1
|
Kimura M, Matsuoka R, Taniguchi S, Maruyama J, Paessler S, Oka S, Yamashita A, Fukuhara T, Matsuura Y, Tani H. Inhibitors of cannabinoid receptor 1 suppress the cellular entry of Lujo virus. Virology 2023; 587:109867. [PMID: 37633192 DOI: 10.1016/j.virol.2023.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Lujo virus (LUJV), which belongs to Mammarenavirus, family Arenaviridae, has emerged as a pathogen causing severe hemorrhagic fever with high mortality. Currently, there are no effective treatments for arenaviruses, including LUJV. Here, we screened chemical compound libraries of Food and Drug Administration (FDA)-approved drugs and G protein-coupled receptor-associated drugs to identify effective antivirals against LUJV targeting cell entry using a vesicular stomatitis virus-based pseudotyped virus bearing the LUJV envelope glycoprotein (GP). Cannabinoid receptor 1 (CB1) antagonists, such as rimonabant, AM251 and AM281, have been identified as robust inhibitors of LUJV entry. The IC50 of rimonabant was 0.26 and 0.53 μM in Vero and Huh7 cells, respectively. Analysis of the cell fusion activity of the LUJV GP in the presence of CB1 inhibitors revealed that these inhibitors suppressed the fusion activity of the LUJV GP. Moreover, rimonabant, AM251 and AM281 reduced the infectivity of authentic LUJV in vitro, suggesting that the antiviral activity of CB1 antagonists against LUJV is mediated, at least in part, by inhibition of the viral entry, especially, membrane fusion. These findings suggest promising candidates for developing new therapies against LUJV infections.
Collapse
Affiliation(s)
- Miyuki Kimura
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan
| | - Risa Matsuoka
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan
| | - Satoshi Taniguchi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Saori Oka
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | | | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Hideki Tani
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan; Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Department of Virology, Toyama Institute of Health, Toyama, 939-0363, Japan.
| |
Collapse
|
2
|
Singh I, Singh S, Ojha KK, Yadav NS. Designing Self-Inhibitory fusion peptide analogous to viral spike protein against novel severe acute respiratory syndrome (SARS-CoV-2). J Biomol Struct Dyn 2022; 40:11357-11372. [PMID: 34379031 DOI: 10.1080/07391102.2021.1960192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
COVID-19 is a highly contagious viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is declared pandemic by the World Health Organization (WHO). The spike protein of SARS-CoV-2 is a key component playing a pivotal role in facilitating viral fusion as well as release of genome into the host cell. Till date there is no clinically approved vaccine or drug available against Covid-19. We designed four hydrophobic inhibitory peptides (ITPs) based on WWIHS (Wimley and White interfacial hydrophobicity scale) score, targeting the HR1 domain of spike protein. Two inhibitory peptides out of four have a strong affinity to the hydrophobic surface of HR1 domain in pre-fusion spike protein. The MD simulation result showed the strong accommodation of ITPs with HR1 domain surface. These self-inhibitory peptides mimic the function of HR2 by binding to HR1 domain, thus inhibiting the formation of HR1-HR2 post-fusion complex, which is a key structure for virus-host tropism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Indra Singh
- School of Biotechnology, Banaras Hindu University, Varanasi, India
| | - Shalini Singh
- School of Biochemical Engineering Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Ojha
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Neetu Singh Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| |
Collapse
|
3
|
Hou Y, Liu Y, Jia X, Zhou M, Mao W, Dong S, Zhang Y, Xiao G, Wang W. Screening and Identification of Lassa Virus Entry Inhibitors from a Fragment-Based Drug Discovery Library. Viruses 2022; 14:v14122649. [PMID: 36560653 PMCID: PMC9782912 DOI: 10.3390/v14122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Lassa virus (LASV) is a highly pathogenic virus that is categorized as a biosafety level-4 pathogen. Currently, there are no approved drugs or vaccines specific to LASV. In this study, high-throughput screening of a fragment-based drug discovery library was performed against LASV entry using a pseudotype virus bearing the LASV envelope glycoprotein complex (GPC). Two compounds, F1920 and F1965, were identified as LASV entry inhibitors that block GPC-mediated membrane fusion. Analysis of adaptive mutants demonstrated that the transient mutants L442F and I445S, as well as the constant mutant F446L, were located on the same side on the transmembrane domain of the subunit GP2 of GPC, and all the mutants conferred resistance to both F1920 and F1965. Furthermore, F1920 antiviral activity extended to other highly pathogenic mammarenaviruses, whereas F1965 was LASV-specific. Our study showed that both F1920 and F1965 provide a potential backbone for the development of lead drugs for preventing LASV infection.
Collapse
Affiliation(s)
- Yuxia Hou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Minmin Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenting Mao
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Dong
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yueli Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
4
|
Lassa antiviral LHF-535 protects guinea pigs from lethal challenge. Sci Rep 2022; 12:19911. [PMID: 36402782 PMCID: PMC9675838 DOI: 10.1038/s41598-022-23760-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
LHF-535 is a small molecule antiviral currently in development for the treatment of Lassa fever, a zoonotic disease endemic in West Africa that generates significant morbidity and mortality. Current treatment options are inadequate, and there are no approved therapeutics or vaccines for Lassa fever. LHF-535 was evaluated in a lethal guinea pig model of Lassa pathogenesis, using once-daily administration of a fixed dose (50 mg/kg/day) initiating either 1 or 3 days after inoculation with a lethal dose of Lassa virus. LHF-535 reduced viremia and clinical signs and protected all animals from lethality. A subset of surviving animals was rechallenged four months later with a second lethal challenge of Lassa virus and were found to be protected from disease. LHF-535 pharmacokinetics at the protective dose in guinea pigs showed plasma concentrations well within the range observed in clinical trials in healthy volunteers, supporting the continued development of LHF-535 as a Lassa therapeutic.
Collapse
|
5
|
Kimura C, Oh SW, Fujita T, Watanabe T. Adsorptive Inhibition of Enveloped Viruses and Nonenveloped Cardioviruses by Antiviral Lignin Produced from Sugarcane Bagasse via Microwave Glycerolysis. Biomacromolecules 2022; 23:789-797. [PMID: 35034439 DOI: 10.1021/acs.biomac.1c01209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antiviral lignin was produced by acidic microwave glycerolysis of sugarcane bagasse. The lignin exhibited antiviral activity against nonenveloped (encephalomyocarditis virus (EMCV) and Theiler's murine encephalomyelitis virus (TMEV)) and enveloped (vesicular stomatitis virus (VSV), Sindbis virus (SINV), and Newcastle disease virus (NDV)) viruses. A series of lignins with different antiviral activities were prepared by reacting bagasse at 140, 160, 180, and 200 °C to analyze the antiviral mechanism. No difference in ζ-potential was observed among the lignin preparations; however, the lignin prepared at 200 °C (FR200) showed the strongest anti-EMCV activity, smallest hydrodynamic diameter, highest hydrophilicity, and highest affinity for EMCV. FR200 inhibited viral propagation through contact with the virion at the attachment stage to host cells, and the EMCV RNA was intact after treatment. Therefore, the lignin inhibits viral entry to host cells through interactions with the capsid surface. The nonvolatile antiviral substance is potentially useful for preventing the spread of viruses in human living and livestock breeding environments.
Collapse
Affiliation(s)
- Chihiro Kimura
- Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Seong-Wook Oh
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto 606-8507, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto 606-8507, Japan
| | - Takashi Watanabe
- Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
6
|
Plewe MB, Gantla VR, Sokolova NV, Shin YJ, Naik S, Brown ER, Fetsko A, Zhang L, Kalveram B, Freiberg AN, Henkel G, McCormack K. Discovery of a novel highly potent broad-spectrum heterocyclic chemical series of arenavirus cell entry inhibitors. Bioorg Med Chem Lett 2021; 41:127983. [PMID: 33965007 PMCID: PMC10187606 DOI: 10.1016/j.bmcl.2021.127983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/25/2022]
Abstract
We identified and explored the structure-activity relationship (SAR) of a novel heterocyclic chemical series of arenavirus cell entry inhibitors. Optimized lead compounds, including diphenyl-substituted imidazo[1,2-a]pyridines, benzimidazoles, and benzotriazoles exhibited low to sub-nanomolar potency against both pseudotyped and infectious Old and New World arenaviruses, attractive metabolic stability in human and most nonhuman liver microsomes as well as a lack of hERG K + channel or CYP enzyme inhibition. Moreover, the straightforward synthesis of several lead compounds (e.g., the simple high yield 3-step synthesis of imidazo[1,2-a]pyridine 37) could provide a cost-effective broad-spectrum arenavirus therapeutic that may help to minimize the cost-prohibitive burdens associated with treatments for emerging viruses in economically challenged geographical settings.
Collapse
Affiliation(s)
- Michael B Plewe
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego 92121, CA, United States
| | - Vidyasagar Reddy Gantla
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego 92121, CA, United States
| | - Nadezda V Sokolova
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego 92121, CA, United States
| | - Young-Jun Shin
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego 92121, CA, United States
| | - Shibani Naik
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego 92121, CA, United States
| | - Eric R Brown
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego 92121, CA, United States
| | - Alexandra Fetsko
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego 92121, CA, United States
| | - Lihong Zhang
- Department of Pathology, and Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Birte Kalveram
- Department of Pathology, and Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Alexander N Freiberg
- Department of Pathology, and Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Greg Henkel
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego 92121, CA, United States
| | - Ken McCormack
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego 92121, CA, United States.
| |
Collapse
|
7
|
Abstract
Lassa virus (LASV) belongs to the Old World Mammarenavirus genus (family Arenaviridae). At present, there are no approved drugs or vaccines specific for LASV. In this study, high-throughput screening of a botanical drug library was performed against LASV entry using a pseudotype virus bearing the LASV envelope glycoprotein complex (GPC). Two hit compounds, bergamottin and casticin, were identified as micromolar range inhibitors of LASV entry. A mechanistic study revealed that casticin inhibited LASV entry by blocking low pH-induced membrane fusion. Analysis of adaptive mutants demonstrated that the F446L mutation, located in the transmembrane domain of GP2, conferred resistance to casticin. Furthermore, casticin antiviral activity extends to the New World (NW) pathogenic mammarenaviruses, and mutation of the conserved F446 also conferred resistance to casticin in these viruses. Unlike casticin, bergamottin showed little effect on LASV GPC-mediated membrane fusion, instead inhibiting LASV entry by blocking endocytic trafficking. Notably, both compounds showed inhibitory effects on authentic lymphocytic choriomeningitis virus. Our study shows that both casticin and bergamottin are candidates for LASV therapy and that the conserved F446 in LASV GPC is important in drug resistance in mammarenaviruses.IMPORTANCE: Currently, there is no approved therapy to treat Lassa fever (LASF). Our goal was to identify potential candidate molecules for LASF therapy. Herein, we screened a botanical drug library and identified two compounds, casticin and bergamottin, that inhibited LASV entry via different mechanisms.
Collapse
|
8
|
Cao J, Zhang G, Zhou M, Liu Y, Xiao G, Wang W. Characterizing the Lassa Virus Envelope Glycoprotein Membrane Proximal External Region for Its Role in Fusogenicity. Virol Sin 2020; 36:273-280. [PMID: 32897505 DOI: 10.1007/s12250-020-00286-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022] Open
Abstract
The membrane-proximal external region (MPER) of Lassa virus (LASV) glycoprotein complex (GPC) is critical in modulating its functionality. Till now, the high-resolution structure of the intact GPC, including MPER is not available. In this study, we used alanine substitution to scan all 16 residues located in LASV MPER. Western blotting and quantification fusion assay showed that the residues located at the C terminus of the HR2 (M414 and L415) and N terminus of the MPER (K417 and Y419) are critical for GPC-mediated membrane fusion function. Furthermore, cell surface biotinylation experiments revealed that M414A, K417A and Y419A expressed similar levels as WT, whereas L415A mutant led to a reduction of mature GPC on the cell surface. Moreover, substitution of these residues with the similar residue such as M414L, L415I, K417R and Y419F would partly compensate the loss of the fusion activity caused by the alanine mutant in these sites. Results from this study showed that several key residues in the MPER region are indispensable to promote the conformational changes that drive fusion events and shed light on the structure analysis of LASV GPC and anti-LASV therapeutics.
Collapse
Affiliation(s)
- Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangshun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Minmin Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Zhang G, Cao J, Cai Y, Liu Y, Li Y, Wang P, Guo J, Jia X, Zhang M, Xiao G, Guo Y, Wang W. Structure-activity relationship optimization for lassa virus fusion inhibitors targeting the transmembrane domain of GP2. Protein Cell 2020; 10:137-142. [PMID: 30632089 PMCID: PMC6340895 DOI: 10.1007/s13238-018-0604-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Guangshun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China.,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450, China
| | - Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Cai
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China.,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanli Li
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China.,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450, China
| | - Peilin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengmeng Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China.,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Guo
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China.,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Plewe MB, Whitby LR, Naik S, Brown ER, Sokolova NV, Gantla VR, York J, Nunberg JH, Zhang L, Kalveram B, Freiberg AN, Boger DL, Henkel G, McCormack K. SAR studies of 4-acyl-1,6-dialkylpiperazin-2-one arenavirus cell entry inhibitors. Bioorg Med Chem Lett 2019; 29:126620. [PMID: 31537423 PMCID: PMC6803051 DOI: 10.1016/j.bmcl.2019.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
Abstract
Old World (Africa) and New World (South America) arenaviruses are associated with human hemorrhagic fevers. Efforts to develop small molecule therapeutics have yielded several chemical series including the 4-acyl-1,6-dialkylpiperazin-2-ones. Herein, we describe an extensive exploration of this chemotype. In initial Phase I studies, R1 and R4 scanning libraries were assayed to identify potent substituents against Old World (Lassa) virus. In subsequent Phase II studies, R6 substituents and iterative R1, R4 and R6 substituent combinations were evaluated to obtain compounds with improved Lassa and New World (Machupo, Junin, and Tacaribe) arenavirus inhibitory activity, in vitro human liver microsome metabolic stability and aqueous solubility.
Collapse
Affiliation(s)
- Michael B Plewe
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego, CA 92054, United States
| | - Landon R Whitby
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Shibani Naik
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego, CA 92054, United States
| | - Eric R Brown
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego, CA 92054, United States
| | - Nadezda V Sokolova
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego, CA 92054, United States
| | - Vidyasagar Reddy Gantla
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego, CA 92054, United States
| | - Joanne York
- Montana Biotechnology Center, The University of Montana, Missoula, MT 59812, United States
| | - Jack H Nunberg
- Montana Biotechnology Center, The University of Montana, Missoula, MT 59812, United States
| | - Lihong Zhang
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Birte Kalveram
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Alexander N Freiberg
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, United States; Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Dale L Boger
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Greg Henkel
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego, CA 92054, United States
| | - Ken McCormack
- Arisan Therapeutics, 11189 Sorrento Valley Rd, Suite 104, San Diego, CA 92054, United States.
| |
Collapse
|
11
|
Zhang X, Yan F, Tang K, Chen Q, Guo J, Zhu W, He S, Banadyga L, Qiu X, Guo Y. Identification of a clinical compound losmapimod that blocks Lassa virus entry. Antiviral Res 2019; 167:68-77. [PMID: 30953674 PMCID: PMC7111477 DOI: 10.1016/j.antiviral.2019.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/31/2022]
Abstract
Lassa virus (LASV) causes Lassa hemorrhagic fever in humans and poses a significant threat to public health in West Africa. Current therapeutic treatments for Lassa fever are limited, making the development of novel countermeasures an urgent priority. In this study, we identified losmapimod, a p38 mitogen-activated protein kinase (MAPK) inhibitor, from 102 screened compounds as an inhibitor of LASV infection. Losmapimod exerted its inhibitory effect against LASV after p38 MAPK down-regulation, and, interestingly, had no effect on other arenaviruses capable of causing viral hemorrhagic fever. Mechanistic studies showed that losmapimod inhibited LASV entry by affecting the stable signal peptide (SSP)-GP2 subunit interface of the LASV glycoprotein, thereby blocking pH-dependent viral fusion. As an aryl heteroaryl bis-carboxyamide derivative, losmapimod represents a novel chemical scaffold with anti-LASV activity, and it provides a new lead structure for the future development of LASV fusion inhibitors.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Feihu Yan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China
| | - Ke Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiamei Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
12
|
Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion. J Virol 2019; 93:JVI.01744-18. [PMID: 30626681 DOI: 10.1128/jvi.01744-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Arenaviruses are a large family of emerging enveloped negative-strand RNA viruses that include several causative agents of viral hemorrhagic fevers. For cell entry, human-pathogenic arenaviruses use different cellular receptors and endocytic pathways that converge at the level of acidified late endosomes, where the viral envelope glycoprotein mediates membrane fusion. Inhibitors of arenavirus entry hold promise for therapeutic antiviral intervention and the identification of "druggable" targets is of high priority. Using a recombinant vesicular stomatitis virus pseudotype platform, we identified the clotrimazole-derivative TRAM-34, a highly selective antagonist of the calcium-activated potassium channel KCa3.1, as a specific entry inhibitor for arenaviruses. TRAM-34 specifically blocked entry of most arenaviruses, including hemorrhagic fever viruses, but not Lassa virus and other enveloped viruses. Anti-arenaviral activity was likewise observed with the parental compound clotrimazole and the derivative senicapoc, whereas structurally unrelated KCa3.1 inhibitors showed no antiviral effect. Deletion of KCa3.1 by CRISPR/Cas9 technology did not affect the antiarenaviral effect of TRAM-34, indicating that the observed antiviral effect of clotrimazoles was independent of the known pharmacological target. The drug affected neither virus-cell attachment, nor endocytosis, suggesting an effect on later entry steps. Employing a quantitative cell-cell fusion assay that bypasses endocytosis, we demonstrate that TRAM-34 specifically inhibits arenavirus-mediated membrane fusion. In sum, we uncover a novel antiarenaviral action of clotrimazoles that currently undergo in vivo evaluation in the context of other human diseases. Their favorable in vivo toxicity profiles and stability opens the possibility to repurpose clotrimazole derivatives for therapeutic intervention against human-pathogenic arenaviruses.IMPORTANCE Emerging human-pathogenic arenaviruses are causative agents of severe hemorrhagic fevers with high mortality and represent serious public health problems. The current lack of a licensed vaccine and the limited treatment options makes the development of novel antiarenaviral therapeutics an urgent need. Using a recombinant pseudotype platform, we uncovered that clotrimazole drugs, in particular TRAM-34, specifically inhibit cell entry of a range of arenaviruses, including important emerging human pathogens, with the exception of Lassa virus. The antiviral effect was independent of the known pharmacological drug target and involved inhibition of the unusual membrane fusion mechanism of arenaviruses. TRAM-34 and its derivatives currently undergo evaluation against a number of human diseases and show favorable toxicity profiles and high stability in vivo Our study provides the basis for further evaluation of clotrimazole derivatives as antiviral drug candidates. Their advanced stage of drug development will facilitate repurposing for therapeutic intervention against human-pathogenic arenaviruses.
Collapse
|
13
|
Madu IG, Files M, Gharaibeh DN, Moore AL, Jung KH, Gowen BB, Dai D, Jones KF, Tyavanagimatt SR, Burgeson JR, Korth MJ, Bedard KM, Iadonato SP, Amberg SM. A potent Lassa virus antiviral targets an arenavirus virulence determinant. PLoS Pathog 2018; 14:e1007439. [PMID: 30576397 PMCID: PMC6322784 DOI: 10.1371/journal.ppat.1007439] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/07/2019] [Accepted: 10/25/2018] [Indexed: 11/25/2022] Open
Abstract
Arenaviruses are a significant cause of hemorrhagic fever, an often-fatal disease for which there is no approved antiviral therapy. Lassa fever in particular generates high morbidity and mortality in West Africa, where the disease is endemic, and a recent outbreak in Nigeria was larger and more geographically diverse than usual. We are developing LHF-535, a small-molecule viral entry inhibitor that targets the arenavirus envelope glycoprotein, as a therapeutic candidate for Lassa fever and other hemorrhagic fevers of arenavirus origin. Using a lentiviral pseudotype infectivity assay, we determined that LHF-535 had sub-nanomolar potency against the viral envelope glycoproteins from all Lassa virus lineages, with the exception of the glycoprotein from the LP strain from lineage I, which was 100-fold less sensitive than that of other strains. This reduced sensitivity was mediated by a unique amino acid substitution, V434I, in the transmembrane domain of the envelope glycoprotein GP2 subunit. This position corresponds to the attenuation determinant of Candid#1, a live-attenuated Junín virus vaccine strain used to prevent Argentine hemorrhagic fever. Using a virus-yield reduction assay, we determined that LHF-535 potently inhibited Junín virus, but not Candid#1, and the Candid#1 attenuation determinant, F427I, regulated this difference in sensitivity. We also demonstrated that a daily oral dose of LHF-535 at 10 mg/kg protected mice from a lethal dose of Tacaribe virus. Serial passage of Tacaribe virus in LHF-535-treated Vero cells yielded viruses that were resistant to LHF-535, and the majority of drug-resistant viruses exhibited attenuated pathogenesis. These findings provide a framework for the clinical development of LHF-535 as a broad-spectrum inhibitor of arenavirus entry and provide an important context for monitoring the emergence of drug-resistant viruses. Lassa fever is a viral hemorrhagic fever disease that is transmitted to humans primarily through contact with the urine or feces of infected rodents. The disease is endemic in West Africa, and an unusually large outbreak occurred in Nigeria in early 2018. The case fatality rate was 25% among confirmed cases, underscoring the need for an effective antiviral therapy. Here, we evaluated the small-molecule drug LHF-535, which targets the arenavirus envelope glycoprotein, for broad-spectrum activity against Lassa viruses of different lineages and related arenaviruses that cause hemorrhagic fever diseases in South America. We also selected for LHF-535-resistant viruses and characterized their genotype and phenotype. Using a combination of surrogate systems and wild-type viruses, we determined that all tested Lassa virus strains and New World hemorrhagic fever arenaviruses were sensitive to LHF-535. Sensitivity to the drug was modulated by specific amino acid changes in the viral envelope glycoprotein, and the majority of emerging drug-resistant viruses were attenuated for virulence. Similarly, the live-attenuated vaccine strain for Argentine hemorrhagic fever was also resistant to LHF-535. These findings indicate that LHF-535 targets a viral virulence determinant, the mutation of which may result in the emergence of drug-resistant viruses, but with reduced capacity for virulence.
Collapse
Affiliation(s)
- Ikenna G. Madu
- Kineta, Inc., Seattle, Washington, United States of America
| | - Megan Files
- Kineta, Inc., Seattle, Washington, United States of America
| | - Dima N. Gharaibeh
- SIGA Technologies, Inc., Corvallis, Oregon, United States of America
| | - Amy L. Moore
- SIGA Technologies, Inc., Corvallis, Oregon, United States of America
| | - Kie-Hoon Jung
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Brian B. Gowen
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Dongcheng Dai
- SIGA Technologies, Inc., Corvallis, Oregon, United States of America
| | - Kevin F. Jones
- SIGA Technologies, Inc., Corvallis, Oregon, United States of America
| | | | - James R. Burgeson
- SIGA Technologies, Inc., Corvallis, Oregon, United States of America
| | | | | | | | - Sean M. Amberg
- Kineta, Inc., Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
14
|
Structural basis of antiviral activity of peptides from MPER of FIV gp36. PLoS One 2018; 13:e0204042. [PMID: 30240422 PMCID: PMC6150481 DOI: 10.1371/journal.pone.0204042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/01/2018] [Indexed: 01/11/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is a naturally occurring Lentivirus causing acquired immunodeficiency syndrome in felines. It is considered a useful non-primate model to study HIV infection, and to test anti-HIV vaccine. Similarly to HIV, FIV enters cells via a mechanism involving a surface glycoprotein named gp36. C8 is a short synthetic peptide corresponding to the residues 770WEDWVGWI777 of gp36 membrane proximal external region (MPER). It elicits antiviral activity by inhibiting the fusion of the FIV and host cell membrane. C8 is endowed with evident membrane binding property, inducing alteration of the phospholipid bilayer and membrane fusion. The presence and the position of tryptophan residues in C8 are important for antiviral activity: the C8 derivative C6a, obtained by truncating the N-terminal 770WE771 residues, exhibits conserved antiviral activity, while the C8 derivative C6b, derived from the truncation of the C-terminal 776WI777, is nearly inactive. To elucidate the structural factors that induce the different activity profiles of C6a and C6b, in spite of their similarity, we investigated the structural behaviour of the two peptides in membrane mimicking environments. Conformational data on the short peptides C6a and C6b, matched to those of their parent peptide C8, allow describing a pharmacophore model of antiviral fusion inhibitors. This includes the essential structural motifs to design new simplified molecules overcoming the pharmacokinetic and high cost limitations affecting the antiviral entry inhibitors that currently are in therapy.
Collapse
|
15
|
Screening and Identification of Lassa Virus Entry Inhibitors from an FDA-Approved Drug Library. J Virol 2018; 92:JVI.00954-18. [PMID: 29899092 PMCID: PMC6069169 DOI: 10.1128/jvi.00954-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/25/2022] Open
Abstract
Lassa virus (LASV) belongs to the Mammarenavirus genus (family Arenaviridae) and causes severe hemorrhagic fever in humans. At present, there are no Food and Drug Administration (FDA)-approved drugs or vaccines specific for LASV. Here, high-throughput screening of an FDA-approved drug library was performed against LASV entry by using pseudotype virus bearing LASV envelope glycoprotein (GPC). Two hit compounds, lacidipine and phenothrin, were identified as LASV entry inhibitors in the micromolar range. A mechanistic study revealed that both compounds inhibited LASV entry by blocking low-pH-induced membrane fusion. Accordingly, lacidipine showed virucidal effects on the pseudotype virus of LASV. Adaptive mutant analyses demonstrated that replacement of T40, located in the ectodomain of the stable-signal peptide (SSP), with lysine (K) conferred LASV resistance to lacidipine. Furthermore, lacidipine showed antiviral activity against LASV, the closely related Mopeia virus (MOPV), and the New World arenavirus Guanarito virus (GTOV). Drug-resistant variants indicated that V36M in the ectodomain of the SSP mutant and V436A in the transmembrane domain of the GP2 mutant conferred GTOV resistance to lacidipine, suggesting the interface between SSP and GP2 is the target of lacidipine. This study shows that lacidipine is a candidate for LASV therapy, reinforcing the notion that the SSP-GP2 interface provides an entry-targeted platform for arenavirus inhibitor design.IMPORTANCE Currently, there is no approved therapy to treat Lassa fever; therefore, repurposing of approved drugs will accelerate the development of a therapeutic stratagem. In this study, we screened an FDA-approved library of drugs and identified two compounds, lacidipine and phenothrin, which inhibited Lassa virus entry by blocking low-pH-induced membrane fusion. Additionally, both compounds extended their inhibition against the entry of Guanarito virus, and the viral targets were identified as the SSP-GP2 interface.
Collapse
|
16
|
Abstract
Among the members of the Arenaviridae family, Junín virus and Lassa virus represent important human health threats generating annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of Argentina and Western Africa, respectively. Given the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. During the last two decades, academic research studies originated important results identifying novel molecules to be considered for further in vivo characterization. This chapter summarizes experimental in vitro approaches used to determine the possible mechanism of action of these antiviral agents.
Collapse
|
17
|
Small-Molecule Fusion Inhibitors Bind the pH-Sensing Stable Signal Peptide-GP2 Subunit Interface of the Lassa Virus Envelope Glycoprotein. J Virol 2016; 90:6799-807. [PMID: 27194767 DOI: 10.1128/jvi.00597-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Arenavirus species are responsible for severe life-threatening hemorrhagic fevers in western Africa and South America. Without effective antiviral therapies or vaccines, these viruses pose serious public health and biodefense concerns. Chemically distinct small-molecule inhibitors of arenavirus entry have recently been identified and shown to act on the arenavirus envelope glycoprotein (GPC) to prevent membrane fusion. In the tripartite GPC complex, pH-dependent membrane fusion is triggered through a poorly understood interaction between the stable signal peptide (SSP) and the transmembrane fusion subunit GP2, and our genetic studies have suggested that these small-molecule inhibitors act at this interface to antagonize fusion activation. Here, we have designed and synthesized photoaffinity derivatives of the 4-acyl-1,6-dialkylpiperazin-2-one class of fusion inhibitors and demonstrate specific labeling of both the SSP and GP2 subunits in a native-like Lassa virus (LASV) GPC trimer expressed in insect cells. Photoaddition is competed by the parental inhibitor and other chemically distinct compounds active against LASV, but not those specific to New World arenaviruses. These studies provide direct physical evidence that these inhibitors bind at the SSP-GP2 interface. We also find that GPC containing the uncleaved GP1-GP2 precursor is not susceptible to photo-cross-linking, suggesting that proteolytic maturation is accompanied by conformational changes at this site. Detailed mapping of residues modified by the photoaffinity adducts may provide insight to guide the further development of these promising lead compounds as potential therapeutic agents to treat Lassa hemorrhagic fever. IMPORTANCE Hemorrhagic fever arenaviruses cause lethal infections in humans and, in the absence of licensed vaccines or specific antiviral therapies, are recognized to pose significant threats to public health and biodefense. Lead small-molecule inhibitors that target the arenavirus envelope glycoprotein (GPC) have recently been identified and shown to block GPC-mediated fusion of the viral and cellular endosomal membranes, thereby preventing virus entry into the host cell. Genetic studies suggest that these inhibitors act through a unique pH-sensing intersubunit interface in GPC, but atomic-level structural information is unavailable. In this report, we utilize novel photoreactive fusion inhibitors and photoaffinity labeling to obtain direct physical evidence for inhibitor binding at this critical interface in Lassa virus GPC. Future identification of modified residues at the inhibitor-binding site will help elucidate the molecular basis for fusion activation and its inhibition and guide the development of effective therapies to treat arenaviral hemorrhagic fevers.
Collapse
|
18
|
Tesmer JJG. Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes. Nat Rev Mol Cell Biol 2016; 17:439-50. [PMID: 27093944 DOI: 10.1038/nrm.2016.36] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A revolution in the analysis of seven transmembrane domain (7TM) receptors has provided detailed information about how these physiologically important signalling proteins interact with extracellular cues. However, it has proved much more challenging to understand how 7TM receptors convey information to their principal intracellular targets: heterotrimeric G proteins, G protein-coupled receptor kinases and arrestins. Recent structures now suggest a common mechanism that enables these structurally diverse cytoplasmic proteins to 'hitch a ride' on hundreds of different activated 7TM receptors in order to instigate physiological change.
Collapse
Affiliation(s)
- John J G Tesmer
- Life Sciences Institute and Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| |
Collapse
|
19
|
Identification and Characterization of a Novel Broad-Spectrum Virus Entry Inhibitor. J Virol 2016; 90:4494-4510. [PMID: 26912630 DOI: 10.1128/jvi.00103-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Virus entry into cells is a multistep process that often requires the subversion of subcellular machineries. A more complete understanding of these steps is necessary to develop new antiviral strategies. While studying the potential role of the actin network and one of its master regulators, the small GTPase Cdc42, during Junin virus (JUNV) entry, we serendipitously uncovered the small molecule ZCL278, reported to inhibit Cdc42 function as an entry inhibitor for JUNV and for vesicular stomatitis virus, lymphocytic choriomeningitis virus, and dengue virus but not for the nonenveloped poliovirus. Although ZCL278 did not interfere with JUNV attachment to the cell surface or virus particle internalization into host cells, it prevented the release of JUNV ribonucleoprotein cores into the cytosol and decreased pH-mediated viral fusion with host membranes. We also identified SVG-A astroglial cell-derived cells to be highly permissive for JUNV infection and generated new cell lines expressing fluorescently tagged Rab5c or Rab7a or lacking Cdc42 using clustered regularly interspaced short palindromic repeat (CRISPR)-caspase 9 (Cas9) gene-editing strategies. Aided by these tools, we uncovered that perturbations in the actin cytoskeleton or Cdc42 activity minimally affect JUNV entry, suggesting that the inhibitory effect of ZCL278 is not mediated by ZCL278 interfering with the activity of Cdc42. Instead, ZCL278 appears to redistribute viral particles from endosomal to lysosomal compartments. ZCL278 also inhibited JUNV replication in a mouse model, and no toxicity was detected. Together, our data suggest the unexpected antiviral activity of ZCL278 and highlight its potential for use in the development of valuable new tools to study the intracellular trafficking of pathogens. IMPORTANCE The Junin virus is responsible for outbreaks of Argentine hemorrhagic fever in South America, where 5 million people are at risk. Limited options are currently available to treat infections by Junin virus or other viruses of the Arenaviridae, making the identification of additional tools, including small-molecule inhibitors, of great importance. How Junin virus enters cells is not yet fully understood. Here we describe new cell culture models in which the cells are susceptible to Junin virus infection and to which we applied CRISPR-Cas9 genome engineering strategies to help characterize early steps during virus entry. We also uncovered ZCL278 to be a new antiviral small molecule that potently inhibits the cellular entry of the Junin virus and other enveloped viruses. Moreover, we show that ZCL278 also functions in vivo, thereby preventing Junin virus replication in a mouse model, opening the possibility for the discovery of ZCL278 derivatives of therapeutic potential.
Collapse
|
20
|
Novel Arenavirus Entry Inhibitors Discovered by Using a Minigenome Rescue System for High-Throughput Drug Screening. J Virol 2015; 89:8428-43. [PMID: 26041296 DOI: 10.1128/jvi.00997-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/26/2015] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Certain members of the Arenaviridae family are category A agents capable of causing severe hemorrhagic fevers in humans. Specific antiviral treatments do not exist, and the only commonly used drug, ribavirin, has limited efficacy and can cause severe side effects. The discovery and development of new antivirals are inhibited by the biohazardous nature of the viruses, making them a relatively poorly understood group of human pathogens. We therefore adapted a reverse-genetics minigenome (MG) rescue system based on Junin virus, the causative agent of Argentine hemorrhagic fever, for high-throughput screening (HTS). The MG rescue system recapitulates all stages of the virus life cycle and enables screening of small-molecule libraries under biosafety containment level 2 (BSL2) conditions. The HTS resulted in the identification of four candidate compounds with potent activity against a broad panel of arenaviruses, three of which were completely novel. The target for all 4 compounds was the stage of viral entry, which positions the compounds as potentially important leads for future development. IMPORTANCE The arenavirus family includes several members that are highly pathogenic, causing acute viral hemorrhagic fevers with high mortality rates. No specific effective treatments exist, and although a vaccine is available for Junin virus, the causative agent of Argentine hemorrhagic fever, it is licensed for use only in areas where Argentine hemorrhagic fever is endemic. For these reasons, it is important to identify specific compounds that could be developed as antivirals against these deadly viruses.
Collapse
|
21
|
Yatawara A, Gaidos G, Rupasinghe CN, O'Hara BA, Pellegrini M, Atwood WJ, Mierke DF. Small-molecule inhibitors of JC polyomavirus infection. J Pept Sci 2014; 21:236-42. [PMID: 25522925 DOI: 10.1002/psc.2731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 11/07/2022]
Abstract
The JC polyomavirus (JCPyV) infects approximately 50% of the human population. In healthy individuals, the infection remains dormant and asymptomatic, but in immuno-suppressed patients, it can cause progressive multifocal leukoencephalopathy (PML), a potentially fatal demyelinating disease. Currently, there are no drugs against JCPyV infection nor for the treatment of PML. Here, we report the development of small-molecule inhibitors of JCPyV that target the initial interaction between the virus and host cell and thereby block viral entry. Utilizing a combination of computational and NMR-based screening techniques, we target the LSTc tetrasaccharide binding site within the VP1 pentameric coat protein of JCPyV. Four of the compounds from the screen effectively block viral infection in our in vitro assays using SVG-A cells. For the most potent compound, we used saturation transfer difference NMR to determine the mode of binding to purified pentamers of JCPyV VP1. Collectively, these results demonstrate the viability of this class of compounds for eventual development of JCPyV-antiviral therapeutics.
Collapse
Affiliation(s)
- Achani Yatawara
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Kerber R, Reindl S, Romanowski V, Gómez RM, Ogbaini-Emovon E, Günther S, ter Meulen J. Research efforts to control highly pathogenic arenaviruses: a summary of the progress and gaps. J Clin Virol 2014; 64:120-7. [PMID: 25549822 DOI: 10.1016/j.jcv.2014.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/07/2014] [Indexed: 01/08/2023]
Abstract
Significant progress has been made in the past 10 years in unraveling the molecular biology of highly pathogenic arenaviruses that are endemic in several West African countries (Lassa fever virus) and in some regions of South America (Argentine and Bolivian hemorrhagic fever viruses). While this has resulted in proof-of-concept studies of novel vaccine candidates in non-human primates and in the discovery of several novel antiviral small molecule drug candidates, none of them has been tested in the clinic to date. The recent Ebola outbreak in West Africa has demonstrated very clearly that there is an urgent need to develop the prophylactic and therapeutic armamentarium against viral hemorrhagic fever viruses as part of a global preparedness for future epidemics. As it pertains to this goal, the present article summarizes the current knowledge of highly pathogenic arenaviruses and identifies opportunities for translational research.
Collapse
Affiliation(s)
- R Kerber
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - S Reindl
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - V Romanowski
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Argentina
| | - R M Gómez
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Argentina
| | | | - S Günther
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - J ter Meulen
- Institute of Virology, Philipps University Marburg, Germany.
| |
Collapse
|
23
|
Mahajan M, Bhattacharjya S. NMR structures and localization of the potential fusion peptides and the pre-transmembrane region of SARS-CoV: Implications in membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:721-30. [PMID: 25475644 PMCID: PMC7094234 DOI: 10.1016/j.bbamem.2014.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 12/26/2022]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) poses a serious public health hazard. The S2 subunit of the S glycoprotein of SARS-CoV carries out fusion between the virus and the host cells. However, the exact mechanism of the cell fusion process is not well understood. Current model suggests that a conformational transition, upon receptor recognition, of the two heptad core regions of S2 may expose the hydrophobic fusogenic peptide or fusion peptide for membrane insertion. Three regions of the S2 subunit have been proposed to be involved in cell-cell fusion. The N-terminal fusion peptide (FP, residues 770-788), an internal fusion peptide (IFP, residues 873-888) and the pre-transmembrane region (PTM, residues 1185-1202) demonstrated interactions with model lipid membranes and potentially involved in the fusion process. Here, we have determined atomic resolution structures of these three peptides in DPC detergent micelles by solution NMR. FP assumes α-helical conformation with significant distortion at the central Gly residues; enabling a close packing among sidechains of aromatic residues including W, Y and F. The 3-D structure of PMT is characterized by a helix-loop-helix with extensive aromatic interactions within the helices. IFP adopts a rather straight α-helical conformation defined by packing among sidechains of aromatic and aliphatic residues. Paramagnetic spin labeled NMR has demonstrated surface localization of PMT whereas FP and IFP inserted into the micelles. Collectively, data presented in this study will aid in understanding fusion mechanism of SARS-CoV.
Collapse
Affiliation(s)
- Mukesh Mahajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
24
|
Otrubova K, Srinivasan V, Boger DL. Discovery libraries targeting the major enzyme classes: the serine hydrolases. Bioorg Med Chem Lett 2014; 24:3807-13. [PMID: 25037918 PMCID: PMC4130767 DOI: 10.1016/j.bmcl.2014.06.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022]
Abstract
Two libraries of modestly reactive ureas containing either electron-deficient acyl anilines or acyl pyrazoles were prepared and are reported as screening libraries for candidate serine hydrolase inhibitors. Within each library is a small but powerful subset of compounds that serve as a chemotype fragment screening library capable of subsequent structural diversification. Elaboration of the pyrazole-based ureas provided remarkably potent irreversible inhibitors of fatty acid amide hydrolase (FAAH, apparent Ki=100-200 pM) complementary to those previously disclosed enlisting electron-deficient aniline-based ureas.
Collapse
Affiliation(s)
- Katerina Otrubova
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037, United States
| | - Venkat Srinivasan
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037, United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037, United States.
| |
Collapse
|
25
|
Lavanya M, Cuevas CD, Thomas M, Cherry S, Ross SR. siRNA screen for genes that affect Junín virus entry uncovers voltage-gated calcium channels as a therapeutic target. Sci Transl Med 2014; 5:204ra131. [PMID: 24068738 DOI: 10.1126/scitranslmed.3006827] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New World hemorrhagic fever arenavirus infection results in 15 to 30% mortality in humans. We performed a high-throughput small interfering RNA screen with Junín virus glycoprotein-pseudotyped viruses to find potential host therapeutic targets. Voltage-gated calcium channel (VGCC) subunits, for which there are Food and Drug Administration (FDA)-approved drugs, were identified in the screen. Knockdown of VGCC subunits or treatment with channel blockers diminished Junín virus-cell fusion and entry into cells and thereby decreased infection. Gabapentin, an FDA-approved drug used to treat neuropathic pain that targets the α₂δ₂ subunit, inhibited infection of mice by the Candid 1 vaccine strain of the virus. These findings demonstrate that VGCCs play a role in virus infection and have the potential to lead to therapeutic intervention of New World arenavirus infection.
Collapse
Affiliation(s)
- Madakasira Lavanya
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
26
|
Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2180-97. [PMID: 24780375 PMCID: PMC7094693 DOI: 10.1016/j.bbamem.2014.04.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/08/2014] [Accepted: 04/17/2014] [Indexed: 12/16/2022]
Abstract
There are many peptides known that inhibit the entry of enveloped viruses into cells, including one peptide that is successfully being used in the clinic as a drug. In this review, we discuss the discovery, antiviral activity and mechanism of action of such peptides. While peptide entry inhibitors have been discovered by a wide variety of approaches (structure-based, accidental, intentional, rational and brute force) we show here that they share a common physical chemical property: they are at least somewhat hydrophobic and/or amphipathic and have a propensity to interact with membrane interfaces. We propose that this propensity drives a shared mechanism of action for many peptide entry inhibitors, involving direct interactions with viral and cellular membranes, as well as interactions with the complex hydrophobic protein/lipid interfaces that are exposed, at least transiently, during virus-cell fusion. By interacting simultaneously with the membrane interfaces and other critical hydrophobic surfaces, we hypothesize that peptide entry inhibitors can act by changing the physical chemistry of the membranes, and the fusion protein interfaces bridging them, and by doing so interfere with the fusion of cellular and viral membranes. Based on this idea, we propose that an approach that focuses on the interfacial hydrophobicity of putative entry inhibitors could lead to the efficient discovery of novel, broad-spectrum viral entry inhibitors. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
|
27
|
Abstract
This review highlights ten "hot topics" in current antiviral research: (i) new nucleoside derivatives (i.e., PSI-352938) showing high potential as a direct antiviral against hepatitis C virus (HCV); (ii) cyclopropavir, which should be further pursued for treatment of human cytomegalovirus (HCMV) infections; (iii) North-methanocarbathymidine (N-MCT), with a N-locked conformation, showing promising activity against both α- and γ-herpesviruses; (iv) CMX001, an orally bioavailable prodrug of cidofovir with broad-spectrum activity against DNA viruses, including polyoma, adeno, herpes, and pox; (v) favipiravir, which is primarily pursued for the treatment of influenza virus infections, but also inhibits the replication of other RNA viruses, particularly (-)RNA viruses such as arena, bunya, and hanta; (vi) newly emerging antiarenaviral compounds which should be more effective (and less toxic) than the ubiquitously used ribavirin; (vii) antipicornavirus agents in clinical development (pleconaril, BTA-798, and V-073); (viii) natural products receiving increased attention as potential antiviral drugs; (ix) antivirals such as U0126 targeted at specific cellular kinase pathways [i.e., mitogen extracellular kinase (MEK)], showing activity against influenza and other viruses; and (x) two structurally unrelated compounds (i.e., LJ-001 and dUY11) with broad-spectrum activity against virtually all enveloped RNA and DNA viruses.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium.
| |
Collapse
|
28
|
Pasquato A, Burri DJ, Kunz S. Current drug discovery strategies against arenavirus infections. Expert Rev Anti Infect Ther 2013; 10:1297-309. [PMID: 23241187 DOI: 10.1586/eri.12.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Arenaviruses are a large group of emerging viruses including several causative agents of severe hemorrhagic fevers with high mortality in man. Considering the number of people affected and the currently limited therapeutic options, novel efficacious therapeutics against arenaviruses are urgently needed. Over the past decade, significant advances in knowledge about the basic virology of arenaviruses have been accompanied by the development of novel therapeutics targeting different steps of the arenaviral life cycle. High-throughput, small-molecule screens identified potent and broadly active inhibitors of arenavirus entry that were instrumental for the dissection of unique features of arenavirus fusion. Novel inhibitors of arenavirus replication have been successfully tested in animal models and hold promise for application in humans. Late in the arenavirus life cycle, the proteolytic processing of the arenavirus envelope glycoprotein precursor and cellular factors critically involved virion assembly and budding provide further promising 'druggable' targets for novel therapeutics to combat human arenavirus infection.
Collapse
Affiliation(s)
- Antonella Pasquato
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
29
|
Zhou Y, Simmons G. Development of novel entry inhibitors targeting emerging viruses. Expert Rev Anti Infect Ther 2013. [PMID: 23199399 DOI: 10.1586/eri.12.104] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Emerging viral diseases pose a unique risk to public health, and thus there is a need to develop therapies. A current focus of funding agencies, and hence research, is the development of broad-spectrum antivirals, and in particular, those targeting common cellular pathways. The scope of this article is to review screening strategies and recent advances in this area, with a particular emphasis on antivirals targeting the step of viral entry for emerging lipid-enveloped viruses such as Ebola virus and SARS-coronavirus.
Collapse
Affiliation(s)
- Yanchen Zhou
- Blood Systems Research Institute and Department of Laboratory Medicine, University of California, San Francisco, 270 Masonic Avenue, San Francisco, CA 94118, USA
| | | |
Collapse
|
30
|
Biochemical reconstitution of hemorrhagic-fever arenavirus envelope glycoprotein-mediated membrane fusion. PLoS One 2012; 7:e51114. [PMID: 23226473 PMCID: PMC3511403 DOI: 10.1371/journal.pone.0051114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 10/16/2012] [Indexed: 11/19/2022] Open
Abstract
The membrane-anchored proteins of enveloped viruses form labile spikes on the virion surface, primed to undergo large-scale conformational changes culminating in virus-cell membrane fusion and viral entry. The prefusion form of these envelope glycoproteins thus represents an important molecular target for antiviral intervention. A critical roadblock to this endeavor has been our inability to produce the prefusion envelope glycoprotein trimer for biochemical and structural analysis. Through our studies of the GPC envelope glycoprotein of the hemorrhagic fever arenaviruses, we have shown that GPC is unique among class I viral fusion proteins in that the mature complex retains a stable signal peptide (SSP) in addition to the conventional receptor-binding and transmembrane fusion subunits. In this report we show that the recombinant GPC precursor can be produced as a discrete native-like trimer and that its proteolytic cleavage generates the mature glycoprotein. Proteoliposomes containing the cleaved GPC mediate pH-dependent membrane fusion, a characteristic feature of arenavirus entry. This reaction is inhibited by arenavirus-specific monoclonal antibodies and small-molecule fusion inhibitors. The in vitro reconstitution of GPC-mediated membrane-fusion activity offers unprecedented opportunities for biochemical and structural studies of arenavirus entry and its inhibition. To our knowledge, this report is the first to demonstrate functional reconstitution of membrane fusion by a viral envelope glycoprotein.
Collapse
|
31
|
Abstract
Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2.
Collapse
|
32
|
Dissection of the role of the stable signal peptide of the arenavirus envelope glycoprotein in membrane fusion. J Virol 2012; 86:6138-45. [PMID: 22438561 DOI: 10.1128/jvi.07241-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two membrane-spanning hydrophobic regions separated by a short ectodomain loop that interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-molecule compounds that target this unique SSP-G2 interaction prevent arenavirus entry and infection. The interaction between SSP and G2 is sensitive to the phylogenetic distance between New World (Junín) and Old World (Lassa) arenaviruses. For example, heterotypic GPC complexes are unable to support virion entry. In this report, we demonstrate that the hybrid GPC complexes are properly assembled, proteolytically cleaved, and transported to the cell surface but are specifically defective in their membrane fusion activity. Chimeric SSP constructs reveal that this incompatibility is localized to the first transmembrane segment of SSP (TM1). Genetic changes in TM1 also affect sensitivity to small-molecule fusion inhibitors, generating resistance in some cases and inhibitor dependence in others. Our studies suggest that interactions of SSP TM1 with the transmembrane domain of G2 may be important for GPC-mediated membrane fusion and its inhibition.
Collapse
|
33
|
Gowen BB, Bray M. Progress in the experimental therapy of severe arenaviral infections. Future Microbiol 2012; 6:1429-41. [PMID: 22122440 DOI: 10.2217/fmb.11.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A number of viruses in the family Arenaviridae cause severe illness in humans. Lassa virus in West Africa and a number of agents in South America produce hemorrhagic fever in persons exposed to aerosolized excretions of the pathogens' rodent hosts. Because arenaviruses are not transmitted by arthropods, and person-to-person spread is rare, human infections occur singly and sporadically, and are usually not diagnosed until the patient is severely ill. Because the arenaviruses are naturally transmitted by the airborne route, they also pose a potential threat as aerosolized bioterror weapons. The broad-spectrum antiviral drug ribavirin was shown to reduce mortality from Lassa fever, and has been tested against Argentine hemorrhagic fever, but it is not an approved treatment for either disease. Human immune convalescent plasma was proven to be effective for Argentine hemorrhagic fever in a controlled trial. New treatments are needed to block viral replication without causing toxicity and to prevent the increased vascular permeability that is responsible for hypotension and shock. In this paper, we review current developments in the experimental therapy of severe arenaviral infections, focusing on drugs that have been tested in animal models, and provide a perspective on future research.
Collapse
Affiliation(s)
- Brian B Gowen
- Institute for Antiviral Research & Department of Animal, Dairy & Veterinary Sciences, Utah State University, Logan, UT, USA.
| | | |
Collapse
|
34
|
The curious case of arenavirus entry, and its inhibition. Viruses 2012; 4:83-101. [PMID: 22355453 PMCID: PMC3280523 DOI: 10.3390/v4010083] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/07/2011] [Accepted: 01/05/2012] [Indexed: 11/17/2022] Open
Abstract
Arenaviruses comprise a diverse family of enveloped negative-strand RNA viruses that are endemic to specific rodent hosts worldwide. Several arenaviruses cause severe hemorrhagic fevers in humans, including Junín and Machupo viruses in South America and Lassa fever virus in western Africa. Arenavirus entry into the host cell is mediated by the envelope glycoprotein complex, GPC. The virion is endocytosed on binding to a cell-surface receptor, and membrane fusion is initiated in response to physiological acidification of the endosome. As with other class I virus fusion proteins, GPC-mediated membrane fusion is promoted through a regulated sequence of conformational changes leading to formation of the classical postfusion trimer-of-hairpins structure. GPC is, however, unique among the class I fusion proteins in that the mature complex retains a stable signal peptide (SSP) as a third subunit, in addition to the canonical receptor-binding and fusion proteins. We will review the curious properties of the tripartite GPC complex and describe evidence that SSP interacts with the fusion subunit to modulate pH-induced activation of membrane fusion. This unusual solution to maintaining the metastable prefusion state of GPC on the virion and activating the class I fusion cascade at acidic pH provides novel targets for antiviral intervention.
Collapse
|