepsis may provide novel targets for treatment of sepsis.
Collapse
Affiliation(s)
- Hongkuan Fan
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|