1
|
Feng J, He LN, Yao R, Qiao Y, Yang T, Cui Z, Meng X, Tong J, Jia K, Zuo Z, Shen J. Comprehensive analysis of heterogeneity and cell-cell interactions in Crohn's disease reveals novel location-specific insights. J Adv Res 2024:S2090-1232(24)00620-9. [PMID: 39732334 DOI: 10.1016/j.jare.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024] Open
Abstract
INTRODUCTION In Crohn's disease (CD), lesions are mainly distributed in a segmental manner, with the primary sites of involvement being the ileum and colon. Heterogeneity in colon and ileum results in location-specific clinical presentations and therapeutic responses. Mucosal healing tends to be more readily and quickly achieved in the colon than in the ileum, where lesions are more likely to develop into complex behaviors. The heterogeneity of colon and ileum in CD, which is essential for tailored therapeutic approaches, has not yet been systematically illustrated. OBJECTIVES CD presents with unique intestinal lesions, mainly impacting the terminal ileum and colon. It is essential to comprehend the diversity in pathogenesis and treatment response among various segments. METHODS We conducted comparative single-cell RNA sequencing analysis in treatment-naïve CD patients, concentrating on the colon and ileum. RESULTS A novel subset of epithelial cells expressing high levels of DUOX2 and DUOXA2 (DUOX2-epi) was discovered. This DUOX2-epi subcluster predominantly distributed in the tip epithelium of the inflamed colon, potentially in response to microbial infection, as evidenced by the significant enrichment of inflammatory and microbial response pathways. The colonic and ileal DUOX2-epi subsets trigger inflammatory responses through distinct mechanisms. The colonic DUOX2-epi primarily affects monocytes via the SAA1-FPR2 ligand-receptor interaction, whereas the ileal DUOX2-epi directly interacts with regulate T cells through the CXCL16-CXCR6 ligand-receptor pair. Moreover, the cell-cell communication networks involving DUOX2-epi in the colon and ileum can help predict the location-specific effects of biological therapies. CONCLUSION This study delves into the heterogeneity within the ileum and colon of Crohn's disease at the single-cell level, identifying a new epithelial subset DUOX2-epi. Predictive gene modules tailored to different locations for biological therapies are developed as well, based on the cell-cell communication network modulated by DUOX2-epi.
Collapse
Affiliation(s)
- Jing Feng
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Na He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruchen Yao
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Qiao
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Yang
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlu Tong
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyu Jia
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jun Shen
- Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Ahmad F, Ahmad S, Srivastav AK, Upadhyay TK, Husain A, Khubaib M, Kang S, Park MN, Kim B, Sharma R. "β-glucan signalling stimulates NOX-2 dependent autophagy and LC-3 associated autophagy (LAP) pathway". Int J Biol Macromol 2024; 282:136520. [PMID: 39401634 DOI: 10.1016/j.ijbiomac.2024.136520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 12/19/2024]
Abstract
β-Glucan, a complex polysaccharide derived from fungal and yeast cell walls, plays a crucial role in modulating immune responses through their interaction with receptors such as Dectin-1 and Complement receptor 3 (CR-3). This review provides an in-depth analysis of the molecular mechanisms by which β-glucans activate receptor-mediated signalling pathways, focusing particularly on the LC3-associated phagocytosis (LAP) and autophagy pathways. Hence, we explore how β-glucan receptor engagement stimulates NADPH oxidase 2 (NOX-2), leading to the intracellular production of significant level of reactive oxygen species (ROS) essential for both conventional autophagy and LAP. While significant progress has been made in elucidation of downstream signaling by glucans, the regulation of phago-lysosomal maturation and antigen presentation during LAP induction still remains less explored. This review aims to provide a comprehensive overview of these pathways and their regulation by β-glucans. By consolidating the current knowledge, we seek to highlight how these mechanisms can be leveraged for therapeutic applications, particularly in the context of tuberculosis (TB) management, where β-glucans could serve as host-directed adjuvant therapies to combat drug-resistant strains. Despite major advancements in this field, currently key research gaps still persist, including detailed molecular interactions between β-glucan receptors and NOX-2 and the translation of these findings to in-vivo models and clinical investigations. This review underscores the need for further research to explore the therapeutic potential of β-glucans in managing not only tuberculosis but also other diseases such as cancer, cardiovascular conditions, and metabolic disorders.
Collapse
Affiliation(s)
- Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Physiological Sciences, Oklahoma Centre for Respiratory and Infectious Diseases, Oklahoma State University, OK 74074, United States of America
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, Uttar Pradesh, India
| | - Anurag Kumar Srivastav
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara 391760, Gujarat, India
| | - Adil Husain
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das [BBD] College of Dental Sciences BBD University, Lucknow 226028, Uttar Pradesh, India
| | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| | - Rolee Sharma
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur 228024, Uttar Pradesh, India.
| |
Collapse
|
3
|
Li J, Han Y, Zhao N, Lv L, Ma P, Zhang Y, Li M, Sun H, Deng J, Zhang Y. Identification of immune- and oxidative stress-related signature genes as potential targets for mRNA vaccines for pancreatic cancer patients. Medicine (Baltimore) 2024; 103:e38666. [PMID: 38968513 PMCID: PMC11224846 DOI: 10.1097/md.0000000000038666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Adenocarcinoma of the pancreas (PAAD) is one of the deadliest malignant tumors, and messenger ribonucleic acid vaccines, which constitute the latest generation of vaccine technology, are expected to lead to new ideas for the treatment of pancreatic cancer. The Cancer Genome Atlas-PAAD and Genotype-Tissue Expression data were merged and analyzed. Weighted gene coexpression network analysis was used to identify gene modules associated with tumor mutational burden among the genes related to both immunity and oxidative stress. Differentially expressed immune-related oxidative stress genes were screened via univariate Cox regression analysis, and these genes were analyzed via nonnegative matrix factorization. After immune infiltration analysis, least absolute shrinkage and selection operator regression combined with Cox regression was used to construct the model, and the usefulness of the model was predicted based on the receiver operating characteristic curve and decision curve analysis curves after model construction. Finally, metabolic pathway enrichment was analyzed using gene set enrichment analysis combined with Kyoto Encyclopedia of Genes and Genomes and gene ontology biological process analyses. This model consisting of the ERAP2, mesenchymal-epithelial transition factor (MET), CXCL9, and angiotensinogen (AGT) genes can be used to help predict the prognosis of pancreatic cancer patients more accurately than existing models. ERAP2 is involved in immune activation and is important in cancer immune evasion. MET binds to hepatocyte growth factor, leading to the dimerization and phosphorylation of c-MET. This activates various signaling pathways, including MAPK and PI3K, to regulate the proliferation, invasion, and migration of cancer cells. CXCL9 overexpression is associated with a poor patient prognosis and reduces the number of CD8 + cytotoxic T lymphocytes in the PAAD tumor microenvironment. AGT is cleaved by the renin enzyme to produce angiotensin 1, and AGT-converting enzyme cleaves angiotensin 1 to produce angiotensin 2. Exposure to AGT-converting enzyme inhibitors after pancreatic cancer diagnosis is associated with improved survival. The 4 genes identified in the present study - ERAP2, MET, CXCL9, and AGT - are expected to serve as targets for messenger ribonucleic acid vaccine development and need to be further investigated in depth.
Collapse
Affiliation(s)
- Jiaxu Li
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Yongjiao Han
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Ning Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Yangyang Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Mingyuan Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Hua Sun
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Jiang Deng
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Yanyu Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| |
Collapse
|
4
|
Mitsui A, Iioka H, Ling Y, Okuda S, Kurose A, Schopperle M, Kondo T, Sakaguchi M, Saito K, Kondo E. Pathological and Biological Significance of the Specific Glycan, TRA-1-60, on Aggressive Gastric Adenocarcinoma. J Transl Med 2024; 104:102073. [PMID: 38718982 DOI: 10.1016/j.labinv.2024.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024] Open
Abstract
The glycans form a unique complex on the surface of cancer cells and play a pivotal role in tumor progression, impacting proliferation, invasion, and metastasis. TRA-1-60 is a glycan that was identified as a critical marker for the establishment of fully reprogrammed inducible pluripotent stem cells. Its expression has been detected in multiple cancer tissues, including embryonal carcinoma, prostate cancer, and pancreatic cancer, but the biological and pathological characterization of TRA-1-60-expressing tumor cells remains unclear within various types of malignancies. Here, we report the biological characteristics of TRA-1-60-expressing gastric cancer cells, especially those with its cell surface expression, and the therapeutic significance of targeting TRA-1-60. The cells with cell membrane expression of TRA-1-60 were mainly observed in the invasive area of patient gastric cancer tissues and correlated with advanced stages of the disease based on histopathological and clinicopathological analyses. In vitro analysis using a scirrhous gastric adenocarcinoma line, HSC-58, which highly expresses TRA-1-60 on its plasma membrane, revealed increased stress-resistant mechanisms, supported by the upregulation of glutathione synthetase and NCF-1 (p47phox) via lipid-ROS regulatory pathways, as detected by RNA-seq analysis followed by oxidative stress gene profiling. Our in vivo therapeutic study using the TRA-1-60-targeting antibody-drug conjugate, namely, Bstrongomab-conjugated monomethyl auristatin E, showed robust efficacy in a mouse model of peritoneal carcinomatosis induced by intraperitoneal xenograft of HSC-58, by markedly reducing massive tumor ascites. Thus, targeting the specific cell surface glycan, TRA-1-60, shows a significant therapeutic impact in advanced-stage gastric cancers.
Collapse
Affiliation(s)
- Ayaka Mitsui
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hidekazu Iioka
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akira Kurose
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Tomoko Kondo
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Saito
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
5
|
Chandra V, Li L, Le Roux O, Zhang Y, Howell RM, Rupani DN, Baydogan S, Miller HD, Riquelme E, Petrosino J, Kim MP, Bhat KPL, White JR, Kolls JK, Pylayeva-Gupta Y, McAllister F. Gut epithelial Interleukin-17 receptor A signaling can modulate distant tumors growth through microbial regulation. Cancer Cell 2024; 42:85-100.e6. [PMID: 38157865 PMCID: PMC11238637 DOI: 10.1016/j.ccell.2023.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/05/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.
Collapse
Affiliation(s)
- Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olivereen Le Roux
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Zhang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rian M Howell
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhwani N Rupani
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiyan D Miller
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erick Riquelme
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Respiratory Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Michael P Kim
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jay K Kolls
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Wang SL, Wu Y, Konaté M, Lu J, Mallick D, Antony S, Meitzler JL, Jiang G, Dahan I, Juhasz A, Diebold B, Roy K, Doroshow JH. Exogenous DNA enhances DUOX2 expression and function in human pancreatic cancer cells by activating the cGAS-STING signaling pathway. Free Radic Biol Med 2023; 205:262-274. [PMID: 37330147 PMCID: PMC10527782 DOI: 10.1016/j.freeradbiomed.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/27/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Pro-inflammatory cytokines upregulate the expression of the H2O2-producing NADPH oxidase dual oxidase 2 (DUOX2)2 which, when elevated, adversely affects survival from pancreatic ductal adenocarcinoma (PDAC). Because the cGAS-STING pathway is known to initiate pro-inflammatory cytokine expression following uptake of exogenous DNA, we examined whether activation of cGAS-STING could play a role in the generation of reactive oxygen species by PDAC cells. Here, we found that a variety of exogenous DNA species markedly increased the production of cGAMP, the phosphorylation of TBK1 and IRF3, and the translocation of phosphorylated IRF3 into the nucleus, leading to a significant, IRF3-dependent enhancement of DUOX2 expression, and a significant flux of H2O2 in PDAC cells. However, unlike the canonical cGAS-STING pathway, DNA-related DUOX2 upregulation was not mediated by NF-κB. Although exogenous IFN-β significantly increased Stat1/2-associated DUOX2 expression, intracellular IFN-β signaling that followed cGAMP or DNA exposure did not itself increase DUOX2 levels. Finally, DUOX2 upregulation subsequent to cGAS-STING activation was accompanied by the enhanced, normoxic expression of HIF-1α and VEGF-A as well as DNA double strand cleavage, suggesting that cGAS-STING signaling may support the development of an oxidative, pro-angiogenic microenvironment that could contribute to the inflammation-related genetic instability of pancreatic cancer.
Collapse
Affiliation(s)
- Stephen L Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yongzhong Wu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Mariam Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jiamo Lu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - David Mallick
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jennifer L Meitzler
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Guojian Jiang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Agnes Juhasz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Becky Diebold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Egozi A, Olaloye O, Werner L, Silva T, McCourt B, Pierce RW, An X, Wang F, Chen K, Pober JS, Shouval D, Itzkovitz S, Konnikova L. Single-cell atlas of the human neonatal small intestine affected by necrotizing enterocolitis. PLoS Biol 2023; 21:e3002124. [PMID: 37205711 PMCID: PMC10234541 DOI: 10.1371/journal.pbio.3002124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/01/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a gastrointestinal complication of premature infants with high rates of morbidity and mortality. A comprehensive view of the cellular changes and aberrant interactions that underlie NEC is lacking. This study aimed at filling in this gap. We combine single-cell RNA sequencing (scRNAseq), T-cell receptor beta (TCRβ) analysis, bulk transcriptomics, and imaging to characterize cell identities, interactions, and zonal changes in NEC. We find an abundance of proinflammatory macrophages, fibroblasts, endothelial cells as well as T cells that exhibit increased TCRβ clonal expansion. Villus tip epithelial cells are reduced in NEC and the remaining epithelial cells up-regulate proinflammatory genes. We establish a detailed map of aberrant epithelial-mesenchymal-immune interactions that are associated with inflammation in NEC mucosa. Our analyses highlight the cellular dysregulations of NEC-associated intestinal tissue and identify potential targets for biomarker discovery and therapeutics.
Collapse
Affiliation(s)
- Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Lael Werner
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel, affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tatiana Silva
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Blake McCourt
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Richard W. Pierce
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Human and Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Xiaojing An
- Department of Medicine, University of Pittsburgh Medical Center Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Fujing Wang
- Department of Medicine, University of Pittsburgh Medical Center Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Kong Chen
- Department of Medicine, University of Pittsburgh Medical Center Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Jordan S. Pober
- Program in Human and Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Dror Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel, affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liza Konnikova
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Human and Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
8
|
Numata Y, Akutsu N, Ishigami K, Koide H, Wagatsuma K, Motoya M, Sasaki S, Nakase H. Synergistic effect of IFN-γ and IL-1β on PD-L1 expression in hepatocellular carcinoma. Biochem Biophys Rep 2022; 30:101270. [PMID: 35573813 PMCID: PMC9095738 DOI: 10.1016/j.bbrep.2022.101270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022] Open
Abstract
Immunotherapy using anti-programmed death 1 ligand 1 (PD-L1) antibodies has shown clinical efficacy against hepatocellular carcinoma (HCC) and is recognized as the first-line treatment for unresectable HCC. PD-L1 expression is affected by various cytokines produced by immune cells in the tumor microenvironment; however, there is limited information about the effects of cytokine interactions on PD-L1 expression. In this study, we examined how cytokines induce PD-L1 expression in HCC cells. Both interferon gamma (IFN-γ) and interleukin 1 beta (IL-1β) induced PD-L1 expression, and the two cytokines enhanced PD-L1 expression in combination compared to that when administered alone. The Janus kinase/signal transducer and activator of transcription signaling pathway activated by IFN-γ is the major pathway of PD-L1 expression. The increase in interferon regulatory factor 1 expression and IFN-γ receptor expression induced by IL-1β was associated with the synergistic effect of IFN-γ and IL-1β on PD-L1 expression. These findings strongly indicate that IFN-γ and IL-1β affect the mechanism underlying immune resistance in HCC cells. IFN-γ and IL-1β synergistically increase the expression of PD-L1 in HCC cells. IFN-γ enhances PD-L1 expression via STAT1 signaling. IL-1β enhances PD-L1 expression via the NF-κB and the p38 MAPK pathways. IRF-1 and IFNGR also contribute to the synergistic effect of IFN-γ and IL-1β in HCC.
Collapse
Affiliation(s)
| | - Noriyuki Akutsu
- Corresponding author. Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine S-1, W-16, Chuo-ku, Sapporo, 060-8543, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Telocytes reduce oxidative stress by downregulating DUOX2 expression in inflamed lungs of mice. Acta Biochim Biophys Sin (Shanghai) 2022; 54:574-582. [PMID: 35607956 PMCID: PMC9828416 DOI: 10.3724/abbs.2022017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telocytes (TCs), a novel type of interstitial cells, have been found to participate in tissue protection and repair. In this study, we investigated the antioxidative effects of TCs in inflamed lungs of mice. Acute respiratory distress syndrome (ARDS) mice were used as models of inflamed lungs of mice. Gene sequencing was used to screen the differentially expressed miRNAs in TCs after lipopolysaccharide (LPS) stimulation. AntagomiR-146a-5p-pretreated TCs were first injected into mice, and antioxidant activity of TCs was estimated. TCs, RAW264.7 cells, and MLE-12 cells were collected for the detection of expressions of NOX1-4, DUOX1-2, SOD1-3, GPX1-2, CAT, Nrf2, miR-146a-5p, and miR-21a-3p after LPS stimulation. Silencing miRNAs were delivered to examine the involved signaling pathways. Oxidative stress was examined by measuring malondialdehyde (MDA) levels. We found that microRNA-146a-5p and microRNA-21a-3p were upregulated in TCs after LPS stimulation. ARDS mice that were preinfused with TCs had lower lung tissue injury scores, lung wet-dry ratios, white blood cell counts in alveolar lavage fluid and lower MDA concentrations in lung tissue. However, in antagomiR-146a-5p-pretreated ARDS mice, the infusion of TCs caused no corresponding changes. After LPS stimulation, DUOX2 and MDA concentrations were downregulated in TCs, while DUOX2 was restored by antagomiR-146a-5p in TCs. Dual-luciferase reporter assay confirmed that CREB1 was downregulated by miR-146a-5p, while DUOX2 was downregulated by CREB1, which was confirmed by treating TCs with a specific CREB1 inhibitor. This study demonstrates that LPS stimulation upregulates miR-146a-5p in TCs, which downregulates the CREB1/DUOX2 pathway, resulting in a decrease in oxidative stress in cultured TCs. TCs reduce LPS-induced oxidative stress by decreasing DUOX2 in inflamed lungs of mice.
Collapse
|
10
|
Lyu PW, Xu XD, Zong K, Qiu XG. Overexpression of DUOX2 mediates doxorubicin resistance and predicts prognosis of pancreatic cancer. Gland Surg 2022; 11:115-124. [PMID: 35242674 PMCID: PMC8825507 DOI: 10.21037/gs-21-776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/11/2022] [Indexed: 01/27/2024]
Abstract
BACKGROUND Dysregulation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) family is frequently observed in cancers and associated with their development and progression. However, the expression, role, and clinical significance of the NOX family members in pancreatic cancer remain unexplored. METHODS The expression levels of the 7 NOX family genes were analyzed in Gene Expression Omnibus (GEO) datasets. The messenger RNA (mRNA) expression and gene alterations were explored using The Cancer Genome Atlas (TCGA) data portal. Clinical significance analyses of the NOX family genes were conducted among pancreatic cancer patients. The expression and prognostic value of dual oxidase 2 (DUOX2) were then validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) in an independent validation cohort. The function of DUOX2 was analyzed by gene set enrichment analysis (GSEA) and its effect on the chemosensitivity of pancreatic cancer cells was detected by Cell Counting Kit-8 (CCK-8) assay. RESULTS Results showed that NOX1, NOX2 (CYBB), NOX4, DUOX1, and DUOX2 were upregulated, while NOX3 and NOX5 were downregulated in pancreatic cancer tissues compared with nontumor tissues. Genomic alteration analysis demonstrated that deregulation of NOX family genes was partially caused by genomic alterations. Survival analyses showed that only DUOX2 was associated with overall survival (OS) and relapse-free survival (RFS) of pancreatic cancer patients. The DUOX2 gene was observed to be markedly overexpressed in pancreatic cancer. In the GSEA results for pancreatic cancer patients, DUOX2 was significantly associated with oxidoreductase activity acting on nicotinamide adenine dinucleotide hydrogen (NADH) or NADPH and uridine 5'-diphospho-glucuronosyltansferase (UDP) glycosyltransferase activity. Knockdown of DUOX2 in pancreatic cancer cells increased their sensitivity to doxorubicin. CONCLUSIONS Overexpression of DUOX2 is correlated with prognosis and recurrence in pancreatic cancer patients and acts as a good marker for pancreatic cancer course prediction; furthermore, DUOX2 might be a therapeutic target for pancreatic cancer patients.
Collapse
Affiliation(s)
- Peng-Wei Lyu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Dong Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Zong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Guang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Nunes JPS, Andrieux P, Brochet P, Almeida RR, Kitano E, Honda AK, Iwai LK, Andrade-Silva D, Goudenège D, Alcântara Silva KD, Vieira RDS, Levy D, Bydlowski SP, Gallardo F, Torres M, Bocchi EA, Mano M, Santos RHB, Bacal F, Pomerantzeff P, Laurindo FRM, Teixeira PC, Nakaya HI, Kalil J, Procaccio V, Chevillard C, Cunha-Neto E. Co-Exposure of Cardiomyocytes to IFN-γ and TNF-α Induces Mitochondrial Dysfunction and Nitro-Oxidative Stress: Implications for the Pathogenesis of Chronic Chagas Disease Cardiomyopathy. Front Immunol 2021; 12:755862. [PMID: 34867992 PMCID: PMC8632642 DOI: 10.3389/fimmu.2021.755862] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Infection by the protozoan Trypanosoma cruzi causes Chagas disease cardiomyopathy (CCC) and can lead to arrhythmia, heart failure and death. Chagas disease affects 8 million people worldwide, and chronic production of the cytokines IFN-γ and TNF-α by T cells together with mitochondrial dysfunction are important players for the poor prognosis of the disease. Mitochondria occupy 40% of the cardiomyocytes volume and produce 95% of cellular ATP that sustain the life-long cycles of heart contraction. As IFN-γ and TNF-α have been described to affect mitochondrial function, we hypothesized that IFN-γ and TNF-α are involved in the myocardial mitochondrial dysfunction observed in CCC patients. In this study, we quantified markers of mitochondrial dysfunction and nitro-oxidative stress in CCC heart tissue and in IFN-γ/TNF-α-stimulated AC-16 human cardiomyocytes. We found that CCC myocardium displayed increased levels of nitro-oxidative stress and reduced mitochondrial DNA as compared with myocardial tissue from patients with dilated cardiomyopathy (DCM). IFN-γ/TNF-α treatment of AC-16 cardiomyocytes induced increased nitro-oxidative stress and decreased the mitochondrial membrane potential (ΔΨm). We found that the STAT1/NF-κB/NOS2 axis is involved in the IFN-γ/TNF-α-induced decrease of ΔΨm in AC-16 cardiomyocytes. Furthermore, treatment with mitochondria-sparing agonists of AMPK, NRF2 and SIRT1 rescues ΔΨm in IFN-γ/TNF-α-stimulated cells. Proteomic and gene expression analyses revealed that IFN-γ/TNF-α-treated cells corroborate mitochondrial dysfunction, transmembrane potential of mitochondria, altered fatty acid metabolism and cardiac necrosis/cell death. Functional assays conducted on Seahorse respirometer showed that cytokine-stimulated cells display decreased glycolytic and mitochondrial ATP production, dependency of fatty acid oxidation as well as increased proton leak and non-mitochondrial oxygen consumption. Together, our results suggest that IFN-γ and TNF-α cause direct damage to cardiomyocytes’ mitochondria by promoting oxidative and nitrosative stress and impairing energy production pathways. We hypothesize that treatment with agonists of AMPK, NRF2 and SIRT1 might be an approach to ameliorate the progression of Chagas disease cardiomyopathy.
Collapse
Affiliation(s)
- João Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,iii-Institute for Investigation in Immunology, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil.,INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Pauline Andrieux
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Pauline Brochet
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Rafael Ribeiro Almeida
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,iii-Institute for Investigation in Immunology, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Eduardo Kitano
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - André Kenji Honda
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Débora Andrade-Silva
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - David Goudenège
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Karla Deysiree Alcântara Silva
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Raquel de Souza Vieira
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Débora Levy
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sergio Paulo Bydlowski
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Frédéric Gallardo
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Magali Torres
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Edimar Alcides Bocchi
- Heart Failure Team, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Miguel Mano
- Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | | | - Fernando Bacal
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pablo Pomerantzeff
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Priscila Camillo Teixeira
- Translational Research Sciences, Pharma Research and Early Development F. Hoffmann-La Roche, Basel, Switzerland
| | | | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,iii-Institute for Investigation in Immunology, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Vincent Procaccio
- MitoLab, UMR CNRS 6015-INSERM U1083, Université d'Angers, Angers, France
| | - Christophe Chevillard
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,iii-Institute for Investigation in Immunology, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| |
Collapse
|
12
|
Gao X, Li R, Yourick JJ, Sprando RL. Transcriptomic and proteomic responses of silver nanoparticles in hepatocyte-like cells derived from human induced pluripotent stem cells. Toxicol In Vitro 2021; 79:105274. [PMID: 34798274 DOI: 10.1016/j.tiv.2021.105274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/22/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022]
Abstract
Silver nanoparticles (AgNPs) have been increasingly used in a variety of consumer products over the last decades. However, their potential adverse effects have not been fully understood. In a previous study, we characterized transcriptomic changes in human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) in response to AgNP exposure. Here, we report findings of a follow-up proteomic study that evaluated alternations at the protein level in the same cell after being exposed to 10 μg/ml AgNPs for 24 h. In total, 6287 proteins were identified across two groups of samples (n = 3). Among these proteins, 665 were found to be differentially regulated (fold change ≥1.25, p < 0.01) between the AgNP-treated group and the untreated control group, including 264 upregulated and 401 downregulated. Bioinformatics analysis of the proteomics data, in side-by-side comparison to the transcriptomics data, confirms and substantiates previous findings on AgNP-induced alterations in metabolism, oxidative stress, inflammation, and potential association with cancer. A mechanism of action was proposed based on these results. Collectively, the findings of the current proteomic study are consistent with those of the previous transcriptomic study and further demonstrate the usefulness of iPSC-derived HLCs as an in vitro model for liver nanotoxicology.
Collapse
Affiliation(s)
- Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Rong Li
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
13
|
DUOX2, a New Biomarker for Disseminated Gastric Cancer's Response to Low Dose Radiation in Mice. Cancers (Basel) 2021; 13:cancers13164186. [PMID: 34439340 PMCID: PMC8392330 DOI: 10.3390/cancers13164186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Treatment options are rather limited for gastrointestinal cancer patients whose disease has disseminated into the intra-abdominal cavity. Here, we designed pre-clinical studies to evaluate the potential application of chemopotentiation by Low Dose Fractionated Radiation Therapy (LDFRT) for disseminated gastric cancer and evaluate the role of a likely biomarker, Dual Oxidase 2 (DUOX2). Nude mice were injected orthotopically with human gastric cancer cells expressing endogenous or reduced levels of DUOX2 and randomly assigned to four treatment groups: 1; vehicle alone, 2; modified regimen of docetaxel, cisplatin and 5'-fluorouracil (mDCF) for three consecutive days, 3; Low Dose- Whole Abdomen Radiation Therapy (LD-WART) (5 fractions of 0.15 Gy in three days), 4; mDCF and LD-WART. The combined regimen increased the odds of preventing cancer dissemination (mDCF + LD-WART OR = 4.16; 80% CI = 1.0, 17.29) in the DUOX2 positive tumors, while tumors expressing lower DUOX2 levels were more responsive to mDCF alone with no added benefit from LD-WART. The molecular mechanisms underlying DUOX2 effects in response to the combined regimen include NF-κB upregulation. These data are particularly important since our study indicates that about 33% of human stomach adenocarcinoma do not express DUOX2. DUOX2 thus seems a likely biomarker for potential clinical application of chemopotentiation by LD-WART.
Collapse
|
14
|
Zhang X, Han J, Feng L, Zhi L, Jiang D, Yu B, Zhang Z, Gao B, Zhang C, Li M, Zhao L, Wang G. DUOX2 promotes the progression of colorectal cancer cells by regulating the AKT pathway and interacting with RPL3. Carcinogenesis 2021; 42:105-117. [PMID: 32531052 PMCID: PMC7877561 DOI: 10.1093/carcin/bgaa056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Dual oxidase 2 (DUOX2) is an important regulatory protein in the organic process of thyroid hormone iodine. Mounting evidence suggests that DUOX2 plays a crucial role in the occurrence and development of cancers. However, the function and mechanism of DUOX2 in colorectal cancer (CRC) have not been fully clarified. In the present study, the relationship between the expression of DUOX2 and the clinicopathological features and prognosis of CRC patients was analyzed. Furthermore, the effects of DUOX2 on proliferation and invasion in vitro and in vivo were examined. DUOX2-associated proteins were identified by immunoprecipitation (IP). Next-generation sequencing detection was performed to illustrate the mechanism of DUOX2 in CRC cells. It was found that the expression levels of DUOX2 in metastatic sites were significantly higher than those in primary tumor tissues, and this was demonstrated to be associated with poor prognosis. The knockdown of DUOX2 inhibited the invasion and migration of CRC cells. Furthermore, DUOX2 regulated the stability of ribosomal protein uL3 (RPL3) by affecting the ubiquitination status of RPL3, and the invasion and migration ability of DUOX2 can be reversed by the overexpression of RPL3. The downregulation of DUOX2 can affect the expression level of a large number of genes, and a number of these are enriched in the PI3K-AKT pathway. Some of the changes caused by DUOX2 can be reversed by RPL3. In summary, DUOX2 exhibits a significantly higher expression in CRC tumor samples, and facilitates the invasion and metastasis ability of CRC cells by interacting with RPL3.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Jing Han
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Li Feng
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Lianghui Zhi
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Da Jiang
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Bin Yu
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Zhenya Zhang
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Bo Gao
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Cong Zhang
- Scientific Research Center, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Meng Li
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Lianmei Zhao
- Scientific Research Center, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Guiying Wang
- The Second General Surgery, Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
- Department of General Surgery, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
NOX2-Derived Reactive Oxygen Species in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7095902. [PMID: 33312338 PMCID: PMC7721506 DOI: 10.1155/2020/7095902] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
The formation of reactive oxygen species (ROS) by the myeloid cell NADPH oxidase NOX2 is critical for the destruction of engulfed microorganisms. However, recent studies imply that ROS, formed by NOX2+ myeloid cells in the malignant microenvironment, exert multiple actions of relevance to the growth and spread of neoplastic cells. By generating ROS, tumor-infiltrating myeloid cells and NOX2+ leukemic myeloid cells may thus (i) compromise the function and viability of adjacent cytotoxic lymphocytes, including natural killer (NK) cells and T cells, (ii) oxidize DNA to trigger cancer-promoting somatic mutations, and (iii) affect the redox balance in cancer cells to control their proliferation and survival. Here, we discuss the impact of NOX2-derived ROS for tumorigenesis, tumor progression, regulation of antitumor immunity, and metastasis. We propose that NOX2 may be a targetable immune checkpoint in cancer.
Collapse
|
16
|
Aboulhoda BE, Abdeltawab DA, Rashed LA, Abd Alla MF, Yassa HD. Hepatotoxic Effect of Oral Zinc Oxide Nanoparticles and the Ameliorating Role of Selenium in Rats: A histological, immunohistochemical and molecular study. Tissue Cell 2020; 67:101441. [PMID: 32949962 DOI: 10.1016/j.tice.2020.101441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
Despite the emerging concerns about the hepatotoxic risks associated with Zinc oxide nanoparticles (ZnO NPs), yet, the morphological and molecular alterations associated with these extensively-used nanoparticles remain to be elucidated. Thus, the current study has been designed to analyze the effect of ZnO NPs on the hepatic histopathological and immunohistochemical changes, along with the modulation of the oxidative-stress induced JNK/p38MAPK and the STAT-3 signalling. The study also explored the potential protective role of selenium against those alterations. ZnO NPs disrupted the hepatic architecture, elevated the serum liver enzyme alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) levels and caused dose-dependent decrease in the activity of the antioxidant enzymes glutathione-peroxidase, superoxide dismutase and catalase along with an increase in the lipid peroxidation product malondialdehyde. ZnO NPs also increased the area of immune-reactivity of the apoptotic protein bax and decreased the area of immune-reactivity of the anti-apoptotic protein bcl2 together with augmentation of the hepatic caspase 3 gene expression. The role of selenium in ameliorating the hepatotoxicity, oxidative stress injury, and apoptosis induced by ZnO-NPs, along with its role in modulating the JNK/p38MAPK and the STAT-3 signalling and improving the histopathological hepatic changes, offers selenium as a promising adjunctive therapy in individuals subjected to high concentrations of ZnO NPs especially in cases of extensive occupational, medicinal and industrial exposure.
Collapse
Affiliation(s)
- Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt.
| | - Dina Adel Abdeltawab
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Laila Ahmed Rashed
- Department of biochemistry and molecular biology, Faculty of Medicine, Cairo University, Egypt
| | - Marwa Fathi Abd Alla
- Department of biochemistry and molecular biology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hanan Dawood Yassa
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Egypt
| |
Collapse
|
17
|
Amini P, Kolivand S, Saffar H, Rezapoor S, Motevaseli E, Najafi M, Nouruzi F, Shabeeb D, Musa AE. Protective Effect of Selenium-L-methionine on Radiation-induced Acute Pneumonitis and Lung Fibrosis in Rat. ACTA ACUST UNITED AC 2020; 14:157-164. [PMID: 30556505 PMCID: PMC7040518 DOI: 10.2174/1574884714666181214101917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND In this study, we aimed to detect the changes in the level of interleukin (IL)-4 and IL-13 cytokines and their downstream genes including interleukin-13 receptor subunit alpha-2 (IL13Ra2), interleukin-4 receptor subunit alpha-1 (IL4Ra1), dual oxidase 1 (DUOX1) and dual oxidase 2 (DUOX2). The protective effects of Selenium-L-methionine on radiation-induced histopathological damages and changes in the level of these cytokines and genes were detected. METHODS Four groups of 20 rats (5 rats in each) namely, control; Selenium-L-methionine, radiation and radiation plus Selenium-L-methionine were used in this study. 4 mg/kg of Selenium-Lmethionine was administered 1 day before irradiation and five consecutive days after irradiation. Irradiation was done using a dose of 15 Gy 60Co gamma rays at 109 cGy/min. All rats were sacrificed 10 weeks after irradiation for detecting changes in IL-4 and IL-13 cytokines, the expressions of IL13Ra2, IL4Ra1, Duox1 and Duox2 and histopathological changes. RESULTS The level of IL-4 but not IL-13 increased after irradiation. This was associated with increased expression of IL4Ra1, Duox1 and Duox2, in addition to changes in morphological properties. Selenium-L-methionine could attenuate all injury markers following lung irradiation. CONCLUSION Selenium-L-methionine can protect lung tissues against toxic effects of ionizing radiation. It is possible that the modulation of immune responses and redox interactions are involved in the radioprotective effect of this agent.
Collapse
Affiliation(s)
- Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedighe Kolivand
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hana Saffar
- Department of Clinical and Anatomical Pathologist, Tehran University of Medical Science, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzad Nouruzi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| |
Collapse
|
18
|
de Faria CC, Fortunato RS. The role of dual oxidases in physiology and cancer. Genet Mol Biol 2020; 43:e20190096. [PMID: 32453337 PMCID: PMC7265977 DOI: 10.1590/1678-4685/gmb-2019-0096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
NOX/DUOX enzymes are transmembrane proteins that carry electrons through biological membranes generating reactive oxygen species. The NOX family is composed of seven members, which are NOX1 to NOX5 and DUOX1 and 2. DUOX enzymes were initially called thyroid oxidases, based on their high expression level in the thyroid tissue. However, DUOX expression has been documented in several extrathyroid tissues, mostly at the apical membrane of the salivary glands, the airways, and the intestinal tract, revealing additional cellular functions associated with DUOX-related H2O2 generation. In this review, we will briefly summarize the current knowledge regarding DUOX structure and physiological functions, as well as their possible role in cancer biology.
Collapse
Affiliation(s)
- Caroline Coelho de Faria
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas
Filho, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Soares Fortunato
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas
Filho, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Dayama G, Priya S, Niccum DE, Khoruts A, Blekhman R. Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med 2020; 12:12. [PMID: 31992345 PMCID: PMC6988342 DOI: 10.1186/s13073-020-0710-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians. It is caused by mutations in the CFTR gene, leading to poor hydration of mucus and impairment of the respiratory, digestive, and reproductive organ functions. Advancements in medical care have led to markedly increased longevity of patients with cystic fibrosis, but new complications have emerged, such as early onset of colorectal cancer. Although the pathogenesis of colorectal cancer in cystic fibrosis remains unclear, altered host-microbe interactions might play a critical role. To investigate this, we characterized changes in the microbiome and host gene expression in the colonic mucosa of cystic fibrosis patients relative to healthy controls, and identified host gene-microbiome interactions in the colon of cystic fibrosis patients. METHODS We performed RNA-seq on colonic mucosa samples from cystic fibrosis patients and healthy controls to determine differentially expressed host genes. We also performed 16S rRNA sequencing to characterize the colonic mucosal microbiome and identify gut microbes that are differentially abundant between patients and healthy controls. Lastly, we modeled associations between relative abundances of specific bacterial taxa in the gut mucosa and host gene expression. RESULTS We find that 1543 genes, including CFTR, show differential expression in the colon of cystic fibrosis patients compared to healthy controls. These genes are enriched with functions related to gastrointestinal and colorectal cancer, such as metastasis of colorectal cancer, tumor suppression, p53, and mTOR signaling pathways. In addition, patients with cystic fibrosis show decreased gut microbial diversity, decreased abundance of butyrate producing bacteria, such as Ruminococcaceae and Butyricimonas, and increased abundance of other taxa, such as Actinobacteria and Clostridium. An integrative analysis identified colorectal cancer-related genes, including LCN2 and DUOX2, for which gene expression is correlated with the abundance of colorectal cancer-associated bacteria, such as Ruminococcaceae and Veillonella. CONCLUSIONS In addition to characterizing host gene expression and mucosal microbiome in cystic fibrosis patients, our study explored the potential role of host-microbe interactions in the etiology of colorectal cancer in cystic fibrosis. Our results provide biomarkers that may potentially serve as targets for stratifying risk of colorectal cancer in patients with cystic fibrosis.
Collapse
Affiliation(s)
- Gargi Dayama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Sambhawa Priya
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - David E Niccum
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Khoruts
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
20
|
Wu Y, Konaté MM, Lu J, Makhlouf H, Chuaqui R, Antony S, Meitzler JL, Difilippantonio MJ, Liu H, Juhasz A, Jiang G, Dahan I, Roy K, Doroshow JH. IL-4 and IL-17A Cooperatively Promote Hydrogen Peroxide Production, Oxidative DNA Damage, and Upregulation of Dual Oxidase 2 in Human Colon and Pancreatic Cancer Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:2532-2544. [PMID: 31548328 DOI: 10.4049/jimmunol.1800469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/27/2019] [Indexed: 01/05/2023]
Abstract
Dual oxidase 2 (DUOX2) generates H2O2 that plays a critical role in both host defense and chronic inflammation. Previously, we demonstrated that the proinflammatory mediators IFN-γ and LPS enhance expression of DUOX2 and its maturation factor DUOXA2 through STAT1- and NF-κB‒mediated signaling in human pancreatic cancer cells. Using a panel of colon and pancreatic cancer cell lines, we now report the induction of DUOX2/DUOXA2 mRNA and protein expression by the TH2 cytokine IL-4. IL-4 activated STAT6 signaling that, when silenced, significantly decreased induction of DUOX2. Furthermore, the TH17 cytokine IL-17A combined synergistically with IL-4 to increase DUOX2 expression in both colon and pancreatic cancer cells mediated, at least in part, by signaling through NF-κB. The upregulation of DUOX2 was associated with a significant increase in the production of extracellular H2O2 and DNA damage-as indicated by the accumulation of 8-oxo-dG and γH2AX-which was suppressed by the NADPH oxidase inhibitor diphenylene iodonium and a DUOX2-specific small interfering RNA. The clinical relevance of these experiments is suggested by immunohistochemical, microarray, and quantitative RT-PCR studies of human colon and pancreatic tumors demonstrating significantly higher DUOX2, IL-4R, and IL-17RA expression in tumors than in adjacent normal tissues; in pancreatic adenocarcinoma, increased DUOX2 expression is adversely associated with overall patient survival. These data suggest a functional association between DUOX2-mediated H2O2 production and induced DNA damage in gastrointestinal malignancies.
Collapse
Affiliation(s)
- Yongzhong Wu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jiamo Lu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Hala Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rodrigo Chuaqui
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer L Meitzler
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Michael J Difilippantonio
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Han Liu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Agnes Juhasz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Guojian Jiang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and .,Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Chevillard C, Nunes JPS, Frade AF, Almeida RR, Pandey RP, Nascimento MS, Kalil J, Cunha-Neto E. Disease Tolerance and Pathogen Resistance Genes May Underlie Trypanosoma cruzi Persistence and Differential Progression to Chagas Disease Cardiomyopathy. Front Immunol 2018; 9:2791. [PMID: 30559742 PMCID: PMC6286977 DOI: 10.3389/fimmu.2018.02791] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023] Open
Abstract
Chagas disease is caused by infection with the protozoan Trypanosoma cruzi and affects over 8 million people worldwide. In spite of a powerful innate and adaptive immune response in acute infection, the parasite evades eradication, leading to a chronic persistent infection with low parasitism. Chronically infected subjects display differential patterns of disease progression. While 30% develop chronic Chagas disease cardiomyopathy (CCC)—a severe inflammatory dilated cardiomyopathy—decades after infection, 60% of the patients remain disease-free, in the asymptomatic/indeterminate (ASY) form, and 10% develop gastrointestinal disease. Infection of genetically deficient mice provided a map of genes relevant for resistance to T. cruzi infection, leading to the identification of multiple genes linked to survival to infection. These include pathogen resistance genes (PRG) needed for intracellular parasite destruction, and genes involved in disease tolerance (protection against tissue damage and acute phase death—DTG). All identified DTGs were found to directly or indirectly inhibit IFN-γ production or Th1 differentiation. We hypothesize that the absolute need for DTG to control potentially lethal IFN-γ PRG activity leads to T. cruzi persistence and establishment of chronic infection. IFN-γ production is higher in CCC than ASY patients, and is the most highly expressed cytokine in CCC hearts. Key DTGs that downmodulate IFN-γ, like IL-10, and Ebi3/IL27p28, are higher in ASY patients. Polymorphisms in PRG and DTG are associated with differential disease progression. We thus hypothesize that ASY patients are disease tolerant, while an imbalance of DTG and IFN-γ PRG activity leads to the inflammatory heart damage of CCC.
Collapse
Affiliation(s)
| | - João Paulo Silva Nunes
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Amanda Farage Frade
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil.,Department of Bioengineering, Brazil University, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Ramendra Pati Pandey
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Marilda Savóia Nascimento
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
22
|
Lin J, Wu YJ, Liang X, Ji M, Ying HM, Wang XY, Sun X, Shao CH, Zhan LX, Zhang Y. Network-based integration of mRNA and miRNA profiles reveals new target genes involved in pancreatic cancer. Mol Carcinog 2018; 58:206-218. [PMID: 30294829 DOI: 10.1002/mc.22920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/31/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
Abstract
Pancreatic cancer is regarded as the most fatal and aggressive malignancy cancer due to its low 5-year survival rate and poor prognosis. The approaches of early diagnosis and treatment are limited, which makes it urgent to identify the complex mechanism of pancreatic oncogenesis. In this study, we used RNA-seq to investigate the transcriptomic (mRNA and miRNA) profiles of pancreatic cancer in paired tumor and normal pancreatic samples from ten patients. More than 1000 differentially expressed genes were identified, nearly half of which were also found to be differentially expressed in the majority of examined patients. Functional enrichment analysis revealed that these genes were significantly enriched in multicellular organismal and metabolic process, secretion, mineral transport, and intercellular communication. In addition, only 24 differentially expressed miRNAs were found, all of which have been reported to be associated with pancreatic cancer. Furthermore, an integrated miRNA-mRNA interaction network was generated using multiple resources. Based on the calculation of disease correlation scores developed here, several genes present in the largest connected subnetwork, such as albumin, ATPase H+ /K+ exchanging alpha polypeptide and carcinoembryonic antigen-related cell adhesion molecule 1, were considered as novel genes that play important roles in the development of pancreatic cancer. Overall, our data provide new insights into further understanding of key molecular mechanisms underlying pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Jie Lin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, P. R. China.,Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yan-Jun Wu
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xing Liang
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Meng Ji
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Hui-Min Ying
- Department of Endocrinology, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, P. R. China
| | - Xin-Yu Wang
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xia Sun
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Cheng-Hao Shao
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Li-Xing Zhan
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, P. R. China
| |
Collapse
|
23
|
Guo XY, Wang SN, Wu Y, Lin YH, Tang J, Ding SQ, Shen L, Wang R, Hu JG, Lü HZ. Transcriptome profile of rat genes in bone marrow-derived macrophages at different activation statuses by RNA-sequencing. Genomics 2018; 111:986-996. [PMID: 31307632 DOI: 10.1016/j.ygeno.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023]
Abstract
The underlying mechanisms of macrophage polarization have been detected by genome-wide transcriptome analysis in a variety of mammals. However, the transcriptome profile of rat genes in bone marrow-derived macrophages (BMM) at different activation statuses has not been reported. Therefore, we performed RNA-Sequencing to identify gene expression signatures of rat BMM polarized in vitro with different stimuli. The differentially expressed genes (DEGs) among unactivated (M0), classically activated pro-inflammatory (M1), and alternatively activated anti-inflammatory macrophages (M2) were analyzed by using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. In this study, not only we have identified the changes of global gene expression in rat M0, M1 and M2, but we have also made clear systematically the key genes and signaling pathways in the differentiation process of M0 to M1 and M2. These will provide a foundation for future researches of macrophage polarization.
Collapse
Affiliation(s)
- Xue-Yan Guo
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yan Wu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yu-Hong Lin
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jie Tang
- Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
24
|
NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol 2018; 11:1011-1023. [PMID: 29743611 DOI: 10.1038/s41385-018-0021-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS), initially categorized as toxic by-products of aerobic metabolism, have often been called a double-edged sword. ROS are considered indispensable when host defense and redox signaling is concerned and a threat in inflammatory or degenerative diseases. This generalization does not take in account the diversity of oxygen metabolites being generated, their physicochemical characteristics and their production by distinct enzymes in space and time. NOX/DUOX NADPH oxidases are the only enzymes solely dedicated to ROS production and the prime ROS producer for intracellular and intercellular communication due to their widespread expression and intricate regulation. Here we discuss new insights of how NADPH oxidases act via ROS as multifaceted regulators of the intestinal barrier in homeostasis, infectious disease and intestinal inflammation. A closer look at monogenic VEOIBD and commensals as ROS source supports the view of H2O2 as key beneficial messenger in the barrier ecosystem.
Collapse
|
25
|
Interleukin-4 and interleukin-13 increase NADPH oxidase 1-related proliferation of human colon cancer cells. Oncotarget 2018; 8:38113-38135. [PMID: 28498822 PMCID: PMC5503519 DOI: 10.18632/oncotarget.17494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/17/2017] [Indexed: 01/01/2023] Open
Abstract
Human colon cancers express higher levels of NADPH oxidase 1 [NOX1] than adjacent normal epithelium. It has been suggested that reactive oxygen species [ROS] derived from NOX1 contribute to DNA damage and neoplastic transformation in the colon, particularly during chronic inflammatory stress. However, the mechanism(s) underlying increased NOX1 expression in malignant tumors or chronic inflammatory states involving the intestine are poorly characterized. We examined the effects of two pro-inflammatory cytokines, IL-4 and IL-13, on the regulation of NOX1. NOX1 expression was increased 4- to 5-fold in a time- and concentration-dependent manner by both cytokines in human colon cancer cell lines when a functional Type II IL-4 receptor was present. Increased NOX1 transcription following IL-4/IL-13 exposure was mediated by JAK1/STAT6 signaling, was associated with a ROS-related inhibition of protein tyrosine phosphatase activity, and was dependent upon activation and specific binding of GATA3 to the NOX1 promoter. NOX1-mediated ROS production increased cell cycle progression through S-phase leading to a significant increase in cellular proliferation. Evaluation of twenty pairs of surgically-resected colon cancers and their associated uninvolved adjacent colonic epithelium demonstrated a significant increase in the active form of NOX1, NOX1-L, in tumors compared to normal tissues, and a significant correlation between the expression levels of NOX1 and the Type II IL-4 receptor in tumor and the uninvolved colon. These studies imply that NOX1 expression, mediated by IL-4/IL-13, could contribute to an oxidant milieu capable of supporting the initiation or progression of colonic cancer, suggesting a role for NOX1 as a therapeutic target.
Collapse
|
26
|
Kitamoto K, Miura Y, Karnan S, Ota A, Konishi H, Hosokawa Y, Sato K. Inhibition of NADPH oxidase 2 induces apoptosis in osteosarcoma: The role of reactive oxygen species in cell proliferation. Oncol Lett 2018; 15:7955-7962. [PMID: 29731909 DOI: 10.3892/ol.2018.8291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/12/2016] [Indexed: 12/31/2022] Open
Abstract
Osteosarcomas (OS) are aggressive tumors that are characterized by dysregulated growth and resistance to apoptosis. Reactive oxygen species (ROS) are thought to be important signal transduction molecules in the regulation of cell growth. ROS-generating nicotinamide adenine dinucleotide phosphate oxidase (NOX) family enzymes have previously been suggested to be involved in neoplastic proliferation. To examine whether NOX-mediated generation of intracellular ROS confers anti-apoptotic activity, and thus a growth advantage, the current study first analyzed the mRNA expression of NOX family members by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in five human OS cell lines. RT-PCR analysis revealed that NOX2 and NOX4 mRNAs were expressed in all the OS cell lines examined, whereas little or no NOX1 and NOX3 mRNAs were detected. By RT-qPCR, NOX2 mRNA expression levels were demonstrated to be higher than NOX4 mRNA expression levels. The viability of OS cells decreased in a dose-dependent manner with treatment of diphenylene iodonium (DPI), an inhibitor of flavoprotein-dependent oxidase. DPI treatment was observed to reduce intracellular ROS levels by ~50%, and increase the frequency of apoptosis by 30%. Notably, small interfering RNAs (siRNAs) targeting NOX2 significantly suppressed ROS generation; ROS depletion by DPI or NOX2 siRNAs induced apoptosis in OS cells. Together, the results of the present study indicate that NOX2-mediated ROS generation promotes cell survival and ROS depletion leads to apoptosis, thus highlighting the NOX2-ROS signaling pathway as a potential therapeutic target for OS treatment.
Collapse
Affiliation(s)
- Kazumasa Kitamoto
- Department of Orthopedic Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Yuji Miura
- Department of Pathophysiology, Aichi Medical University School of Nursing, Nagakute, Aichi 480-1195, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Keiji Sato
- Department of Orthopedic Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
27
|
Lu J, Risbood P, Kane CT, Hossain MT, Anderson L, Hill K, Monks A, Wu Y, Antony S, Juhasz A, Liu H, Jiang G, Harris E, Roy K, Meitzler JL, Konaté M, Doroshow JH. Characterization of potent and selective iodonium-class inhibitors of NADPH oxidases. Biochem Pharmacol 2017; 143:25-38. [PMID: 28709950 PMCID: PMC5610936 DOI: 10.1016/j.bcp.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
Abstract
The NADPH oxidases (NOXs) play a recognized role in the development and progression of inflammation-associated disorders, as well as cancer. To date, several NOX inhibitors have been developed, through either high throughput screening or targeted disruption of NOX interaction partners, although only a few have reached clinical trials. To improve the efficacy and bioavailability of the iodonium class NOX inhibitor diphenylene iodonium (DPI), we synthesized 36 analogs of DPI, focusing on improved solubility and functionalization. The inhibitory activity of the analogs was interrogated through cell viability and clonogenic studies with a colon cancer cell line (HT-29) that depends on NOX for its proliferative potential. Lack of altered cellular respiration at relevant iodonium analog concentrations was also demonstrated. Additionally, inhibition of ROS generation was evaluated with a luminescence assay for superoxide, or by Amplex Red® assay for H2O2 production, in cell models expressing specific NOX isoforms. DPI and four analogs (NSCs 740104, 751140, 734428, 737392) strongly inhibited HT-29 cell growth and ROS production with nanomolar potency in a concentration-dependent manner. NSC 737392 and 734428, which both feature nitro functional groups at the meta position, had >10-fold higher activity against ROS production by cells that overexpress dual oxidase 2 (DUOX2) than the other compounds examined (IC50≈200-400nM). Based on these results, we synthesized and tested NSC 780521 with optimized potency against DUOX2. Iodonium analogs with anticancer activity, including the first generation of targeted agents with improved specificity against DUOX2, may provide a novel therapeutic approach to NOX-driven tumors.
Collapse
Affiliation(s)
- Jiamo Lu
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Prabhakar Risbood
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | - Larry Anderson
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kimberly Hill
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anne Monks
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Han Liu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Erik Harris
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jennifer L Meitzler
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mariam Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - James H Doroshow
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Meitzler JL, Makhlouf HR, Antony S, Wu Y, Butcher D, Jiang G, Juhasz A, Lu J, Dahan I, Jansen-Dürr P, Pircher H, Shah AM, Roy K, Doroshow JH. Decoding NADPH oxidase 4 expression in human tumors. Redox Biol 2017; 13:182-195. [PMID: 28578276 PMCID: PMC5458090 DOI: 10.1016/j.redox.2017.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
NADPH oxidase 4 (NOX4) is a redox active, membrane-associated protein that contributes to genomic instability, redox signaling, and radiation sensitivity in human cancers based on its capacity to generate H2O2 constitutively. Most studies of NOX4 in malignancy have focused on the evaluation of a small number of tumor cell lines and not on human tumor specimens themselves; furthermore, these studies have often employed immunological tools that have not been well characterized. To determine the prevalence of NOX4 expression across a broad range of solid tumors, we developed a novel monoclonal antibody that recognizes a specific extracellular region of the human NOX4 protein, and that does not cross-react with any of the other six members of the NOX gene family. Evaluation of 20 sets of epithelial tumors revealed, for the first time, high levels of NOX4 expression in carcinomas of the head and neck (15/19 patients), esophagus (12/18 patients), bladder (10/19 patients), ovary (6/17 patients), and prostate (7/19 patients), as well as malignant melanoma (7/15 patients) when these tumors were compared to histologically-uninvolved specimens from the same organs. Detection of NOX4 protein upregulation by low levels of TGF-β1 demonstrated the sensitivity of this new probe; and immunofluorescence experiments found that high levels of endogenous NOX4 expression in ovarian cancer cells were only demonstrable associated with perinuclear membranes. These studies suggest that NOX4 expression is upregulated, compared to normal tissues, in a well-defined, and specific group of human carcinomas, and that its expression is localized on intracellular membranes in a fashion that could modulate oxidative DNA damage.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hala R Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jiamo Lu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Haymo Pircher
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, Cardiovascular Division, James Black Centre, London SE5 9NU, United Kingdom
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - James H Doroshow
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Eun HS, Cho SY, Joo JS, Kang SH, Moon HS, Lee ES, Kim SH, Lee BS. Gene expression of NOX family members and their clinical significance in hepatocellular carcinoma. Sci Rep 2017; 7:11060. [PMID: 28894215 PMCID: PMC5593889 DOI: 10.1038/s41598-017-11280-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 11/09/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex-derived reactive oxygen species (ROS) promote chronic liver inflammation and remodeling that can drive hepatocellular carcinoma development. The role of NOX expression in hepatocellular carcinoma (HCC) has been partially investigated; however, the clinical relevance of collective or individual NOX family member expression for HCC survival remains unclear. Here, we obtained NOX mRNA expression data for 377 HCC samples and 21 normal liver controls from the TCGA data portal and performed Kaplan-Meier survival, gene ontology functional enrichment, and gene set enrichment analyses. Although most NOX genes exhibited little change, some were significantly induced in HCC compared to that in normal controls. In addition, HCC survival analyses indicated better overall survival in patients with high NOX4 and DUOX1 expression, whereas patients with high NOX1/2/5 expression showed poor prognoses. Gene-neighbour and gene set enrichment analyses revealed that NOX1/2/5 were strongly correlated with genes associated with cancer cell survival and metastasis, whereas increased NOX4 and DUOX1 expression was associated with genes that inhibit tumour progression. On the basis of these data, NOX family gene expression analysis could be a predictor of survival and identify putative therapeutic targets in HCC.
Collapse
Affiliation(s)
- Hyuk Soo Eun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chungnam National University Hospital, 282, Munwha-ro, Jung-gu, Daejeon, Republic of Korea.,Department of Internal Medicine, School of Medicine, Chungnam National University, 266, Munwha-ro, Jung-gu, Daejeon, Republic of Korea
| | - Sang Yeon Cho
- School of Medicine, Chungnam National University, 266, Munwha-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jong Seok Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chungnam National University Hospital, 282, Munwha-ro, Jung-gu, Daejeon, Republic of Korea.,Department of Internal Medicine, School of Medicine, Chungnam National University, 266, Munwha-ro, Jung-gu, Daejeon, Republic of Korea
| | - Sun Hyung Kang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chungnam National University Hospital, 282, Munwha-ro, Jung-gu, Daejeon, Republic of Korea.,Department of Internal Medicine, School of Medicine, Chungnam National University, 266, Munwha-ro, Jung-gu, Daejeon, Republic of Korea
| | - Hee Seok Moon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chungnam National University Hospital, 282, Munwha-ro, Jung-gu, Daejeon, Republic of Korea.,Department of Internal Medicine, School of Medicine, Chungnam National University, 266, Munwha-ro, Jung-gu, Daejeon, Republic of Korea
| | - Eaum Seok Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chungnam National University Hospital, 282, Munwha-ro, Jung-gu, Daejeon, Republic of Korea.,Department of Internal Medicine, School of Medicine, Chungnam National University, 266, Munwha-ro, Jung-gu, Daejeon, Republic of Korea
| | - Seok Hyun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chungnam National University Hospital, 282, Munwha-ro, Jung-gu, Daejeon, Republic of Korea.,Department of Internal Medicine, School of Medicine, Chungnam National University, 266, Munwha-ro, Jung-gu, Daejeon, Republic of Korea
| | - Byung Seok Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chungnam National University Hospital, 282, Munwha-ro, Jung-gu, Daejeon, Republic of Korea. .,Department of Internal Medicine, School of Medicine, Chungnam National University, 266, Munwha-ro, Jung-gu, Daejeon, Republic of Korea.
| |
Collapse
|
30
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
31
|
Lin SC, Chang IW, Hsieh PL, Lin CY, Sun DP, Sheu MJ, Yang CC, Lin LC, He HL, Tian YF. High Immunoreactivity of DUOX2 Is Associated With Poor Response to Preoperative Chemoradiation Therapy and Worse Prognosis in Rectal Cancers. J Cancer 2017; 8:2756-2764. [PMID: 28928864 PMCID: PMC5604207 DOI: 10.7150/jca.19545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/25/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose: Colorectal cancer is the third most common cancer and also the fourth most common cause of cancer mortality worldwide. For rectal cancer, neoadjuvant concurrent chemoradiotherapy (CCRT) followed by radical proctectomy is gold standard treatment for patients with stage II/III rectal cancer. By data mining a documented database of rectal cancer transcriptome (GSE35452) from Gene Expression Omnibus, National Center of Biotechnology Information, we recognized that DUOX2 was the most significantly up-regulated transcript among those related to cytokine and chemokine mediated signaling pathway (GO:0019221). Hence, the aim of this study was to assess the DUOX2 expression level and its clinicopathological correlation and prognostic significance in patients of rectal cancer. Materials and Methods: DUOX2 immunostain was performed in 172 rectal adenocarcinomas treated with preoperative CCRT followed by radical proctectomy, which were divided into high- and low-expression subgroups. Furthermore, statistical analyses were examined to correlate the relationship between DUOX2 immunoreactivity and important clinical and pathological characteristics, as well as three survival indices: disease-specific survival (DSS), local recurrence-free survival (LRFS) and metastasis-free survival (MeFS). Results: DUOX2 overexpression was linked to post-CCRT tumor advancement, pre- and post-CCRT nodal metastasis and poor response to CCRT (all P ≤ 0.021). Furthermore, DUOX2 high expression was significantly associated with inferior DSS, LRFS and MeFS in univariate analysis (P ≤ 0.0097) and also served as an independent prognosticator indicating shorter DSS and LRFS interval in multivariate analysis (hazard ratio (HR) = 3.413, 95% confidence interval (CI): 1.349-8.633; HR = 4.533, 95% CI: 1.499-13.708, respectively). Conclusion: DUOX2 may play a pivotal role in carcinogenesis, tumor progression and response to neoadjuvant CCRT in rectal cancers, and serve as a novel prognostic biomarker. Additional researches to clarify the molecular and biochemical pathways are essential for developing promising DUOX2-targeted therapies for patients with rectal cancers.
Collapse
Affiliation(s)
- Shih-Chun Lin
- Division of Clinical Pathology, Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - I-Wei Chang
- Division of Clinical Pathology, Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Ling Hsieh
- Department of Medical Image, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Yih Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan.,Department of Leisure, Recreation, and Tourism Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Ding-Ping Sun
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ming-Jen Sheu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Hong-Lin He
- Division of Anatomical Pathology, Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Feng Tian
- Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan.,Department of Health & Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
32
|
Selective stimulation of the JAK/STAT signaling pathway by silica nanoparticles in human endothelial cells. Toxicol In Vitro 2017; 42:308-318. [DOI: 10.1016/j.tiv.2017.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/22/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023]
|
33
|
Ha SY, Paik YH, Yang JW, Lee MJ, Bae H, Park CK. NADPH Oxidase 1 and NADPH Oxidase 4 Have Opposite Prognostic Effects for Patients with Hepatocellular Carcinoma after Hepatectomy. Gut Liver 2017; 10:826-35. [PMID: 27282266 PMCID: PMC5003208 DOI: 10.5009/gnl15543] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/02/2015] [Accepted: 12/31/2015] [Indexed: 01/08/2023] Open
Abstract
Background/Aims Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated reactive oxygen species contribute to various liver diseases, including hepatocellular carcinoma (HCC). Uncertainties remain regarding the prognostic relevance of NOX1 and NOX4 protein expression in HCC. Methods NOX1 and NOX4 protein expression was examined by using immunohistochemistry in tumor tissue from 227 HCC patients who underwent hepatectomy. Results High immunoreactivity for NOX1 was observed in 197 (86.8%) of the 227 HCC cases and low immunoreactivity for NOX4 in 112 (49.3%). NOX1 and NOX4 proteins had opposite prognostic effects. High NOX1 expression was an independent predictor of both shorter recurrence-free survival (RFS) (p<0.01) and shorter overall survival (OS) (p=0.01). Low NOX4 expression was an independent predictor of both shorter RFS (p<0.01) and shorter OS (p=0.01). Subgroup analysis showed that, among patients with normal α-fetoprotein levels, patients with tumor size ≤5.0 cm and patients in Barcelona Clinic Liver Cancer stage A, high NOX1 expression had unfavorable effects on RFS, whereas low NOX4 expression had unfavorable effects on both RFS and OS. Conclusions These findings demonstrated that NOX1 and NOX4 protein expression had opposite prognostic effects for HCC patients. Moreover, both proteins had prognostic value in HCC patients with normal α-fetoprotein levels or with early-stage HCC.
Collapse
Affiliation(s)
- Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong-Han Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Wook Yang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min Ju Lee
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyunsik Bae
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Keun Park
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, Wu X, Antony S, Wu Y, Melillo G, Meitzler JL, Haines DC, Butcher D, Roy K, Doroshow JH. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem 2017; 292:7866-7887. [PMID: 28330872 PMCID: PMC5427267 DOI: 10.1074/jbc.m116.768283] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) play a critical role in cell signaling and proliferation. NADPH oxidase 1 (NOX1), a membrane-bound flavin dehydrogenase that generates O2˙̄, is highly expressed in colon cancer. To investigate the role that NOX1 plays in colon cancer growth, we used shRNA to decrease NOX1 expression stably in HT-29 human colon cancer cells. The 80–90% decrease in NOX1 expression achieved by RNAi produced a significant decline in ROS production and a G1/S block that translated into a 2–3-fold increase in tumor cell doubling time without increased apoptosis. The block at the G1/S checkpoint was associated with a significant decrease in cyclin D1 expression and profound inhibition of mitogen-activated protein kinase (MAPK) signaling. Decreased steady-state MAPK phosphorylation occurred concomitant with a significant increase in protein phosphatase activity for two colon cancer cell lines in which NOX1 expression was knocked down by RNAi. Diminished NOX1 expression also contributed to decreased growth, blood vessel density, and VEGF and hypoxia-inducible factor 1α (HIF-1α) expression in HT-29 xenografts initiated from NOX1 knockdown cells. Microarray analysis, supplemented by real-time PCR and Western blotting, revealed that the expression of critical regulators of cell proliferation and angiogenesis, including c-MYC, c-MYB, and VEGF, were down-regulated in association with a decline in hypoxic HIF-1α protein expression downstream of silenced NOX1 in both colon cancer cell lines and xenografts. These studies suggest a role for NOX1 in maintaining the proliferative phenotype of some colon cancers and the potential of NOX1 as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Agnes Juhasz
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Susan Markel
- the Department of Medical Oncology and Therapeutics Research and
| | - Shikha Gaur
- the Department of Medical Oncology and Therapeutics Research and
| | - Han Liu
- the Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jiamo Lu
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Guojian Jiang
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Xiwei Wu
- the Bioinformatics Group, City of Hope Comprehensive Cancer Center, Duarte, California 91010
| | - Smitha Antony
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Yongzhong Wu
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Giovanni Melillo
- the Developmental Therapeutics Program, SAIC-Frederick, Inc., NCI at Frederick, Frederick, Maryland 21702, and
| | - Jennifer L Meitzler
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Diana C Haines
- the Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland 21702
| | - Donna Butcher
- the Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland 21702
| | - Krishnendu Roy
- the Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - James H Doroshow
- From the Developmental Therapeutics Branch of the Center for Cancer Research, .,the Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
35
|
Martinez-Useros J, Li W, Cabeza-Morales M, Garcia-Foncillas J. Oxidative Stress: A New Target for Pancreatic Cancer Prognosis and Treatment. J Clin Med 2017; 6:jcm6030029. [PMID: 28282928 PMCID: PMC5372998 DOI: 10.3390/jcm6030029] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 01/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of tumors, and its incidence is rising worldwide. Survival can be improved when tumors are detected at an early stage; however, this cancer is usually asymptomatic, and the disease only becomes apparent after metastasis. Several risk factors are associated to this disease. Chronic pancreatitis, diabetes, and some infectious disease are the most relevant risk factors. Incidence of PDAC has increased in the last decades. It is hypothesized it could be due to other acquired risk habits, like smoking, high alcohol intake, and obesity. Indeed, adipose tissue is a dynamic endocrine organ that secretes different pro-inflammatory cytokines, enzymes, and other factors that activate oxidative stress. Reactive oxygen species caused by oxidative stress, damage DNA, proteins, and lipids, and produce several toxic and high mutagenic metabolites that could modify tumor behavior, turning it into a malignant phenotype. Anti-oxidant compounds, like vitamins, are considered protective factors against cancer. Here, we review the literature on oxidative stress, the molecular pathways that activate or counteract oxidative stress, and potential treatment strategies that target reactive oxygen species suitable for this kind of cancer.
Collapse
Affiliation(s)
- Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute, University Hospital Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain.
| | - Weiyao Li
- Translational Oncology Division, OncoHealth Institute, Health Research Institute, University Hospital Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain.
| | | | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Health Research Institute, University Hospital Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain.
| |
Collapse
|
36
|
Wu Y, Meitzler JL, Antony S, Juhasz A, Lu J, Jiang G, Liu H, Hollingshead M, Haines DC, Butcher D, Panter MS, Roy K, Doroshow JH. Dual oxidase 2 and pancreatic adenocarcinoma: IFN-γ-mediated dual oxidase 2 overexpression results in H2O2-induced, ERK-associated up-regulation of HIF-1α and VEGF-A. Oncotarget 2016; 7:68412-68433. [PMID: 27637085 PMCID: PMC5340089 DOI: 10.18632/oncotarget.12032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022] Open
Abstract
Several NADPH oxidase family members, including dual oxidase 2 [DUOX2], are expressed in human tumors, particularly gastrointestinal cancers associated with long-standing chronic inflammation. We found previously that exposure of pancreatic ductal adenocarcinoma cells to the pro-inflammatory cytokine IFN-γ increased DUOX2 expression (but not other NADPH oxidases) leading to long-lived H2O2 production. To elucidate the pathophysiology of DUOX2-mediated H2O2 formation in the pancreas further, we demonstrate here that IFN-γ-treated BxPC-3 and CFPAC-1 pancreatic cancer cells (known to increase DUOX2 expression) produce significant levels of intracellular oxidants and extracellular H2O2 which correlate with concomitant up-regulation of VEGF-A and HIF-1α transcription. These changes are not observed in the PANC-1 line that does not increase DUOX2 expression following IFN-γ treatment. DUOX2 knockdown with short interfering RNA significantly decreased IFN-γ-induced VEGF-A or HIF-1α up-regulation, as did treatment of pancreatic cancer cells with the NADPH oxidase inhibitor diphenylene iodonium, the multifunctional reduced thiol N-acetylcysteine, and the polyethylene glycol-modified form of the hydrogen peroxide detoxifying enzyme catalase. Increased DUOX2-related VEGF-A expression appears to result from reactive oxygen-mediated activation of ERK signaling that is responsible for AP-1-related transcriptional effects on the VEGF-A promoter. To clarify the relevance of these observations in vivo, we demonstrate that many human pre-malignant pancreatic intraepithelial neoplasms and frank pancreatic cancers express substantial levels of DUOX protein compared to histologically normal pancreatic tissues, and that expression of both DUOX2 and VEGF-A mRNAs is significantly increased in surgically-resected pancreatic cancers compared to the adjacent normal pancreas.
Collapse
Affiliation(s)
- Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Smitha Antony
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jiamo Lu
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Han Liu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Melinda Hollingshead
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Diana C. Haines
- Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Michaela S. Panter
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - James H. Doroshow
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
37
|
Eskalli Z, Achouri Y, Hahn S, Many MC, Craps J, Refetoff S, Liao XH, Dumont JE, Van Sande J, Corvilain B, Miot F, De Deken X. Overexpression of Interleukin-4 in the Thyroid of Transgenic Mice Upregulates the Expression of Duox1 and the Anion Transporter Pendrin. Thyroid 2016; 26:1499-1512. [PMID: 27599561 PMCID: PMC5067804 DOI: 10.1089/thy.2016.0106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The dual oxidases (Duox) are involved in hydrogen peroxide generation, which is essential for thyroid hormone synthesis, and therefore they are markers of thyroid function. During inflammation, cytokines upregulate DUOX gene expression in the airway and the intestine, suggesting a role for these proteins in innate immunity. It was previously demonstrated that interleukin-4 (IL-4) upregulates DUOX gene expression in thyrocytes. Although the role of IL-4 in autoimmune thyroid diseases has been studied extensively, the effects of IL-4 on thyroid physiology remain largely unknown. Therefore, a new animal model was generated to study the impact of IL-4 on thyroid function. METHODS Transgenic (Thyr-IL-4) mice with thyroid-targeted expression of murine IL-4 were generated. Transgene expression was verified at the mRNA and protein level in thyroid tissues and primary cultures. The phenotype of the Thyr-IL-4 animals was characterized by measuring serum thyroxine (T4) and thyrotropin levels and performing thyroid morphometric analysis, immunohistochemistry, whole transcriptome sequencing, quantitative reverse transcription polymerase chain reaction, and ex vivo thyroid function assays. RESULTS Thyrocytes from two Thyr-IL-4 mouse lines (#30 and #52) expressed IL-4, which was secreted into the extracellular space. Although 10-month-old transgenic animals had T4 and thyrotropin serum levels in the normal range, they had altered thyroid follicular structure with enlarged follicles composed of elongated thyrocytes containing numerous endocytic vesicles. These follicles were positive for T4 staining the colloid, indicating their capacity to produce thyroid hormones. RNA profiling of Thyr-IL-4 thyroid samples revealed modulation of multiple genes involved in inflammation, while no major leukocyte infiltration could be detected. Upregulated expression of Duox1, Duoxa1, and the pendrin anion exchanger gene (Slc26a4) was detected. In contrast, the iodide symporter gene Slc5a5 was markedly downregulated resulting in impaired iodide uptake and reduced thyroid hormone levels in transgenic thyroid tissue. Hydrogen peroxide production was increased in Thyr-IL-4 thyroid tissue compared with wild-type animals, but no significant oxidative stress could be detected. CONCLUSIONS This is the first study to show that ectopic expression of IL-4 in thyroid tissue upregulates Duox1/Duoxa1 and Slc26a4 expression in the thyroid. The present data demonstrate that IL-4 could affect thyroid morphology and function, mainly by downregulating Slc5a5 expression, while maintaining a normal euthyroid phenotype.
Collapse
Affiliation(s)
- Zineb Eskalli
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Younes Achouri
- Institut De Duve, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Stephan Hahn
- Laboratory of Image, Signal processing and Acoustics—Brussels School of Engineering, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie-Christine Many
- Pôle de Morphologie (MORF), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Julie Craps
- Pôle de Morphologie (MORF), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Samuel Refetoff
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Xiao-Hui Liao
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jacqueline Van Sande
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Françoise Miot
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
38
|
Santoro V, Jia R, Thompson H, Nijhuis A, Jeffery R, Kiakos K, Silver AR, Hartley JA, Hochhauser D. Role of Reactive Oxygen Species in the Abrogation of Oxaliplatin Activity by Cetuximab in Colorectal Cancer. J Natl Cancer Inst 2016; 108:djv394. [PMID: 26719345 PMCID: PMC4864961 DOI: 10.1093/jnci/djv394] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 09/13/2015] [Accepted: 11/24/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The antibody cetuximab, targeting epidermal growth factor receptor (EGFR), is used to treat metastatic colorectal cancer (mCRC). Clinical trials suggest reduced benefit from the combination of cetuximab with oxaliplatin. The aim of this study was to investigate potential negative interactions between cetuximab and oxaliplatin. METHODS Thiazolyl blue tetrazolium bromide (MTT) assay and Calcusyn software were used to characterize drug interactions. Reactive oxygen species (ROS) were measured by flow cytometry and real-time polymerase chain reaction oxidative stress arrays identified genes regulating ROS production. Chromatin immunoprecipitation (ChIP) measured signal transducer and activator of transcription 1 (STAT-1) binding to dual oxidase 2 (DUOX2) promoter. SW48, DLD-1 KRAS wild-type cell lines and DLD-1 xenograft models exposed to cetuximab, oxaliplatin, or oxaliplatin + cetuximab (control [saline]; n = 3 mice per treatment group) were used. Statistical tests were two-sided. RESULTS Cetuximab and oxaliplatin exhibited antagonistic effects on cellular proliferation and apoptosis (caspase 3/7 activity reduced by 1.4-fold, 95% confidence interval [CI] = 0.78 to 2.11, P = .003) as opposed to synergistic effects observed with the irinotecan metabolite 7-Ethyl-10-hydroxycamptothecin (SN-38). Although both oxaliplatin and SN-38 produced ROS, only oxaliplatin-mediated apoptosis was ROS dependent. Production of ROS by oxaliplatin was secondary to STAT1-mediated transcriptional upregulation of DUOX2 (3.1-fold, 95% CI = 1.75 to 2.41, P < .001). Inhibition of DUOX2 induction and p38 activation by cetuximab reduced oxaliplatin cytotoxicity. CONCLUSIONS Inhibition of STAT1 and DUOX2-mediated ROS generation by cetuximab impairs p38-dependent apoptosis by oxaliplatin in preclinical models and may contribute to reduced efficacy in clinical settings. Understanding the rationale for unexpected trial results will inform improved rationales for combining EGFR inhibitors with chemotherapeutic agents in future therapeutic use.
Collapse
Affiliation(s)
- Valeria Santoro
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, UK (VS, RJ, KK, JAH, DH); Colorectal Cancer Genetics Group, Blizard Institute, London, UK (HT, AN, RJ, ARS)
| | - Ruochen Jia
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, UK (VS, RJ, KK, JAH, DH); Colorectal Cancer Genetics Group, Blizard Institute, London, UK (HT, AN, RJ, ARS)
| | - Hannah Thompson
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, UK (VS, RJ, KK, JAH, DH); Colorectal Cancer Genetics Group, Blizard Institute, London, UK (HT, AN, RJ, ARS)
| | - Anke Nijhuis
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, UK (VS, RJ, KK, JAH, DH); Colorectal Cancer Genetics Group, Blizard Institute, London, UK (HT, AN, RJ, ARS)
| | - Rosemary Jeffery
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, UK (VS, RJ, KK, JAH, DH); Colorectal Cancer Genetics Group, Blizard Institute, London, UK (HT, AN, RJ, ARS)
| | - Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, UK (VS, RJ, KK, JAH, DH); Colorectal Cancer Genetics Group, Blizard Institute, London, UK (HT, AN, RJ, ARS)
| | - Andrew R Silver
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, UK (VS, RJ, KK, JAH, DH); Colorectal Cancer Genetics Group, Blizard Institute, London, UK (HT, AN, RJ, ARS)
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, UK (VS, RJ, KK, JAH, DH); Colorectal Cancer Genetics Group, Blizard Institute, London, UK (HT, AN, RJ, ARS)
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, UK (VS, RJ, KK, JAH, DH); Colorectal Cancer Genetics Group, Blizard Institute, London, UK (HT, AN, RJ, ARS);
| |
Collapse
|
39
|
Tanaka M, Miura Y, Numanami H, Karnan S, Ota A, Konishi H, Hosokawa Y, Hanyuda M. Inhibition of NADPH oxidase 4 induces apoptosis in malignant mesothelioma: Role of reactive oxygen species. Oncol Rep 2015; 34:1726-32. [PMID: 26238284 DOI: 10.3892/or.2015.4155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor that is characterized by dysregulated growth and resistance to apoptosis. Reactive oxygen species (ROS)-generating NADPH oxidase (Nox) family enzymes have been suggested to be involved in neoplastic proliferation. Both the antioxidant N-acetylcysteine (NAC) and the inhibitor of flavoprotein-dependent oxidase, diphenylene iodonium (DPI), inhibited the cell viability of MPM cells in a dose-dependent manner. To examine whether Nox-mediated ROS generation confers antiapoptotic activity and thus a growth advantage to MPM cells, we analyzed the mRNA expression of Nox family members using quantitative RT-PCR in 7 MPM cell lines and a normal mesothelial cell line. Nox4 mRNA was expressed in all of the examined MPM cell lines, whereas little or no Nox2, Nox3 and Nox5 mRNA expression was detected. In 2 MPM cell lines, Nox4 mRNA expression was significantly higher than that in a normal mesothelial cell line. siRNAs targeting Nox4 suppressed ROS generation and cell viability in the MPM cell lines. In addition, DPI treatment and knockdown of Nox4 attenuated phosphorylation of AKT and ERK. Taken together, our results indicate that Nox4-mediated ROS, at least in part, transmit cell survival signals and their depletion leads to apoptosis, thus highlighting the Nox4-ROS-AKT signaling pathway as a potential therapeutic target for MPM treatment.
Collapse
Affiliation(s)
- Motoya Tanaka
- Department of Thoracic Surgery, Aichi Medical University School of Nursing, Nagakute, Aichi 480-1195, Japan
| | - Yuji Miura
- Pathophysiology, Aichi Medical University School of Nursing, Nagakute, Aichi 480-1195, Japan
| | - Hiroki Numanami
- Department of Thoracic Surgery, Aichi Medical University School of Nursing, Nagakute, Aichi 480-1195, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Masayuki Hanyuda
- Department of Thoracic Surgery, Aichi Medical University School of Nursing, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
40
|
Abstract
The mechanism by which reactive oxygen species (ROS) are produced by tumour cells remained incompletely understood until the discovery over the last 15 years of the family of NADPH oxidases (NOXs 1–5 and dual oxidases DUOX1/2) which are structural homologues of gp91phox, the major membrane-bound component of the respiratory burst oxidase of leucocytes. Knowledge of the roles of the NOX isoforms in cancer is rapidly expanding. Recent evidence suggests that both NOX1 and DUOX2 species produce ROS in the gastrointestinal tract as a result of chronic inflammatory stress; cytokine induction (by interferon-γ, tumour necrosis factor α, and interleukins IL-4 and IL-13) of NOX1 and DUOX2 may contribute to the development of colorectal and pancreatic carcinomas in patients with inflammatory bowel disease and chronic pancreatitis, respectively. NOX4 expression is increased in pre-malignant fibrotic states which may lead to carcinomas of the lung and liver. NOX5 is highly expressed in malignant melanomas, prostate cancer and Barrett's oesophagus-associated adenocarcinomas, and in the last it is related to chronic gastro-oesophageal reflux and inflammation. Over-expression of functional NOX proteins in many tissues helps to explain tissue injury and DNA damage from ROS that accompany pre-malignant conditions, as well as elucidating the potential mechanisms of NOX-related damage that contribute to both the initiation and the progression of a wide range of solid and haematopoietic malignancies.
Collapse
|
41
|
Yu JH, Kim H. Oxidative stress and cytokines in the pathogenesis of pancreatic cancer. J Cancer Prev 2014; 19:97-102. [PMID: 25337577 PMCID: PMC4204162 DOI: 10.15430/jcp.2014.19.2.97] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive, drug-resistant and lethal types of cancer with poor prognosis. Various factors including reactive oxygen species, cytokines, growth factors, and extracellular matrix proteins are reported to be involved in the development of pancreatic cancer. However, the pathogenesis of pancreatic cancer has not been completely elucidated. Oxidative stress has been shown to contribute to the development of pancreatic cancer. Evidences supporting the role of reactive oxygen species and cytokines as a risk for pancreatic cancer and the concept of antioxidant supplementation as a preventive approach for pancreatic cancer have been proposed. Here, we review the literature on oxidative stress, cytokine expression, inflammatory signaling, and natural antioxidant supplementation in relation to pancreatic cancer.
Collapse
Affiliation(s)
- Ji Hoon Yu
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
42
|
NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 2014; 12:5-23. [PMID: 25263488 DOI: 10.1038/cmi.2014.89] [Citation(s) in RCA: 661] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/11/2022] Open
Abstract
Oxygen-derived free radicals, collectively termed reactive oxygen species (ROS), play important roles in immunity, cell growth, and cell signaling. In excess, however, ROS are lethal to cells, and the overproduction of these molecules leads to a myriad of devastating diseases. The key producers of ROS in many cells are the NOX family of NADPH oxidases, of which there are seven members, with various tissue distributions and activation mechanisms. NADPH oxidase is a multisubunit enzyme comprising membrane and cytosolic components, which actively communicate during the host responses to a wide variety of stimuli, including viral and bacterial infections. This enzymatic complex has been implicated in many functions ranging from host defense to cellular signaling and the regulation of gene expression. NOX deficiency might lead to immunosuppression, while the intracellular accumulation of ROS results in the inhibition of viral propagation and apoptosis. However, excess ROS production causes cellular stress, leading to various lethal diseases, including autoimmune diseases and cancer. During the later stages of injury, NOX promotes tissue repair through the induction of angiogenesis and cell proliferation. Therefore, a complete understanding of the function of NOX is important to direct the role of this enzyme towards host defense and tissue repair or increase resistance to stress in a timely and disease-specific manner.
Collapse
|
43
|
Meitzler JL, Antony S, Wu Y, Juhasz A, Liu H, Jiang G, Lu J, Roy K, Doroshow JH. NADPH oxidases: a perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal 2014; 20:2873-89. [PMID: 24156355 PMCID: PMC4026372 DOI: 10.1089/ars.2013.5603] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) promote genomic instability, altered signal transduction, and an environment that can sustain tumor formation and growth. The NOX family of NADPH oxidases, membrane-bound epithelial superoxide and hydrogen peroxide producers, plays a critical role in the maintenance of immune function, cell growth, and apoptosis. The impact of NOX enzymes in carcinogenesis is currently being defined and may directly link chronic inflammation and NOX ROS-mediated tumor formation. RECENT ADVANCES Increased interest in the function of NOX enzymes in tumor biology has spurred a surge of investigative effort to understand the variability of NOX expression levels in tumors and the effect of NOX activity on tumor cell proliferation. These initial efforts have demonstrated a wide variance in NOX distribution and expression levels across numerous cancers as well as in common tumor cell lines, suggesting that much remains to be discovered about the unique role of NOX-related ROS production within each system. Progression from in vitro cell line studies toward in vivo tumor tissue screening and xenograft models has begun to provide evidence supporting the importance of NOX expression in carcinogenesis. CRITICAL ISSUES A lack of universally available, isoform-specific antibodies and animal tumor models of inducible knockout or over-expression of NOX isoforms has hindered progress toward the completion of in vivo studies. FUTURE DIRECTIONS In vivo validation experiments and the use of large, existing gene expression data sets should help define the best model systems for studying the NOX homologues in the context of cancer.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- 1 Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
De Deken X, Corvilain B, Dumont JE, Miot F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 2014; 20:2776-93. [PMID: 24161126 DOI: 10.1089/ars.2013.5602] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Among the NADPH oxidases, the dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially called thyroid oxidases, based on their high level of expression in thyroid tissue. Genetic alterations causing inherited hypothyroidism clearly demonstrate their physiological implication in thyroid hormonogenesis. However, a growing list of biological functions triggered by DUOX-dependent reactive oxygen species (ROS) in highly differentiated mucosae have recently emerged. RECENT ADVANCES A role of DUOX enzymes as ROS providers for lactoperoxidase-mediated killing of invading pathogens has been well established and a role in bacteria chemorepulsion has been proposed. Control of DUOX expression and activity by inflammatory molecules and immune receptor activation consolidates their contributions to innate immune defense of mucosal surfaces. Recent studies conducted in ancestral organisms have identified effectors of DUOX redox signaling involved in wound healing including epithelium regeneration and leukocyte recruitment. Moreover, local generation of hydrogen peroxide (H2O2) by DUOX has also been suggested to constitute a positive feedback loop to promote receptor signaling activation. CRITICAL ISSUES A correct balance between H2O2 generation and detoxification mechanisms must be properly maintained to avoid oxidative damages. Overexpression of DUOX genes has been associated with an increasing number of chronic inflammatory diseases. Furthermore, H2O2-mediated DNA damage supports a mutagenic function promoting tumor development. FUTURE DIRECTIONS Despite the high sequence similarity shared between DUOX1 and DUOX2, the two isoforms present distinct regulations, tissue expression and catalytic functions. The phenotypic characterization of novel DUOX/DUOXA invalidated animal models will be very useful for defining their medical importance in pathological conditions.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | | | | | | |
Collapse
|
45
|
Strengert M, Jennings R, Davanture S, Hayes P, Gabriel G, Knaus UG. Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid Redox Signal 2014; 20:2695-709. [PMID: 24128054 DOI: 10.1089/ars.2013.5353] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS Influenza A virus (IAV), a major airborne pathogen, is closely associated with significant morbidity and mortality. The primary target for influenza virus replication is the respiratory epithelium, which reacts to infection by mounting a multifaceted antiviral response. A part of this mucosal host defense is the generation of reactive oxygen species (ROS) by NADPH oxidases. Duox1 and Duox2 are the main ROS-producing enzymes in the airway epithelium, but their contribution to mammalian host defense is still ill defined. RESULTS To gain a better understanding of Duox function in respiratory tract infections, human differentiated lung epithelial cells and an animal model were used to monitor the effect of epithelial ROS on IAV propagation. IAV infection led to coordinated up-regulation of Duox2 and Duox-mediated ROS generation. Interference with H2O2 production and ROS signaling by oxidase inhibition or H2O2 decomposition augmented IAV replication. A nuclear pool of Duox enzymes participated in the regulation of the spliceosome, which is critical for alternative splicing of viral transcripts and controls the assembly of viable virions. In vivo silencing of Duox increased the viral load on intranasal infection with 2009 pandemic H1N1 influenza virus. INNOVATION This is the first study conclusively linking Duox NADPH oxidases with the antiviral mammalian immune response. Further, ROS generated by Duox enzymes localized adjacent to nuclear speckles altered the splicing of viral genes. CONCLUSION Duox-derived ROS are host protective and essential for counteracting IAV replication.
Collapse
|
46
|
Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids. Sci Rep 2014; 4:4645. [PMID: 24717973 PMCID: PMC3982175 DOI: 10.1038/srep04645] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/24/2014] [Indexed: 02/08/2023] Open
Abstract
Inadequate immunomodulatory potency of mesenchymal stem cells (MSC) may limit their therapeutic efficacy. We report glucocorticoid steroids augment MSC expression and activity of indoleamine-2,3-dioxygenase (IDO), a primary mediator of MSC immunomodulatory function. This effect depends on signaling through the glucocorticoid receptor and is mediated through up-regulation of FOXO3. Treatment of MSCs with glucocorticoids, budesonide or dexamethasone, enhanced IDO expression following IFN-γ stimulation in multiple donors and was able to restore IDO expression in over-passaged MSCs. As IDO enhancement was most notable when cells were continuously exposed to budesonide, we engineered MSC with budesonide loaded PLGA microparticles. MSC efficiently internalized budesonide microparticles and exhibited 4-fold enhanced IDO activity compared to budesonide preconditioned and naïve MSC, resulting in a 2-fold improvement in suppression of stimulated peripheral blood mononuclear cells in an IDO-dependent manner. Thus, the augmentation of MSC immune modulation may abrogate challenges associated with inadequate potency and enhance their therapeutic efficacy.
Collapse
|
47
|
DUOX2 and DUOXA2 form the predominant enzyme system capable of producing the reactive oxygen species H2O2 in active ulcerative colitis and are modulated by 5-aminosalicylic acid. Inflamm Bowel Dis 2014; 20:514-24. [PMID: 24492313 DOI: 10.1097/01.mib.0000442012.45038.0e] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND NADPH oxidase-derived reactive oxygen species, such as H2O2, are part of the intestinal innate immune system but may drive carcinogenesis through DNA damage. We sought to identify the predominant enzyme system capable of producing H2O2 in active ulcerative colitis and assess whether it is affected by 5-aminosalicylic acid (5-ASA). METHODS We studied human mucosal biopsies by expression arrays, quantitative real-time polymerase chain reaction for NADPH oxidase family members, in situ hybridization (DUOX2 and DUOXA2) and immunofluorescence for DUOX, 8-OHdG (DNA damage), and γH2AX (DNA damage response) and sought effects of 5-ASA on ex vivo cultured biopsies and cultured rectal cancer cells. RESULTS DUOX2 with maturation partner DUOXA2 forms the predominant system for H2O2 production in human colon and is upregulated in active colitis. DUOX2 in situ is exclusively epithelial, varies between and within individual crypts, and increases near inflammation. 8-OHdG and γH2AX were observed in damaged crypt epithelium. 5-ASA upregulated DUOX2 and DUOXA2 levels in the setting of active versus quiescent disease and altered DUOX2 expression in cultured biopsies. Ingenuity pathway analysis confirmed that inflammation status and 5-ASA increase expression of DUOX2 and DUOXA2. An epithelial cell model confirmed that cultured cancer cells expressed DUOX protein and produced H2O2 in response to hypoxia and 5-ASA exposure. CONCLUSIONS Both DUOX2 and DUOXA2 expression are involved specifically in inflammation and are regulated on a crypt-by-crypt basis in ulcerative colitis tissues. Synergy between inflammation, hypoxia, and 5-ASA to increase H2O2 production could explain how 5-ASA supports innate defense, although potentially increasing the burden of DNA damage.
Collapse
|
48
|
Jagya N, Varma SPK, Thakral D, Joshi P, Durgapal H, Panda SK. RNA-seq based transcriptome analysis of hepatitis E virus (HEV) and hepatitis B virus (HBV) replicon transfected Huh-7 cells. PLoS One 2014; 9:e87835. [PMID: 24505321 PMCID: PMC3914852 DOI: 10.1371/journal.pone.0087835] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022] Open
Abstract
Pathogenesis of hepatitis B virus (HBV) and hepatitis E virus (HEV) infection is as varied as they appear similar; while HBV causes an acute and/or chronic liver disease and hepatocellular carcinoma, HEV mostly causes an acute self-limiting disease. In both infections, host responses are crucial in disease establishment and/or virus clearance. In the wake of worsening prognosis described during HEV super-infection over chronic HBV hepatitis, we investigated the host responses by studying alterations in gene expression in liver cells (Huh-7 cell line) by transfection with HEV replicon only (HEV-only), HBV replicon only (HBV-only) and both HBV and HEV replicons (HBV+HEV). Virus replication was validated by strand-specific real-time RT-PCR for HEV and HBsAg ELISA of the culture supernatants for HBV. Indirect immunofluorescence for the respective viral proteins confirmed infection. Transcription profiling was carried out by RNA Sequencing (RNA-Seq) analysis of the poly-A enriched RNA from the transfected cells. Averages of 600 million bases within 5.6 million reads were sequenced in each sample and ∼15,800 genes were mapped with at least one or more reads. A total of 461 genes in HBV+HEV, 408 in HBV-only and 306 in HEV-only groups were differentially expressed as compared to mock transfection control by two folds (p<0.05) or more. Majority of the significant genes with altered expression clustered into immune-associated, signal transduction, and metabolic process categories. Differential gene expression of functionally important genes in these categories was also validated by real-time RT-PCR based relative gene-expression analysis. To our knowledge, this is the first report of in vitro replicon transfected RNA-Seq based transcriptome analysis to understand the host responses against HEV and HBV.
Collapse
Affiliation(s)
- Neetu Jagya
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Satya Pavan Kumar Varma
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Deepshi Thakral
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Prashant Joshi
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Hemlata Durgapal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Subrat Kumar Panda
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- * E-mail:
| |
Collapse
|
49
|
Katsuyama M. [Superoxide-generating enzymes NADPH oxidases, potential targets of drug therapy: various mechanisms for regulation of their expression]. Nihon Yakurigaku Zasshi 2013; 142:285-90. [PMID: 24334927 DOI: 10.1254/fpj.142.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Antony S, Wu Y, Hewitt SM, Anver MR, Butcher D, Jiang G, Meitzler JL, Liu H, Juhasz A, Lu J, Roy KK, Doroshow JH. Characterization of NADPH oxidase 5 expression in human tumors and tumor cell lines with a novel mouse monoclonal antibody. Free Radic Biol Med 2013; 65:497-508. [PMID: 23851018 PMCID: PMC3859815 DOI: 10.1016/j.freeradbiomed.2013.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species generated by NADPH oxidase 5 (Nox5) have been implicated in physiological and pathophysiological signaling pathways, including cancer development and progression. However, because immunological tools are lacking, knowledge of the role of Nox5 in tumor biology has been limited; the expression of Nox5 protein across tumors and normal tissues is essentially unknown. Here, we report the characterization and use of a mouse monoclonal antibody against a recombinant Nox5 protein (bp 600-746) for expression profiling of Nox5 in human tumors by tissue microarray analysis. Using our novel antibody, we also report the detection of endogenous Nox5 protein in human UACC-257 melanoma cells. Immunofluorescence, confocal microscopy, and immunohistochemical techniques were employed to demonstrate Nox5 localization throughout UACC-257 cells, with perinuclear enhancement. Tissue microarray analysis revealed, for the first time, substantial Nox5 overexpression in several human cancers, including those of prostate, breast, colon, lung, brain, and ovary, as well as in malignant melanoma and non-Hodgkin lymphoma; expression in most nonmalignant tissues was negative to weak. This validated mouse monoclonal antibody will promote further exploration of the functional significance of Nox5 in human pathophysiology, including tumor cell growth and proliferation.
Collapse
Affiliation(s)
- Smitha Antony
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongzhong Wu
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miriam R Anver
- Pathology/Histotechnology Laboratory, SAIC Frederick, Inc./Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, SAIC Frederick, Inc./Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - Guojian Jiang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer L Meitzler
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Han Liu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Agnes Juhasz
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiamo Lu
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krishnendu K Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|