1
|
Martin E, Winter S, Garcin C, Tanita K, Hoshino A, Lenoir C, Fournier B, Migaud M, Boutboul D, Simonin M, Fernandes A, Bastard P, Le Voyer T, Roupie AL, Ben Ahmed Y, Leruez-Ville M, Burgard M, Rao G, Ma CS, Masson C, Soudais C, Picard C, Bustamante J, Tangye SG, Cheikh N, Seppänen M, Puel A, Daly M, Casanova JL, Neven B, Fischer A, Latour S. Role of IL-27 in Epstein-Barr virus infection revealed by IL-27RA deficiency. Nature 2024; 628:620-629. [PMID: 38509369 DOI: 10.1038/s41586-024-07213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Epstein-Barr virus (EBV) infection can engender severe B cell lymphoproliferative diseases1,2. The primary infection is often asymptomatic or causes infectious mononucleosis (IM), a self-limiting lymphoproliferative disorder3. Selective vulnerability to EBV has been reported in association with inherited mutations impairing T cell immunity to EBV4. Here we report biallelic loss-of-function variants in IL27RA that underlie an acute and severe primary EBV infection with a nevertheless favourable outcome requiring a minimal treatment. One mutant allele (rs201107107) was enriched in the Finnish population (minor allele frequency = 0.0068) and carried a high risk of severe infectious mononucleosis when homozygous. IL27RA encodes the IL-27 receptor alpha subunit5,6. In the absence of IL-27RA, phosphorylation of STAT1 and STAT3 by IL-27 is abolished in T cells. In in vitro studies, IL-27 exerts a synergistic effect on T-cell-receptor-dependent T cell proliferation7 that is deficient in cells from the patients, leading to impaired expansion of potent anti-EBV effector cytotoxic CD8+ T cells. IL-27 is produced by EBV-infected B lymphocytes and an IL-27RA-IL-27 autocrine loop is required for the maintenance of EBV-transformed B cells. This potentially explains the eventual favourable outcome of the EBV-induced viral disease in patients with IL-27RA deficiency. Furthermore, we identified neutralizing anti-IL-27 autoantibodies in most individuals who developed sporadic infectious mononucleosis and chronic EBV infection. These results demonstrate the critical role of IL-27RA-IL-27 in immunity to EBV, but also the hijacking of this defence by EBV to promote the expansion of infected transformed B cells.
Collapse
Affiliation(s)
- Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Cité, Paris, France
| | - Cécile Garcin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Cité, Paris, France
| | - Kay Tanita
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Akihiro Hoshino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
| | - David Boutboul
- Université Paris Cité, Paris, France
- Department of Hematology, Cochin Hospital, AP-HP, Paris, France
| | - Mathieu Simonin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Alicia Fernandes
- Plateforme Vecteurs Viraux et Transfert de Gènes, Institut Necker Enfants Malades, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Paul Bastard
- Université Paris Cité, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Université Paris Cité, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Anne-Laure Roupie
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Cité, Paris, France
| | - Yassine Ben Ahmed
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marianne Leruez-Ville
- Service de Bactériologie, Virologie, Parasitologie et Hygiène, Necker-Enfants Malades Hospital, Paris, France
| | - Marianne Burgard
- Service de Bactériologie, Virologie, Parasitologie et Hygiène, Necker-Enfants Malades Hospital, Paris, France
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Cécile Masson
- Plateforme de Bioinformatique, INSERM UMR1163, Université de Paris, Imagine Institute, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Cité, Paris, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Cité, Paris, France
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Jacinta Bustamante
- Université Paris Cité, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, APHP, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Nathalie Cheikh
- Hôpital Jean Minjoz, Centre Hospitalo-Universitaire de Besançon, Besançon, France
| | - Mikko Seppänen
- Pediatric Research Center and Rare Disease Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Anne Puel
- Université Paris Cité, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mark Daly
- Institut for Molecular Medecine Finland, University of Helsinki, Helsinki, Finland
| | - Jean-Laurent Casanova
- Université Paris Cité, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Bénédicte Neven
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Alain Fischer
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- Collège de France, Paris, France
- Imagine Institute, INSERM UMR 1163, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France.
- Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Xu WD, Wang DC, Zhao M, Huang AF. An updated advancement of bifunctional IL-27 in inflammatory autoimmune diseases. Front Immunol 2024; 15:1366377. [PMID: 38566992 PMCID: PMC10985211 DOI: 10.3389/fimmu.2024.1366377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Interleukin-27 (IL-27) is a member of the IL-12 family. The gene encoding IL-27 is located at chromosome 16p11. IL-27 is considered as a heterodimeric cytokine, which consists of Epstein-Barr virus (EBV)-induced gene 3 (Ebi3) and IL-27p28. Based on the function of IL-27, it binds to receptor IL-27rα or gp130 and then regulates downstream cascade. To date, findings show that the expression of IL-27 is abnormal in different inflammatory autoimmune diseases (including systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, Behcet's disease, inflammatory bowel disease, multiple sclerosis, systemic sclerosis, type 1 diabetes, Vogt-Koyanagi-Harada, and ankylosing spondylitis). Moreover, in vivo and in vitro studies demonstrated that IL-27 is significantly in3volved in the development of these diseases by regulating innate and adaptive immune responses, playing either an anti-inflammatory or a pro-inflammatory role. In this review, we comprehensively summarized information about IL-27 and autoimmunity based on available evidence. It is hoped that targeting IL-27 will hold great promise in the treatment of inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Lv K, Hu B, Xu M, Wan L, Jin Z, Xu M, Du Y, Ma K, Lv Q, Xu Y, Lei L, Gong H, Liu H, Wu D, Liu Y. IL-39 promotes chronic graft-versus-host disease by increasing T and B Cell pathogenicity. Exp Hematol Oncol 2022; 11:34. [PMID: 35655245 PMCID: PMC9161463 DOI: 10.1186/s40164-022-00286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic graft-versus-host disease (cGVHD) remains a major complication during the late phase of allogeneic hematopoietic stem cell transplantation (allo-HSCT). IL-39, a newly described pro-inflammatory cytokine belonging to the IL-12 family, plays a role in lupus development. Recently, IL-39 has been identified as a pathogenic factor in acute GVHD (aGVHD). However, the role of IL-39 in the pathogenesis of cGVHD remains unclear. METHODS We constructed a recombinant IL-39 plasmid and established scleroderma and lupus-like cGVHD models. Quantitative PCR and enzyme-linked immunosorbent assay (ELISA) were used to detect IL-39 expression in mice and patients post transplantation, respectively. Hydrodynamic gene transfer (HGT) was performed to achieve IL-39 overexpression in vivo. Multiparameter flow cytometry, western blotting, and assays in vitro were performed to investigate the effect of IL-39 on cGVHD. RESULTS The relative expression of IL-23p19 and EBi3 was significantly increased in the intestine of cGVHD mice on day 40 post allo-HSCT, and IL-39 levels were significantly elevated in the serum of patients following allo-HSCT. Overexpression of IL-39 significantly aggravated the severity of cGVHD. Increased IL-39 levels promoted T-cell activation and germinal center responses, and may exacerbate thymic damage. Consistently, blocking IL-39 markedly ameliorated immune dysregulation in the cGVHD mice. Furthermore, we found that IL-39 was produced by B cells, CD11b+ cells, and CD8+T cells after activation. Stimulation of IL-39 led to upregulation of the IL-39 receptor on CD4+T cells and further caused activation of the STAT1/STAT3 pathway, through which IL-39 may exert its pro-inflammatory effects. CONCLUSION Our study reveals a critical role for IL-39 in cGVHD pathogenesis and indicates that IL-39 may serve as a potential therapeutic target for cGVHD prevention.
Collapse
Affiliation(s)
- Kangkang Lv
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mingzhu Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Li Wan
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Jin
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mimi Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuanyuan Du
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Kunpeng Ma
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Quansheng Lv
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Haiyan Liu
- Department of Microbiology and Immunology, Life Sciences Institute, Immunology Translational Research ProgramYong Loo Lin School of MedicineImmunology ProgramNational University of Singapore, Singapore, Singapore.
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China. .,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Yuejun Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China. .,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Kawahara E, Azuma M, Nagashima H, Omori K, Akiyama S, Fujimori Y, Oishi M, Shibui N, Kawaguchi K, Morita M, Okuyama Y, Ishii N, So T. TNF Receptor-Associated Factor 5 Limits IL-27 Receptor Signaling in CD4 + T Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:642-650. [PMID: 34996840 DOI: 10.4049/jimmunol.2001358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
TNF receptor-associated factor 5 (TRAF5) restrains early signaling activity of the IL-6 receptor in naive CD4+ T cells by interacting with the shared gp130 chain, although TRAF5 was initially discovered as a cytoplasmic adaptor protein to activate signaling mediated by TNF receptor family molecules. This leads to the question of whether TRAF5 limits signaling via the receptor for IL-27, which is composed of gp130 and WSX-1. The aim of this study is to clarify the role of TRAF5 in IL-27 receptor signaling and to understand the differential role of TRAF5 on cytokine receptor signaling. We found that Traf5 -/- CD4+ T cells displayed significantly higher levels of phosphorylated STAT1 and STAT-regulated genes Socs3 and Tbx21, as early as 1 h after IL-27 exposure when compared with Traf5 +/+ CD4+ T cells. Upon IL-27 and TCR signals, the Traf5 deficiency significantly increased the induction of IL-10 and promoted the proliferation of CD4+ T cells. Traf5 -/- mice injected with IL-27 displayed significantly enhanced delayed-type hypersensitivity responses, demonstrating that TRAF5 works as a negative regulator for IL-27 receptor signaling. In contrast, IL-2 and proliferation mediated by glucocorticoid-induced TNF receptor-related protein (GITR) and TCR signals were significantly decreased in Traf5 -/- CD4+ T cells, confirming that TRAF5 works as a positive regulator for cosignaling via GITR. Collectively, our results demonstrate that TRAF5 reciprocally controls signals mediated by the IL-27 receptor and GITR in CD4+ T cells and suggest that the regulatory activity of TRAF5 in gp130 is distinct from that in TNF receptor family molecules in a T cell.
Collapse
Affiliation(s)
- Eigo Kawahara
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Mitsuki Azuma
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Hiroyuki Nagashima
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Koki Omori
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Sho Akiyama
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Yuka Fujimori
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Mayu Oishi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Nagito Shibui
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Kosuke Kawaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Masashi Morita
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
| | - Yuko Okuyama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; and
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Rahimi Z, Yaghobi R, Afshari A, Roozbeh J, Mokhtari MJ, Hosseini AM. The effect of BKV reactivation on cytokines behavior in kidney transplanted patients. BMC Nephrol 2022; 23:20. [PMID: 34996392 PMCID: PMC8739991 DOI: 10.1186/s12882-021-02645-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND BK virus associated nephropathy (BKVAN) is one of the common causes of graft loss among kidney transplanted recipients (KTRs). The current treatment for BKV nephropathy is decreasing the immunosuppressive regimen in KTRs. Interleukin-27 (IL-27) is a multifunctional cytokine that might be the front-runner of an important pathway in this regard. Therefore, in current study it is tried to evaluate the changes in the expression level of IL-27 and some related molecules, resulting from BKV reactivation in KTR patients. METHODS EDTA-treated blood samples were collected from all participants. Patients were divided into two groups, 31 kidney transplant recipients with active and 32 inactive BKV infection, after being monitored by Real time PCR (Taq-Man) in plasma. Total of 30 normal individuals were considered as healthy control group. Real time PCR (SYBR Green) technique is used to determine the expression level of studied genes. RESULTS The results of gene expression comparisons showed that the expression level of IL-27, IFN-γ, TNF-α, TNFR2 and IRF7 genes was significantly higher in inactive group in comparison to active group. The expression level of TLR4 was lower in both active and inactive groups in comparison to control group. ROC curve analysis showed that IL-27 and IRF7 are significantly different amongst other studied genes. Finally, the analyses revealed that the expression level of most of the studied genes (except for TNF-α and TLR4) have significant correlation with viral load. CONCLUSIONS Our findings revealed that IL-27, IFN-γ, TNF-α, TNFR2 and IRF7 expression level is higher in inactive group and TLR4 expression level is lower in patients' groups in comparison to control group. Also, ROC curve analysis showed IL-27 and IRF7 can significantly differentiate studied groups (BKV active vs. inactive). Therefore, these results might help elucidating the pattern in charge of BKV reactivation in kidney transplanted patients.
Collapse
Affiliation(s)
- Zahra Rahimi
- Department of Biology, Zarghan branch, Islamic Azad University, Zarghan, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Malek Hosseini
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Predictive Ability of Serum IL-27 Level for Assessing Activity of Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Mediators Inflamm 2021; 2021:6668884. [PMID: 34335091 PMCID: PMC8313352 DOI: 10.1155/2021/6668884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Serum interleukin- (IL-) 27 level has been reported to increase in patients with several autoimmune diseases; however, its significance in patients with antineutrophil cytoplasmic antibody- (ANCA-) associated vasculitis (AAV) is unknown. In this study, we investigated the associations between serum IL-27, laboratory features, and activity of AAV and evaluate the predictive ability of serum IL-27 level for disease activity. This study included 77 AAV patients, and we collected clinical and laboratory data at blood sampling. Inflammation-related variables included white blood cell, neutrophil, lymphocyte and platelet counts, serum albumin, erythrocyte sedimentation rate, and C-reactive protein levels. Serum IL-27 and IL-18 levels were measured from stored sera using Human Magnetic Luminex® assay. High disease activity of AAV was defined as the highest tertile of Birmingham vasculitis activity score (BVAS) (≥11). The mean age of the enrolled patients was 59.9 years, and 38 (49.4%) were diagnosed as microscopic polyangiitis. In the multivariable analysis, serum albumin (β = −0.419) and serum IL-27 level (β = 0.221) were significantly associated with BVAS. Furthermore, patients with renal manifestation exhibited higher serum IL-27 (mean 308.7 pg/mL vs. 105.8 pg/mL) and IL-18 levels (mean 376.7 pg/mL vs. 270.4 pg/mL) than those without. On applying the optimal cut-off of serum IL-27 level for predicting high activity, AAV patients with serum IL − 27 level ≥ 300.8 pg/mL had a significantly higher risk for having high disease activity than those with serum IL − 27 level < 300.8 pg/mL (relative risk 3.380, 95% confidence interval 1.223, 9.345, P = 0.016). These results suggest that serum IL-27 level is associated with the cross-sectional activity and the presence of renal manifestation and could be used to predict high disease activity in patients with AAV.
Collapse
|
7
|
Morita Y, Masters EA, Schwarz EM, Muthukrishnan G. Interleukin-27 and Its Diverse Effects on Bacterial Infections. Front Immunol 2021; 12:678515. [PMID: 34079555 PMCID: PMC8165262 DOI: 10.3389/fimmu.2021.678515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
Innate and adaptive immune responses against pathogens are known to be carefully orchestrated by specific cytokines that initiate and down regulate immune cell functions from the initial infection through tissue repair and homeostasis. However, some cytokines, including interleukin-27, are expressed at multiple phases of the infection, such that their pro and anti-inflammatory functions have been difficult to interpret. As elucidation of specific cytokine functions throughout infection is central to our understanding of protective vs. susceptible immunity and return to homeostasis vs. prolonged inflammation leading to septic shock, here we review the literature on IL-27 signaling and the various functions of this heterodimeric ligand member of the IL-12 cytokine family. Canonically, IL-27 is produced by antigen-presenting cells, and is thought of as an immunostimulatory cytokine due to its capacity to induce Th1 differentiation. However, many studies have also identified various immunosuppressive effects of IL-27 signaling, including suppression of Th17 differentiation and induction of co-inhibitory receptors on T cells. Thus, the exact role of IL-27 in the context of infectious diseases remains a topic of debate and active research. Additionally, as recent interest has focused on clinical management of acute vs. chronic infections, and life-threatening "cytokine storm" from sepsis, we propose a hypothetical model to explain the biphasic role of IL-27 during the early and late phases of immune responses to reconcile its known pro and anti-inflammatory functions, which could be therapeutically regulated to improve patient outcomes of infection.
Collapse
Affiliation(s)
- Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | - Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
8
|
Michelini S, Barbero F, Prinelli A, Steiner P, Weiss R, Verwanger T, Andosch A, Lütz-Meindl U, Puntes VF, Drobne D, Duschl A, Horejs-Hoeck J. Gold nanoparticles (AuNPs) impair LPS-driven immune responses by promoting a tolerogenic-like dendritic cell phenotype with altered endosomal structures. NANOSCALE 2021; 13:7648-7666. [PMID: 33928963 PMCID: PMC8087175 DOI: 10.1039/d0nr09153g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/12/2021] [Indexed: 05/15/2023]
Abstract
Dendritic cells (DCs) shape immune responses by influencing T-cell activation. Thus, they are considered both an interesting model for studying nano-immune interactions and a promising target for nano-based biomedical applications. However, the accentuated ability of nanoparticles (NPs) to interact with biomolecules may have an impact on DC function that poses an unexpected risk of unbalanced immune reactions. Here, we investigated the potential effects of gold nanoparticles (AuNPs) on DC function and the consequences for effector and memory T-cell responses in the presence of the microbial inflammatory stimulus lipopolysaccharide (LPS). Overall, we found that, in the absence of LPS, none of the tested NPs induced a DC response. However, whereas 4-, 8-, and 11 nm AuNPs did not modulate LPS-dependent immune responses, 26 nm AuNPs shifted the phenotype of LPS-activated DCs toward a tolerogenic state, characterized by downregulation of CD86, IL-12 and IL-27, upregulation of ILT3, and induction of class E compartments. Moreover, this DC phenotype was less proficient in promoting Th1 activation and central memory T-cell proliferation. Taken together, these findings support the perception that AuNPs are safe under homeostatic conditions; however, particular care should be taken in patients experiencing a current infection or disorders of the immune system.
Collapse
Affiliation(s)
- Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Francesco Barbero
- Insitut Català de Nanosciència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona 08193, Spain
| | | | - Philip Steiner
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Richard Weiss
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Thomas Verwanger
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Ancuela Andosch
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Ursula Lütz-Meindl
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Victor F Puntes
- Insitut Català de Nanosciència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona 08193, Spain
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Albert Duschl
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Jutta Horejs-Hoeck
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| |
Collapse
|
9
|
Wilmes S, Jeffrey PA, Martinez-Fabregas J, Hafer M, Fyfe PK, Pohler E, Gaggero S, López-García M, Lythe G, Taylor C, Guerrier T, Launay D, Mitra S, Piehler J, Molina-París C, Moraga I. Competitive binding of STATs to receptor phospho-Tyr motifs accounts for altered cytokine responses. eLife 2021; 10:66014. [PMID: 33871355 PMCID: PMC8099432 DOI: 10.7554/elife.66014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/18/2021] [Indexed: 12/29/2022] Open
Abstract
Cytokines elicit pleiotropic and non-redundant activities despite strong overlap in their usage of receptors, JAKs and STATs molecules. We use IL-6 and IL-27 to ask how two cytokines activating the same signaling pathway have different biological roles. We found that IL-27 induces more sustained STAT1 phosphorylation than IL-6, with the two cytokines inducing comparable levels of STAT3 phosphorylation. Mathematical and statistical modeling of IL-6 and IL-27 signaling identified STAT3 binding to GP130, and STAT1 binding to IL-27Rα, as the main dynamical processes contributing to sustained pSTAT1 levels by IL-27. Mutation of Tyr613 on IL-27Rα decreased IL-27-induced STAT1 phosphorylation by 80% but had limited effect on STAT3 phosphorgylation. Strong receptor/STAT coupling by IL-27 initiated a unique gene expression program, which required sustained STAT1 phosphorylation and IRF1 expression and was enriched in classical Interferon Stimulated Genes. Interestingly, the STAT/receptor coupling exhibited by IL-6/IL-27 was altered in patients with systemic lupus erythematosus (SLE). IL-6/IL-27 induced a more potent STAT1 activation in SLE patients than in healthy controls, which correlated with higher STAT1 expression in these patients. Partial inhibition of JAK activation by sub-saturating doses of Tofacitinib specifically lowered the levels of STAT1 activation by IL-6. Our data show that receptor and STATs concentrations critically contribute to shape cytokine responses and generate functional pleiotropy in health and disease.
Collapse
Affiliation(s)
- Stephan Wilmes
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Polly-Anne Jeffrey
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Jonathan Martinez-Fabregas
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Maximillian Hafer
- Department of Biology and Centre of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Paul K Fyfe
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Elizabeth Pohler
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Silvia Gaggero
- Université de Lille, INSERM UMR1277 CNRS UMR9020-CANTHER and Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Martín López-García
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Charles Taylor
- Department of Statistics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Thomas Guerrier
- Univ. Lille, Univ. LilleInserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - David Launay
- Univ. Lille, Univ. LilleInserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Suman Mitra
- Université de Lille, INSERM UMR1277 CNRS UMR9020-CANTHER and Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Jacob Piehler
- Department of Biology and Centre of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom.,T-6 Theoretical Division, Los Alamos National Laboratory, Los Alamos, United States
| | - Ignacio Moraga
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
10
|
Liu Z, Han M, Ding K, Fu R. The role of Pim kinase in immunomodulation. Am J Cancer Res 2020; 10:4085-4097. [PMID: 33414987 PMCID: PMC7783746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023] Open
Abstract
Pim kinase, which has three isozymes (Pim-1, Pim-2 and Pim-3), is a serine/threonine kinase abnormally expressed in many cancers. High Pim kinase expression has been recognized to be associated with disease progression and prognosis. It is well accepted that Pim kinase is considered a clinical biomarker and potential therapeutic target for tumor cell. In recent years, researches verified the role of Pim kinase in immunomodulation. The mechanisms by which Pim kinase modulates the immune microenvironment and regulates immune cells, as well as the effects of Pim kinase inhibitors on immunity, have not been systematically described. This review comprehensively focuses on the current research status of Pim kinase pathways and the immune regulation.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| | - Mei Han
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| |
Collapse
|
11
|
Hosseini SM, Gholijani N, Chenari N, Kalantar K. Decreased levels of interleukin 27 in the serum of vitiligo patients. An Bras Dermatol 2020; 95:570-574. [PMID: 32616337 PMCID: PMC7563000 DOI: 10.1016/j.abd.2020.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 02/14/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Vitiligo is a common skin disorder in which melanocytes are destroyed by auto-reactive immune responses. The loss of melanocytes results in the appearance of depigmented areas in different parts of the body. Cytokines have remarkable roles in the pathogenesis of vitiligo, such as IL-1, IL-6, and TNF-α; interleukin 27 (IL-27) is a new member of the IL-6/IL-12 family, mainly released by activated antigen-presenting cells. IL-27 has been suggested to function as a pro-inflammatory as well as an anti-inflammatory cytokine. Altered concentrations of IL-27 have been shown in various auto-immune diseases such as multiple sclerosis, rheumatoid arthritis, and psoriasis. No studies have been conducted to determine the expression of this cytokine in vitiligo patients. OBJECTIVE The objective of this study was to determine the serum concentration of IL-27 in vitiligo patients and compare it with normal individuals. METHODS The serum concentration of IL-27 in 79 vitiligo patients was evaluated in comparison to 45 healthy controls using ELISA assay. RESULTS Results showed decreased concentration of IL-27 in vitiligo patients as compared with healthy subjects (p=0.026). Furthermore, no correlation between IL-27 concentrations and disease parameters such as vitiligo severity and the extension of the depigmented area was observed. STUDY LIMITATION A larger sample size would be more recommended for this study. CONCLUSION The reduction in the serum levels of IL-27 in vitiligo patients compared to normal subjects suggested the possible anti-inflammatory role of this cytokine in vitiligo. Thus, IL-27 may be considered as a new target for the manipulation of the immune system in vitiligo patients.
Collapse
Affiliation(s)
- Saeed Malek Hosseini
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naser Gholijani
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nooshafarin Chenari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Cavé MC, Maillard S, Hildenbrand K, Mamelonet C, Feige MJ, Devergne O. Glycosaminoglycans bind human IL-27 and regulate its activity. Eur J Immunol 2020; 50:1484-1499. [PMID: 32483835 DOI: 10.1002/eji.202048558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
IL-27 is a cytokine of the IL-12 family, composed of EBI3 and IL-27p28. IL-27 regulates immune responses and also other physiological processes including hematopoiesis, angiogenesis, and bone formation. Its receptor, composed of IL-27Rα and gp130, activates the STAT pathway. Here, we show that different glycosaminoglycans (GAGs) modulate human IL-27 activity in vitro. We find that soluble heparin and heparan sulfate efficiently inhibit human IL-27 activity as shown by decreased STAT signaling and downstream biological effects. In contrast, membrane-bound heparan sulfate seems to positively regulate IL-27 activity. Our biochemical studies demonstrate that soluble GAGs directly bind to human IL-27, consistent with in silico analyses, and prevent its binding to IL-27Rα. Although murine IL-27 also bound to GAGs in vitro, its activity was less efficiently inhibited by soluble GAGs. Lastly, we show that two heparin-derivatives, low molecular weight heparin and fondaparinux, that like unfractionated heparin are used in clinics, had weaker or no effect on human IL-27 activity. Together, our data identify GAGs as new players in the regulation of human IL-27 activity that might act under physiological conditions and may also have a clinical impact in heparin-treated patients.
Collapse
Affiliation(s)
- Marie-Charlotte Cavé
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Paris, France
| | - Solène Maillard
- Université Paris Descartes, INSERM, CNRS, Institut Necker Enfants Malades (INEM), Paris, France
| | - Karen Hildenbrand
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Claire Mamelonet
- Université Paris Descartes, INSERM, CNRS, Institut Necker Enfants Malades (INEM), Paris, France
| | - Matthias J Feige
- Department of Chemistry, Technical University of Munich, Garching, Germany.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Paris, France.,Université Paris Descartes, INSERM, CNRS, Institut Necker Enfants Malades (INEM), Paris, France
| |
Collapse
|
13
|
Fink AF, Ciliberti G, Popp R, Sirait-Fischer E, Frank AC, Fleming I, Sekar D, Weigert A, Brüne B. IL27Rα Deficiency Alters Endothelial Cell Function and Subverts Tumor Angiogenesis in Mammary Carcinoma. Front Oncol 2019; 9:1022. [PMID: 31637217 PMCID: PMC6787910 DOI: 10.3389/fonc.2019.01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
IL-27 regulates inflammatory diseases by exerting a pleiotropic impact on immune cells. In cancer, IL-27 restricts tumor growth by acting on tumor cells directly, while its role in the tumor microenvironment is still controversially discussed. To explore IL-27 signaling in the tumor stroma, we used a mammary carcinoma syngraft approach in IL27Rα-deficient mice. Tumor growth in animals lacking IL27Rα was markedly reduced. We noticed a decrease in immune cell infiltrates, enhanced tumor cell death, and fibroblast accumulation. However, most striking changes pertain the tumor vasculature. Tumors in IL27Rα-deficient mice were unable to form functional vessels. Blocking IL-27-STAT1 signaling in endothelial cells in vitro provoked an overshooting migration/sprouting of endothelial cells. Apparently, the lack of the IL-27 receptor caused endothelial cell hyper-activation via STAT1 that limited vessel maturation. Our data reveal a so far unappreciated role of IL-27 in endothelial cells with importance in pathological vessel formation.
Collapse
Affiliation(s)
- Annika F Fink
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Giorgia Ciliberti
- Faculty of Medicine, Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt, Germany
| | - Rüdiger Popp
- Faculty of Medicine, Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt, Germany
| | - Evelyn Sirait-Fischer
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ann-Christin Frank
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ingrid Fleming
- Faculty of Medicine, Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt, Germany
| | - Divya Sekar
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
14
|
Ridgley LA, Anderson AE, Maney NJ, Naamane N, Skelton AJ, Lawson CA, Emery P, Isaacs JD, Carmody RJ, Pratt AG. IL-6 Mediated Transcriptional Programming of Naïve CD4+ T Cells in Early Rheumatoid Arthritis Drives Dysregulated Effector Function. Front Immunol 2019; 10:1535. [PMID: 31333666 PMCID: PMC6618050 DOI: 10.3389/fimmu.2019.01535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022] Open
Abstract
Objective: We have previously shown that increased circulating interleukin-6 (IL-6) results in enhanced CD4+ T cell signaling via signal transduction and activator of transcription-3 (STAT3) in early rheumatoid arthritis (RA). We tested the hypothesis that transcriptional “imprinting” of T-cells by this mechanism skews downstream effector responses, reinforcing immune dysregulation at a critical, but targetable, disease phase. Methods: We modeled naïve CD4+ T cell exposure to pathophysiological concentrations of IL-6 in vitro, assessing the dynamic transcriptional and functional consequences for downstream effector cells utilizing microarray and flow cytometry. Fresh blood from treatment-naïve early arthritis patients was phenotyped in parallel for comparison. Results: T cell sensitivity to IL-6 was most marked in the naïve subset, and related to gp130 rather than IL-6R expression. Exposure of healthy naïve CD4+ T cells to IL-6 induced the same STAT3 target genes as previously seen to discriminate RA patients from disease controls. After TCR stimulation IL-6 pre-exposed cells exhibited enhanced proliferative capacity, activation, and a propensity toward Th1 differentiation, compared to non-exposed cells. An entirely analogous phenotype was observed in early RA compared to control CD4+ T cells. Conclusions: Sustained IL-6 exposure at a critical point in the natural history of RA “primes” the adaptive immune system to respond aberrantly to TCR stimulation, potentiating disease induction with implications for the optimal timing of targeted therapy.
Collapse
Affiliation(s)
- Laura A Ridgley
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy E Anderson
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola J Maney
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Najib Naamane
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew J Skelton
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine A Lawson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,Leeds NIHR Biomedical Research Centre, The Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,Leeds NIHR Biomedical Research Centre, The Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - John D Isaacs
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom.,Directorate of Musculoskeletal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ruaidhrí J Carmody
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Arthur G Pratt
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom.,Directorate of Musculoskeletal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
15
|
Ha YJ, Choi YS, Han DW, Kang EH, Yoo IS, Kim JH, Kang SW, Lee EY, Song YW, Lee YJ. PIM-1 kinase is a novel regulator of proinflammatory cytokine-mediated responses in rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology (Oxford) 2018; 58:154-164. [DOI: 10.1093/rheumatology/key261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- You-Jung Ha
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yong Seok Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Woo Han
- Department of Translational Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Eun Ha Kang
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - In Seol Yoo
- Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| | - Jin Hyun Kim
- Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| | - Seong Wook Kang
- Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| | - Eun Young Lee
- Department of Internal Medicine, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yeong Wook Song
- Department of Internal Medicine, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Translational Medicine, College of Medicine, Seoul National University, Seoul, Korea
- Department of Internal Medicine, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Interleukin-27R Signaling Mediates Early Viral Containment and Impacts Innate and Adaptive Immunity after Chronic Lymphocytic Choriomeningitis Virus Infection. J Virol 2018; 92:JVI.02196-17. [PMID: 29593047 PMCID: PMC5974502 DOI: 10.1128/jvi.02196-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic viral infections represent a major challenge to the host immune response, and a unique network of immunological elements, including cytokines, are required for their containment. By using a model persistent infection with the natural murine pathogen lymphocytic choriomeningitis virus clone 13 (LCMV Cl13) we investigated the role of one such cytokine, interleukin-27 (IL-27), in the control of chronic infection. We found that IL-27 receptor (IL-27R) signaling promoted control of LCMV Cl13 as early as days 1 and 5 after infection and that il27p28 transcripts were rapidly elevated in multiple subsets of dendritic cells (DCs) and myeloid cells. In particular, plasmacytoid DCs (pDCs), the most potent type 1 interferon (IFN-I)-producing cells, significantly increased il27p28 in a Toll-like receptor 7 (TLR7)-dependent fashion. Notably, mice deficient in an IL-27-specific receptor, WSX-1, exhibited a pleiotropy of innate and adaptive immune alterations after chronic lymphocytic choriomeningitis virus (LCMV) infection, including compromised NK cell cytotoxicity and antibody responses. While, the majority of these immune alterations appeared to be cell extrinsic, cell-intrinsic IL-27R was necessary to maintain early pDC numbers, which, alongside lower IFN-I transcription in CD11b+ DCs and myeloid cells, may explain the compromised IFN-I elevation that we observed early after LCMV Cl13 infection in IL-27R-deficient mice. Together, these data highlight the critical role of IL-27 in enabling optimal antiviral immunity early and late after infection with a systemic persistent virus and suggest that a previously unrecognized positive-feedback loop mediated by IL-27 in pDCs might be involved in this process. IMPORTANCE Persistently replicating pathogens, such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus, represent major health problems worldwide. These infections impose a long-term challenge on the host immune system, which must be heavily and continuously regulated to keep pathogen replication in check without causing fatal immunopathology. Using a persistently replicating rodent pathogen, LCMV, in its natural host, we identified the cellular sources and effects of one important regulatory pathway, interleukin-27 receptor WSX-1 signaling, that is required for both very early and late restriction of chronic (but not acute) infection. We found that WSX-1 was necessary to promote innate immunity and the development of aberrant adaptive immune responses. This not only highlights the role of IL-27 receptor signaling in regulating distinct host responses that are known to be necessary to control chronic infections, but also positions IL-27 as a potential therapeutic target for their modulation.
Collapse
|
17
|
IL27 controls skin tumorigenesis via accumulation of ETAR-positive CD11b cells in the pre-malignant skin. Oncotarget 2018; 7:77138-77151. [PMID: 27738312 PMCID: PMC5363575 DOI: 10.18632/oncotarget.12581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/02/2016] [Indexed: 12/13/2022] Open
Abstract
Establishment of a permissive pre-malignant niche in concert with mutant stem are key triggers to initiate skin carcinogenesis. An understudied area of research is finding upstream regulators of both these triggers. IL27, a pleiotropic cytokine with both pro- and anti-inflammatory properties, was found to be a key regulator of both. Two step skin carcinogenesis model and K15-KRASG12D mouse model were used to understand the role of IL27 in skin tumors. CD11b−/− mice and small-molecule of ETAR signaling (ZD4054) inhibitor were used in vivo to understand mechanistically how IL27 promotes skin carcinogenesis. Interestingly, using in vivo studies, IL27 promoted papilloma incidence primarily through IL27 signaling in bone-marrow derived cells. Mechanistically, IL27 initiated the establishment of the pre-malignant niche and expansion of mutated stem cells in K15-KRASG12D mouse model by driving the accumulation of Endothelin A receptor (ETAR)-positive CD11b cells in the skin—a novel category of pro-tumor inflammatory identified in this study. These findings are clinically relevant, as the number of IL27RA-positive cells in the stroma is highly related to tumor de-differentiation in patients with squamous cell carcinomas.
Collapse
|
18
|
Muallem G, Wagage S, Sun Y, DeLong JH, Valenzuela A, Christian DA, Harms Pritchard G, Fang Q, Buza EL, Jain D, Elloso MM, López CB, Hunter CA. IL-27 Limits Type 2 Immunopathology Following Parainfluenza Virus Infection. PLoS Pathog 2017; 13:e1006173. [PMID: 28129374 PMCID: PMC5305264 DOI: 10.1371/journal.ppat.1006173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/13/2017] [Accepted: 01/08/2017] [Indexed: 11/25/2022] Open
Abstract
Respiratory paramyxoviruses are important causes of morbidity and mortality, particularly of infants and the elderly. In humans, a T helper (Th)2-biased immune response to these infections is associated with increased disease severity; however, little is known about the endogenous regulators of these responses that may be manipulated to ameliorate pathology. IL-27, a cytokine that regulates Th2 responses, is produced in the lungs during parainfluenza infection, but its role in disease pathogenesis is unknown. To determine whether IL-27 limits the development of pathogenic Th2 responses during paramyxovirus infection, IL-27-deficient or control mice were infected with the murine parainfluenza virus Sendai virus (SeV). Infected IL-27-deficient mice experienced increased weight loss, more severe lung lesions, and decreased survival compared to controls. IL-27 deficiency led to increased pulmonary eosinophils, alternatively activated macrophages (AAMs), and the emergence of Th2 responses. In control mice, IL-27 induced a population of IFN-γ+/IL-10+ CD4+ T cells that was replaced by IFN-γ+/IL-17+ and IFN-γ+/IL-13+ CD4+ T cells in IL-27-deficient mice. CD4+ T cell depletion in IL-27-deficient mice attenuated weight loss and decreased AAMs. Elimination of STAT6 signaling in IL-27-deficient mice reduced Th2 responses and decreased disease severity. These data indicate that endogenous IL-27 limits pathology during parainfluenza virus infection by regulating the quality of CD4+ T cell responses and therefore may have therapeutic potential in paramyxovirus infections.
Collapse
Affiliation(s)
- Gaia Muallem
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Nephrology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sagie Wagage
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yan Sun
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jonathan H. DeLong
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alex Valenzuela
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David A. Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qun Fang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth L. Buza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Deepika Jain
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - M. Merle Elloso
- Janssen Research & Development, LLC, Immunology Discovery Research, Spring House, Pennsylvania, United States of America
| | - Carolina B. López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
19
|
Zeng Z, Wang K, Li Y, Xia N, Nie S, Lv B, Zhang M, Tu X, Li Q, Tang T, Cheng X. Down-regulation of microRNA-451a facilitates the activation and proliferation of CD4 + T cells by targeting Myc in patients with dilated cardiomyopathy. J Biol Chem 2016; 292:6004-6013. [PMID: 27974462 DOI: 10.1074/jbc.m116.765107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/06/2016] [Indexed: 11/06/2022] Open
Abstract
CD4+ T cells are abnormally activated in patients with dilated cardiomyopathy (DCM) and might be associated with the immunopathogenesis of the disease. However, the underlying mechanisms of CD4+ T cell activation remain largely undefined. Our aim was to investigate whether the dysregulation of microRNAs (miRNAs) was associated with CD4+ T cell activation in DCM. CD4+ T cells from DCM patients showed increased expression levels of CD25 and CD69 and enhanced proliferation in response to anti-CD3/28, indicating an activated state. miRNA profiling analysis of magnetically sorted CD4+ T cells revealed a distinct pattern of miRNA expression in CD4+ T cells from DCM patients compared with controls. The level of miRNA-451a (miR-451a) was significantly decreased in the CD4+ T cells of DCM patients compared with that of the controls. The transfection of T cells with an miR-451a mimic inhibited their activation and proliferation, whereas an miR-451a inhibitor produced the opposite effects. Myc was directly inhibited by miR-451a via interaction with its 3'-UTR, thus identifying it as an miR-451a target in T cells. The knockdown of Myc suppressed the activation and proliferation of T cells, and the expression of Myc was significantly up-regulated at the mRNA level in CD4+ T cells from patients with DCM. A strong inverse correlation was observed between the Myc mRNA expression and miR-451a transcription level. Our data suggest that the down-regulation of miR-451a contributes to the activation and proliferation of CD4+ T cells by targeting the transcription factor Myc in DCM patients and may contribute to the immunopathogenesis of DCM.
Collapse
Affiliation(s)
- Zhipeng Zeng
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Ke Wang
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Yuanyuan Li
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Ni Xia
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Shaofang Nie
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Bingjie Lv
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Min Zhang
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Xin Tu
- the Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qianqian Li
- the Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Tingting Tang
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Xiang Cheng
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| |
Collapse
|
20
|
Naderi S, Hejazi Z, Shajarian M, Alsahebfosoul F, Etemadifar M, Sedaghat N. IL-27 plasma level in relapsing remitting multiple sclerosis subjects: The double-faced cytokine. J Immunoassay Immunochem 2016; 37:659-70. [DOI: 10.1080/15321819.2016.1195746] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Wang X, Wei Y, Xiao H, Liu X, Zhang Y, Han G, Chen G, Hou C, Ma N, Shen B, Li Y, Egwuagu CE, Wang R. A novel IL-23p19/Ebi3 (IL-39) cytokine mediates inflammation in Lupus-like mice. Eur J Immunol 2016; 46:1343-50. [PMID: 27019190 PMCID: PMC11334612 DOI: 10.1002/eji.201546095] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 08/22/2024]
Abstract
Interleukin-12 family cytokines have emerged as critical regulators of immunity with some members (IL-12, IL-23) associated with disease pathogenesis while others (IL-27, IL-35) mitigate autoimmune diseases. Each IL-12 family member is comprised of an α and a β chain, and chain-sharing is a key feature. Although four bona fide members have thus far been described, promiscuous chain-pairing between alpha (IL-23p19, IL-27p28, IL-12/IL-35p35) and beta (IL-12/IL-23p40, IL-27/IL-35Ebi3) subunits, predicts six possible heterodimeric IL-12 family cytokines. Here, we describe a new IL-12 member composed of IL-23p19 and Ebi3 heterodimer (IL-39) that is secreted by LPS-stimulated B cells and GL7(+) activated B cells of lupus-like mice. We further show that IL-39 mediates inflammatory responses through activation of STAT1/STAT3 in lupus-like mice. Taken together, our results show that IL-39 might contribute to immunopathogenic mechanisms of systemic lupus erythematosus, and could be used as a possible target for its treatment.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yinxiang Wei
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - He Xiao
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoling Liu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
- Department of Nephrology, The 307 Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Yu Zhang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
- College of Pharmacy, Henan University, Kaifeng, China
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Guojiang Chen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Ning Ma
- Department of Rheumatology, First hospital of Jilin University, Changchun, China
| | - Beifen Shen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yan Li
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Charles E. Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Sénécal V, Deblois G, Beauseigle D, Schneider R, Brandenburg J, Newcombe J, Moore CS, Prat A, Antel J, Arbour N. Production of IL-27 in multiple sclerosis lesions by astrocytes and myeloid cells: Modulation of local immune responses. Glia 2015; 64:553-69. [PMID: 26649511 DOI: 10.1002/glia.22948] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023]
Abstract
The mechanisms whereby human glial cells modulate local immune responses are not fully understood. Interleukin-27 (IL-27), a pleiotropic cytokine, has been shown to dampen the severity of experimental autoimmune encephalomyelitis, but it is still unresolved whether IL-27 plays a role in the human disease multiple sclerosis (MS). IL-27 contribution to local modulation of immune responses in the brain of MS patients was investigated. The expression of IL-27 subunits (EBI3 and p28) and its cognate receptor IL-27R (the gp130 and TCCR chains) was elevated within post-mortem MS brain lesions compared with normal control brains. Moreover, astrocytes (GFAP(+) cells) as well as microglia and macrophages (Iba1(+) cells) were important sources of IL-27. Brain-infiltrating CD4 and CD8 T lymphocytes expressed the IL-27R specific chain (TCCR) implying that these cells could respond to local IL-27 sources. In primary cultures of human astrocytes inflammatory cytokines increased IL-27 production, whereas myeloid cell inflammatory M1 polarization and inflammatory cytokines enhanced IL-27 expression in microglia and macrophages. Astrocytes in postmortem tissues and in vitro expressed IL-27R. Moreover, IL-27 triggered the phosphorylation of the transcription regulator STAT1, but not STAT3 in human astrocytes; indeed IL-27 up-regulated MHC class I expression on astrocytes in a STAT1-dependent manner. These findings demonstrated that IL-27 and its receptor were elevated in MS lesions and that local IL-27 can modulate immune properties of astrocytes and infiltrating immune cells. Thus, therapeutic strategies targeting IL-27 may influence not only peripheral but also local inflammatory responses within the brain of MS patients.
Collapse
Affiliation(s)
- Vincent Sénécal
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Gabrielle Deblois
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Diane Beauseigle
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Raphael Schneider
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jonas Brandenburg
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jia Newcombe
- NeuroResource, UCL Institute of Neurology, University College London, London, WC1N 1PJ, England
| | - Craig S Moore
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Alexandre Prat
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Nathalie Arbour
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| |
Collapse
|
23
|
Aparicio-Siegmund S, Garbers C. The biology of interleukin-27 reveals unique pro- and anti-inflammatory functions in immunity. Cytokine Growth Factor Rev 2015. [PMID: 26195434 DOI: 10.1016/j.cytogfr.2015.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin (IL)-27 is a multifaceted heterodimeric cytokine with pronounced pro- and anti-inflammatory as well as immunoregulatory functions. It consists of the two subunits p28/IL-30 and Epstein Bar virus-induced protein 3 (EBI3). EBI3 functions as a soluble α-receptor, and IL-27 can therefore directly activate its target cells through a heterodimer of glycoprotein 130 (gp130) and WSX-1. Being a heterodimeric cytokine that signals through gp130, IL-27 is either grouped into the IL-6 or the IL-12 family of cytokines. Originally identified as an IL-12-like cytokine that induces proliferation of CD4+ T cells and production of IFN-γ more than ten years ago, subsequent research revealed a much broader role of IL-27 in inflammation, cancer development and regulation and differentiation of immune cells. In this review, we summarize the current biochemical and molecular knowledge about the signal transduction of IL-27. Based on this, we highlight functional overlaps and plasticity with other cytokines and cytokine receptors of the IL-6/IL-12 superfamily, and describe the important role of IL-27 with regard to the differentiation of T cells, infections and cancer development. We further discuss IL-27 as a therapeutic target and how specific blockade of this cytokine could be achieved.
Collapse
Affiliation(s)
| | - Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel 24098, Germany.
| |
Collapse
|
24
|
Affiliation(s)
- Hiroki Yoshida
- Department of Biomolecular Sciences, Division of Molecular and Cellular Immunoscience, Saga University Faculty of Medicine, Saga 849-8501, Japan;
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4539;
| |
Collapse
|
25
|
Ziblat A, Domaica CI, Spallanzani RG, Iraolagoitia XLR, Rossi LE, Avila DE, Torres NI, Fuertes MB, Zwirner NW. IL-27 stimulates human NK-cell effector functions and primes NK cells for IL-18 responsiveness. Eur J Immunol 2014; 45:192-202. [PMID: 25308526 DOI: 10.1002/eji.201444699] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/10/2014] [Accepted: 10/06/2014] [Indexed: 12/27/2022]
Abstract
IL-27, a member of the IL-12 family of cytokines, is produced by APCs, and displays pro- and anti-inflammatory effects. How IL-27 affects human NK cells still remains unknown. In this study, we observed that mature DCs secreted IL-27 and that blockade of IL-27R (CD130) reduced the amount of IFN-γ produced by NK cells during their coculture, showing the importance of IL-27 during DC-NK-cell crosstalk. Accordingly, human rIL-27 stimulated IFN-γ secretion by NK cells in a STAT1-dependent manner, induced upregulation of CD25 and CD69 on NK cells, and displayed a synergistic effect with IL-18. Preincubation experiments demonstrated that IL-27 primed NK cells for IL-18-induced IFN-γ secretion, which was associated with an IL-27-driven upregulation of T-bet expression. Also, IL-27 triggered NKp46-dependent NK-cell-mediated cytotoxicity against Raji, T-47D, and HCT116 cells, and IL-18 enhanced this cytotoxic response. Such NK-cell-mediated cytotoxicity involved upregulation of perforin, granule exocytosis, and TRAIL-mediated cytotoxicity but not Fas-FasL interaction. Moreover, IL-27 also potentiated Ab-dependent cell-mediated cytotoxicity against mAb-coated target cells. Taken together, IL-27 stimulates NK-cell effector functions, which might be relevant in different physiological and pathological situations.
Collapse
Affiliation(s)
- Andrea Ziblat
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dietrich C, Candon S, Ruemmele FM, Devergne O. A soluble form of IL-27Rα is a natural IL-27 antagonist. THE JOURNAL OF IMMUNOLOGY 2014; 192:5382-9. [PMID: 24771852 DOI: 10.4049/jimmunol.1303435] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-27 is a cytokine of the IL-12 family that plays a key role in the regulation of inflammatory and T cell responses. Its receptor is composed of IL-27Rα and gp130 and activates the STAT pathway. We show in this study, using an ELISA that we developed, that a naturally occurring soluble form of IL-27Rα (sIL-27Rα) is produced by human activated CD4(+) and CD8(+) T cells, B cells, myeloid cells, and various cell lines. sIL-27Rα is present at a mean concentration of 10,344 ± 1,274 pg/ml in the sera from healthy individuals. Biochemical studies showed that sIL-27Rα is released as two N-glycosylated variants of ∼ 90 and ∼ 70 kDa. In IL-27Rα-transfected COS7 cells, primary cells, and cell lines, production of sIL-27Rα is inhibited by the metalloprotease inhibitors GM6001 and TAPI-0. Importantly, natural sIL-27Rα binds rIL-27, inhibits IL-27 binding to its cell surface receptor, and is a potent inhibitor of IL-27 signaling, as shown by its ability to specifically block IL-27-mediated STAT activation, at low molar excess over IL-27. Also, we found that serum levels of sIL-27Rα were elevated in patients with Crohn's disease, a Th1-mediated disease. These findings suggest that sIL-27Rα may play important immunoregulatory functions under normal and pathological conditions.
Collapse
Affiliation(s)
- Céline Dietrich
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8147, Université Paris Descartes, Sorbonne Paris Cité, 75 015 Paris, France; Institut Necker Enfants Malades, INSERM U1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, 75 015 Paris, France
| | - Sophie Candon
- Institut Necker Enfants Malades, INSERM U1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, 75 015 Paris, France; INSERM U1013, Université Paris Descartes, Sorbonne Paris Cité, 75 015 Paris, France; and
| | - Frank M Ruemmele
- Service de Gastroentérologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, 75 015 Paris, France
| | - Odile Devergne
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8147, Université Paris Descartes, Sorbonne Paris Cité, 75 015 Paris, France; Institut Necker Enfants Malades, INSERM U1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, 75 015 Paris, France;
| |
Collapse
|
27
|
Distinctive cytokine, chemokine, and antibody responses in Echinococcus multilocularis-infected patients with cured, stable, or progressive disease. Med Microbiol Immunol 2014; 203:185-93. [PMID: 24509604 DOI: 10.1007/s00430-014-0331-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/31/2014] [Indexed: 01/01/2023]
Abstract
Metacestode larvae of the tapeworm Echinococcus multilocularis can cause alveolar echinococcosis (AE), a severe parasitic disease in man, which, if it remains untreated, may cause organ failure and death. Spontaneous and parasite antigen-induced cellular responses were studied in patients with cured, stable, and progressive AE to differentiate the response profiles between the distinct states of infection. Antibody reactivity was evaluated in AE patients with cured, stable, and progressive disease. The spontaneous cellular release of pro-inflammatory IL-31 and IL-33 was clearly depressed in all AE patients, while regulatory IL-27, anti-inflammatory SDF-1/CXCL12, and eosinophil granulocyte attracting Eotaxin-1, Eotaxin-2, and Eotaxin-3 (CCL11, CCL24, CCL26) were enhanced with disease progression. Such distinctive response profiles could be applied for monitoring of AE disease progression or regression. E. multilocularis metacestode (Em) antigens (entire metacestode EmAg as well as EmVesicles) stimulated in vitro IL-31, IL-33, Eotaxin-1, Eotaxin-3, and CXCL12 cytokine and chemokine responses, which were similarly present in all AE patient groups, while regulatory IL-27 was suppressed and pro-inflammatory Eotaxin-2 was enhanced. E. multilocularis metacestode-specific IgG1, IgG3, and IgE responses progressively diminished with regression from active to stable and cured AE. IgG2 and IgG4 reactivity remained similarly high in stable and progressive cases, and lessened only with cured AE. Antibody reactivity against E. multilocularis vesicle antigen distinctively separated between cured, stable, or progressive AE, with the exception of IgG4. In sum, the combined and longitudinal study of several cytokines and chemokines, together with the evaluation of E. multilocularis vesicle-specific antibody responses, should provide a better understanding of the immune response during progression and regression of AE, and may help to improve the staging of AE patients.
Collapse
|
28
|
Cao Y, Zhang R, Zhang W, Zhu C, Yu Y, Song Y, Wang Q, Bai L, Liu Y, Wu K, Wu J. IL-27, a cytokine, and IFN-λ1, a type III IFN, are coordinated to regulate virus replication through type I IFN. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:691-703. [PMID: 24337382 DOI: 10.4049/jimmunol.1300252] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-27, a member of the IL-12 family, plays a critical role in the control of innate and adaptive immune responses. IFN-λ1, a member of the type III IFN family, shows antiviral abilities. In this study, we investigated the effects of IL-27 and IFN-λ1 on the replication of hepatitis B virus (HBV), a major pathogen associated with a high risk for cirrhosis, liver failure, and hepatocellular carcinoma. We revealed that HBV infection activates IL-27 expression and IFN-λ1 production and demonstrated that viral-activated IL-27 and IFN-λ1 are coordinated to inhibit HBV replication. Initially, HBV infection upregulates IL-27 expression, which, in turn, stimulates IFN-λ1 production through regulating ERK1/2 signaling and by enhancing NF-κB nuclear translocation to bind to the IFN-λ1 promoter. Moreover, IL-27-activated IFN-λ1 upregulates IFN-λ1 receptor (IL-28R1 and IL-10Rβ) activity, resulting in the activation of the STAT1/2 pathway, which, in turn, induces the expression of IFN-stimulated genes, including IFN-inducible dsRNA-activated protein kinase, oligoadenylate synthetase 1, and IFN-induced GTP-binding protein 1 and, finally, inhibits HBV protein expression and viral capsid-associated DNA replication. More interestingly, we also revealed that type I IFN (IFN-α) is also involved in the downregulation of HBV replication mediated by IL-27. Thus, we identified a previously unknown mechanism by which IL-27 and IFN-λ1 are coordinated to regulate virus replication through type I IFN.
Collapse
MESH Headings
- Cell Line, Tumor
- Dendritic Cells/metabolism
- Down-Regulation/genetics
- Female
- Hep G2 Cells
- Hepatitis B virus/genetics
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/metabolism
- Hepatitis B, Chronic/virology
- Hepatocytes/metabolism
- Humans
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/metabolism
- Interferon-alpha/genetics
- Interferon-alpha/metabolism
- Interferons
- Interleukins/genetics
- Interleukins/metabolism
- MAP Kinase Signaling System/genetics
- Male
- Middle Aged
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Promoter Regions, Genetic/genetics
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Receptors, Interferon
- Receptors, Interleukin-10/genetics
- Receptors, Interleukin-10/metabolism
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- STAT2 Transcription Factor/genetics
- STAT2 Transcription Factor/metabolism
- Up-Regulation/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Yanhua Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
It has been more than 15 years since the identification of individual interleukin-27 (IL-27) and IL-27 receptor components. The last decade has seen the description of the signaling pathways engaged by IL-27, and an appreciation has emerged that this cytokine can modulate the intensity and duration of many classes of T cell responses. Here we provide an overview of the immunobiology of IL-27 and review advances in understanding the functions of individual IL-27 and IL-27 receptor subunits and the role of IL-27 in dictating the balance between protective and pathological immunity. Additionally, this cytokine has been proposed as a therapy to modify inflammatory conditions or to promote antitumor responses, and situations where experimental and clinical data sets implicate IL-27 in the outcome of disease are highlighted.
Collapse
|
30
|
Collison LW, Delgoffe GM, Guy CS, Vignali KM, Chaturvedi V, Fairweather D, Satoskar AR, Garcia KC, Hunter CA, Drake CG, Murray PJ, Vignali DAA. The composition and signaling of the IL-35 receptor are unconventional. Nat Immunol 2012; 13:290-9. [PMID: 22306691 PMCID: PMC3529151 DOI: 10.1038/ni.2227] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 12/28/2011] [Indexed: 12/13/2022]
Abstract
Interleukin 35 (IL-35) belongs to the IL-12 family of heterodimeric cytokines but has a distinct functional profile. IL-35 suppresses T cell proliferation and converts naive T cells into IL-35-producing induced regulatory T cells (iTr35 cells). Here we found that IL-35 signaled through a unique heterodimer of receptor chains IL-12Rβ2 and gp130 or homodimers of each chain. Conventional T cells were sensitive to IL-35-mediated suppression in the absence of one receptor chain but not both receptor chains, whereas signaling through both chains was required for IL-35 expression and conversion into iTr35 cells. Signaling through the IL-35 receptor required the transcription factors STAT1 and STAT4, which formed a unique heterodimer that bound to distinct sites in the promoters of the genes encoding the IL-12 subunits p35 and Ebi3. This unconventional mode of signaling, distinct from that of other members of the IL-12 family, may broaden the spectrum and specificity of IL-35-mediated suppression.
Collapse
MESH Headings
- Animals
- Cytokine Receptor gp130/immunology
- Interleukins/immunology
- Mice
- Mice, Knockout
- Models, Molecular
- Protein Multimerization
- Protein Structure, Quaternary
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/deficiency
- Receptors, Interleukin/immunology
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-1/chemistry
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/immunology
- Receptors, Interleukin-1/metabolism
- Receptors, Interleukin-12/immunology
- STAT1 Transcription Factor/immunology
- STAT4 Transcription Factor/immunology
- Signal Transduction
Collapse
Affiliation(s)
- Lauren W Collison
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Like many cytokines, IL-27 has pleiotropic properties that can limit or enhance ongoing immune responses depending on context. Thus, under certain circumstances, IL-27 can promote TH1 differentiation and has been linked to the activation of CD8(+) T cells and enhanced humoral responses. However, IL-27 also has potent inhibitory properties and mice that lack IL-27 mediated signaling develop exaggerated inflammatory responses in the context of infection or autoimmunity. This chapter reviews in depth the biology of IL-27, including the initial discovery, characterization, and signaling mediated by IL-27 as well as more recent insights into the molecular and cellular basis for its pleiotropic effects. Many of these advances are relevant to human diseases and highlight the potential of therapies that harness the regulatory properties of IL-27.
Collapse
Affiliation(s)
- Aisling O'Hara Hall
- Department of Pathobiology, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|