1
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
2
|
Mialet-Perez J, Belaidi E. Interplay between hypoxia inducible Factor-1 and mitochondria in cardiac diseases. Free Radic Biol Med 2024; 221:13-22. [PMID: 38697490 DOI: 10.1016/j.freeradbiomed.2024.04.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Ischemic heart diseases and cardiomyopathies are characterized by hypoxia, energy starvation and mitochondrial dysfunction. HIF-1 acts as a cellular oxygen sensor, tuning the balance of metabolic and oxidative stress pathways to provide ATP and sustain cell survival. Acting on mitochondria, HIF-1 regulates different processes such as energy substrate utilization, oxidative phosphorylation and mitochondrial dynamics. In turn, mitochondrial homeostasis modifications impact HIF-1 activity. This underlies that HIF-1 and mitochondria are tightly interconnected to maintain cell homeostasis. Despite many evidences linking HIF-1 and mitochondria, the mechanistic insights are far from being understood, particularly in the context of cardiac diseases. Here, we explore the current understanding of how HIF-1, reactive oxygen species and cell metabolism are interconnected, with a specific focus on mitochondrial function and dynamics. We also discuss the divergent roles of HIF in acute and chronic cardiac diseases in order to highlight that HIF-1, mitochondria and oxidative stress interaction deserves to be deeply investigated. While the strategies aiming at stabilizing HIF-1 have provided beneficial effects in acute ischemic injury, some deleterious effects were observed during prolonged HIF-1 activation. Thus, deciphering the link between HIF-1 and mitochondria will help to optimize HIF-1 modulation and provide new therapeutic perspectives for the treatment of cardiovascular pathologies.
Collapse
Affiliation(s)
- Jeanne Mialet-Perez
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France
| | - Elise Belaidi
- Univ. Lyon 1, Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, LBTI UMR 5305, 69367, Lyon, France.
| |
Collapse
|
3
|
Yuan X, Ruan W, Bobrow B, Carmeliet P, Eltzschig HK. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2024; 23:175-200. [PMID: 38123660 DOI: 10.1038/s41573-023-00848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that are crucial for adaptation of metazoans to limited oxygen availability. Recently, HIF activation and inhibition have emerged as therapeutic targets in various human diseases. Pharmacologically desirable effects of HIF activation include erythropoiesis stimulation, cellular metabolism optimization during hypoxia and adaptive responses during ischaemia and inflammation. By contrast, HIF inhibition has been explored as a therapy for various cancers, retinal neovascularization and pulmonary hypertension. This Review discusses the biochemical mechanisms that control HIF stabilization and the molecular strategies that can be exploited pharmacologically to activate or inhibit HIFs. In addition, we examine medical conditions that benefit from targeting HIFs, the potential side effects of HIF activation or inhibition and future challenges in this field.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Anaesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bentley Bobrow
- Department of Emergency Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
4
|
Wu X, Cap AP, Bynum JA, Chance TC, Darlington DN, Meledeo MA. Prolyl hydroxylase domain inhibitor is an effective pre-hospital pharmaceutical intervention for trauma and hemorrhagic shock. Sci Rep 2024; 14:3874. [PMID: 38365865 PMCID: PMC10873291 DOI: 10.1038/s41598-024-53945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Pre-hospital potentially preventable trauma related deaths are mainly due to hypoperfusion-induced tissue hypoxia leading to irreversible organ dysfunction at or near the point of injury or during transportation prior to receiving definitive therapy. The prolyl hydroxylase domain (PHD) is an oxygen sensor that regulates tissue adaptation to hypoxia by stabilizing hypoxia inducible factor (HIF). The benefit of PHD inhibitors (PHDi) in the treatment of anemia and lactatemia arises from HIF stabilization, which stimulates endogenous production of erythropoietin and activates lactate recycling through gluconeogenesis. The results of this study provide insight into the therapeutic roles of MK-8617, a pan-inhibitor of PHD-1, 2, and 3, in the mitigation of lactatemia in anesthetized rats with polytrauma and hemorrhagic shock. Additionally, in an anesthetized rat model of lethal decompensated hemorrhagic shock, acute administration of MK-8617 significantly improves one-hour survival and maintains survival at least until 4 h following limited resuscitation with whole blood (20% EBV) at one hour after hemorrhage. This study suggests that pharmaceutical interventions to inhibit prolyl hydroxylase activity can be used as a potential pre-hospital countermeasure for trauma and hemorrhage at or near the point of injury.
Collapse
Affiliation(s)
- Xiaowu Wu
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA.
| | - Andrew P Cap
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| | - James A Bynum
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tiffani C Chance
- Department of Health and Human Services, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniel N Darlington
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| | - Michael A Meledeo
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| |
Collapse
|
5
|
Ullah K, Ai L, Humayun Z, Wu R. Targeting Endothelial HIF2α/ARNT Expression for Ischemic Heart Disease Therapy. BIOLOGY 2023; 12:995. [PMID: 37508425 PMCID: PMC10376750 DOI: 10.3390/biology12070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Ischemic heart disease (IHD) is a major cause of mortality and morbidity worldwide, with novel therapeutic strategies urgently needed. Endothelial dysfunction is a hallmark of IHD, contributing to its development and progression. Hypoxia-inducible factors (HIFs) are transcription factors activated in response to low oxygen levels, playing crucial roles in various pathophysiological processes related to cardiovascular diseases. Among the HIF isoforms, HIF2α is predominantly expressed in cardiac vascular endothelial cells and has a key role in cardiovascular diseases. HIFβ, also known as ARNT, is the obligate binding partner of HIFα subunits and is necessary for HIFα's transcriptional activity. ARNT itself plays an essential role in the development of the cardiovascular system, regulating angiogenesis, limiting inflammatory cytokine production, and protecting against cardiomyopathy. This review provides an overview of the current understanding of HIF2α and ARNT signaling in endothelial cell function and dysfunction and their involvement in IHD pathogenesis. We highlight their roles in inflammation and maintaining the integrity of the endothelial barrier, as well as their potential as therapeutic targets for IHD.
Collapse
Affiliation(s)
- Karim Ullah
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Lizhuo Ai
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zainab Humayun
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Ollonen T, Kurkela M, Laitakari A, Sakko S, Koivisto H, Myllyharju J, Tanila H, Serpi R, Koivunen P. Activation of the hypoxia response protects mice from amyloid-β accumulation. Cell Mol Life Sci 2022; 79:432. [PMID: 35852609 PMCID: PMC9296391 DOI: 10.1007/s00018-022-04460-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia with limited treatment options affecting millions of people and the prevalence increasing with the aging population. The current knowledge on the role of the hypoxia/hypoxia-inducible factor (HIF) in the AD pathology is restricted and controversial. We hypothesized based on benefits of the genetic long-term inactivation of HIF prolyl 4-hydroxylase-2 (HIF-P4H-2) on metabolism, vasculature and inflammatory response that prolonged moderate activation of the hypoxia response could hinder AD pathology. We used an aging model to study potential spontaneous accumulation of amyloid-β (Aβ) in HIF-P4H-2-deficient mice and a transgenic APP/PSEN1 mouse model subjected to prolonged sustained environmental hypoxia (15% O2 for 6 weeks) at two different time points of the disease; at age of 4 and 10 months. In both settings, activation of the hypoxia response reduced brain protein aggregate levels and this associated with higher vascularity. In the senescent HIF-P4H-2-deficient mice metabolic reprogramming also contributed to less protein aggregates while in APP/PSEN1 mice lesser Aβ associated additionally with hypoxia-mediated favorable responses to neuroinflammation and amyloid precursor protein processing. In conclusion, continuous, non-full-scale activation of the HIF pathway appears to mediate protection against neurodegeneration via several mechanisms and should be studied as a treatment option for AD.
Collapse
Affiliation(s)
- Teemu Ollonen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Margareta Kurkela
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Anna Laitakari
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Samuli Sakko
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Henna Koivisto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland.
| |
Collapse
|
7
|
Tapio J, Halmetoja R, Dimova EY, Mäki JM, Laitala A, Walkinshaw G, Myllyharju J, Serpi R, Koivunen P. Contribution of HIF-P4H isoenzyme inhibition to metabolism indicates major beneficial effects being conveyed by HIF-P4H-2 antagonism. J Biol Chem 2022; 298:102222. [PMID: 35787374 PMCID: PMC9352911 DOI: 10.1016/j.jbc.2022.102222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs 1-3) are druggable targets in renal anemia, where pan-HIF-P4H inhibitors induce an HIF-mediated erythropoietic response. HIF is also a potent regulator of energy metabolism. Preclinical data suggest that HIF-P4Hs could also be treatment targets for metabolic dysfunction, although the contributions of the isoenzymes and various tissues to the metabolic phenotype are inadequately understood. We used mouse lines that were gene-deficient for HIF-P4Hs 1-3 and two preclinical pan-HIF-P4H inhibitors to study the contributions of the isoenzymes to the anthropometric and metabolic outcome and HIF response. Both inhibitors induced the HIF response in wild-type white adipose tissue (WAT), liver and skeletal muscle and alleviated metabolic dysfunction during a six-week treatment period, but they did not alter healthy metabolism. Our data show that HIF-P4H-1 contributed especially to skeletal muscle and WAT metabolism and that its loss lowered body weight and serum cholesterol levels upon aging. HIF-P4H-3-mediated effects on the liver and WAT and its loss increased body weight, adiposity, liver weight and triglyceride levels, WAT inflammation and cholesterol levels and resulted in hyperglycemia and insulin resistance, especially upon aging. HIF-P4H-2 contributed to all the tissues studied and its inhibition lowered body and liver weight and serum cholesterol levels and improved glucose tolerance. There was specificity in the regulation of metabolic HIF target mRNAs in tissues, very few being regulated by the inhibition of all isoenzymes, thus suggesting a potential for selective therapeutic tractability. Altogether, these data provide specifications for the development of HIF-P4H inhibitors for metabolic diseases.
Collapse
Affiliation(s)
- Joona Tapio
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Riikka Halmetoja
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Joni M Mäki
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Anu Laitala
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | | | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland; Faculty of Medicine, University of Oulu, Oulu, Finland. Biobank Borealis of Northern Finland, Oulu University Hospital, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| |
Collapse
|
8
|
Röning T, Magga J, Laitakari A, Halmetoja R, Tapio J, Dimova EY, Szabo Z, Rahtu-Korpela L, Kemppi A, Walkinshaw G, Myllyharju J, Kerkelä R, Koivunen P, Serpi R. Activation of the hypoxia response pathway protects against age-induced cardiac hypertrophy. J Mol Cell Cardiol 2021; 164:148-155. [PMID: 34919895 DOI: 10.1016/j.yjmcc.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
AIMS We have previously demonstrated protection against obesity, metabolic dysfunction, atherosclerosis and cardiac ischemia in a hypoxia-inducible factor (HIF) prolyl 4-hydroxylase-2 (Hif-p4h-2) deficient mouse line, attributing these protective effects to activation of the hypoxia response pathway in a normoxic environment. We intended here to find out whether the Hif-p4h-2 deficiency affects the cardiac health of these mice upon aging. METHODS AND RESULTS When the Hif-p4h-2 deficient mice and their wild-type littermates were monitored during normal aging, the Hif-p4h-2 deficient mice had better preserved diastolic function than the wild type at one year of age and less cardiomyocyte hypertrophy at two years. On the mRNA level, downregulation of hypertrophy-associated genes was detected and shown to be associated with upregulation of Notch signaling, and especially of the Notch target gene and transcriptional repressor Hairy and enhancer-of-split-related basic helix-loop-helix (Hey2). Blocking of Notch signaling in cardiomyocytes isolated from Hif-p4h-2 deficient mice with a gamma-secretase inhibitor led to upregulation of the hypertrophy-associated genes. Also, targeting Hey2 in isolated wild-type rat neonatal cardiomyocytes with siRNA led to upregulation of hypertrophic genes and increased leucine incorporation indicative of increased protein synthesis and hypertrophy. Finally, oral treatment of wild-type mice with a small molecule inhibitor of HIF-P4Hs phenocopied the effects of Hif-p4h-2 deficiency with less cardiomyocyte hypertrophy, upregulation of Hey2 and downregulation of the hypertrophy-associated genes. CONCLUSIONS These results indicate that activation of the hypoxia response pathway upregulates Notch signaling and its target Hey2 resulting in transcriptional repression of hypertrophy-associated genes and less cardiomyocyte hypertrophy. This is eventually associated with better preserved cardiac function upon aging. Activation of the hypoxia response pathway thus has therapeutic potential for combating age-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Tapio Röning
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Johanna Magga
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Anna Laitakari
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Riikka Halmetoja
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Joona Tapio
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Zoltan Szabo
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Lea Rahtu-Korpela
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Anna Kemppi
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | | - Johanna Myllyharju
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| | - Raisa Serpi
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland; Faculty of Medicine, University of Oulu, Oulu, Finland; Biobank Borealis of Northern Finland, Oulu University Hospital, Finland
| |
Collapse
|
9
|
Jiang Y, Duan LJ, Fong GH. Oxygen-sensing mechanisms in development and tissue repair. Development 2021; 148:273632. [PMID: 34874450 DOI: 10.1242/dev.200030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under normoxia, hypoxia inducible factor (HIF) α subunits are hydroxylated by PHDs (prolyl hydroxylase domain proteins) and subsequently undergo polyubiquitylation and degradation. Normal embryogenesis occurs under hypoxia, which suppresses PHD activities and allows HIFα to stabilize and regulate development. In this Primer, we explain molecular mechanisms of the oxygen-sensing pathway, summarize HIF-regulated downstream events, discuss loss-of-function phenotypes primarily in mouse development, and highlight clinical relevance to angiogenesis and tissue repair.
Collapse
Affiliation(s)
- Yida Jiang
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Li-Juan Duan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
10
|
Deng W, Jin Q, Li L. Protective mechanism of demethylase fat mass and obesity-associated protein in energy metabolism disorder of hypoxia-reoxygenation-induced cardiomyocytes. Exp Physiol 2021; 106:2423-2433. [PMID: 34713923 DOI: 10.1113/ep089901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect of fat mass and obesity-associated protein (FTO) on energy metabolism in hypoxia-reoxygenation (H/R)-induced cardiomyocytes? What is the main finding and its importance? FTO modification of N6 -methyladenosine (m6 A) is associated with myocardial cell energy metabolism disorder. FTO reduced the m6 A level of sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a) mRNA through demethylation, thus promoting SERCA2a expression, maintaining calcium homeostasis, and improving energy metabolism of H/R cardiomyocytes. ABSTRACT Energy metabolism disorder is the initial physiological link of myocardial ischaemia-reperfusion injury. Fat mass and obesity-associated protein (FTO) is an N6 -methyladenosine (m6 A) demethylase implicated in several cardiac defects. This study sought to investigate the effect of FTO on energy metabolism in hypoxia-reoxygenation (H/R)-induced cardiomyocytes. FTO and sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a) expression in H/R-induced cardiomyocytes were determined. Cardiomyocyte viability, cytotoxicity and apoptosis were measured. The total RNA and polyA+ RNA contents were isolated from cells. The m6 A level of RNA and the enrichment of m6 A of SERCA2a mRNA were calculated. Several indices such as the glycolytic potential, reactive oxygen species (ROS), mitochondrial activity and ATP content were evaluated. The concentration of calcium in cardiomyocytes was determined. FTO and SERCA2a were poorly expressed in H/R-induced cardiomyocytes. There was an elevated m6 A level in total RNA and enrichment of m6 A in SERCA2a mRNA. H/R treatment reduced the cell viability, mitochondrial membrane potential and ATP content in cardiomyocytes, but increased the cytotoxicity, apoptosis, ROS content and calcium concentration. Upregulation of FTO reversed the preceding findings with downregulation of the m6 A level of SERCA2a mRNA. Downregulation of SERCA2a annulled the promoting effect of FTO on calcium homeostasis and energy metabolism in H/R-induced cardiomyocytes. Collectively, the current study demonstrated that FTO reduced the m6 A level on SERCA2a mRNA through demethylation, thus promoting SERCA2a expression, maintaining calcium homeostasis and improving the energy metabolism of H/R cardiomyocytes.
Collapse
Affiliation(s)
- Wenzheng Deng
- Department of Cardiology, Chenzhou First People's Hospital, Chenzhou, Hunan, China
| | - Qiao Jin
- Department of Cardiovascular Medicine, Nanhua University affiliated Changsha Central Hospital, Changsha, Hunan, China
| | - Liang Li
- Department of Cardiovascular Medicine, Nanhua University affiliated Changsha Central Hospital, Changsha, Hunan, China
| |
Collapse
|
11
|
Hirota K. HIF-α Prolyl Hydroxylase Inhibitors and Their Implications for Biomedicine: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9050468. [PMID: 33923349 PMCID: PMC8146675 DOI: 10.3390/biomedicines9050468] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Oxygen is essential for the maintenance of the body. Living organisms have evolved systems to secure an oxygen environment to be proper. Hypoxia-inducible factor (HIF) plays an essential role in this process; it is a transcription factor that mediates erythropoietin (EPO) induction at the transcriptional level under hypoxic environment. After successful cDNA cloning in 1995, a line of studies were conducted for elucidating the molecular mechanism of HIF activation in response to hypoxia. In 2001, cDNA cloning of dioxygenases acting on prolines and asparagine residues, which play essential roles in this process, was reported. HIF-prolyl hydroxylases (PHs) are molecules that constitute the core molecular mechanism of detecting a decrease in the partial pressure of oxygen, or hypoxia, in the cells; they can be called oxygen sensors. In this review, I discuss the process of molecular cloning of HIF and HIF-PH, which explains hypoxia-induced EPO expression; the development of HIF-PH inhibitors that artificially or exogenously activate HIF by inhibiting HIF-PH; and the significance and implications of medical intervention using HIF-PH inhibitors.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
12
|
Dengler F, Sova S, Salo AM, Mäki JM, Koivunen P, Myllyharju J. Expression and Roles of Individual HIF Prolyl 4-Hydroxylase Isoenzymes in the Regulation of the Hypoxia Response Pathway along the Murine Gastrointestinal Epithelium. Int J Mol Sci 2021; 22:4038. [PMID: 33919829 PMCID: PMC8070794 DOI: 10.3390/ijms22084038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
The HIF prolyl 4-hydroxylases (HIF-P4H) control hypoxia-inducible factor (HIF), a powerful mechanism regulating cellular adaptation to decreased oxygenation. The gastrointestinal epithelium subsists in "physiological hypoxia" and should therefore have an especially well-designed control over this adaptation. Thus, we assessed the absolute mRNA expression levels of the HIF pathway components, Hif1a, HIF2a, Hif-p4h-1, 2 and 3 and factor inhibiting HIF (Fih1) in murine jejunum, caecum and colon epithelium using droplet digital PCR. We found a higher expression of all these genes towards the distal end of the gastrointestinal tract. We detected mRNA for Hif-p4h-1, 2 and 3 in all parts of the gastrointestinal tract. Hif-p4h-2 had significantly higher expression levels compared to Hif-p4h-1 and 3 in colon and caecum epithelium. To test the roles each HIF-P4H isoform plays in the gut epithelium, we measured the gene expression of classical HIF target genes in Hif-p4h-1-/-, Hif-p4h-2 hypomorph and Hif-p4h-3-/- mice. Only Hif-p4h-2 hypomorphism led to an upregulation of HIF target genes, confirming a predominant role of HIF-P4H-2. However, the abundance of Hif-p4h-1 and 3 expression in the gastrointestinal epithelium implies that these isoforms may have specific functions as well. Thus, the development of selective inhibitors might be useful for diverging therapeutic needs.
Collapse
Affiliation(s)
- Franziska Dengler
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine, 1210 Vienna, Austria
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
- Institute of Veterinary Physiology, University of Leipzig, 04103 Leipzig, Germany
| | - Sofia Sova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| | - Antti M. Salo
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| | - Joni M. Mäki
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| | - Johanna Myllyharju
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| |
Collapse
|
13
|
Bennett HL, McClanahan PD, Fang-Yen C, Kalb RG. Preconditioning of Caenorhabditis elegans to anoxic insult by inactivation of cholinergic, GABAergic and muscle activity. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12713. [PMID: 33155386 DOI: 10.1111/gbb.12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 11/26/2022]
Abstract
For most metazoans, oxygen deprivation leads to cell dysfunction and if severe, death. Sublethal stress prior to a hypoxic or anoxic insult ("preconditioning") can protect cells from subsequent oxygen deprivation. The molecular mechanisms by which sublethal stress can buffer against a subsequent toxic insult and the role of the nervous system in the response are not well understood. We studied the role of neuronal activity preconditioning to oxygen deprivation in Caenorhabditis elegans. Animals expressing the histamine gated chloride channels (HisCl1) in select cell populations were used to temporally and spatially inactivate the nervous system or tissue prior to an anoxic insult. We find that inactivation of the nervous system for 3 h prior to the insult confers resistance to a 48-h anoxic insult in 4th-stage larval animals. Experiments show that this resistance can be attributed to loss of activity in cholinergic and GABAergic neurons as well as in body wall muscles. These observations indicate that the nervous system activity can mediate the organism's response to anoxia.
Collapse
Affiliation(s)
- Heather L Bennett
- Department of Pediatrics, Division of Neurology, Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biology, Reem-Kayden Center for Science and Computation, Bard College, New York, New York, USA
| | - Patrick D McClanahan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert G Kalb
- Department of Pediatrics, Division of Neurology, Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Abstract
Hypoxia-inducible factors (HIFs) are the key regulators of oxygen homeostasis in response to hypoxia. In diabetes, multiple tissues are hypoxic but adaptive responses to hypoxia are impaired due to insufficient activation of HIF signalling, which results from inhibition of HIF-1α stability and function due to hyperglycaemia and elevated fatty acid levels. In this review, we will summarise and discuss current findings about the regulation of HIF signalling in diabetes and the pathogenic roles of hypoxia and dysregulated HIF signalling in the development of diabetes and its complications. The therapeutic potential of targeting HIF signalling for the prevention and treatment of diabetes and related complications is also discussed.
Collapse
Affiliation(s)
- Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Department of Endocrinology and Diabetes, Karolinska University Hospital, Stockholm, Sweden.
- Center for Diabetes, Academic Specialist Centrum, Stockholm, Sweden.
| | - Xiaowei Zheng
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Transmembrane Prolyl 4-Hydroxylase is a Novel Regulator of Calcium Signaling in Astrocytes. eNeuro 2021; 8:ENEURO.0253-20.2020. [PMID: 33298456 PMCID: PMC7814479 DOI: 10.1523/eneuro.0253-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Prolyl 4-hydroxylases (P4Hs) have vital roles in regulating collagen synthesis and hypoxia response. A transmembrane P4H (P4H-TM) is a recently identified member of the family. Biallelic loss of function P4H-TM mutations cause a severe autosomal recessive intellectual disability syndrome in humans, but functions of P4H-TM are essentially unknown at cellular level. Our microarray data on P4h-tm -/- mouse cortexes where P4H-TM is abundantly expressed indicated expression changes in genes involved in calcium signaling and expression of several calcium sequestering ATPases was upregulated in P4h-tm -/- primary mouse astrocytes. Cytosolic and intraorganellar calcium imaging of P4h-tm -/- cells revealed that receptor-operated calcium entry (ROCE) and store-operated calcium entry (SOCE) and calcium re-uptake by mitochondria were compromised. HIF1, but not HIF2, was found to be a key mediator of the P4H-TM effect on calcium signaling. Furthermore, total internal reflection fluorescence (TIRF) imaging showed that calcium agonist-induced gliotransmission was attenuated in P4h-tm -/- astrocytes. This phenotype was accompanied by redistribution of mitochondria from distal processes to central parts of the cell body and decreased intracellular ATP content. Our data show that P4H-TM is a novel regulator of calcium dynamics and gliotransmission.
Collapse
|
16
|
Coyle RC, Barrs RW, Richards DJ, Ladd EP, Menick DR, Mei Y. Targeting HIF-α for robust prevascularization of human cardiac organoids. J Tissue Eng Regen Med 2020; 15:189-202. [PMID: 33868541 DOI: 10.1002/term.3165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prevascularized 3D microtissues have been shown to be an effective cell delivery vehicle for cardiac repair. To this end, our lab has explored the development of self-organizing, prevascularized human cardiac organoids by co-seeding human cardiomyocytes with cardiac fibroblasts, endothelial cells, and stromal cells into agarose microwells. We hypothesized that this prevascularization process is facilitated by the endogenous upregulation of hypoxia-inducible factor (HIF) pathway in the avascular 3D microtissues. In this study, we used Molidustat, a selective PHD (prolyl hydroxylase domain enzymes) inhibitor that stabilizes HIF-α, to treat human cardiac organoids, which resulted in 150 ± 61% improvement in endothelial expression (CD31) and 220 ± 20% improvement in the number of lumens per organoids. We hypothesized that the improved endothelial expression seen in Molidustat treated human cardiac organoids was dependent upon upregulation of VEGF, a well-known downstream target of HIF pathway. Through the use of immunofluorescent staining and ELISA assays, we determined that Molidustat treatment improved VEGF expression of non-endothelial cells and resulted in improved co-localization of supporting cell types and endothelial structures. We further demonstrated that Molidustat treated human cardiac organoids maintain cardiac functionality. Lastly, we showed that Molidustat treatment improves survival of cardiac organoids when exposed to both hypoxic and ischemic conditions in vitro. For the first time, we demonstrate that targeted HIF-α stabilization provides a robust strategy to improve endothelial expression and lumen formation in cardiac microtissues, which will provide a powerful framework for prevascularization of various microtissues in developing successful cell transplantation therapies.
Collapse
Affiliation(s)
- Robert C Coyle
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Ryan W Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Dylan J Richards
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Emma P Ladd
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Donald R Menick
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
17
|
Liu T, Gao Q, Yang B, Yin C, Chang J, Qian H, Xing G, Wang S, Li F, Zhang Y, Chen D, Cai J, Shi H, Aschner M, Appiah-Kubi K, He D, Lu R. Differential susceptibility of PC12 and BRL cells and the regulatory role of HIF-1α signaling pathway in response to acute methylmercury exposure under normoxia. Toxicol Lett 2020; 331:82-91. [PMID: 32461003 PMCID: PMC7366344 DOI: 10.1016/j.toxlet.2020.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a critical nuclear transcription factor for adaptation to hypoxia; its regulatable subunit, HIF-1α, is a cytoprotective regulatory factor. We examined the effects of methylmercury (MeHg) in rat adrenal pheochromocytoma (PC12) cells and the rat hepatocyte cell line BRL. MeHg treatment led to time- and concentration-dependent toxicity in both lines with statistically significant cytotoxic effects at 5 μM and 10 μM in PC12 and BRL, respectively, at 0.5 h. HIF-1α protein levels were significantly decreased at 2.5 (PC12) and 5 (BRL) μM MeHg. Furthermore, MeHg reduced the protein levels of HIF-1α and its target genes (glucose transporter-1, vascular endothelial growth factor-A and erythropoietin). Overexpression of HIF-1α significantly attenuated MeHg-induced toxicity in both cell types. Notably, cobalt chloride, a pharmacological inducer of HIF-1α, significantly attenuated MeHg-induced toxicity in BRL but not PC12. In both cell lines, an inhibitor of prolyl hydroxylase, 3, 4-dihydroxybenzoic acid, and the proteasome inhibitor carbobenzoxy-L-leucyl-L-leucyl-L-leucinal(MG132), antagonized MeHg toxicity, while 2-methoxyestradiol, a HIF-1α inhibitor, significantly increased it. These data establish that: (a) neuron-like PC12 cells are more sensitive to MeHg than non-neuronal BRL cells; (b) HIF-1α plays a similar role in MeHg-induced toxicity in both cell lines; and (c) upregulation of HIF-1α offers general cytoprotection against MeHg toxicity in PC12 and BRL cell lines.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qianqian Gao
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Changsheng Yin
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Chang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hai Qian
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yubin Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Da Chen
- School of Environment, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiyang Cai
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Lindsay, Oklahoma City, OK 73104, USA
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kwaku Appiah-Kubi
- Department of Applied Biology, C. K. Tedam University of Technology and Applied Sciences, Navrongo, UK-0215-5321, Ghana
| | - Dawei He
- Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215130, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215130, China.
| |
Collapse
|
18
|
Packer M. Mutual Antagonism of Hypoxia-Inducible Factor Isoforms in Cardiac, Vascular, and Renal Disorders. ACTA ACUST UNITED AC 2020; 5:961-968. [PMID: 33015417 PMCID: PMC7524787 DOI: 10.1016/j.jacbts.2020.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factor (HIF)-1α and HIF-2α promote cellular adaptation to acute hypoxia, but during prolonged activation, these isoforms exert mutually antagonistic effects on the redox state and on proinflammatory pathways. Sustained HIF-1α signaling can increase oxidative stress, inflammation, and fibrosis, actions that are opposed by HIF-2α. Imbalances in the interplay between HIF-1α and HIF-2α may contribute to the progression of chronic heart failure, atherosclerotic and hypertensive vascular disorders, and chronic kidney disease. These disorders are characterized by activation of HIF-1α and suppression of HIF-2α, which are potentially related to mitochondrial and peroxisomal dysfunction and suppression of the redox sensor, sirtuin-1. Hypoxia mimetics can potentiate HIF-1α and/or HIF-2α; ideally, such agents should act preferentially to promote HIF-2α while exerting little effect on or acting to suppress HIF-1α. Selective activation of HIF-2α can be achieved with drugs that: 1) inhibit isoform-selective prolyl hydroxylases (e.g., cobalt chloride and roxadustat); or 2) promote the actions of the redox sensor, sirtuin-1 (e.g., sodium-glucose cotransporter 2 inhibitors). Selective HIF-2α signaling through sirtuin-1 activation may explain the effect of sodium-glucose cotransporter 2 inhibitors to simultaneously promote erythrocytosis and ameliorate the development of cardiomyopathy and nephropathy.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas.,Imperial College, London, United Kingdom
| |
Collapse
|
19
|
Baik AH, Jain IH. Turning the Oxygen Dial: Balancing the Highs and Lows. Trends Cell Biol 2020; 30:516-536. [PMID: 32386878 PMCID: PMC7391449 DOI: 10.1016/j.tcb.2020.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Oxygen is both vital and toxic to life. Molecular oxygen is the most used substrate in the human body and is required for several hundred diverse biochemical reactions. The discovery of the PHD-HIF-pVHL system revolutionized our fundamental understanding of oxygen sensing and cellular adaptations to hypoxia. It deepened our knowledge of the biochemical underpinnings of numerous diseases, ranging from anemia to cancer. Cellular dysfunction and tissue pathology can result from a mismatch of oxygen supply and demand. Recent work has shown that mitochondrial disease models display tissue hyperoxia and that disease pathology can be reversed by normalization of excess oxygen, suggesting that certain disease states can potentially be treated by modulating oxygen levels. In this review, we describe cellular and organismal mechanisms of oxygen sensing and adaptation. We provide a revitalized framework for understanding pathologies of too little or too much oxygen.
Collapse
Affiliation(s)
- Alan H Baik
- Department of Physiology, University of California, San Francisco, CA 94158, USA; Department of Medicine, Division of Cardiology, University of California, San Francisco, CA 94143, USA.
| | - Isha H Jain
- Department of Physiology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Prolyl hydroxylase domain 2 reduction enhances skeletal muscle tissue regeneration after soft tissue trauma in mice. PLoS One 2020; 15:e0233261. [PMID: 32413092 PMCID: PMC7228053 DOI: 10.1371/journal.pone.0233261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
The transcription factor Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in tissue regeneration. HIF-1 is negatively controlled by O2-dependent prolyl hydroxylases with a predominant role of prolyl hydroxylase 2 isoform (Phd2). Transgenic mice, hypomorphic for this isoform, accumulate more HIF-1 under normoxic conditions. Using these mice, we investigated the influence of Phd2 and HIF-1 on the regenerative capability of skeletal muscle tissue after myotrauma. Phd2-hypomorphic and wild type mice (on C57Bl/6 background) were grouped with regeneration times from 6 to 168 hours after closed mechanic muscle trauma to the hind limb. Tissue samples were analysed by immuno-staining and real-time PCR. Bone marrow derived macrophages of wild type and Phd2-hypomorphic mice were isolated and analysed via flow cytometry and quantitative real-time PCR. Phd2 reduction led to a higher regenerative capability due to enhanced activation of myogenic factors accompanied by induction of genes responsible for glucose and lactate metabolism in Phd2-hypomorphic mice. Macrophage infiltration into the trauma areas in hypomorphic mice started earlier and was more pronounced compared to wild type mice. Phd2-hypomorphic mice also showed higher numbers of macrophages in areas with sustained trauma 72 hours after myotrauma application. In conclusion, we postulate that the HIF-1 pathway is activated secondary to a Phd2 reduction which may lead to i) higher activation of myogenic factors, ii) increased number of positive stem cell proliferation markers, and iii) accelerated macrophage recruitment to areas of trauma, resulting in faster muscle tissue regeneration after myotrauma. With the current development of prolyl hydroxylase domain inhibitors, our findings point towards a potential clinical benefit after myotrauma.
Collapse
|
21
|
Laitakari A, Tapio J, Mäkelä KA, Herzig KH, Dengler F, Gylling H, Walkinshaw G, Myllyharju J, Dimova EY, Serpi R, Koivunen P. HIF-P4H-2 inhibition enhances intestinal fructose metabolism and induces thermogenesis protecting against NAFLD. J Mol Med (Berl) 2020; 98:719-731. [PMID: 32296880 PMCID: PMC7220983 DOI: 10.1007/s00109-020-01903-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Abstract Non-alcoholic fatty liver disease (NAFLD) parallels the global obesity epidemic with unmet therapeutic needs. We investigated whether inhibition of hypoxia-inducible factor prolyl 4-hydroxylase-2 (HIF-P4H-2), a key cellular oxygen sensor whose inhibition stabilizes HIF, would protect from NAFLD by subjecting HIF-P4H-2-deficient (Hif-p4h-2gt/gt) mice to a high-fat, high-fructose (HFHF) or high-fat, methionine-choline-deficient (HF-MCD) diet. On both diets, the Hif-p4h-2gt/gt mice gained less weight and had less white adipose tissue (WAT) and its inflammation, lower serum cholesterol levels, and lighter livers with less steatosis and lower serum ALT levels than the wild type (WT). The intake of fructose in majority of the Hif-p4h-2gt/gt tissues, including the liver, was 15–35% less than in the WT. We found upregulation of the key fructose transporter and metabolizing enzyme mRNAs, Slc2a2, Khka, and Khkc, and higher ketohexokinase activity in the Hif-p4h-2gt/gt small intestine relative to the WT, suggesting enhanced metabolism of fructose in the former. On the HF-MCD diet, the Hif-p4h-2gt/gt mice showed more browning of the WAT and increased thermogenesis. A pharmacological pan-HIF-P4H inhibitor protected WT mice on both diets against obesity, metabolic dysfunction, and liver damage. These data suggest that HIF-P4H-2 inhibition could be studied as a novel, comprehensive treatment strategy for NAFLD. Key messages • HIF-P4H-2 inhibition enhances intestinal fructose metabolism protecting the liver. • HIF-P4H-2 inhibition downregulates hepatic lipogenesis. • Induced browning of WAT and increased thermogenesis can also mediate protection. • HIF-P4H-2 inhibition offers a novel, comprehensive treatment strategy for NAFLD. Electronic supplementary material The online version of this article (10.1007/s00109-020-01903-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Laitakari
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Joona Tapio
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Kari A Mäkelä
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center and University Hospital, Oulu, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center and University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Helena Gylling
- Internal Medicine, University of Helsinki and Helsinki University Hospital, 00029 HUS, Helsinki, Finland
| | | | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland.
| |
Collapse
|
22
|
Packer M. Critical examination of mechanisms underlying the reduction in heart failure events with SGLT2 inhibitors: identification of a molecular link between their actions to stimulate erythrocytosis and to alleviate cellular stress. Cardiovasc Res 2020; 117:74-84. [PMID: 32243505 DOI: 10.1093/cvr/cvaa064] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of serious heart failure events, even though SGLT2 is not expressed in the myocardium. This cardioprotective benefit is not related to an effect of these drugs to lower blood glucose, promote ketone body utilization or enhance natriuresis, but it is linked statistically with their action to increase haematocrit. SGLT2 inhibitors increase both erythropoietin and erythropoiesis, but the increase in red blood cell mass does not directly prevent heart failure events. Instead, erythrocytosis is a biomarker of a state of hypoxia mimicry, which is induced by SGLT2 inhibitors in manner akin to cobalt chloride. The primary mediators of the cellular response to states of energy depletion are sirtuin-1 and hypoxia-inducible factors (HIF-1α/HIF-2α). These master regulators promote the cellular adaptation to states of nutrient and oxygen deprivation, promoting mitochondrial capacity and minimizing the generation of oxidative stress. Activation of sirtuin-1 and HIF-1α/HIF-2α also stimulates autophagy, a lysosome-mediated degradative pathway that maintains cellular homoeostasis by removing dangerous constituents (particularly unhealthy mitochondria and peroxisomes), which are a major source of oxidative stress and cardiomyocyte dysfunction and demise. SGLT2 inhibitors can activate SIRT-1 and stimulate autophagy in the heart, and thereby, favourably influence the course of cardiomyopathy. Therefore, the linkage between erythrocytosis and the reduction in heart failure events with SGLT2 inhibitors may be related to a shared underlying molecular mechanism that is triggered by the action of these drugs to induce a perceived state of oxygen and nutrient deprivation.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX 75226, USA.,Imperial College, London, UK
| |
Collapse
|
23
|
Laitakari A, Huttunen R, Kuvaja P, Hannuksela P, Szabo Z, Heikkilä M, Kerkelä R, Myllyharju J, Dimova EY, Serpi R, Koivunen P. Systemic long-term inactivation of hypoxia-inducible factor prolyl 4-hydroxylase 2 ameliorates aging-induced changes in mice without affecting their life span. FASEB J 2020; 34:5590-5609. [PMID: 32100354 DOI: 10.1096/fj.201902331r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022]
Abstract
Hypoxia inactivates hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs), which stabilize HIF and upregulate genes to restore tissue oxygenation. HIF-P4Hs can also be inhibited by small molecules studied in clinical trials for renal anemia. Knowledge of systemic long-term inactivation of HIF-P4Hs is limited but crucial, since HIF overexpression is associated with cancers. We aimed to determine the effects of systemic genetic inhibition of the most abundant isoenzyme HIF prolyl 4-hydroxylase-2 (HIF-P4H-2)/PHD2/EglN1 on life span and tissue homeostasis in aged mice. Our data showed no difference between wild-type and HIF-P4H-2-deficient mice in the average age reached. There were several differences, however, in the primary causes of death and comorbidities, the HIF-P4H-2-deficient mice having less inflammation, liver diseases, including cancer, and myocardial infarctions, and not developing anemia. No increased cancer incidence was observed due to HIF-P4H-2-deficiency. These data suggest that chronic inactivation of HIF-P4H-2 is not harmful but rather improves the quality of life in senescence.
Collapse
Affiliation(s)
- Anna Laitakari
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Riikka Huttunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Paula Kuvaja
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Pauliina Hannuksela
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Zoltan Szabo
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Minna Heikkilä
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| |
Collapse
|
24
|
Uchida L, Tanaka T, Saito H, Sugahara M, Wakashima T, Fukui K, Nangaku M. Effects of a prolyl hydroxylase inhibitor on kidney and cardiovascular complications in a rat model of chronic kidney disease. Am J Physiol Renal Physiol 2019; 318:F388-F401. [PMID: 31841388 DOI: 10.1152/ajprenal.00419.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular disease (CVD) is the main cause of death in patients with kidney disease. Hypoxia plays a crucial role in the progression of chronic kidney disease (CKD) and cardiovascular disease, which is associated with fibrosis, inflammation, and oxidative injury. Previous studies have indicated that prolyl hydroxylase (PHD) inhibitors, stabilizers of hypoxia-inducible factors (HIFs), can be used to treat acute organ injuries such as renal ischemia-reperfusion, myocardial infarction, and, in some contexts, CKD. However, the effects of PHD inhibitors on cardiovascular complications in CKD remain unknown. In the present study, we investigated whether HIF activation has a beneficial effect on kidney and cardiovascular outcomes in the remnant kidney model. We used the 5/6 nephrectomy model with the nitric oxide synthase inhibitor Nω-nitro-l-arginine (20 mg/L in the drinking water). Rats received diet with 0.005% enarodustat (PHD inhibitor) or vehicle for 8 wk starting 2 wk before 5/6 nephrectomy. Activation of HIF by the PHD inhibitor reduced cardiac hypertrophy and ameliorated myocardial fibrosis in association with restored capillary density and improvement in mitochondrial morphology. With regard to kidneys, enarodustat ameliorated fibrosis in association with reduced proinflammatory cytokine expression, reduced apoptosis, and restored capillary density, even though renal endpoints such as proteinuria and serum creatinine levels were not significantly affected by enarodustat, except for blood urea nitrogen levels at 4 wk. In addition, cardiac hypertrophy marker genes, including atrial natriuretic peptide, were suppressed in P19CL6 cells treated with enarodustat. These findings suggest that PHD inhibitors might show beneficial effects in cardiovascular complications caused by CKD.
Collapse
Affiliation(s)
- Lisa Uchida
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hisako Saito
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mai Sugahara
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Wakashima
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Biological and Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Incorporated, Takatsuki, Japan
| | - Kenji Fukui
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Biological and Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Incorporated, Takatsuki, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Ma Y, Wu Y, Xia Z, Li J, Li X, Xu P, Zhou X, Xue M. Anti-Hypoxic Molecular Mechanisms of Rhodiola crenulata Extract in Zebrafish as Revealed by Metabonomics. Front Pharmacol 2019; 10:1356. [PMID: 31780949 PMCID: PMC6861209 DOI: 10.3389/fphar.2019.01356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
The health supplement of Rhodiola crenulata (RC) is well known for its effective properties against hypoxia. However, the mechanisms of its anti-hypoxic action were still unclear. The objective of this work was to evaluate the molecular mechanisms of RC extract against hypoxia in a hypoxic zebrafish model through metabonomics and network pharmacology analysis. The hypoxic zebrafish model in the environment with low concentration (3%) of oxygen was constructed and used to explore the anti-hypoxic effects of RC extract, followed by detecting the changes of the metabolome in the brain through liquid chromatography–high resolution mass spectrometry. An in silico network for metabolite-protein interactions was further established to examine the potential mechanisms of RC extract, and the mRNA expression levels of the key nodes were validated by real-time quantitative PCR. As results, RC extract could keep zebrafish survive after 72-h hypoxia via improving lactate dehydrogenase, citrate synthase, and hypoxia-induced factor-1α in brains. One hundred and forty-two differential metabolites were screened in the metabonomics, and sphingolipid metabolism pathway was significantly regulated after RC treatment. The constructed protein-metabolites network indicated that the HIF-related signals were recovered, and the mRNA level of AMPK was elevated. In conclusion, RC extract had markedly anti-hypoxic effects in zebrafish via changing sphingolipid metabolism, HIF-related and AMPK signaling pathways.
Collapse
Affiliation(s)
- Yi Ma
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Wu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhengchao Xia
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingyi Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaorong Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Capital Medical University, Beijing, China
| | - Pingxiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Capital Medical University, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Capital Medical University, Beijing, China
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Zarkasi KA, Jen-Kit T, Jubri Z. Molecular Understanding of the Cardiomodulation in Myocardial Infarction and the Mechanism of Vitamin E Protections. Mini Rev Med Chem 2019; 19:1407-1426. [DOI: 10.2174/1389557519666190130164334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/10/2018] [Accepted: 01/12/2019] [Indexed: 12/13/2022]
Abstract
:
Myocardial infarction is a major cause of deaths globally. Modulation of several molecular
mechanisms occurs during the initial stages of myocardial ischemia prior to permanent cardiac tissue
damage, which involves both pathogenic as well as survival pathways in the cardiomyocyte. Currently,
there is increasing evidence regarding the cardioprotective role of vitamin E in alleviating the disease.
This fat-soluble vitamin does not only act as a powerful antioxidant; but it also has the ability to regulate
several intracellular signalling pathways including HIF-1, PPAR-γ, Nrf-2, and NF-κB that influence
the expression of a number of genes and their protein products. Essentially, it inhibits the molecular
progression of tissue damage and preserves myocardial tissue viability. This review aims to summarize
the molecular understanding of the cardiomodulation in myocardial infarction as well as the
mechanism of vitamin E protection.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Tan Jen-Kit
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Zakiah Jubri
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Liver Zonation in Health and Disease: Hypoxia and Hypoxia-Inducible Transcription Factors as Concert Masters. Int J Mol Sci 2019; 20:ijms20092347. [PMID: 31083568 PMCID: PMC6540308 DOI: 10.3390/ijms20092347] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
The liver and its zonation contribute to whole body homeostasis. Acute and chronic, not always liver, diseases impair proper metabolic zonation. Various underlying pathways, such as β-catenin, hedgehog signaling, and the Hippo pathway, along with the physiologically occurring oxygen gradient, appear to be contributors. Interestingly, hypoxia and hypoxia-inducible transcription factors can orchestrate those pathways. In the current review, we connect novel findings of liver zonation in health and disease and provide a view about the dynamic interplay between these different pathways and cell-types to drive liver zonation and systemic homeostasis.
Collapse
|
28
|
Aitbaev KA, Murkamilov IТ, Fomin VV. Inhibition of HIF-prolyl 4-hydroxylases as a promising approach to the therapy of cardiometabolic diseases. TERAPEVT ARKH 2019; 90:86-94. [PMID: 30701951 DOI: 10.26442/terarkh201890886-94] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolyl-4-hydroxylases of hypoxia-inducible factor (HIF-P4Hs) are enzymes that, under the conditions of normoxia, cause degradation of the HIF-transcriptional protein, which regulates a number of metabolic processes, including erythropoiesis, glucose level and lipid metabolism. In hypoxic conditions, on the contrary, their activity is suppressed and HIF stabilization takes place. This mechanism, i.e. stabilization of HIF by inhibition of HIF-P4Hs was the basis for the development of drugs designed for treatment of renal anemia, which are currently in stages 2 and 3 of clinical trials and are showing encouraging results. Recently, it has also been reported that inhibition of HIF-P4Hs can be effective in treatment of cardiometabolic diseases - coronary heart disease, hypertension, obesity, metabolic syndrome, diabetic cardiomyopathy and atherosclerosis. The review, based on the most recent data, discusses in detail molecular mechanisms of therapeutic effect of HIF-P4Hs inhibition in these pathological conditions and provides evidence that these mechanisms are associated with HIF stabilization and gene expression, improving perfusion and endothelial function, reprogramming metabolism from oxidative phosphorylation to anaerobic glycolysis, reducing inflammation and having beneficial effect on the innate immune system.
Collapse
Affiliation(s)
- K A Aitbaev
- Scientific and Research Institute of molecular biology and medicine, Bishkek, Kyrgyzstan
| | - I Т Murkamilov
- I.K. Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan.,Kyrgyz Russian Slavic University named after the First President of Russia B.N. Yeltsin, Bishkek, Kyrgyzstan
| | - V V Fomin
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
| |
Collapse
|
29
|
Laitakari A, Ollonen T, Kietzmann T, Walkinshaw G, Mennerich D, Izzi V, Haapasaari KM, Myllyharju J, Serpi R, Dimova EY, Koivunen P. Systemic inactivation of hypoxia-inducible factor prolyl 4-hydroxylase 2 in mice protects from alcohol-induced fatty liver disease. Redox Biol 2019; 22:101145. [PMID: 30802717 PMCID: PMC6396018 DOI: 10.1016/j.redox.2019.101145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
Alcoholic fatty liver disease (AFLD) is a growing health problem for which no targeted therapy is available. We set out to study whether systemic inactivation of the main hypoxia-inducible factor prolyl 4-hydroxylase, HIF-P4H-2 (PHD2/EglN1), whose inactivation has been associated with protection against metabolic dysfunction, could ameliorate it. HIF-P4H-2-deficient and wild-type (WT) mice or HIF-P4H inhibitor-treated WT mice were subjected to an ethanol diet for 3-4 weeks and their metabolic health, liver and white adipose tissue (WAT) were analyzed. Primary hepatocytes from the mice were used to study cellular ethanol metabolism. The HIF-P4H-2-deficient mice retained a healthier metabolic profile, including less adiposity, better lipoprotein profile and restored insulin sensitivity, while on the ethanol diet than the WT. They also demonstrated protection from alcohol-induced steatosis and liver damage and had less WAT inflammation. In liver and WAT the expression of the key lipogenic and adipocytokine mRNAs, such as Fas and Ccl2, were downregulated, respectively. The upregulation of metabolic and antioxidant hypoxia-inducible factor (HIF) target genes, such as Slcs 16a1 and 16a3 and Gclc, respectively, and a higher catalytic activity of ALDH2 in the HIF-P4H-2-deficient hepatocytes improved handling of the toxic ethanol metabolites and oxidative stress. Pharmacological HIF-P4H inhibition in the WT mice phenocopied the protection against AFLD. Our data show that global genetic inactivation of HIF-P4H-2 and pharmacological HIF-P4H inhibition can protect mice from alcohol-induced steatosis and liver injury, suggesting that HIF-P4H inhibitors, now in clinical trials for renal anemia, could also be studied in randomized clinical trials for treatment of AFLD.
Collapse
Affiliation(s)
- Anna Laitakari
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Teemu Ollonen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Valerio Izzi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Kirsi-Maria Haapasaari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| |
Collapse
|
30
|
Things get broken: the hypoxia-inducible factor prolyl hydroxylases in ischemic heart disease. Basic Res Cardiol 2019; 114:16. [PMID: 30859331 DOI: 10.1007/s00395-019-0725-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
A major challenge in developing new treatments for myocardial infarction (MI) is an improved understanding of the pathophysiology of hypoxic tissue damage and the activation of endogenous adaptive programs to hypoxia. Due to the relevance of oxygen in metabolism, molecular adaptation to hypoxia driven by the hypoxia-inducible factors (HIFs) and the HIF-regulating prolyl hydroxylase domain enzymes (PHDs) is pivotal for the survival of cells and tissue under hypoxia. The heart under ischemic stress will extensively rely on these mechanisms of endogenous cardiac protection until hypoxia becomes too severe. In the past, work from several laboratories has provided evidence that inhibition of HIF-regulating PHDs might improve the outcome in ischemic heart disease (IHD) potentially because the adaptive mechanisms are boosted early and vigorously. Here, we review the role of the HIF hydroxylase pathway in IHD and highlight the potential of PHD inhibitors as a new treatment for MI with special regard to acute ischemia, reperfusion, and regeneration of the heart.
Collapse
|
31
|
Abstract
Cardiovascular disease is a common and serious complication in patients with chronic kidney disease (CKD). One of the fundamental functions of the cardiovascular system is oxygen delivery, therefore cardiovascular disease inherently is linked to insufficient tissue oxygenation. Advances in our knowledge of cellular oxygen sensing by a family of prolyl hydroxylases (PHDs) and their role in regulating hypoxia-inducible factors (HIFs) have led to the discovery of PHD inhibitors as HIF stabilizers. Several small-molecule PHD inhibitors are currently in clinical trials for the treatment of anemia in CKD. An additional advantage of PHD inhibition may be found in the potential impact on cardiovascular consequences associated with CKD. Several preclinical studies have suggested a potential benefit of HIF activation in myocardial infarction, cardiac remodeling, atherosclerosis, and peripheral artery disease. Ameliorating glucose and lipid metabolism and lowering blood pressure may also contribute to cardiovascular protection. On the other hand, the broad spectrum of HIF-dependent functions also may include unwanted side effects. Clinical application of PHD inhibitors therefore necessitates careful evaluation of the net systemic effect of HIF activation.
Collapse
|
32
|
Lanigan SM, O'Connor JJ. Prolyl hydroxylase domain inhibitors: can multiple mechanisms be an opportunity for ischemic stroke? Neuropharmacology 2018; 148:117-130. [PMID: 30578795 DOI: 10.1016/j.neuropharm.2018.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Stroke and cerebrovascular disease are now the fifth most common cause of death behind other diseases such as heart, cancer and respiratory disease and accounts for approximately 40-50 fatalities per 100,000 people each year in the United States. Currently the only therapy for acute stroke, is intravenous administration of tissue plasminogen activator which was approved in 1996 by the FDA. Surprisingly no new treatments have come on the market since, although endovascular mechanical thrombectomy is showing promising results in trials. Recently focus has shifted towards a preventative therapy rather than trying to reverse or limit the amount of damage occurring following stroke onset. During one of the components of ischemia, hypoxia, a number of physiological changes occur within neurons which include the stabilization of hypoxia-inducible factors. The activity of these proteins is regulated by O2, Fe2+, 2-OG and ascorbate-dependant hydroxylases which contain prolyl-4-hydroxylase domains (PHDs). PHD inhibitors are capable of pharmacologically activating the body's own endogenous adaptive response to low levels of oxygen and have therefore become an attractive therapeutic target for treating ischemia. They have been widely used in the periphery and have been shown to have a preconditioning and protective effect against a later and more severe ischemic insult. Currently there are a number of these agents in phase 1, 2 and 3 clinical trials for the treatment of anemia. In this review we assess the neuroprotective effects of PHD inhibitors, including dimethyloxalylglycine and deferoxamine and suggest that not all of their effects in the CNS are HIF-dependent. Unravelling new roles and a better understanding of the function of PHD inhibitors in the CNS may be of great benefit especially when investigating their use in the treatment of stroke and other ischemic diseases.
Collapse
Affiliation(s)
- Sinead M Lanigan
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
33
|
Hypoxia-Inducible Factor Prolyl 4-Hydroxylases and Metabolism. Trends Mol Med 2018; 24:1021-1035. [DOI: 10.1016/j.molmed.2018.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022]
|
34
|
VCE-004.8, A Multitarget Cannabinoquinone, Attenuates Adipogenesis and Prevents Diet-Induced Obesity. Sci Rep 2018; 8:16092. [PMID: 30382123 PMCID: PMC6208444 DOI: 10.1038/s41598-018-34259-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/06/2018] [Indexed: 01/01/2023] Open
Abstract
Over the past few years, the endocannabinoid system (ECs) has emerged as a crucial player for the regulation of food intake and energy metabolism, and its pharmacological manipulation represents a novel strategy for the management of metabolic diseases. The discovery that VCE-004.8, a dual PPARγ and CB2 receptor agonist, also inhibits prolyl-hydroxylases (PHDs) and activates the HIF pathway provided a rationale to investigate its effect in in vitro models of adipogenesis and in a murine model of metabolic syndrome, all processes critically regulated by these targets of VCE-004.8. In accordance with its different binding mode to PPARγ compared to rosiglitazone (RGZ), VCE-004.8 neither induced adipogenic differentiation, nor affected osteoblastogenesis. Daily administration of VCE-004.8 (20 mg/kg) to HFD mice for 3-wks induced a significant reduction in body weight gain, total fat mass, adipocyte volume and plasma triglycerides levels. VCE-004.8 could also significantly ameliorate glucose tolerance, reduce leptin levels (a marker of adiposity) and increase adiponectin and incretins (GLP-1 and GIP) levels. Remarkably, VCE-004.8 increased the FGF21 mRNA expression in white and brown adipose, as well as in a BAT cell line, qualifying cannabinoaminoquinones as a class of novel therapeutic candidates for the management of obesity and its common metabolic co-morbidities.
Collapse
|
35
|
Majumder A, Singh M, George AK, Homme RP, Laha A, Tyagi SC. Remote ischemic conditioning as a cytoprotective strategy in vasculopathies during hyperhomocysteinemia: An emerging research perspective. J Cell Biochem 2018; 120:77-92. [PMID: 30272816 DOI: 10.1002/jcb.27603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022]
Abstract
Higher levels of nonprotein amino acid homocysteine (Hcy), that is, hyperhomocysteinemia (HHcy) (~5% of general population) has been associated with severe vasculopathies in different organs; however, precise molecular mechanism(s) as to how HHcy plays havoc with body's vascular networks are largely unknown. Interventional modalities have not proven beneficial to counter multifactorial HHcy's effects on the vascular system. An ancient Indian form of exercise called 'yoga' causes transient ischemia as a result of various body postures however the cellular mechanisms are not clear. We discuss a novel perspective wherein we argue that application of remote ischemic conditioning (RIC) could, in fact, deliver anticipated results to patients who are suffering from chronic vascular dysfunction due to HHcy. RIC is the mechanistic phenomenon whereby brief episodes of ischemia-reperfusion events are applied to distant tissues/organs; that could potentially offer a powerful tool in mitigating chronic lethal ischemia in target organs during HHcy condition via simultaneous reduction of inflammation, oxidative and endoplasmic reticulum stress, extracellular matrix remodeling, fibrosis, and angiogenesis. We opine that during ischemic conditioning our organs cross talk by releasing cellular messengers in the form of exosomes containing messenger RNAs, circular RNAs, anti-pyroptotic factors, protective cytokines like musclin, transcription factors, small molecules, anti-inflammatory, antiapoptotic factors, antioxidants, and vasoactive gases. All these could help mobilize the bone marrow-derived stem cells (having tissue healing properties) to target organs. In that context, we argue that RIC could certainly play a savior's role in an unfortunate ischemic or adverse event in people who have higher levels of the circulating Hcy in their systems.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Akash K George
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Rubens Petit Homme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Anwesha Laha
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
36
|
Koeppen M, Lee JW, Seo SW, Brodsky KS, Kreth S, Yang IV, Buttrick PM, Eckle T, Eltzschig HK. Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury. Nat Commun 2018; 9:816. [PMID: 29483579 PMCID: PMC5827027 DOI: 10.1038/s41467-018-03105-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/19/2018] [Indexed: 12/23/2022] Open
Abstract
Myocardial ischemia–reperfusion injury (IRI) leads to the stabilization of the transcription factors hypoxia-inducible factor 1-alpha (HIF1-alpha) and hypoxia-inducible factor 2-alpha (HIF2-alpha). While previous studies implicate HIF1-alpha in cardioprotection, the role of HIF2-alpha remains elusive. Here we show that HIF2-alpha induces the epithelial growth factor amphiregulin (AREG) to elicit cardioprotection in myocardial IRI. Comparing mice with inducible deletion of Hif1a or Hif2a in cardiac myocytes, we show that loss of Hif2-alpha increases infarct sizes. Microarray studies in genetic models or cultured human cardiac myocytes implicate HIF2-alpha in the myocardial induction of AREG. Likewise, AREG increases in myocardial tissues from patients with ischemic heart disease. Areg deficiency increases myocardial IRI, as does pharmacologic inhibition of Areg signaling. In contrast, treatment with recombinant Areg provides cardioprotection and reconstitutes mice with Hif2a deletion. These studies indicate that HIF2-alpha induces myocardial AREG expression in cardiac myocytes, which increases myocardial ischemia tolerance. Myocardial ischemia–reperfusion injury stabilizes the hypoxia-inducible factor HIF2-alpha. Here, the authors show that HIF2-alpha protects the heart from injury via induction of the epidermal growth factor amphiregulin, and that amphiregulin administration is cardioprotective in mice.
Collapse
Affiliation(s)
- Michael Koeppen
- Department of Anaesthesiology and Intensive Care Medicine, Tübingen University Hospital, Eberhard-Karls University Tübingen, Tübingen, Germany. .,Department of Anaesthesiology, Ludwig-Maximilians-University, Muenchen, Germany.
| | - Jae W Lee
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Seong-Wook Seo
- Department of Anesthesiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Kelley S Brodsky
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Simone Kreth
- Department of Anaesthesiology, Ludwig-Maximilians-University, Muenchen, Germany
| | - Ivana V Yang
- Division of Pulmonary Science and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peter M Buttrick
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
37
|
Preferential activation of HIF-2α adaptive signalling in neuronal-like cells in response to acute hypoxia. PLoS One 2017; 12:e0185664. [PMID: 28968430 PMCID: PMC5624621 DOI: 10.1371/journal.pone.0185664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/16/2017] [Indexed: 12/17/2022] Open
Abstract
Stroke causes severe neuronal damage as disrupted cerebral blood flow starves neurons of oxygen and glucose. The hypoxia inducible factors (HIF-1α and HIF-2α) orchestrate oxygen homeostasis and regulate specific aspects of hypoxic adaptation. Here we show the importance of HIF-2α dependant signalling in neuronal adaptation to hypoxic insult. PC12 and NT2 cells were differentiated into neuronal-like cells using NGF and retinoic acid, and exposed to acute hypoxia (1% O2). Gene and protein expression was analysed by qPCR and immunoblotting and the neuronal-like phenotype was examined. PC12 and NT2 differentiation promoted neurite extension and expression of neuronal markers, NSE and KCC2. Induction of HIF-1α mRNA or protein was not detected in hypoxic neuronal-like cells, however marked induction of HIF-2α mRNA and protein expression was observed. Induction of HIF-1α target genes was also not detected in response to acute hypoxia, however significant induction of HIF-2α transcriptional targets was clearly evident. Furthermore, hypoxic insult dramatically reduced both neurite number and length, and attenuated expression of neuronal markers, NSE and KCC2. This correlated with an increase in expression of the neural progenitor and stem cell-like markers, CD44 and vimentin, suggesting HIF-2α molecular mechanisms could potentially promote regression of neuronal-like cells to a stem-like state and trigger neuronal recovery following ischaemic insult. Our findings suggest the HIF-2α pathway predominates over HIF-1α signalling in neuronal-like cells following acute hypoxia.
Collapse
|
38
|
Kim J, Mirando AC, Popel AS, Green JJ. Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 2017; 119:20-43. [PMID: 27913120 PMCID: PMC5449271 DOI: 10.1016/j.addr.2016.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 01/19/2023]
Abstract
Angiogenesis is naturally balanced by many pro- and anti-angiogenic factors while an imbalance of these factors leads to aberrant angiogenesis, which is closely associated with many diseases. Gene therapy has become a promising strategy for the treatment of such a disordered state through the introduction of exogenous nucleic acids that express or silence the target agents, thereby engineering neovascularization in both directions. Numerous non-viral gene delivery nanoparticles have been investigated towards this goal, but their clinical translation has been hampered by issues associated with safety, delivery efficiency, and therapeutic effect. This review summarizes key factors targeted for therapeutic angiogenesis and anti-angiogenesis gene therapy, non-viral nanoparticle-mediated approaches to gene delivery, and recent gene therapy applications in pre-clinical and clinical trials for ischemia, tissue regeneration, cancer, and wet age-related macular degeneration. Enhanced nanoparticle design strategies are also proposed to further improve the efficacy of gene delivery nanoparticles to modulate angiogenesis.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Neurosurgery, and Materials Science & Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
39
|
Notch Downregulation and Extramedullary Erythrocytosis in Hypoxia-Inducible Factor Prolyl 4-Hydroxylase 2-Deficient Mice. Mol Cell Biol 2017; 37:MCB.00529-16. [PMID: 27821476 DOI: 10.1128/mcb.00529-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/27/2016] [Indexed: 12/23/2022] Open
Abstract
Erythrocytosis is driven mainly by erythropoietin, which is regulated by hypoxia-inducible factor (HIF). Mutations in HIF prolyl 4-hydroxylase 2 (HIF-P4H-2) (PHD2/EGLN1), the major downregulator of HIFα subunits, are found in familiar erythrocytosis, and large-spectrum conditional inactivation of HIF-P4H-2 in mice leads to severe erythrocytosis. Although bone marrow is the primary site for erythropoiesis, spleen remains capable of extramedullary erythropoiesis. We studied HIF-P4H-2-deficient (Hif-p4h-2gt/gt) mice, which show slightly induced erythropoiesis upon aging despite nonincreased erythropoietin levels, and identified spleen as the site of extramedullary erythropoiesis. Splenic hematopoietic stem cells (HSCs) of these mice exhibited increased erythroid burst-forming unit (BFU-E) growth, and the mice were protected against anemia. HIF-1α and HIF-2α were stabilized in the spleens, while the Notch ligand genes Jag1, Jag2, and Dll1 and target Hes1 became downregulated upon aging HIF-2α dependently. Inhibition of Notch signaling in wild-type spleen HSCs phenocopied the increased BFU-E growth. HIFα stabilization can thus mediate non-erythropoietin-driven splenic erythropoiesis via altered Notch signaling.
Collapse
|
40
|
Abstract
Brief periods of ischaemia followed by reperfusion of one tissue such as skeletal muscle can confer subsequent protection against ischaemia-induced injury in other organs such as the heart. Substantial evidence of this effect has been accrued in experimental animal models. However, the translation of this phenomenon to its use as a therapy in ischaemic disease has been largely disappointing without clear evidence of benefit in humans. Recently, innovative experimental observations have suggested that remote ischaemic preconditioning (RIPC) may be largely mediated through hypoxic inhibition of the oxygen-sensing enzyme PHD2, leading to enhanced levels of alpha-ketoglutarate and subsequent increases in circulating kynurenic acid (KYNA). These observations provide vital insights into the likely mechanisms of RIPC and a route to manipulating this mechanism towards therapeutic benefit by direct alteration of KYNA, alpha-ketoglutarate levels, PHD inhibition, or pharmacological targeting of the incompletely understood cardioprotective mechanism activated by KYNA.
Collapse
Affiliation(s)
- Jonathan M Gleadle
- School of Medicine, Flinders University, Adelaide, Australia; Department of Renal Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Annette Mazzone
- School of Medicine, Flinders University, Adelaide, Australia; Cardiac Surgery Research and Perfusion, Cardiac and Thoracic Surgical Unit, Flinders Medical Centre, Adelaide, Australia
| |
Collapse
|
41
|
Koivunen P, Serpi R, Dimova EY. Hypoxia-inducible factor prolyl 4-hydroxylase inhibition in cardiometabolic diseases. Pharmacol Res 2016; 114:265-273. [PMID: 27832958 DOI: 10.1016/j.phrs.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022]
Abstract
Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs, also called PHDs and EglNs) are enzymes that act as cellular oxygen sensors. They are the main downregulators of the hypoxia-inducible factor (HIF). HIF-P4Hs can be targeted with small molecule inhibitors, which stabilize HIF under normoxia and initiate the hypoxia response. Such inhibitors are in phase 2 and 3 clinical trials for the treatment of anemia due to their ability to induce erythropoietin and iron metabolism genes. Recent data suggest that HIF-P4H inhibition has a therapeutic role beyond anemia in cardiac ischemia, obesity and metabolic dysfunction, and atherosclerosis. The molecular level mechanisms involved are HIF stabilization driven changes in gene expression that improve perfusion and endothelial function, reprogram metabolism to promote glucose intake and glycolysis over oxidative metabolism, reduce inflammation and beneficially modify innate immune system. This review discusses the recent findings in detail.
Collapse
Affiliation(s)
- Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine and Oulu Center for Cell-Matrix Research, University of Oulu, Finland.
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine and Oulu Center for Cell-Matrix Research, University of Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine and Oulu Center for Cell-Matrix Research, University of Oulu, Finland
| |
Collapse
|
42
|
β-N-oxalyl-L-α, β- diaminopropionic acid induces HRE expression by inhibiting HIF-prolyl hydroxylase-2 in normoxic conditions. Eur J Pharmacol 2016; 791:405-411. [DOI: 10.1016/j.ejphar.2016.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/03/2016] [Accepted: 07/05/2016] [Indexed: 01/18/2023]
|
43
|
Lefere S, Van Steenkiste C, Verhelst X, Van Vlierberghe H, Devisscher L, Geerts A. Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease. Cell Mol Life Sci 2016; 73:3419-31. [PMID: 27091156 PMCID: PMC11108443 DOI: 10.1007/s00018-016-2222-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023]
Abstract
The pandemic rise in obesity has resulted in an increased incidence of metabolic complications. Non-alcoholic fatty liver disease is the hepatic manifestation of the metabolic syndrome and has become the most common chronic liver disease in large parts of the world. The adipose tissue expansion and hepatic fat accumulation characteristics of these disorders compromise local oxygen homeostasis. The resultant tissue hypoxia induces adaptive responses to restore oxygenation and tissue metabolism and cell survival. Hypoxia-inducible factors (HIFs) function as master regulators of this hypoxia adaptive response, and are in turn hydroxylated by prolyl hydroxylases (PHDs). PHDs are the main cellular oxygen sensors and regulate HIF proteasomal degradation in an oxygen-dependent manner. HIFs and PHDs are implicated in numerous physiological and pathological conditions. Extensive research using genetic models has revealed that hypoxia signaling is also a key mechanism in adipose tissue dysfunction, leading to adipose tissue fibrosis, inflammation and insulin resistance. Moreover, hypoxia affects liver lipid metabolism and deranges hepatic lipid accumulation. This review summarizes the molecular mechanisms through which the hypoxia adaptive response affects adipocyte and hepatic metabolism, and the therapeutic possibilities of modulating HIFs and PHDs in obesity and fatty liver disease.
Collapse
Affiliation(s)
- Sander Lefere
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium.
| | - Christophe Van Steenkiste
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| | - Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
| | - Anja Geerts
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
| |
Collapse
|
44
|
Slingo M, Cole M, Carr C, Curtis MK, Dodd M, Giles L, Heather LC, Tyler D, Clarke K, Robbins PA. The von Hippel-Lindau Chuvash mutation in mice alters cardiac substrate and high-energy phosphate metabolism. Am J Physiol Heart Circ Physiol 2016; 311:H759-67. [PMID: 27422990 PMCID: PMC5142182 DOI: 10.1152/ajpheart.00912.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
This is the first integrative metabolic and functional study of the effects of modest hypoxia-inducible factor manipulation within the heart. Of particular note, the combination (and correlation) of perfused heart metabolic flux measurements with the new technique of real-time in vivo magnetic resonance spectroscopy using hyperpolarized pyruvate is a novel development. Hypoxia-inducible factor (HIF) appears to function as a global master regulator of cellular and systemic responses to hypoxia. HIF pathway manipulation is of therapeutic interest; however, global systemic upregulation of HIF may have as yet unknown effects on multiple processes. We used a mouse model of Chuvash polycythemia (CP), a rare genetic disorder that modestly increases expression of HIF target genes in normoxia, to understand what these effects might be within the heart. An integrated in and ex vivo approach was employed. Compared with wild-type controls, CP mice had evidence (using in vivo magnetic resonance imaging) of pulmonary hypertension, right ventricular hypertrophy, and increased left ventricular ejection fraction. Glycolytic flux (measured using [3H]glucose) in the isolated contracting perfused CP heart was 1.8-fold higher. Net lactate efflux was 1.5-fold higher. Furthermore, in vivo 13C-magnetic resonance spectroscopy (MRS) of hyperpolarized [13C1]pyruvate revealed a twofold increase in real-time flux through lactate dehydrogenase in the CP hearts and a 1.6-fold increase through pyruvate dehydrogenase. 31P-MRS of perfused CP hearts under increased workload (isoproterenol infusion) demonstrated increased depletion of phosphocreatine relative to ATP. Intriguingly, no changes in cardiac gene expression were detected. In summary, a modest systemic dysregulation of the HIF pathway resulted in clear alterations in cardiac metabolism and energetics. However, in contrast to studies generating high HIF levels within the heart, the CP mice showed neither the predicted changes in gene expression nor any degree of LV impairment. We conclude that the effects of manipulating HIF on the heart are dose dependent.
Collapse
Affiliation(s)
- Mary Slingo
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark Cole
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carolyn Carr
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mary K Curtis
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael Dodd
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lucia Giles
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lisa C Heather
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Damian Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kieran Clarke
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Zhao Q, Wu J, Hua Q, Lin Z, Ye L, Zhang W, Wu G, Du J, Xia J, Chu M, Hu X. Resolvin D1 mitigates energy metabolism disorder after ischemia-reperfusion of the rat lung. J Transl Med 2016; 14:81. [PMID: 27009328 PMCID: PMC4806414 DOI: 10.1186/s12967-016-0835-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/16/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Energy metabolism disorder is a critical process in lung ischemia-reperfusion injury (LIRI). This study was aimed to determine the effects of resolvin D1 (RvD1) on the energy metabolism in LIRI. METHODS Forty Sprague-Dawley rats were divided into the following groups: Sham group; untreated ischemia-reperfusion (IR) control; IR treated with normal saline (IR-NS); and IR treated with RvD1 (IR-RV) (100 μg/kg, iv). LIRI and energy metabolism disorder were determined in these rats. RESULTS The results revealed that the levels of interleukin (IL)-1β, tumor necrosis factor-α, IL-10, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, cytokine-induced neutrophil chemoattractant-1, injured alveoli rate, apoptosis index, pulmonary permeability index, malondialdehyde, ADP, and lactic acid were increased, whereas the levels of ATP, ATP/ADP, glycogen, Na(+)-K(+)-ATPase, superoxide dismutase, glutathione peroxidase activity, pulmonary surfactant associated protein-A, and oxygenation index were decreased in rats with LIRI. Except for IL-10, all these biomarkers of LIRI and its related energy metabolism disorder were significantly inhibited by RvD1 treatment. In addition, histological analysis via hematoxylin-eosin staining, and transmission electron microscopy confirmed that IR-induced structure damages of lung tissues were reduced by RvD1. CONCLUSION RvD1 improves the energy metabolism of LIRI disturbance, protects the mitochondrial structure and function, increases the ATP, glycogen content and Na(+)-K(+)-ATPase activity of lung tissue, balances the ratio of ATP/ADP and finally decreases the rate of apoptosis, resulting in the protection of IR-induced lung injury. The improved energy metabolism after LIRI may be related to the reduced inflammatory response, the balance of the oxidative/antioxidant and the pro-inflammatory/anti-inflammatory systems in rats.
Collapse
Affiliation(s)
- Qifeng Zhao
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Ji Wu
- Wuhan Medical & Healthcare Center for Woman and Children, 430015, Wuhan, People's Republic of China
| | - Qingwang Hua
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Zhiyong Lin
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Leping Ye
- The Department of Children's Respiration Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Weixi Zhang
- The Department of Children's Respiration Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Guowei Wu
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Jie Du
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Jie Xia
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Maoping Chu
- The Department of Children's Cardiovascular Medicine, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Xingti Hu
- The Department of Children's Cardiovascular and Thoracic Surgery, Children's Heart Center, the Second Affiliated Hospital, Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China.
| |
Collapse
|
46
|
Olenchock BA, Moslehi J, Baik AH, Davidson SM, Williams J, Gibson WJ, Chakraborty AA, Pierce KA, Miller CM, Hanse EA, Kelekar A, Sullivan LB, Wagers AJ, Clish CB, Vander Heiden MG, Kaelin WG. EGLN1 Inhibition and Rerouting of α-Ketoglutarate Suffice for Remote Ischemic Protection. Cell 2016; 164:884-95. [PMID: 26919427 PMCID: PMC4819986 DOI: 10.1016/j.cell.2016.02.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/12/2015] [Accepted: 02/01/2016] [Indexed: 12/30/2022]
Abstract
Ischemic preconditioning is the phenomenon whereby brief periods of sublethal ischemia protect against a subsequent, more prolonged, ischemic insult. In remote ischemic preconditioning (RIPC), ischemia to one organ protects others organs at a distance. We created mouse models to ask if inhibition of the alpha-ketoglutarate (αKG)-dependent dioxygenase Egln1, which senses oxygen and regulates the hypoxia-inducible factor (HIF) transcription factor, could suffice to mediate local and remote ischemic preconditioning. Using somatic gene deletion and a pharmacological inhibitor, we found that inhibiting Egln1 systemically or in skeletal muscles protects mice against myocardial ischemia-reperfusion (I/R) injury. Parabiosis experiments confirmed that RIPC in this latter model was mediated by a secreted factor. Egln1 loss causes accumulation of circulating αKG, which drives hepatic production and secretion of kynurenic acid (KYNA) that is necessary and sufficient to mediate cardiac ischemic protection in this setting.
Collapse
Affiliation(s)
- Benjamin A Olenchock
- Division of Cardiovascular Medicine, Department of Medicine, The Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Javid Moslehi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt School of Medicine, Nashville, TN 37235, USA
| | - Alan H Baik
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94117, USA
| | - Shawn M Davidson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeremy Williams
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - William J Gibson
- Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Kerry A Pierce
- Metabolomics Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Christine M Miller
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Joslin Diabetes Center, Boston, MA 02215, USA
| | - Eric A Hanse
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ameeta Kelekar
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lucas B Sullivan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Joslin Diabetes Center, Boston, MA 02215, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - William G Kaelin
- Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
47
|
Rahtu-Korpela L, Määttä J, Dimova EY, Hörkkö S, Gylling H, Walkinshaw G, Hakkola J, Kivirikko KI, Myllyharju J, Serpi R, Koivunen P. Hypoxia-Inducible Factor Prolyl 4-Hydroxylase-2 Inhibition Protects Against Development of Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:608-17. [PMID: 26848160 DOI: 10.1161/atvbaha.115.307136] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/25/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Small-molecule hypoxia-inducible factor prolyl 4-hydroxylase (HIF-P4H) inhibitors are being explored in clinical studies for the treatment of anemia. HIF-P4H-2 (also known as PHD2 or EglN1) inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. We studied here whether HIF-P4H-2 inhibition could also protect against atherosclerosis. APPROACH AND RESULTS Atherosclerosis development was studied in low-density lipoprotein (LDL) receptor-deficient mice treated with an oral HIF-P4H inhibitor, FG-4497, and in HIF-P4H-2-hypomorphic/C699Y-LDL receptor-mutant mice, all mice being fed a high-fat diet. FG-4497 administration to LDL receptor-deficient mice reduced the area of atherosclerotic plaques by ≈50% when compared with vehicle-treated controls and also reduced their weight gain, insulin resistance, liver and white adipose tissue (WAT) weights, adipocyte size, number of inflammation-associated WAT macrophage aggregates and the high-fat diet-induced increases in serum cholesterol levels. The levels of atherosclerosis-protecting circulating autoantibodies against copper-oxidized LDL were increased. The decrease in atherosclerotic plaque areas correlated with the reductions in weight, serum cholesterol levels, and WAT macrophage aggregates and the autoantibody increase. FG-4497 treatment stabilized HIF-1α and HIF-2α and altered the expression of glucose and lipid metabolism and inflammation-associated genes in liver and WAT. The HIF-P4H-2-hypomorphic/C699Y-LDL receptor-mutant mice likewise had a ≈50% reduction in atherosclerotic plaque areas, reduced WAT macrophage aggregate numbers, and increased autoantibodies against oxidized LDL, but did not have reduced serum cholesterol levels. CONCLUSIONS HIF-P4H-2 inhibition may be a novel strategy for protecting against the development of atherosclerosis. The mechanisms involve beneficial modulation of the serum lipid profile and innate immune system and reduced inflammation.
Collapse
Affiliation(s)
- Lea Rahtu-Korpela
- From the Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (L.R.-K., J. Määttä, E.Y.D., K.I.K., J. Myllyharju, R.S., P.K.) and Department of Medical Microbiology and Immunology, Medical Research Center (S.H.), University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu University Hospital, Oulu, Finland (S.H.); Division of Internal Medicine, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (H.G.); FibroGen Inc., San Francisco, CA (G.W.); and Research Unit of Biomedicine, Pharmacology and Toxicology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland (J.H.)
| | - Jenni Määttä
- From the Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (L.R.-K., J. Määttä, E.Y.D., K.I.K., J. Myllyharju, R.S., P.K.) and Department of Medical Microbiology and Immunology, Medical Research Center (S.H.), University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu University Hospital, Oulu, Finland (S.H.); Division of Internal Medicine, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (H.G.); FibroGen Inc., San Francisco, CA (G.W.); and Research Unit of Biomedicine, Pharmacology and Toxicology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland (J.H.)
| | - Elitsa Y Dimova
- From the Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (L.R.-K., J. Määttä, E.Y.D., K.I.K., J. Myllyharju, R.S., P.K.) and Department of Medical Microbiology and Immunology, Medical Research Center (S.H.), University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu University Hospital, Oulu, Finland (S.H.); Division of Internal Medicine, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (H.G.); FibroGen Inc., San Francisco, CA (G.W.); and Research Unit of Biomedicine, Pharmacology and Toxicology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland (J.H.)
| | - Sohvi Hörkkö
- From the Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (L.R.-K., J. Määttä, E.Y.D., K.I.K., J. Myllyharju, R.S., P.K.) and Department of Medical Microbiology and Immunology, Medical Research Center (S.H.), University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu University Hospital, Oulu, Finland (S.H.); Division of Internal Medicine, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (H.G.); FibroGen Inc., San Francisco, CA (G.W.); and Research Unit of Biomedicine, Pharmacology and Toxicology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland (J.H.)
| | - Helena Gylling
- From the Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (L.R.-K., J. Määttä, E.Y.D., K.I.K., J. Myllyharju, R.S., P.K.) and Department of Medical Microbiology and Immunology, Medical Research Center (S.H.), University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu University Hospital, Oulu, Finland (S.H.); Division of Internal Medicine, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (H.G.); FibroGen Inc., San Francisco, CA (G.W.); and Research Unit of Biomedicine, Pharmacology and Toxicology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland (J.H.)
| | - Gail Walkinshaw
- From the Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (L.R.-K., J. Määttä, E.Y.D., K.I.K., J. Myllyharju, R.S., P.K.) and Department of Medical Microbiology and Immunology, Medical Research Center (S.H.), University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu University Hospital, Oulu, Finland (S.H.); Division of Internal Medicine, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (H.G.); FibroGen Inc., San Francisco, CA (G.W.); and Research Unit of Biomedicine, Pharmacology and Toxicology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland (J.H.)
| | - Jukka Hakkola
- From the Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (L.R.-K., J. Määttä, E.Y.D., K.I.K., J. Myllyharju, R.S., P.K.) and Department of Medical Microbiology and Immunology, Medical Research Center (S.H.), University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu University Hospital, Oulu, Finland (S.H.); Division of Internal Medicine, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (H.G.); FibroGen Inc., San Francisco, CA (G.W.); and Research Unit of Biomedicine, Pharmacology and Toxicology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland (J.H.)
| | - Kari I Kivirikko
- From the Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (L.R.-K., J. Määttä, E.Y.D., K.I.K., J. Myllyharju, R.S., P.K.) and Department of Medical Microbiology and Immunology, Medical Research Center (S.H.), University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu University Hospital, Oulu, Finland (S.H.); Division of Internal Medicine, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (H.G.); FibroGen Inc., San Francisco, CA (G.W.); and Research Unit of Biomedicine, Pharmacology and Toxicology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland (J.H.)
| | - Johanna Myllyharju
- From the Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (L.R.-K., J. Määttä, E.Y.D., K.I.K., J. Myllyharju, R.S., P.K.) and Department of Medical Microbiology and Immunology, Medical Research Center (S.H.), University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu University Hospital, Oulu, Finland (S.H.); Division of Internal Medicine, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (H.G.); FibroGen Inc., San Francisco, CA (G.W.); and Research Unit of Biomedicine, Pharmacology and Toxicology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland (J.H.)
| | - Raisa Serpi
- From the Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (L.R.-K., J. Määttä, E.Y.D., K.I.K., J. Myllyharju, R.S., P.K.) and Department of Medical Microbiology and Immunology, Medical Research Center (S.H.), University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu University Hospital, Oulu, Finland (S.H.); Division of Internal Medicine, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (H.G.); FibroGen Inc., San Francisco, CA (G.W.); and Research Unit of Biomedicine, Pharmacology and Toxicology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland (J.H.)
| | - Peppi Koivunen
- From the Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (L.R.-K., J. Määttä, E.Y.D., K.I.K., J. Myllyharju, R.S., P.K.) and Department of Medical Microbiology and Immunology, Medical Research Center (S.H.), University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu University Hospital, Oulu, Finland (S.H.); Division of Internal Medicine, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (H.G.); FibroGen Inc., San Francisco, CA (G.W.); and Research Unit of Biomedicine, Pharmacology and Toxicology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland (J.H.).
| |
Collapse
|
48
|
West DB, Engelhard EK, Adkisson M, Nava AJ, Kirov JV, Cipollone A, Willis B, Rapp J, de Jong PJ, Lloyd KC. Transcriptome Analysis of Targeted Mouse Mutations Reveals the Topography of Local Changes in Gene Expression. PLoS Genet 2016; 12:e1005691. [PMID: 26839965 PMCID: PMC4739719 DOI: 10.1371/journal.pgen.1005691] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/30/2015] [Indexed: 01/21/2023] Open
Abstract
The unintended consequences of gene targeting in mouse models have not been thoroughly studied and a more systematic analysis is needed to understand the frequency and characteristics of off-target effects. Using RNA-seq, we evaluated targeted and neighboring gene expression in tissues from 44 homozygous mutants compared with C57BL/6N control mice. Two allele types were evaluated: 15 targeted trap mutations (TRAP); and 29 deletion alleles (DEL), usually a deletion between the translational start and the 3' UTR. Both targeting strategies insert a bacterial beta-galactosidase reporter (LacZ) and a neomycin resistance selection cassette. Evaluating transcription of genes in +/- 500 kb of flanking DNA around the targeted gene, we found up-regulated genes more frequently around DEL compared with TRAP alleles, however the frequency of alleles with local down-regulated genes flanking DEL and TRAP targets was similar. Down-regulated genes around both DEL and TRAP targets were found at a higher frequency than expected from a genome-wide survey. However, only around DEL targets were up-regulated genes found with a significantly higher frequency compared with genome-wide sampling. Transcriptome analysis confirms targeting in 97% of DEL alleles, but in only 47% of TRAP alleles probably due to non-functional splice variants, and some splicing around the gene trap. Local effects on gene expression are likely due to a number of factors including compensatory regulation, loss or disruption of intragenic regulatory elements, the exogenous promoter in the neo selection cassette, removal of insulating DNA in the DEL mutants, and local silencing due to disruption of normal chromatin organization or presence of exogenous DNA. An understanding of local position effects is important for understanding and interpreting any phenotype attributed to targeted gene mutations, or to spontaneous indels.
Collapse
Affiliation(s)
- David B. West
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
- * E-mail:
| | - Eric K. Engelhard
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Michael Adkisson
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - A. J. Nava
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Julia V. Kirov
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Andreanna Cipollone
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Brandon Willis
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Jared Rapp
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Pieter J. de Jong
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Kent C. Lloyd
- Mouse Biology Program, University of California, Davis, California, United States of America
| |
Collapse
|
49
|
Pharmacological targeting of the HIF hydroxylases--A new field in medicine development. Mol Aspects Med 2016; 47-48:54-75. [PMID: 26791432 DOI: 10.1016/j.mam.2016.01.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022]
Abstract
In human cells oxygen levels are 'sensed' by a set of ferrous iron and 2-oxoglutarate dependent dioxygenases. These enzymes regulate a broad range of cellular and systemic responses to hypoxia by catalysing the post-translational hydroxylation of specific residues in the alpha subunits of hypoxia inducible factor (HIF) transcriptional complexes. The HIF hydroxylases are now the subject of pharmaceutical targeting by small molecule inhibitors that aim to activate or augment the endogenous HIF transcriptional response for the treatment of anaemia and other hypoxic human diseases. Here we consider the rationale for this therapeutic strategy from the biochemical, biological and medical perspectives. We outline structural and mechanistic considerations that are relevant to the design of HIF hydroxylase inhibitors, including likely determinants of specificity, and review published reports on their activity in pre-clinical models and clinical trials.
Collapse
|
50
|
Maladaptive Modulations of NLRP3 Inflammasome and Cardioprotective Pathways Are Involved in Diet-Induced Exacerbation of Myocardial Ischemia/Reperfusion Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3480637. [PMID: 26788246 PMCID: PMC4691622 DOI: 10.1155/2016/3480637] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022]
Abstract
Excessive fatty acids and sugars intake is known to affect the development of cardiovascular diseases, including myocardial infarction. However, the underlying mechanisms are ill defined. Here we investigated the balance between prosurvival and detrimental pathways within the heart of C57Bl/6 male mice fed a standard diet (SD) or a high-fat high-fructose diet (HFHF) for 12 weeks and exposed to cardiac ex vivo ischemia/reperfusion (IR) injury. Dietary manipulation evokes a maladaptive response in heart mice, as demonstrated by the shift of myosin heavy chain isoform content from α to β, the increased expression of the Nlrp3 inflammasome and markers of oxidative metabolism, and the downregulation of the hypoxia inducible factor- (HIF-)2α and members of the Reperfusion Injury Salvage Kinases (RISK) pathway. When exposed to IR, HFHF mice hearts showed greater infarct size and lactic dehydrogenase release in comparison with SD mice. These effects were associated with an exacerbated overexpression of Nlrp3 inflammasome, resulting in marked caspase-1 activation and a compromised activation of the cardioprotective RISK/HIF-2α pathways. The common mechanisms of damage here reported lead to a better understanding of the cross-talk among prosurvival and detrimental pathways leading to the development of cardiovascular disorders associated with metabolic diseases.
Collapse
|