1
|
Li H, Lin L, Huang X, Lu Y, Su X. 2-Hydroxylation is a chemical switch linking fatty acids to glucose-stimulated insulin secretion. J Biol Chem 2024:107912. [PMID: 39442620 DOI: 10.1016/j.jbc.2024.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells is metabolically regulated and progressively diminished during the development of type 2 diabetes (T2D). This dynamic process is tightly coupled with fatty acid metabolism, but the underlying mechanisms remain poorly understood. Fatty acid 2-hydroxylase (FA2H) catalyzes the conversion of fatty acids to chiral specific (R)-2-hydroxy fatty acids ((R)-2-OHFAs), which influences cell metabolism. However, little is known about its potential coupling with GSIS in pancreatic β cells. Here, we showed that Fa2h knockout decreases plasma membrane localization and protein level of glucose transporter 2 (GLUT2), which is essential for GSIS, thereby controlling blood glucose homeostasis. Conversely, FA2H overexpression increases GLUT2 on the plasma membrane and enhances GSIS. Mechanistically, FA2H suppresses the internalization and trafficking of GLUT2 to the lysosomes for degradation. Overexpression of wild-type FA2H, but not its mutant with impaired hydroxylase activity in the pancreatic β-cells, improves glucose tolerance by promoting insulin secretion. Levels of 2-OHFAs and Fa2h gene expression are lower in high-fat diet-induced obese mouse islets with impaired GSIS. Moreover, lower gene expression of FA2H is observed in a set of human T2D islets when the insulin secretion index is significantly suppressed, indicating the potential involvement of FA2H in regulating mouse and human GSIS. Collectively, our results identified an FA chemical switch to maintain the proper response of GSIS in pancreatic β cells and provided a new perspective on the β-cell failure that triggers T2D.
Collapse
Affiliation(s)
- Hong Li
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China
| | - Lin Lin
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China
| | - Xiaoheng Huang
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China
| | - Yang Lu
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou, 215123, China; Suzhou Key Laboratory of Systems Biomedicine, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Wydrych A, Pakuła B, Jakubek-Olszewska P, Janikiewicz J, Dobosz AM, Cudna A, Rydzewski M, Pierzynowska K, Gaffke L, Cyske Z, Rintz E, Kurkowska-Jastrzębska I, Cwyl M, Pinton P, Węgrzyn G, Koopman WJH, Dobrzyń A, Skowrońska M, Lebiedzińska-Arciszewska M, Wieckowski MR. Metabolic alterations in fibroblasts of patients presenting with the MPAN subtype of neurodegeneration with brain iron accumulation (NBIA). Biochim Biophys Acta Mol Basis Dis 2024; 1871:167541. [PMID: 39419454 DOI: 10.1016/j.bbadis.2024.167541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Mutations in the following genes: PANK2, PLA2G6, C19orf12, WDR45, CP, FA2H, ATP13A2, FTL, DCAF17, and CoASY are associated with the development of different subtypes of inherited rare disease Neurodegeneration with Brain Iron Accumulation (NBIA). Additionally, recently described mutations in FTH1, AP4M1, REPS1, SCP2, CRAT and GTPBP2 affecting iron and lipid metabolism also are thought to be involved in NBIA development. Four main subtypes, pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN), are responsible for up to 82 % of all NBIA cases. Here we studied fibroblasts from 11 patients with pathogenic mutations in C19orf12, and demonstrate various cellular aberrations. Differences between fibroblasts from healthy individuals and MPAN patients were potentiated when cells were grown under oxidative phosphorylation (OXPHOS) promoting condition suggesting an impaired metabolic flexibility. The extent of some of the cellular aberrations quantitatively correlated with disease severity, suggesting their involvement in the NBIA pathomechanism.
Collapse
Affiliation(s)
- Agata Wydrych
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Pakuła
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Jakubek-Olszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Cudna
- II(nd) Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marcel Rydzewski
- II(nd) Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Maciej Cwyl
- Warsaw University of Technology, Warsaw, Poland; NBIA Poland Association, Warsaw, Poland
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Werner J H Koopman
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Skowrońska
- II(nd) Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Magdalena Lebiedzińska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Wydrych A, Pakuła B, Janikiewicz J, Dobosz AM, Jakubek-Olszewska P, Skowrońska M, Kurkowska-Jastrzębska I, Cwyl M, Popielarz M, Pinton P, Zavan B, Dobrzyń A, Lebiedzińska-Arciszewska M, Więckowski MR. Metabolic impairments in neurodegeneration with brain iron accumulation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149517. [PMID: 39366438 DOI: 10.1016/j.bbabio.2024.149517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a broad, heterogeneous group of rare inherited diseases (1-3 patients/1,000,000 people) characterized by progressive symptoms associated with excessive abnormal iron deposition in the brain. Approximately 15,000-20,000 individuals worldwide are estimated to be affected by NBIA. NBIA is usually associated with slowly progressive pyramidal and extrapyramidal symptoms, axonal motor neuropathy, optic nerve atrophy, cognitive impairment and neuropsychiatric disorders. To date, eleven subtypes of NBIA have been described and the most common ones include pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN). We present a comprehensive overview of the evidence for disturbed cellular homeostasis and metabolic alterations in NBIA variants, with a careful focus on mitochondrial bioenergetics and lipid metabolism which drives a new perspective in understanding the course of this infrequent malady.
Collapse
Affiliation(s)
- Agata Wydrych
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Barbara Pakuła
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Patrycja Jakubek-Olszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Skowrońska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Maciej Cwyl
- Warsaw University of Technology, Warsaw, Poland; NBIA Poland Association, Warsaw, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | | | - Mariusz R Więckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
4
|
Marchal S, Andriantsitohaina R, Martinez MC. Biotherapeutic approaches against cardio-metabolic dysfunctions based on extracellular vesicles. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167095. [PMID: 38428684 DOI: 10.1016/j.bbadis.2024.167095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Among the different pathways involved in the cell-to-cell communication, extracellular vesicles (EVs) are defined as key players in the transport of different signalling molecules, such as lipids, proteins, and RNA, from the originating cells to specific target cells. The biogenesis and composition of EVs are complex and confer them a unique ability to more effectively reach tissues and cells as compared to other types of synthetic carriers. Owing to these properties, EVs have been suggested as new therapeutic tools for personalized medicine. Since cardiometabolic diseases have reached pandemic proportions, new therapies are needed to be developed. In this context, EVs appear as promising therapeutic tools against cardiometabolic disorders associated with obesity and diabetes. This review focuses on the latest research on preclinical applications of EVs for cardiometabolic diseases, and draw primarily on our experience in this area.
Collapse
Affiliation(s)
- Stéphane Marchal
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | - M Carmen Martinez
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Li Q, Chen L, Yang L, Zhang P. FA2H controls cool temperature sensing through modifying membrane sphingolipids in Drosophila. Curr Biol 2024; 34:997-1009.e6. [PMID: 38359821 DOI: 10.1016/j.cub.2024.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Animals have evolved the ability to detect ambient temperatures, allowing them to search for optimal living environments. In search of the molecules responsible for cold-sensing, we examined a Gal4 insertion line in the larvae of Drosophila melanogaster from previous screening work, which has a specific expression pattern in the cooling cells (CCs). We identified that the targeted gene, fa2h, which encodes a fatty acid 2-hydroxylase, plays an important role in cool temperature sensing. We found that fa2h mutants exhibit defects in cool avoidance behavior and that this phenotype could be rescued by genetically re-introducing the wild-type version of FA2H in CCs but not the enzymatically disabled point mutation version. Calcium imaging data showed that CCs require fa2h to respond to cool temperature. Lipidomic analysis revealed that the 2-hydroxy sphingolipids content in the cell membranes diminished in fa2h mutants, resulting in increased fluidity of CC neuron membranes. Furthermore, in mammalian systems, we showed that FA2H strongly regulates the function of the TRPV4 channel in response to its agonist treatment and warming. Taken together, our study has uncovered a novel role of FA2H in temperature sensing and has provided new insights into the link between membrane lipid composition and the function of temperature-sensing ion channels.
Collapse
Affiliation(s)
- Qiaoran Li
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Limin Chen
- The Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Libo Yang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; The Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
6
|
German A, Jukic J, Laner A, Arnold P, Socher E, Mennecke A, Schmidt MA, Winkler J, Abicht A, Regensburger M. Novel Homozygous FA2H Variant Causing the Full Spectrum of Fatty Acid Hydroxylase-Associated Neurodegeneration (SPG35). Genes (Basel) 2023; 15:14. [PMID: 38275596 PMCID: PMC10815826 DOI: 10.3390/genes15010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Fatty acid hydroxylase-associated neurodegeneration (FAHN/SPG35) is caused by pathogenic variants in FA2H and has been linked to a continuum of specific motor and non-motor neurological symptoms, leading to progressive disability. As an ultra-rare disease, its mutational spectrum has not been fully elucidated. Here, we present the prototypical workup of a novel FA2H variant, including clinical and in silico validation. An 18-year-old male patient presented with a history of childhood-onset progressive cognitive impairment, as well as progressive gait disturbance and lower extremity muscle cramps from the age of 15. Additional symptoms included exotropia, dystonia, and limb ataxia. Trio exome sequencing revealed a novel homozygous c.75C>G (p.Cys25Trp) missense variant in the FA2H gene, which was located in the cytochrome b5 heme-binding domain. Evolutionary conservation, prediction models, and structural protein modeling indicated a pathogenic loss of function. Brain imaging showed characteristic features, thus fulfilling the complete multisystem neurodegenerative phenotype of FAHN/SPG35. In summary, we here present a novel FA2H variant and provide prototypical clinical findings and structural analyses underpinning its pathogenicity.
Collapse
Affiliation(s)
- Alexander German
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jelena Jukic
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Andreas Laner
- MGZ—Medizinisch Genetisches Zentrum, 80335 Munich, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eileen Socher
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Angelika Mennecke
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manuel A. Schmidt
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center for Rare Diseases (ZSEER), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Angela Abicht
- MGZ—Medizinisch Genetisches Zentrum, 80335 Munich, Germany
| | - Martin Regensburger
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center for Rare Diseases (ZSEER), University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Ding L, Chen Z, Lu Y, Su X. Global Analysis of 2-Hydroxy Fatty Acids by Gas Chromatography-Tandem Mass Spectrometry Reveals Species-Specific Enrichment in Echinoderms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16362-16370. [PMID: 37862591 DOI: 10.1021/acs.jafc.3c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Abnormal levels of 2-hydroxy fatty acids (2-OH FAs) are characterized in multiple diseases, and their quantification in foodstuffs is critical to identify the sources of supplementation for potential treatment. However, due to the structural complexity and limited available standards, the comprehensive profiling of 2-OH FAs remains an ongoing challenge. Herein, an innovative approach based on gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed to determine the full profile of these FA metabolites. MS and MS/MS spectra of the trimethylsilyl (TMS) derivatives of 2-OH fatty acid methyl esters (FAMEs) were collected for peak annotation by their signature fragmentation patterns. The structures were further confirmed by validated structure-dependent retention time (RT) prediction models, taking advantage of the correlation between the RT, carbon chain length, and double bond number from commercial standards and pseudostandards identified in the whole-brain samples from mice. An in-house database containing 50 saturated and monounsaturated 2-OH FAs was established, which is expandible when additional molecular species with different chain lengths and backbone structures are identified in the future. A quantitation method was then developed by scheduled multiple reaction monitoring (MRM) and applied to investigate the profiling of 2-OH FAs in echinoderms. Our results revealed that the levels of total 2-OH FAs in sea cucumber Apostichopus japonicas (8.40 ± 0.28 mg/g dry weight) and starfish Asterias amurensis (7.51 ± 0.18 mg/g dry weight) are much higher than that in sea urchin Mesocentrotus nudus (531 ± 108 μg/g dry weight). Moreover, 2-OH C24:1 is the predominant molecular species accounting for 67.9% of the total 2-OH FA in sea cucumber, while 2-OH C16:0 is the major molecular species in starfish. In conclusion, the current innovative GC-MS approach has successfully characterized distinct molecular species of 2-OH FAs that are highly present in sea cucumbers and starfish. Thus, these findings suggest the possibility of developing future feeding strategies for preventing and treating diseases associated with 2-OH FA deficiency.
Collapse
Affiliation(s)
- Lin Ding
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zhaozheng Chen
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yang Lu
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Fatty Acid 2-Hydroxylase and 2-Hydroxylated Sphingolipids: Metabolism and Function in Health and Diseases. Int J Mol Sci 2023; 24:ijms24054908. [PMID: 36902339 PMCID: PMC10002949 DOI: 10.3390/ijms24054908] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sphingolipids containing acyl residues that are hydroxylated at C-2 are found in most, if not all, eukaryotes and certain bacteria. 2-hydroxylated sphingolipids are present in many organs and cell types, though they are especially abundant in myelin and skin. The enzyme fatty acid 2-hydroxylase (FA2H) is involved in the synthesis of many but not all 2-hydroxylated sphingolipids. Deficiency in FA2H causes a neurodegenerative disease known as hereditary spastic paraplegia 35 (HSP35/SPG35) or fatty acid hydroxylase-associated neurodegeneration (FAHN). FA2H likely also plays a role in other diseases. A low expression level of FA2H correlates with a poor prognosis in many cancers. This review presents an updated overview of the metabolism and function of 2-hydroxylated sphingolipids and the FA2H enzyme under physiological conditions and in diseases.
Collapse
|
9
|
Generation and analysis of context-specific genome-scale metabolic models derived from single-cell RNA-Seq data. Proc Natl Acad Sci U S A 2023; 120:e2217868120. [PMID: 36719923 PMCID: PMC9963017 DOI: 10.1073/pnas.2217868120] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Single-cell RNA sequencing combined with genome-scale metabolic models (GEMs) has the potential to unravel the differences in metabolism across both cell types and cell states but requires new computational methods. Here, we present a method for generating cell-type-specific genome-scale models from clusters of single-cell RNA-Seq profiles. Specifically, we developed a method to estimate the minimum number of cells required to pool to obtain stable models, a bootstrapping strategy for estimating statistical inference, and a faster version of the task-driven integrative network inference for tissues algorithm for generating context-specific GEMs. In addition, we evaluated the effect of different RNA-Seq normalization methods on model topology and differences in models generated from single-cell and bulk RNA-Seq data. We applied our methods on data from mouse cortex neurons and cells from the tumor microenvironment of lung cancer and in both cases found that almost every cell subtype had a unique metabolic profile. In addition, our approach was able to detect cancer-associated metabolic differences between cancer cells and healthy cells, showcasing its utility. We also contextualized models from 202 single-cell clusters across 19 human organs using data from Human Protein Atlas and made these available in the web portal Metabolic Atlas, thereby providing a valuable resource to the scientific community. With the ever-increasing availability of single-cell RNA-Seq datasets and continuously improved GEMs, their combination holds promise to become an important approach in the study of human metabolism.
Collapse
|
10
|
Wang H, Wang X, Li M, Sun H, Chen Q, Yan D, Dong X, Pan Y, Lu S. Genome-wide association study reveals genetic loci and candidate genes for meat quality traits in a four-way crossbred pig population. Front Genet 2023; 14:1001352. [PMID: 36814900 PMCID: PMC9939654 DOI: 10.3389/fgene.2023.1001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Meat quality traits (MQTs) have gained more attention from breeders due to their increasing economic value in the commercial pig industry. In this genome-wide association study (GWAS), 223 four-way intercross pigs were genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) and phenotyped for PH at 45 min post mortem (PH45), meat color score (MC), marbling score (MA), water loss rate (WL), drip loss (DL) in the longissimus muscle, and cooking loss (CL) in the psoas major muscle. A total of 227, 921 filtered single nucleotide polymorphisms (SNPs) evenly distributed across the entire genome were detected to perform GWAS. A total of 64 SNPs were identified for six meat quality traits using the mixed linear model (MLM), of which 24 SNPs were located in previously reported QTL regions. The phenotypic variation explained (PVE) by the significant SNPs was from 2.43% to 16.32%. The genomic heritability estimates based on SNP for six meat-quality traits were low to moderate (0.07-0.47) being the lowest for CL and the highest for DL. A total of 30 genes located within 10 kb upstream or downstream of these significant SNPs were found. Furthermore, several candidate genes for MQTs were detected, including pH45 (GRM8), MC (ANKRD6), MA (MACROD2 and ABCG1), WL (TMEM50A), CL (PIP4K2A) and DL (CDYL2, CHL1, ABCA4, ZAG and SLC1A2). This study provided substantial new evidence for several candidate genes to participate in different pork quality traits. The identification of these SNPs and candidate genes provided a basis for molecular marker-assisted breeding and improvement of pork quality traits.
Collapse
Affiliation(s)
- Huiyu Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China,Faculty of Animal Science, Xichang University, Xichang, Sichuan, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hao Sun
- Faculty of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuchun Pan
- Faculty of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Yuchun Pan, ; Shaoxiong Lu,
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China,*Correspondence: Yuchun Pan, ; Shaoxiong Lu,
| |
Collapse
|
11
|
Watanabe T, Suzuki A, Ohira S, Go S, Ishizuka Y, Moriya T, Miyaji Y, Nakatsuka T, Hirata K, Nagai A, Matsuda J. The Urinary Bladder is Rich in Glycosphingolipids Composed of Phytoceramides. J Lipid Res 2022; 63:100303. [PMID: 36441023 PMCID: PMC9708920 DOI: 10.1016/j.jlr.2022.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
Glycosphingolipids (GSLs) are composed of a polar glycan chain and a hydrophobic tail known as ceramide. Together with variation in the glycan chain, ceramides exhibit tissue-specific structural variation in the long-chain base (LCB) and N-acyl chain moieties in terms of carbon chain length, degree of desaturation, and hydroxylation. Here, we report the structural variation in GSLs in the urinary bladders of mice and humans. Using TLC, we showed that the major GSLs are hexosylceramide, lactosylceramide, globotriaosylceramide, globotetraosylceramide, Neu5Ac-Gal-Glc-Ceramide, and Neu5Ac-Neu5Ac-Gal-Glc-Ceramide. Our LC-MS analysis indicated that phytoceramide structures with a 20-carbon LCB (4-hydroxyeicosasphinganine) and 2-hydroxy fatty acids are abundant in hexosylceramide and Neu5Ac-Gal-Glc-Ceramide in mice and humans. In addition, quantitative PCR demonstrated that DES2 and FA2H, which are responsible for the generation of 4-hydroxysphinganine and 2-hydroxy fatty acid, respectively, and SPTLC3 and SPTSSB, which are responsible for the generation of 20-carbon LCBs, showed significant expressions in the epithelial layer than in the subepithelial layer. Immunohistochemically, dihydroceramide:sphinganine C4-hydroxylase (DES2) was expressed exclusively in urothelial cells of the urinary bladder. Our findings suggest that these ceramide structures have an impact on membrane properties of the stretching and shrinking in transitional urothelial cells.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Akemi Suzuki
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Shin Ohira
- Department of Urology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Shinji Go
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yuta Ishizuka
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takuya Moriya
- Department of Pathology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshiyuki Miyaji
- Department of Urology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tota Nakatsuka
- Department of Urology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Keita Hirata
- Department of Urology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Atsushi Nagai
- Department of Urology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Okayama, Japan,For correspondence: Junko Matsuda
| |
Collapse
|
12
|
Bartolacci C, Andreani C, Vale G, Berto S, Melegari M, Crouch AC, Baluya DL, Kemble G, Hodges K, Starrett J, Politi K, Starnes SL, Lorenzini D, Raso MG, Solis Soto LM, Behrens C, Kadara H, Gao B, Wistuba II, Minna JD, McDonald JG, Scaglioni PP. Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer. Nat Commun 2022; 13:4327. [PMID: 35882862 PMCID: PMC9325712 DOI: 10.1038/s41467-022-31963-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/06/2022] [Indexed: 12/22/2022] Open
Abstract
Mutant KRAS (KM), the most common oncogene in lung cancer (LC), regulates fatty acid (FA) metabolism. However, the role of FA in LC tumorigenesis is still not sufficiently characterized. Here, we show that KMLC has a specific lipid profile, with high triacylglycerides and phosphatidylcholines (PC). We demonstrate that FASN, the rate-limiting enzyme in FA synthesis, while being dispensable in EGFR-mutant or wild-type KRAS LC, is required for the viability of KMLC cells. Integrating lipidomic, transcriptomic and functional analyses, we demonstrate that FASN provides saturated and monounsaturated FA to the Lands cycle, the process remodeling oxidized phospholipids, such as PC. Accordingly, blocking either FASN or the Lands cycle in KMLC, promotes ferroptosis, a reactive oxygen species (ROS)- and iron-dependent cell death, characterized by the intracellular accumulation of oxidation-prone PC. Our work indicates that KM dictates a dependency on newly synthesized FA to escape ferroptosis, establishing a targetable vulnerability in KMLC.
Collapse
Affiliation(s)
- Caterina Bartolacci
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Cristina Andreani
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Gonçalo Vale
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Stefano Berto
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Margherita Melegari
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Anna Colleen Crouch
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dodge L Baluya
- Tissue Imaging and Proteomics Laboratory, Washington State University, Pullman, WA, 99164, USA
| | | | - Kurt Hodges
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | | | - Katerina Politi
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Sandra L Starnes
- Department of Surgery, Division of Thoracic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Daniele Lorenzini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, via Venezian 1, 20133, Milan, Italy
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic H&N Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pier Paolo Scaglioni
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA.
| |
Collapse
|
13
|
Jordans S, Hardt R, Becker I, Winter D, Wang-Eckhardt L, Eckhardt M. Age-Dependent Increase in Schmidt-Lanterman Incisures and a Cadm4-Associated Membrane Skeletal Complex in Fatty Acid 2-hydroxylase Deficient Mice: a Mouse Model of Spastic Paraplegia SPG35. Mol Neurobiol 2022; 59:3969-3979. [PMID: 35445918 PMCID: PMC9167166 DOI: 10.1007/s12035-022-02832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
Abstract
PNS and CNS myelin contain large amounts of galactocerebroside and sulfatide with 2-hydroxylated fatty acids. The underlying hydroxylation reaction is catalyzed by fatty acid 2-hydroxylase (FA2H). Deficiency in this enzyme causes a complicated hereditary spastic paraplegia, SPG35, which is associated with leukodystrophy. Mass spectrometry-based proteomics of purified myelin isolated from sciatic nerves of Fa2h-deficient (Fa2h−/−) mice revealed an increase in the concentration of the three proteins Cadm4, Mpp6 (Pals2), and protein band 4.1G (Epb41l2) in 17-month-old, but not in young (4 to 6-month-old), Fa2h−/− mice. These proteins are known to form a complex, together with the protein Lin7, in Schmidt-Lanterman incisures (SLIs). Accordingly, the number of SLIs was significantly increased in 17-month-old but not 4-month-old Fa2h−/− mice compared to age-matched wild-type mice. On the other hand, the relative increase in the SLI frequency was less pronounced than expected from Cadm4, Lin7, Mpp6 (Pals2), and band 4.1G (Epb41l2) protein levels. This suggests that the latter not only reflect the higher SLI frequency but that the concentration of the Cadm4 containing complex itself is increased in the SLIs or compact myelin of Fa2h−/− mice and may potentially play a role in the pathogenesis of the disease. The proteome data are available via ProteomeXchange with identifier PXD030244.
Collapse
Affiliation(s)
- Silvia Jordans
- Department for Pediatric Hematology and Oncology, Center for Pediatrics, University Hospital Bonn, Venusberg-Campus 1, 53117, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Robert Hardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Ivonne Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Dominic Winter
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
14
|
Voronkov AS, Ivanova TV, Kumachova TK. The features of the fatty acid composition of Pyrus L. total lipids are determined by mountain ecosystem conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:350-363. [PMID: 34959055 DOI: 10.1016/j.plaphy.2021.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The composition of fatty acids (FAs) of total lipids of pericarp, seeds, and leaves of Pyrus caucasica Fed. and Pyrus communis L. growing in mountain ecosystems at different altitudes (300, 700 and 1200 m) was studied. It was found that the greatest differences in the relative content of FAs within a species, depending on the altitudes above sea level, were characteristic of the outer tissues of the pericarp (peel) and leaves, which were in direct contact with the external environment. Pericarp parenchyma to a lesser extent, and seeds practically did not differ in FA composition at different heights. At altitudes with increased UV radiation, conjugated octadecadienoates: rumenic acid (9,11-18:2) and 10,12-18:2 were registered in the pericarp and leaf of Purys L., the functions of which in plants were practically not studied. The wild P. caucasica at all growing altitudes was characterized by more very-long-chain FAs (VLCFAs) than the P. communis cultivar. At 700 m, most likely when exposed to fungal infections, the relative number of VLCFAs increased significantly, and new species of individual odd-chaine FAs appeared in their composition in both representatives. It was especially worth noting the appearance in peel and leaf melissic acid (30:0), which was rarely recorded in the plant. A characteristic feature of only P. communis at an altitude of 700 m was the large number of unsaturated individual VLCFAs. Based on the data obtained, a scheme of possible pathways for VLCFA biosynthesis in P. communis were proposed.
Collapse
Affiliation(s)
- Alexander S Voronkov
- K. A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St, Moscow, 127276, Russia.
| | - Tatiana V Ivanova
- K. A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| | - Tamara K Kumachova
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya St, Moscow, 127550, Russia
| |
Collapse
|
15
|
Jacinto JGP, Häfliger IM, Veiga IMB, Letko A, Gentile A, Drögemüller C. A frameshift insertion in FA2H causes a recessively inherited form of ichthyosis congenita in Chianina cattle. Mol Genet Genomics 2021; 296:1313-1322. [PMID: 34599683 PMCID: PMC8550120 DOI: 10.1007/s00438-021-01824-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/23/2021] [Indexed: 01/14/2023]
Abstract
The aim of this study was to characterize the phenotype and to identify the genetic etiology of a syndromic form of ichthyosis congenita (IC) observed in Italian Chianina cattle and to estimate the prevalence of the deleterious allele in the population. Sporadic occurrence of different forms of ichthyosis including IC have been previously reported in cattle. However, so far, no causative genetic variant has been found for bovine IC. Nine affected cattle presenting congenital xerosis, hyperkeratosis and scaling of the skin as well as urolithiasis and cystitis associated with retarded growth were examined. Skin histopathology revealed a severe, diffuse orthokeratotic hyperkeratosis with mild to moderate epidermal hyperplasia. The pedigree records indicated a monogenic recessive trait. Homozygosity mapping and whole-genome sequencing allowed the identification of a homozygous frameshift 1 bp insertion in the FA2H gene (c.9dupC; p.Ala4ArgfsTer142) located in a 1.92 Mb shared identical-by-descent region on chromosome 18 present in all cases, while the parents were heterozygous as expected for obligate carriers. These findings enable the selection against this sub-lethal allele showing an estimated frequency of ~ 7.5% in Chianina top sires. A sporadic incidence of mild clinical signs in the skin of heterozygous carriers was observed. So far, pathogenic variants affecting the encoded fatty acid 2-hydroxylase catalyzing the synthesis of 2-hydroxysphingolipids have been associated with myelin disorders. In conclusion, this study represents the first report of an FA2H-related autosomal recessive inherited skin disorder in a mammalian species and adds FA2H to the list of candidate genes for ichthyosis in humans and animals. Furthermore, this study provides a DNA-based diagnostic test that enables selection against the identified pathogenic variant in the Chianina cattle population. However, functional studies are needed to better understand the expression of FA2H in IC-affected Chianina cattle.
Collapse
Affiliation(s)
- Joana G. P. Jacinto
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Irene M. Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Inês M. B. Veiga
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Arcangelo Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
16
|
Park JH, Kornfeld JW. ExomiRs at the crossroads-divergent role of exosomal miRNAs in early and chronic obesity. Nat Metab 2021; 3:1137-1138. [PMID: 34489605 DOI: 10.1038/s42255-021-00446-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joo Hyun Park
- Department for Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Odense, Denmark
| | - Jan-Wilhelm Kornfeld
- Department for Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Odense, Denmark.
- ADIPOSIGN Research Center, Odense, Denmark.
| |
Collapse
|
17
|
Neurodegeneration with Brain Iron Accumulation and a Brief Report of the Disease in Iran. Can J Neurol Sci 2021; 49:338-351. [PMID: 34082843 DOI: 10.1017/cjn.2021.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a term used for a group of hereditary neurological disorders with abnormal accumulation of iron in basal ganglia. It is clinically and genetically heterogeneous with symptoms such as dystonia, dysarthria, Parkinsonism, intellectual disability, and spasticity. The age at onset and rate of progression are variable among individuals. Current therapies are exclusively symptomatic and unable to hinder the disease progression. Approximately 16 genes have been identified and affiliated to such condition with different functions such as iron metabolism (only two genes: Ferritin Light Chain (FTL) Ceruloplasmin (CP)), lipid metabolism, lysosomal functions, and autophagy process, but some functions have remained unknown so far. Subgroups of NBIA are categorized based on the mutant genes. Although in the last 10 years, the development of whole-exome sequencing (WES) technology has promoted the identification of disease-causing genes, there seem to be some unknown genes and our knowledge about the molecular aspects and pathogenesis of NBIA is not complete yet. There is currently no comprehensive study about the NBIA in Iran; however, one of the latest discovered NBIA genes, GTP-binding protein 2 (GTPBP2), has been identified in an Iranian family, and there are some patients who have genetically remained unknown.
Collapse
|
18
|
Sun L, Yang X, Huang X, Yao Y, Wei X, Yang S, Zhou D, Zhang W, Long Z, Xu X, Zhu X, He S, Su X. 2-Hydroxylation of Fatty Acids Represses Colorectal Tumorigenesis and Metastasis via the YAP Transcriptional Axis. Cancer Res 2020; 81:289-302. [PMID: 33203703 DOI: 10.1158/0008-5472.can-20-1517] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/16/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
Alteration in lipid composition is an important metabolic adaptation by cancer cells to support tumorigenesis and metastasis. Fatty acid 2-hydroxylase (FA2H) introduces a chiral hydroxyl group at the second carbon of fatty acid (FA) backbones and influences lipid structures and metabolic signaling. However, the underlying mechanisms through which FA 2-hydroxylation is coupled to metabolic adaptation and tumor growth remain elusive. Here, we show that FA2H regulates specific metabolic reprogramming and oncogenic signaling in the development of colorectal cancer. FA2H is highly expressed in normal colorectal tissues. Assessments through deciphering both published high-throughput data and curated human colorectal cancer samples revealed significant suppression of FA2H in tumors, which is correlated with unfavorable prognosis. Experiments with multiple models of genetic manipulation or treatment with an enzymatic product of FA2H, (R)-2-hydroxy palmitic acid, demonstrated that FA 2-hydroxylation inhibits colorectal cancer cell proliferation, migration, epithelial-to-mesenchymal transition progression, and tumor growth. Bioinformatics analysis suggested that FA2H functions through AMP-activated protein kinase/Yes-associated protein (AMPK/YAP) pathway, which was confirmed in colorectal cancer cells, as well as in tumors. Lipidomics analysis revealed an accumulation of polyunsaturated fatty acids in cells with FA2H overexpression, which may contribute to the observed nutrient deficiency and AMPK activation. Collectively, these data demonstrate that FA 2-hydroxylation initiates a metabolic signaling cascade to suppress colorectal tumor growth and metastasis via the YAP transcriptional axis and provides a strategy to improve colorectal cancer treatment. SIGNIFICANCE: These findings identify a novel metabolic mechanism regulating the tumor suppressor function of FA 2-hydroxylation in colorectal cancer.
Collapse
Affiliation(s)
- Liang Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China.,Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xiaoqin Yang
- Department of Bioinformatics, Soochow University Medical College, Suzhou, Jiangsu, P.R. China
| | - Xiaoheng Huang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China
| | - Yizhou Yao
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China.,Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xiangyu Wei
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China
| | - Shugao Yang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China
| | - Diyuan Zhou
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China.,Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Wei Zhang
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Zhimin Long
- Shanghai Sciex Analytical Instrument Trading Co., Shanghai, P.R. China
| | - Xiaoyan Xu
- Shanghai Sciex Analytical Instrument Trading Co., Shanghai, P.R. China
| | - Xinguo Zhu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China.
| | - Songbing He
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China. .,Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
19
|
Li H, Lian B, Liu Y, Chai D, Li J. MicroRNA-1297 downregulation inhibits breast cancer cell epithelial-mesenchymal transition and proliferation in a FA2H-dependent manner. Oncol Lett 2020; 20:277. [PMID: 33014155 PMCID: PMC7520798 DOI: 10.3892/ol.2020.12140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors among women worldwide. MicroRNAs (miRs) may be involved in several types of human cancer, including gastric, liver, lung and breast cancer. The aim of the present study was to investigate the effect of miR-1297 on MDA-MB-231 cell epithelial-mesenchymal transition (EMT) and proliferation, and the underlying molecular mechanisms. MDA-MB-231 cells were transfected with miR-1297 inhibitor or inhibitor control for 48 h. Subsequently, MTT and flow cytometry assays indicated that miR-1297 inhibitor significantly decreased cell proliferation and induced apoptosis compared with the inhibitor control group. In addition, reverse transcription-quantitative PCR and western blotting suggested that miR-1297 inhibitor suppressed EMT in MDA-MB-231 cells compared with the inhibitor control group. TargetScan bioinformatics analysis and a dual-luciferase reporter gene assay were performed, which predicted that miR-1297 directly targeted fatty acid 2-hydroxylase (FA2H). Furthermore, MDA-MB-231 cells were transfected with control-plasmid or FA2H-plasmid for 48 h. The results demonstrated that FA2H overexpression decreased MDA-MB-231 cell proliferation and increased apoptosis compared with the control-plasmid group. Additionally, FA2H-plasmid increased E-cadherin expression levels, and reduced N-cadherin and matrix metalloproteinase 9 expression levels at both the protein and mRNA level compared with control-plasmid. Finally, MDA-MB-231 cells were transfected with control-small interfering (si)RNA, FA2H-siRNA, inhibitor control, miR-1297 inhibitor, miR-1297 inhibitor + control siRNA or miR-1297 inhibitor + FA2H-siRNA, and the results suggested that the biological effects of miR-1297 inhibitor were reversed by co-transfection with FA2H siRNA. In conclusion, the present study indicated that miR-1297/FA2H might serve as a novel potential biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Bin Lian
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yaobang Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Dahai Chai
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jinping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
20
|
Hong B, Li J, Huang C, Huang T, Zhang M, Huang L. miR-300/FA2H affects gastric cancer cell proliferation and apoptosis. Open Med (Wars) 2020; 15:882-889. [PMID: 33344772 PMCID: PMC7724006 DOI: 10.1515/med-2020-0188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNA (miR/miRNA) expression disorders play a crucial role in the development of gastric cancer (GC). Increasing evidence has indicated that miRNAs participate in the process of numerous cancers. Previous research has demonstrated that miR-300 acts as a cancer-promoting factor or tumor suppressor in a number of tumors. However, to the best of our knowledge, the effects of miR-300 on GC cells remain largely unknown. The present study investigated the effects of miR-300 on GC cells and analyzed its molecular mechanism. First, reverse transcription-quantitative polymerase chain reaction showed that miR-300 expression was increased in GC tissues and cell lines, with the highest expression observed in human gastric cancer cell line AGS. Subsequent results indicated that fatty acid 2-hydroxylase (FA2H) was a target of miR-300. FA2H-plasmid inhibited AGS cell proliferation and induced apoptosis. Finally, miR-300 inhibitor reduced cell proliferation and induced apoptosis, whereby these effects were reversed by FA2H-small interfering RNA. Therefore, the data demonstrated that miR-300/FA2H might be a new potential biomarker and therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Bo Hong
- Department of Gastroenterology, Xiangshan Hospital Affiliated to Wenzhou Medical University, 291 Donggu Road, Dandong Street, Xiangshan County, Ningbo, 315700, People's Republic of China
| | - Jie Li
- Department of Gastroenterology, Xiangshan Hospital Affiliated to Wenzhou Medical University, 291 Donggu Road, Dandong Street, Xiangshan County, Ningbo, 315700, People's Republic of China
| | - Chunxiao Huang
- Department of Gastroenterology, Xiangshan Hospital Affiliated to Wenzhou Medical University, 291 Donggu Road, Dandong Street, Xiangshan County, Ningbo, 315700, People's Republic of China
| | - Tao Huang
- Department of Gastroenterology, Xiangshan Hospital Affiliated to Wenzhou Medical University, 291 Donggu Road, Dandong Street, Xiangshan County, Ningbo, 315700, People's Republic of China
| | - Mengpei Zhang
- Department of Gastroenterology, Xiangshan Hospital Affiliated to Wenzhou Medical University, 291 Donggu Road, Dandong Street, Xiangshan County, Ningbo, 315700, People's Republic of China
| | - Lijiang Huang
- Department of Gastroenterology, Xiangshan Hospital Affiliated to Wenzhou Medical University, 291 Donggu Road, Dandong Street, Xiangshan County, Ningbo, 315700, People's Republic of China
| |
Collapse
|
21
|
Cid NG, Puca G, Nudel CB, Nusblat AD. Genome analysis of sphingolipid metabolism-related genes in Tetrahymena thermophila and identification of a fatty acid 2-hydroxylase involved in the sexual stage of conjugation. Mol Microbiol 2020; 114:775-788. [PMID: 32713049 DOI: 10.1111/mmi.14578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022]
Abstract
Sphingolipids are bioactive lipids present in all eukaryotes. Tetrahymena thermophila is a ciliate that displays remarkable sphingolipid moieties, that is, the unusual phosphonate-linked headgroup ceramides, present in membranes. To date, no identification has been made in this organism of the functions or related genes implicated in sphingolipid metabolism. By gathering information from the T. thermophila genome database together with sphingolipid moieties and enzymatic activities reported in other Tetrahymena species, we were able to reconstruct the putative de novo sphingolipid metabolic pathway in T. thermophila. Orthologous genes of 11 enzymatic steps involved in the biosynthesis and degradation pathways were retrieved. No genes related to glycosphingolipid or phosphonosphingolipid headgroup transfer were found, suggesting that both conserved and innovative mechanisms are used in ciliate. The knockout of gene TTHERM_00463850 allowed to identify the gene encoding a putative fatty acid 2-hydroxylase, which is involved in the biosynthesis pathway. Knockout cells have shown several impairments in the sexual stage of conjugation since different mating types of knockout strains failed to form cell pairs and complete the conjugation process. This fatty acid 2-hydroxylase gene is the first gene of a sphingolipid metabolic pathway to be identified in ciliates and have a critical role in their sexual stage.
Collapse
Affiliation(s)
- Nicolas G Cid
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Gervasio Puca
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Clara B Nudel
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Alejandro D Nusblat
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| |
Collapse
|
22
|
Popkova Y, Dannenberger D, Schiller J, Engel KM. Differences in the lipid patterns during maturation of 3T3-L1 adipocytes investigated by thin-layer chromatography, gas chromatography, and mass spectrometric approaches. Anal Bioanal Chem 2019; 412:2237-2249. [PMID: 31797017 DOI: 10.1007/s00216-019-02243-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Populations of industrialized countries have registered a dramatically increasing prevalence in obesity for many years. Despite continuous research, mechanisms involved in the storage and utilization of chemical energy in adipocytes are still under investigation. Adipocytes have the task to store excessive energy in the form of triacylglycerols (TG) and it is already well-known that the fatty acyl composition of TG is largely determined by the composition of the diet. In contrast to TG, the composition of adipocyte phospholipids was less comprehensively investigated. In this study, the compositions of the most abundant phospholipid classes of 3T3-L1 undifferentiated (preadipocytes) and differentiated cells (adipocytes) were determined. The lipid fractions were isolated by normal phase high-performance thin-layer chromatography and subsequently analyzed by electrospray ionization mass spectrometry. Additionally, the fatty acyl (FA) compositions were determined by gas chromatography. The positions of the FA residues were additionally confirmed by phospholipase A2 digestion. The advantages and disadvantages of the different analytical approaches will be discussed. It will be shown that undifferentiated 3T3-L1 and mature adipocytes differ extremely regarding their compositions. This goes along with an increase in odd-chain fatty acids. Graphical abstract.
Collapse
Affiliation(s)
- Yulia Popkova
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany.
| | - Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology, Institute of Muscle Biology and Growth, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Kathrin M Engel
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| |
Collapse
|
23
|
Ranjpour M, Wajid S, Jain SK. Elevated Expression of A-Raf and FA2H in Hepatocellular Carcinoma is Associated with Lipid Metabolism Dysregulation and Cancer Progression. Anticancer Agents Med Chem 2019; 19:236-247. [PMID: 30324893 DOI: 10.2174/1871520618666181015142810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/08/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Identification of events leading to hepatocellular carcinoma (HCC) progression is essential for understanding its pathophysiology. The aims of this study are to identify and characterize differentially expressed proteins in serum of HCC-bearing rats and the corresponding controls during cancer initiation, progression and tumorigenesis. METHODS Chemical carcinogens, N-Nitrosodiethylamine and 2-aminoacetylfluorine are administered to induce HCC to male Wistar rats. The 2D-Electrophoresis and PD-Quest analyses are performed to identify several differentially expressed proteins in serum of HCC-bearing animals. These proteins are further characterized by MALDI-TOF-MS/MS analyses. Using pathwaylinker a HCC-specific network is analyzed among the MALDITOF- MS/MS characterized proteins and their interactors. RESULTS Carcinogen administration caused inflammation leading to liver injury and HCC development. Liver inflammation was confirmed by increase in the levels of TNF-α and IL-6 in carcinogen treated rats. We report significant increase in expression of two differentially expressed proteins, namely, A-Raf and Fatty Acid 2- Hydroxylase (FA2H), at early stage of HCC initiation, during its progression and at tumor stage. Real-time PCR analysis of mRNA for these proteins confirmed up-regulation of their transcripts. Further, we validated our experimental data with sera of clinically confirmed liver cancer patients. CONCLUSION The study suggests that FA2H and A-Raf play a major role in the progression of HCC.
Collapse
Affiliation(s)
- Maryam Ranjpour
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Swatantra K Jain
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.,Department of Medical Biochemistry, HIMSR, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
24
|
Dai X, Zhang S, Cheng H, Cai D, Chen X, Huang Z. FA2H Exhibits Tumor Suppressive Roles on Breast Cancers via Cancer Stemness Control. Front Oncol 2019; 9:1089. [PMID: 31709178 PMCID: PMC6821679 DOI: 10.3389/fonc.2019.01089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Triple negative breast cancers are aggressive, enriched with cancer stem cells, and lack effective targeted therapies with little side effects. Methods: We isolated cancer stem cells from two triple negative breast cancer cell lines via cell sorting following transcriptome sequencing, bioinformatics analysis, experimental and clinical validations, as well as functional investigations to explore genes capturing triple negative breast cancer features for improved diagnosis and therapeutics in clinics. Results: We found that FA2H is under-expressed in triple negative breast cancers both in vitro and in clinics, and FA2H suppresses cancer stemness via inhibiting the STAT3/IL6 axis and NFkB signaling. Conclusions: This study reports the tumor suppressive roles of FA2H on breast cancer cells through cancer stemness control. FA2H and other candidates unveiled in this study that capture the features of cancer stem cells may contribute as diagnostic marker and/or effective therapeutic targets for improved triple negative breast cancer management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, JiangNan University, Wuxi, China
| | - Shuo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hongye Cheng
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Wuxi School of Medicine, JiangNan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao Chen
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhaohui Huang
- Wuxi School of Medicine, JiangNan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Hashimoto N, Ito S, Tsuchida A, Bhuiyan RH, Okajima T, Yamamoto A, Furukawa K, Ohmi Y, Furukawa K. The ceramide moiety of disialoganglioside (GD3) is essential for GD3 recognition by the sialic acid-binding lectin SIGLEC7 on the cell surface. J Biol Chem 2019; 294:10833-10845. [PMID: 31138648 DOI: 10.1074/jbc.ra118.007083] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
To analyze the binding specificity of a sialic acid-recognizing lectin, sialic acid-binding Ig-like lectin 7 (SIGLEC7), to disialyl gangliosides (GD3s), here we established GD3-expressing cells by introducing GD3 synthase (GD3S or ST8SIA1) cDNA into a colon cancer cell line, DLD-1, that expresses no ligands for the recombinant protein SIGLEC7-Fc. SIGLEC7-Fc did not recognize newly-expressed GD3 on DLD-1 cells, even though GD3 was highly expressed, as detected by an anti-GD3 antibody. Because milk-derived GD3 could be recognized by this fusion protein when incorporated onto the surface of DLD-1 cells, we compared the ceramides in DLD-1-generated and milk-derived GD3s to identify the SIGLEC7-specific GD3 structures on the cell membrane, revealing that SIGLEC7 recognizes only GD3-containing regular ceramides but not phytoceramides. This was confirmed by knockdown/knockout of the sphingolipid delta(4)-desaturase/C4-monooxygenase (DES2) gene, involved in phytoceramide synthesis, disclosing that DES2 inhibition confers SIGLEC7 binding. Furthermore, knocking out fatty acid 2-hydroxylase also resulted in the emergence of SIGLEC7 binding to the cell surface. To analyze the effects of binding between SIGLEC7 and various GD3 species on natural killer function, we investigated cytotoxicity of peripheral blood mononuclear cells from healthy donors toward GD3S-transfected DLD-1 (DLD-1-GD3S) cells and DLD-1-GD3S cells with modified ceramides. We found that cytotoxicity is suppressed in DLD-1-GD3S cells with dehydroxylated GD3s. These results indicate that the ceramide structures in glycosphingolipids affect SIGLEC7 binding and distribution on the cell surface and influence cell sensitivity to killing by SIGLEC7-expressing effector cells.
Collapse
Affiliation(s)
- Noboru Hashimoto
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan,; Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, 3-18-5, Kuramoto-cho, Tokushima 770-8504, Japan
| | - Shizuka Ito
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Akiko Tsuchida
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Robiul H Bhuiyan
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan,; Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan, and
| | - Tetsuya Okajima
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, 3-18-5, Kuramoto-cho, Tokushima 770-8504, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan, and
| | - Yuhsuke Ohmi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan, and
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan,; Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan, and.
| |
Collapse
|
26
|
Yao Y, Yang X, Sun L, Sun S, Huang X, Zhou D, Li T, Zhang W, Abumrad NA, Zhu X, He S, Su X. Fatty acid 2-hydroxylation inhibits tumor growth and increases sensitivity to cisplatin in gastric cancer. EBioMedicine 2019; 41:256-267. [PMID: 30738828 PMCID: PMC6441949 DOI: 10.1016/j.ebiom.2019.01.066] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/27/2019] [Accepted: 01/31/2019] [Indexed: 01/25/2023] Open
Abstract
Background Most gastric cancers are diagnosed at an advanced or metastatic stage with poor prognosis and survival rate. Fatty acid 2-hydroxylase (FA2H) with high expression in stomach generates chiral (R)-2-hydroxy FAs ((R)-2-OHFAs) and regulates glucose utilization which is important for cell proliferation and invasiveness. We hypothesized that FA2H impacts gastric tumor growth and could represent a novel target to improve gastric cancer therapy. Methods FA2H level in 117 human gastric tumors and its association with tumor growth, metastasis and overall survival were examined. Its roles and potential mechanisms in regulating tumor growth were studied by genetic and pharmacological manipulation of gastric cancer cells in vitro and in vivo. Findings FA2H level was lower in gastric tumor tissues as compared to surrounding tissues and associated with clinicopathologic status of patients, which were confirmed by analyses of multiple published datasets. FA2H depletion decreased tumor chemosensitivity, partially due to inhibition of AMPK and activation of the mTOR/S6K1/Gli1 pathway. Conversely, FA2H overexpression or treatment with (R)-2-OHFAs had the opposite effects. In line with these in vitro observations, FA2H knockdown promoted tumor growth with increased level of tumor Gli1 in vivo. Moreover, (R)-2-OHFA treatment significantly decreased Gli1 level in gastric tumors and enhanced tumor chemosensitivity to cisplatin, while alleviating the chemotherapy-induced weight loss in mice. Interpretation Our results demonstrate that FA2H plays an important role in regulating Hh signaling and gastric tumor growth and suggest that (R)-2-OHFAs could be effective as nontoxic wide-spectrum drugs to promote chemosensitivity. Fund Grants of NSF, NIH, and PAPD.
Collapse
Affiliation(s)
- Yizhou Yao
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China; Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaoqin Yang
- Department of Genetics and Bioinformatics, Soochow University Medical College, Suzhou 215123, China
| | - Liang Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China; Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shishuo Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Xiaoheng Huang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Diyuan Zhou
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China; Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tingting Li
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Wei Zhang
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Nada A Abumrad
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Xinguo Zhu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Songbing He
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
27
|
Li Y, Wang C, Huang Y, Fu R, Zheng H, Zhu Y, Shi X, Padakanti PK, Tu Z, Su X, Zhang H. C. Elegans Fatty Acid Two-Hydroxylase Regulates Intestinal Homeostasis by Affecting Heptadecenoic Acid Production. Cell Physiol Biochem 2018; 49:947-960. [PMID: 30184537 DOI: 10.1159/000493226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS The hydroxylation of fatty acids at the C-2 position is the first step of fatty acid α-oxidation and generates sphingolipids containing 2-hydroxy fatty acyl moieties. Fatty acid 2-hydroxylation is catalyzed by Fatty acid 2-hydroxylase (FA2H) enzyme. However, the precise roles of FA2H and fatty acid 2-hydroxylation in whole cell homeostasis still remain unclear. METHODS Here we utilize Caenorhabditis elegans as the model and systemically investigate the physiological functions of FATH-1/C25A1.5, the highly conserved worm homolog for mammalian FA2H enzyme. Immunostaining, dye-staining and translational fusion reporters were used to visualize FATH-1 protein and a variety of subcellular structures. The "click chemistry" method was employed to label 2-OH fatty acid in vivo. Global and tissue-specific RNAi knockdown experiments were performed to inactivate FATH-1 function. Lipid analysis of the fath-1 deficient mutants was achieved by mass spectrometry. RESULTS C. elegans FATH-1 is expressed at most developmental stages and in most tissues. Loss of fath-1 expression results in severe growth retardation and shortened lifespan. FATH-1 function is crucially required in the intestine but not the epidermis with stereospecificity. The "click chemistry" labeling technique showed that the FATH-1 metabolites are mainly enriched in membrane structures preferable to the apical side of the intestinal cells. At the subcellular level, we found that loss of fath-1 expression inhibits lipid droplets formation, as well as selectively disrupts peroxisomes and apical endosomes. Lipid analysis of the fath-1 deficient animals revealed a significant reduction in the content of heptadecenoic acid, while other major FAs remain unaffected. Feeding of exogenous heptadecenoic acid (C17: 1), but not oleic acid (C18: 1), rescues the global and subcellular defects of fath-1 knockdown worms. CONCLUSION Our study revealed that FATH-1 and its catalytic products are highly specific in the context of chirality, C-chain length, spatial distribution, as well as the types of cellular organelles they affect. Such an unexpected degree of specificity for the synthesis and functions of hydroxylated FAs helps to regulate protein transport and fat metabolism, therefore maintaining the cellular homeostasis of the intestinal cells. These findings may help our understanding of FA2H functions across species, and offer potential therapeutical targets for treating FA2H-related diseases.
Collapse
Affiliation(s)
- Yuanbao Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chunxia Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yikai Huang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, China
| | - Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hanxi Zheng
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoruo Shi
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, China
| | - Prashanth K Padakanti
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, China.,Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Marquês JT, Marinho HS, de Almeida RF. Sphingolipid hydroxylation in mammals, yeast and plants – An integrated view. Prog Lipid Res 2018; 71:18-42. [DOI: 10.1016/j.plipres.2018.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/11/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
|
29
|
Jenkins BJ, Seyssel K, Chiu S, Pan PH, Lin SY, Stanley E, Ament Z, West JA, Summerhill K, Griffin JL, Vetter W, Autio KJ, Hiltunen K, Hazebrouck S, Stepankova R, Chen CJ, Alligier M, Laville M, Moore M, Kraft G, Cherrington A, King S, Krauss RM, de Schryver E, Van Veldhoven PP, Ronis M, Koulman A. Odd Chain Fatty Acids; New Insights of the Relationship Between the Gut Microbiota, Dietary Intake, Biosynthesis and Glucose Intolerance. Sci Rep 2017; 7:44845. [PMID: 28332596 PMCID: PMC5362956 DOI: 10.1038/srep44845] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/14/2017] [Indexed: 02/03/2023] Open
Abstract
Recent findings have shown an inverse association between circulating C15:0/C17:0 fatty acids with disease risk, therefore, their origin needs to be determined to understanding their role in these pathologies. Through combinations of both animal and human intervention studies, we comprehensively investigated all possible contributions of these fatty acids from the gut-microbiota, the diet, and novel endogenous biosynthesis. Investigations included an intestinal germ-free study and a C15:0/C17:0 diet dose response study. Endogenous production was assessed through: a stearic acid infusion, phytol supplementation, and a Hacl1−/− mouse model. Two human dietary intervention studies were used to translate the results. Finally, a study comparing baseline C15:0/C17:0 with the prognosis of glucose intolerance. We found that circulating C15:0/C17:0 levels were not influenced by the gut-microbiota. The dose response study showed C15:0 had a linear response, however C17:0 was not directly correlated. The phytol supplementation only decreased C17:0. Stearic acid infusion only increased C17:0. Hacl1−/− only decreased C17:0. The glucose intolerance study showed only C17:0 correlated with prognosis. To summarise, circulating C15:0 and C17:0 are independently derived; C15:0 correlates directly with dietary intake, while C17:0 is substantially biosynthesized, therefore, they are not homologous in the aetiology of metabolic disease. Our findings emphasize the importance of the biosynthesis of C17:0 and recognizing its link with metabolic disease.
Collapse
Affiliation(s)
- Benjamin J Jenkins
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL. Affiliated with the University of Cambridge, United Kingdom
| | - Kevin Seyssel
- Lyon University, INSERM U1060, CarMeN Laboratory and CENS, Claude Bernard University, CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, 69310, Pierre-Bénite, France
| | - Sally Chiu
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, United States of America
| | - Pin-Ho Pan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Shih-Yi Lin
- Division of Endocrinology and Metabolism/Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan
| | - Elizabeth Stanley
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL. Affiliated with the University of Cambridge, United Kingdom
| | - Zsuzsanna Ament
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL. Affiliated with the University of Cambridge, United Kingdom
| | - James A West
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL. Affiliated with the University of Cambridge, United Kingdom
| | - Keith Summerhill
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL. Affiliated with the University of Cambridge, United Kingdom
| | - Julian L Griffin
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL. Affiliated with the University of Cambridge, United Kingdom
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, D-70599 Stuttgart, Germany
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 5400, FI-90014, Finland
| | - Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 5400, FI-90014, Finland
| | - Stéphane Hazebrouck
- UMR CEA-INRA Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Immuno-Allergie Alimentaire, Université Paris-Saclay, F-91991 Gif-sur-Yvette, France
| | - Renata Stepankova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Science, Novy Hradek, 549 22, Prague, Czech Republic
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec.4, Taiwan Boulevard, Taichung 407, Taiwan
| | - Maud Alligier
- Lyon University, INSERM U1060, CarMeN Laboratory and CENS, Claude Bernard University, CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, 69310, Pierre-Bénite, France
| | - Martine Laville
- Lyon University, INSERM U1060, CarMeN Laboratory and CENS, Claude Bernard University, CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, 69310, Pierre-Bénite, France
| | - Mary Moore
- 702 Light Hall, Dept. of Molecular Physiology &Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, United States of America
| | - Guillaume Kraft
- 702 Light Hall, Dept. of Molecular Physiology &Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, United States of America
| | - Alan Cherrington
- 702 Light Hall, Dept. of Molecular Physiology &Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, United States of America
| | - Sarah King
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, United States of America
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, United States of America
| | - Evelyn de Schryver
- Laboratory of Lipid Biochemistry and Protein Interactions (LIPIT), Campus Gasthuisberg - KU Leuven, Herestraat Box 601, B-3000 Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions (LIPIT), Campus Gasthuisberg - KU Leuven, Herestraat Box 601, B-3000 Leuven, Belgium
| | - Martin Ronis
- College of Medicine, Department of Pharmacology &Experimental Therapeutics, Louisiana State University Health Sciences Centre 1901 Perdido Str., New Orleans, United States of America
| | - Albert Koulman
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, CB1 9NL. Affiliated with the University of Cambridge, United Kingdom.,NIHR BRC Core Metabolomics and Lipidomics Laboratory, Level 4, Laboratory Block, Cambridge University Hospitals, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Nagano M, Ishikawa T, Fujiwara M, Fukao Y, Kawano Y, Kawai-Yamada M, Shimamoto K. Plasma Membrane Microdomains Are Essential for Rac1-RbohB/H-Mediated Immunity in Rice. THE PLANT CELL 2016; 28:1966-83. [PMID: 27465023 PMCID: PMC5006704 DOI: 10.1105/tpc.16.00201] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/09/2016] [Accepted: 07/20/2016] [Indexed: 05/18/2023]
Abstract
Numerous plant defense-related proteins are thought to congregate in plasma membrane microdomains, which consist mainly of sphingolipids and sterols. However, the extent to which microdomains contribute to defense responses in plants is unclear. To elucidate the relationship between microdomains and innate immunity in rice (Oryza sativa), we established lines in which the levels of sphingolipids containing 2-hydroxy fatty acids were decreased by knocking down two genes encoding fatty acid 2-hydroxylases (FAH1 and FAH2) and demonstrated that microdomains were less abundant in these lines. By testing these lines in a pathogen infection assay, we revealed that microdomains play an important role in the resistance to rice blast fungus infection. To illuminate the mechanism by which microdomains regulate immunity, we evaluated changes in protein composition, revealing that microdomains are required for the dynamics of the Rac/ROP small GTPase Rac1 and respiratory burst oxidase homologs (Rbohs) in response to chitin elicitor. Furthermore, FAHs are essential for the production of reactive oxygen species (ROS) after chitin treatment. Together with the observation that RbohB, a defense-related NADPH oxidase that interacts with Rac1, is localized in microdomains, our data indicate that microdomains are required for chitin-induced immunity through ROS signaling mediated by the Rac1-RbohB pathway.
Collapse
Affiliation(s)
- Minoru Nagano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakuraku, Saitama 338-8570, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakuraku, Saitama 338-8570, Japan
| | - Masayuki Fujiwara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Yoichiro Fukao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yoji Kawano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan Shanghai Center for Plant Stress Biology, Shanghai 201602, P.R. China
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakuraku, Saitama 338-8570, Japan
| | - Ko Shimamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
31
|
Hu X, Cifarelli V, Sun S, Kuda O, Abumrad NA, Su X. Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment. J Lipid Res 2016; 57:663-73. [PMID: 26912395 DOI: 10.1194/jlr.m066530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2(PGE2) and prostaglandin D2(PGD2), reflecting cytosolic phospholipase A2α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2potently induced macrophage migration while different FFAs and PGD2had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis.
Collapse
Affiliation(s)
- Xiaoqian Hu
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, 215123, China Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110 Department of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Vincenza Cifarelli
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110
| | - Shishuo Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Nada A Abumrad
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, 215123, China Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
32
|
Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes. PLoS One 2015; 10:e0145850. [PMID: 26710334 PMCID: PMC4692509 DOI: 10.1371/journal.pone.0145850] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.
Collapse
|
33
|
Meyer E, Kurian MA, Hayflick SJ. Neurodegeneration with Brain Iron Accumulation: Genetic Diversity and Pathophysiological Mechanisms. Annu Rev Genomics Hum Genet 2015; 16:257-79. [PMID: 25973518 DOI: 10.1146/annurev-genom-090314-025011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) comprises a heterogeneous group of progressive disorders with the common feature of excessive iron deposition in the brain. Over the last decade, advances in sequencing technologies have greatly facilitated rapid gene discovery, and several single-gene disorders are now included in this group. Identification of the genetic bases of the NBIA disorders has advanced our understanding of the disease processes caused by reduced coenzyme A synthesis, impaired lipid metabolism, mitochondrial dysfunction, and defective autophagy. The contribution of iron to disease pathophysiology remains uncertain, as does the identity of a putative final common pathway by which the iron accumulates. Ongoing elucidation of the pathogenesis of each NBIA disorder will have significant implications for the identification and design of novel therapies to treat patients with these disorders.
Collapse
Affiliation(s)
- Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences Programme, Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; ,
| | | | | |
Collapse
|
34
|
Jenkins B, West JA, Koulman A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic Acid (c15:0) and heptadecanoic Acid (c17:0) in health and disease. Molecules 2015; 20:2425-44. [PMID: 25647578 PMCID: PMC6272531 DOI: 10.3390/molecules20022425] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 12/27/2022] Open
Abstract
The role of C17:0 and C15:0 in human health has recently been reinforced following a number of important biological and nutritional observations. Historically, odd chain saturated fatty acids (OCS-FAs) were used as internal standards in GC-MS methods of total fatty acids and LC-MS methods of intact lipids, as it was thought their concentrations were insignificant in humans. However, it has been thought that increased consumption of dairy products has an association with an increase in blood plasma OCS-FAs. However, there is currently no direct evidence but rather a casual association through epidemiology studies. Furthermore, a number of studies on cardiometabolic diseases have shown that plasma concentrations of OCS-FAs are associated with lower disease risk, although the mechanism responsible for this is debated. One possible mechanism for the endogenous production of OCS-FAs is α-oxidation, involving the activation, then hydroxylation of the α-carbon, followed by the removal of the terminal carboxyl group. Differentiation human adipocytes showed a distinct increase in the concentration of OCS-FAs, which was possibly caused through α-oxidation. Further evidence for an endogenous pathway, is in human plasma, where the ratio of C15:0 to C17:0 is approximately 1:2 which is contradictory to the expected levels of C15:0 to C17:0 roughly 2:1 as detected in dairy fat. We review the literature on the dietary consumption of OCS-FAs and their potential endogenous metabolism.
Collapse
Affiliation(s)
- Benjamin Jenkins
- MRC HNR, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK.
| | - James A West
- MRC HNR, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK.
| | - Albert Koulman
- MRC HNR, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK.
| |
Collapse
|
35
|
Colombelli C, Aoun M, Tiranti V. Defective lipid metabolism in neurodegeneration with brain iron accumulation (NBIA) syndromes: not only a matter of iron. J Inherit Metab Dis 2015; 38:123-36. [PMID: 25300979 DOI: 10.1007/s10545-014-9770-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 12/29/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of devastating and life threatening rare diseases. Adult and early-onset NBIA syndromes are inherited as X-chromosomal, autosomal dominant or recessive traits and several genes have been identified as responsible for these disorders. Among the identified disease genes, only two code for proteins directly involved in iron metabolism while the remaining NBIA genes encode proteins with a wide variety of functions ranging from fatty acid metabolism and autophagy to still unknown activities. It is becoming increasingly evident that many neurodegenerative diseases are associated with metabolic dysfunction that often involves altered lipid metabolism. This is not surprising since neurons have a peculiar and heterogeneous lipid composition critical for the development and correct functioning of the nervous system. This review will focus on specific NBIA forms, namely PKAN, CoPAN, PLAN, FAHN and MPAN, which display an interesting link between neurodegeneration and alteration of phospholipids and sphingolipids metabolism, mitochondrial morphology and membrane remodelling.
Collapse
Affiliation(s)
- Cristina Colombelli
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute "Carlo Besta", Via Temolo 4, 20126, Milan, Italy
| | | | | |
Collapse
|
36
|
Marquês JT, Antunes CA, Santos FC, de Almeida RF. Biomembrane Organization and Function. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2015. [DOI: 10.1016/bs.adplan.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Uemura S, Shishido F, Tani M, Mochizuki T, Abe F, Inokuchi JI. Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae. J Lipid Res 2014; 55:1343-56. [PMID: 24875539 DOI: 10.1194/jlr.m048637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Indexed: 12/15/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, structural diversities of complex sphingolipids [inositol phosphorylceramide (IPC), mannosylinositol phosphorylceramide, and mannosyldiinositol phosphorylceramide] are often observed in the presence or absence of hydroxyl groups on the C-4 position of long-chain base (C4-OH) and the C-2 position of very long-chain fatty acids (C2-OH), but the biological significance of these groups remains unclear. Here, we evaluated cellular membrane fluidity in hydroxyl group-defective yeast mutants by fluorescence recovery after photobleaching. The lateral diffusion of enhanced green fluorescent protein-tagged hexose transporter 1 (Hxt1-EGFP) was influenced by the absence of C4-OH and/or C2-OH. Notably, the fluorescence recovery of Hxt1-EGFP was dramatically decreased in the sur2Δ mutant (absence of C4-OH) under the csg1Δcsh1Δ background, in which mannosylation of IPC is blocked leading to IPC accumulation, while the recovery in the scs7Δ mutant (absence of C2-OH) under the same background was modestly decreased. In addition, the amount of low affinity tryptophan transporter 1 (Tat1)-EGFP was markedly decreased in the sur2Δcsg1Δcsh1Δ mutant and accumulated in intracellular membranes in the scs7Δcsg1Δcsh1Δ mutant without altering its protein expression. These results suggest that C4-OH and C2-OH are most probably critical factors for maintaining membrane fluidity and proper turnover of membrane molecules in yeast containing complex sphingolipids with only one hydrophilic head group.
Collapse
Affiliation(s)
- Satoshi Uemura
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Fumi Shishido
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| | - Motohiro Tani
- Department of Chemistry, Kyushu University, Fukuoka 812-8581, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
38
|
Identification of Hipk2 as an essential regulator of white fat development. Proc Natl Acad Sci U S A 2014; 111:7373-8. [PMID: 24785298 DOI: 10.1073/pnas.1322275111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homeodomain-interacting protein kinase 2 (Hipk2) has previously been implicated in the control of several transcription factors involved in embryonic development, apoptosis, cell proliferation, and tumor development, but very little is understood about the exact mechanisms through which Hipk2 influences these processes. Analysis of gene expression in normal tissues from genetically heterogeneous mouse or human populations can reveal network motifs associated with the structural or functional components of the tissue, and may predict roles for genes of unknown function. Here we have applied this network strategy to uncover a role for the Hipk2 gene in the transcriptional system controlling adipogenesis. Both in vitro and in vivo models were used to show that knockdown or loss of Hipk2 specifically inhibits white adipose cell differentiation and tissue development. In addition, loss of Hipk2 leads to induction of pockets of multilocular brown fat-like cells in remaining white adipose depots, which express markers of brown and beige fat such as uncoupling protein 1 and transmembrane protein 26. These changes are accompanied by increased insulin sensitivity in Hipk2 knockout mice and reduced high-fat diet-induced weight gain, highlighting a potential role for this kinase in diseases such as diabetes and obesity. Our study underscores the versatility and power of a readily available tissue, such as skin, for network modeling of systemic transcriptional programs involved in multiple pathways, including lipid metabolism and adipogenesis.
Collapse
|
39
|
Khmelinskaia A, Ibarguren M, de Almeida RFM, López DJ, Paixão VA, Ahyayauch H, Goñi FM, Escribá PV. Changes in membrane organization upon spontaneous insertion of 2-hydroxylated unsaturated fatty acids in the lipid bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2117-2128. [PMID: 24490728 DOI: 10.1021/la403977f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent research regarding 2-hydroxylated fatty acids (2OHFAs) showed clear evidence of their benefits in the treatment of cancer, inflammation, and neurodegenerative disorders such as Alzheimer's disease. Monolayer compressibility isotherms and isothermal titration calorimetry of 2OHFA (C18-C22) in phosphatidylcholine/phosphatidylethanolamine/sphingomyelin/cholesterol (1:1:1:1 mole ratio), a mixture that mimics the composition of mammalian plasma membrane, were performed to assess the membrane binding capacity of 2OHFAs and their natural, nonhydroxylated counterparts. The results show that 2OHFAs are surface-active substances that bind membranes through exothermic, spontaneous processes. The main effects of 2OHFAs are a decrease in lipid order, with a looser packing of the acyl chains, and a decreased dipole potential, regardless of the 2OHFAs' relative affinity for the lipid bilayer. The strongest effects are usually observed for 2-hydroxyarachidonic (C20:4) acid, and the weakest one, for 2-hydroxydocosahexaenoic acid (C22:6). In addition, 2OHFAs cause increased hydration, except in gel-phase membranes, which can be explained by the 2OHFA preference for membrane defects. Concerning the membrane dipole potential, the magnitude of the reduction induced by 2OHFAs was particularly marked in the liquid-ordered (lo) phase (cholesterol/sphingomyelin-rich) membranes, those where order reduction was the smallest, suggesting a disruption of cholesterol-sphingolipid interactions that are responsible for the large dipole potential in those membranes. Moreover, 2OHFA effects were larger than for both lo and ld phases separately in model membranes with liquid disordered (ld)/lo coexistence when both phases were present in significant amounts, possibly because of the facilitating effect of ld/lo domain interfaces. The specific and marked changes induced by 2OHFAs in several membrane properties suggest that the initial interaction with the membrane and subsequent reorganization might constitute an important step in their mechanisms of action.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Centro de Quimica e Bioquimica, DQB, Faculdade de Ciências da Universidade de Lisboa , Campo Grande, Ed. C8, 1749-016 Lisboa Portugal
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Király A, Váradi T, Hajdu T, Rühl R, Galmarini CM, Szöllősi J, Nagy P. Hypoxia reduces the efficiency of elisidepsin by inhibiting hydroxylation and altering the structure of lipid rafts. Mar Drugs 2013; 11:4858-75. [PMID: 24317474 PMCID: PMC3877891 DOI: 10.3390/md11124858] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/26/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022] Open
Abstract
The mechanism of action of elisidepsin (PM02734, Irvalec®) is assumed to involve membrane permeabilization via attacking lipid rafts and hydroxylated lipids. Here we investigate the role of hypoxia in the mechanism of action of elisidepsin. Culturing under hypoxic conditions increased the half-maximal inhibitory concentration and decreased the drug’s binding to almost all cell lines which was reversed by incubation of cells with 2-hydroxy palmitic acid. The expression of fatty acid 2-hydroxylase was strongly correlated with the efficiency of the drug and inversely correlated with the effect of hypoxia. Number and brightness analysis and fluorescence anisotropy experiments showed that hypoxia decreased the clustering of lipid rafts and altered the structure of the plasma membrane. Although the binding of elisidepsin to the membrane is non-cooperative, its membrane permeabilizing effect is characterized by a Hill coefficient of ~3.3. The latter finding is in agreement with elisidepsin-induced clusters of lipid raft-anchored GFP visualized by confocal microscopy. We propose that the concentration of elisidepsin needs to reach a critical level in the membrane above which elisidepsin induces the disruption of the cell membrane. Testing for tumor hypoxia or the density of hydroxylated lipids could be an interesting strategy to increase the efficiency of elisidepsin.
Collapse
Affiliation(s)
- Anna Király
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (A.K.); (T.V.); (T.H.); (J.S.)
| | - Tímea Váradi
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (A.K.); (T.V.); (T.H.); (J.S.)
| | - Tímea Hajdu
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (A.K.); (T.V.); (T.H.); (J.S.)
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mail:
| | - Carlos M. Galmarini
- Cell Biology Department, PharmaMar, Avda de los Reyes 1, Pol. Ind. La Mina, Colmenar Viejo, Madrid 28770, Spain; E-Mail:
| | - János Szöllősi
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (A.K.); (T.V.); (T.H.); (J.S.)
- MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary; E-Mails: (A.K.); (T.V.); (T.H.); (J.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +36-52-412-623; Fax: +36-52-532-201
| |
Collapse
|
41
|
Pérez-Montarelo D, Madsen O, Alves E, Rodríguez MC, Folch JM, Noguera JL, Groenen MAM, Fernández AI. Identification of genes regulating growth and fatness traits in pig through hypothalamic transcriptome analysis. Physiol Genomics 2013; 46:195-206. [PMID: 24280257 DOI: 10.1152/physiolgenomics.00151.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous studies on Iberian × Landrace (IBMAP) pig intercrosses have enabled the identification of several quantitative trait locus (QTL) regions related to growth and fatness traits; however, the genetic variation underlying those QTLs are still unknown. These traits are not only relevant because of their impact on economically important production traits, but also because pig constitutes a widely studied animal model for human obesity and obesity-related diseases. The hypothalamus is the main gland regulating growth, food intake, and fat accumulation. Therefore, the aim of this work was to identify genes and/or gene transcripts involved in the determination of growth and fatness in pig by a comparison of the whole hypothalamic transcriptome (RNA-Seq) in two groups of phenotypically divergent IBMAP pigs. Around 16,000 of the ∼25.010 annotated genes were expressed in these hypothalamic samples, with most of them showing intermediate expression levels. Functional analyses supported the key role of the hypothalamus in the regulation of growth, fat accumulation, and energy expenditure. Moreover, 58,927 potentially new isoforms were detected. More than 250 differentially expressed genes and novel transcript isoforms were identified between the two groups of pigs. Twenty-one DE genes/transcripts that colocalized in previously identified QTL regions and/or whose biological functions are related to the traits of interest were explored in more detail. Additionally, the transcription factors potentially regulating these genes and the subjacent networks and pathways were also analyzed. This study allows us to propose strong candidate genes for growth and fatness based on expression patterns, genomic location, and network interactions.
Collapse
Affiliation(s)
- Dafne Pérez-Montarelo
- Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jové M, Moreno-Navarrete JM, Pamplona R, Ricart W, Portero-Otín M, Fernández-Real JM. Human omental and subcutaneous adipose tissue exhibit specific lipidomic signatures. FASEB J 2013; 28:1071-81. [PMID: 24265485 DOI: 10.1096/fj.13-234419] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite their differential effects on human metabolic pathophysiology, the differences in omental and subcutaneous lipidomes are largely unknown. To explore this field, liquid chromatography coupled with mass spectrometry was used for lipidome analyses of adipose tissue samples (visceral and subcutaneous) selected from a group of obese subjects (n=38). Transcriptomics and in vitro studies in adipocytes were used to confirm the pathways affected by location. The analyses revealed the existence of obesity-related specific lipidome signatures in each of these locations, attributed to selective enrichment of specific triglycerides, glycerophospholipids, and sphingolipids, because these were not observed in adipose tissues from nonobese individuals. The changes were compatible with subcutaneous enrichment in pathways involved in adipogenesis, triacylglyceride synthesis, and lipid droplet formation, as well as increased α-oxidation. Marked differences between omental and subcutaneous depots in obese individuals were seen in the association of lipid species with metabolic traits (body mass index and insulin sensitivity). Targeted studies also revealed increased cholesterol (Δ56%) and cholesterol epoxide (Δ34%) concentrations in omental adipose tissue. In view of the effects of cholesterol epoxide, which induced enhanced expression of adipocyte differentiation and α-oxidation genes in human omental adipocytes, a novel role for cholesterol epoxide as a signaling molecule for differentiation is proposed. In summary, in obesity, adipose tissue exhibits a location-specific differential lipid profile that may contribute to explaining part of its distinct pathogenic role.
Collapse
Affiliation(s)
- Mariona Jové
- 1Section of Diabetes, Endocrinology and Nutrition, Hospital of Girona "Dr Josep Trueta," Carretera de França s/n, 17007, Girona, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Kota V, Hama H. 2'-Hydroxy ceramide in membrane homeostasis and cell signaling. Adv Biol Regul 2013; 54:223-30. [PMID: 24139861 DOI: 10.1016/j.jbior.2013.09.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 09/15/2013] [Indexed: 01/25/2023]
Abstract
Ceramide is a precursor of complex sphingolipids and also plays important roles in cell signaling. With the advances in lipid analytical technologies, the structural diversity of ceramide species have become evident, and the complexity of cellular metabolism and function associated with distinct ceramide species is beginning to be revealed. One of the common structural variations of ceramide is 2'-hydroxylation of the N-acyl chain. Fatty acid 2-hydroxylase (FA2H) is one of the enzymes that introduce the hydroxyl group during de novo synthesis of ceramide. FA2H is essential for the normal functioning of the nervous system, as evidenced by demyelinating disorder associated with FA2H mutations in humans and mice. Studies of Fa2h mutant mice indicate that lack of 2'-hydroxy galactosylceramide in the myelin membrane results in loss of long-term stability of myelin and eventual demyelination. FA2H also regulates differentiation of various cell types (epidermal keratinocytes, schwannoma cells, adipocytes). When provided exogenously, ceramide induces apoptosis in many cell types. Interestingly, the effective concentration of 2'-hydroxy ceramide that induces apoptosis is significantly lower compared to non-hydroxy ceramide, and cells die much more rapidly, suggesting that 2'-hydroxy ceramide can mediate proapoptotic signaling distinct from non-hydroxy ceramide. Collectively, current evidence clearly shows that 2'-hydroxy ceramide and 2'-hydroxy complex sphingolipids have unique functions in membrane homeostasis and cell signaling that could not be substituted by non-hydroxy counterparts.
Collapse
Affiliation(s)
- Venkatesh Kota
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Hiroko Hama
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
44
|
Payet LA, Pineau L, Snyder ECR, Colas J, Moussa A, Vannier B, Bigay J, Clarhaut J, Becq F, Berjeaud JM, Vandebrouck C, Ferreira T. Saturated Fatty Acids Alter the Late Secretory Pathway by Modulating Membrane Properties. Traffic 2013; 14:1228-41. [DOI: 10.1111/tra.12117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Laurie-Anne Payet
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | | | - Ellen C. R. Snyder
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Jenny Colas
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Ahmed Moussa
- Ecole Nationale des Sciences Appliquées de Tanger; BP 1818 90000 Tanger Morocco
| | - Brigitte Vannier
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Joelle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire; UMR CNRS 7275, Université de Nice-Sophia Antipolis; 660 Route des Lucioles, Sophia Antipolis 06560 Valbonne France
| | - Jonathan Clarhaut
- INSERM CIC 0802; CHU de Poitiers; 2 rue de la Milétrie 86021 Poitiers France
| | - Frédéric Becq
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Jean-Marc Berjeaud
- Université de Poitiers; Ecologie et Biologie des Interactions; UMR CNRS 7267, 40 avenue du Recteur Pineau 86022 Poitiers Cedex France
| | - Clarisse Vandebrouck
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Thierry Ferreira
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| |
Collapse
|
45
|
Xu X, Tu L, Feng W, Ma B, Li R, Zheng C, Li G, Wang DW. CYP2J3 gene delivery up-regulated adiponectin expression via reduced endoplasmic reticulum stress in adipocytes. Endocrinology 2013; 154:1743-53. [PMID: 23515292 DOI: 10.1210/en.2012-2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ample evidences demonstrate that cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play crucial and diverse roles in cardiovascular homeostasis. We and others have identified that EETs exert a beneficial role on insulin resistance and diabetes. This study investigated the effects of CYP2J3 epoxygenase gene delivery on adiponectin expression in rats treated with high-fat (HF) diet. CYP2J3 gene delivery in vivo increased EET generation, enhanced adiponectin expression and secretion and accompanied by activation of adiponectin downstream signaling, and decreased insulin resistance as determined by plasma insulin levels, insulin resistance index and glucose tolerance test, as well as phosphorylation of protein kinase B in both liver and muscle. Furthermore, CYP2J3 overexpression prevented HF diet-induced endoplasmic reticulum (ER) stress in adipose tissue of rats. Also, CYP2J3 gene transfection and exogenous administration of EETs inhibited thapsigargin-induced ER stress with increased adiponectin expression and secretion in differentiated 3T3-L1 adipocytes. Thus, CYP2J3 gene delivery up-regulated adiponectin expression and excretion in adipose tissue of rats treated with HF diet through inhibition of ER stress, which can decrease adiponectin expression. These results further highlight the beneficial roles of the CYP epoxygenase 2J3 and its metabolites EETs on adiponectin expression and secretion.
Collapse
Affiliation(s)
- Xizhen Xu
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhou D, Samovski D, Okunade AL, Stahl PD, Abumrad NA, Su X. CD36 level and trafficking are determinants of lipolysis in adipocytes. FASEB J 2012; 26:4733-42. [PMID: 22815385 DOI: 10.1096/fj.12-206862] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD36 has been linked to the etiology of insulin resistance and inflammation. We explored its function in regulating adipose tissue lipolysis, which influences fat accumulation by liver and muscle and overall metabolism. Knockdown of CD36 in differentiated 3T3-L1 adipocytes decreased lipolysis in response to 10 μM of the β-adrenergic agonist isoproterenol (by 42%), 10 μM of the adenyl cyclase activator forskolin (by 32%), and 500 μM of the phosphodiesterase (PDE) inhibitor isobutylmethylxanthine (by 33%). All three treatments in the knockdown adipocytes were associated with significant decreases of cAMP levels and of the hormone-sensitive lipase (HSL) and perilipin phosphorylation. An important role for PDE was supported by the lack of inhibition of the lipolysis induced by the poorly hydrolyzable dibutyryl cAMP analog. An additional contributory mechanism was diminished activation of the Src-ERK1/2 pathway. Regulation of lipolysis and lipolytic signaling by CD36 was reproduced with adipose tissue from CD36(-/-) mice. The importance of surface CD36 in this regulation was suggested by the finding that the plasma membrane-impermeable CD36 inhibitor sulfo-N-succinimidyl oleate (20 μM) decreased lipolysis. Interestingly, isoproterenol induced CD36 internalization, and this process was blocked by HSL inhibition, suggesting feedback regulation of adipocyte lipolysis via CD36 trafficking.
Collapse
Affiliation(s)
- Dequan Zhou
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
47
|
Guo L, Zhang X, Zhou D, Okunade AL, Su X. Stereospecificity of fatty acid 2-hydroxylase and differential functions of 2-hydroxy fatty acid enantiomers. J Lipid Res 2012; 53:1327-35. [PMID: 22517924 DOI: 10.1194/jlr.m025742] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
FA 2-hydroxylase (FA2H) is an NAD(P)H-dependent enzyme that initiates FA α oxidation and is also responsible for the biosynthesis of 2-hydroxy FA (2-OH FA)-containing sphingolipids in mammalian cells. The 2-OH FA is chiral due to the asymmetric carbon bearing the hydroxyl group. Our current study performed stereochemistry investigation and showed that FA2H is stereospecific for the production of (R)-enantiomers. FA2H knockdown in adipocytes increases diffusional mobility of raft-associated lipids, leading to reduced GLUT4 protein level, glucose uptake, and lipogenesis. The effects caused by FA2H knockdown were reversed by treatment with exogenous (R)-2-hydroxy palmitic acid, but not with the (S)-enantiomer. Further analysis of sphingolipids demonstrated that the (R)-enantiomer is enriched in hexosylceramide whereas the (S)-enantiomer is preferentially incorporated into ceramide, suggesting that the observed differential effects are in part due to synthesis of sphingolipids containing different 2-OH FA enantiomers. These results may help clarify the mechanisms underlying the recently identified diseases associated with FA2H mutations in humans and may lead to potential pharmaceutical and dietary treatments. This study also provides critical information to help study functions of 2-OH FA enantiomers in FA α oxidation and possibly other sphingolipid-independent pathways.
Collapse
Affiliation(s)
- Lin Guo
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
48
|
Mechanisms underlying the confined diffusion of cholera toxin B-subunit in intact cell membranes. PLoS One 2012; 7:e34923. [PMID: 22511973 PMCID: PMC3325267 DOI: 10.1371/journal.pone.0034923] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 03/10/2012] [Indexed: 11/19/2022] Open
Abstract
Multivalent glycolipid binding toxins such as cholera toxin have the capacity to cluster glycolipids, a process thought to be important for their functional uptake into cells. In contrast to the highly dynamic properties of lipid probes and many lipid-anchored proteins, the B-subunit of cholera toxin (CTxB) diffuses extremely slowly when bound to its glycolipid receptor GM(1) in the plasma membrane of living cells. In the current study, we used confocal FRAP to examine the origins of this slow diffusion of the CTxB/GM(1) complex at the cell surface, relative to the behavior of a representative GPI-anchored protein, transmembrane protein, and fluorescent lipid analog. We show that the diffusion of CTxB is impeded by actin- and ATP-dependent processes, but is unaffected by caveolae. At physiological temperature, the diffusion of several cell surface markers is unchanged in the presence of CTxB, suggesting that binding of CTxB to membranes does not alter the organization of the plasma membrane in a way that influences the diffusion of other molecules. Furthermore, diffusion of the B-subunit of another glycolipid-binding toxin, Shiga toxin, is significantly faster than that of CTxB, indicating that the confined diffusion of CTxB is not a simple function of its ability to cluster glycolipids. By identifying underlying mechanisms that control CTxB dynamics at the cell surface, these findings help to delineate the fundamental properties of toxin-receptor complexes in intact cell membranes.
Collapse
|
49
|
Strålfors P. Caveolins and Caveolae, Roles in Insulin Signalling and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 729:111-26. [DOI: 10.1007/978-1-4614-1222-9_8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Abstract
The factors that influence preadipocyte determination remain poorly understood. In the present paper, we report that CREBL2 [CREB (cAMP-response-element-binding protein)-like 2], a novel bZIP_1 protein, is up-regulated during MDI-induced preadipocyte differentiation. During both overexpression and under physiological conditions, CREBL2 interacted and was entirely co-localized with CREB. Overexpression of CREBL2 was sufficient to promote adipogenesis via up-regulating the expression of PPARγ (peroxisome-proliferator-activated receptor γ) and C/EBPα (CCAAT/enhancer-binding protein α) and accelerate lipogenesis accompanied with increased GLUT (glucose transporter) 1 and GLUT4. CREBL2 knockdown restrained adipogenic conversion and lipogenesis. Additionally, depletion of CREB could completely block the effects of overexpressed CREBL2, whereas an increase in CREB could not drive adipogenesis in the absence of CREBL2, indicating that the roles for CREBL2 on adipogenesis were CREB-dependent. Furthermore, siCREBL2 [siRNA (short interfering RNA) against CREBL2] could down-regulate CREB transcriptional activity and suppress CREB phosphorylation. CREB knockdown decreased the CREBL2 protein levels and vice versa. Collectively, the results of the present study indicate that CREBL2 plays a critical role in adipogenesis and lipogenesis via interaction with CREB.
Collapse
|