1
|
Byun JH, Lebeau PF, Trink J, Uppal N, Lanktree MB, Krepinsky JC, Austin RC. Endoplasmic reticulum stress as a driver and therapeutic target for kidney disease. Nat Rev Nephrol 2025; 21:299-313. [PMID: 39988577 DOI: 10.1038/s41581-025-00938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
The endoplasmic reticulum (ER) has crucial roles in metabolically active cells, including protein translation, protein folding and quality control, lipid biosynthesis, and calcium homeostasis. Adverse metabolic conditions or pathogenic genetic variants that cause misfolding and accumulation of proteins within the ER of kidney cells initiate an injurious process known as ER stress that contributes to kidney disease and its cardiovascular complications. Initiation of ER stress activates the unfolded protein response (UPR), a cellular defence mechanism that functions to restore ER homeostasis. However, severe or chronic ER stress rewires the UPR to activate deleterious pathways that exacerbate inflammation, apoptosis and fibrosis, resulting in kidney injury. This insidious crosstalk between ER stress, UPR activation, oxidative stress and inflammation forms a vicious cycle that drives kidney disease and vascular damage. Furthermore, genetic variants that disrupt protein-folding mechanisms trigger ER stress, as evidenced in autosomal-dominant tubulointerstitial kidney disease and Fabry disease. Emerging therapeutic strategies that enhance protein-folding capacity and reduce the burden of ER stress have shown promising results in kidney diseases. Thus, integrating knowledge of how genetic variants cause protein misfolding and ER stress into clinical practice will enhance treatment strategies and potentially improve outcomes for various kidney diseases and their vascular complications.
Collapse
Affiliation(s)
- Jae Hyun Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Paul F Lebeau
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Jackie Trink
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Nikhil Uppal
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Matthew B Lanktree
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Liu Z, Ha DP, Lin LL, Qi L, Lee AS. Requirements for nuclear GRP78 transcriptional regulatory activities and interaction with nuclear GRP94. J Biol Chem 2025; 301:108369. [PMID: 40024475 PMCID: PMC11997380 DOI: 10.1016/j.jbc.2025.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
GRP78, a molecular chaperone primarily located in the endoplasmic reticulum (ER), has recently been discovered to translocate into the nucleus of stressed and cancer cells where it assumes a new function reprogramming the transcriptome. This study explores the requirements of GRP78 nuclear translocation and its transcriptional activity and investigates the role of ER-associated degradation in the process. We show that the ER-processed, mature form of GRP78 is the major form of nuclear GRP78 and is the form with transcriptional regulatory activity. In contrast, exogenously expressed GRP78 designed to lack its ER signal peptide, thus preventing it from entering the ER or undergoing any ER-related processing/modification, while able to enter the nucleus, lacks transcriptional regulatory activity toward E-Box containing target genes. Additionally, the ATP-binding and substrate-binding activities of GRP78 are critical for this transcriptional regulatory function. We further discover that GRP94, an ER chaperone that acts in concert with GRP78 on protein folding, can translocate to the nucleus and colocalize with nuclear GRP78 upon ER stress. These findings suggest that some form of ER processing of GRP78, in addition to cleavage of the ER signal peptide, is critical for its nuclear activity and that in stressed cells, ER chaperones may assume new functions in the nucleus yet to be explored.
Collapse
Affiliation(s)
- Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Liangguang Leo Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
3
|
Motaung B, Snyders C, Malherbe S, Gutschmidt A, van Rensburg I, Loxton AG. Exogenous binding immunoglobulin protein (BiP) enhance immune regulatory phenotype in ex-vivo Mtb infected PBMCs stratified based on QuantiFERON response. Cytokine 2025; 186:156832. [PMID: 39671882 DOI: 10.1016/j.cyto.2024.156832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Even though anti-tuberculosis (TB) treatment is readily available, Mycobacterium tuberculosis (Mtb) infection continues to be a global threat with a high death rate recorded from a single infectious agent. This highlights the significance of developing new strategies to curb the growing Mtb infection cases. Host-directed therapies (HDT) offer a promising approach that includes both drug discovery and drug repurposing, aimed at identifying host targets and promoting immune cell populations that can lead to better infection outcomes. In this context, we investigated the potential of exogenous Binding Immunoglobulin Protein (BiP) to induce such changes ex-vivo using PBMCs from healthy (QFN-) and Mtb exposed (QFN+) individuals. We analysed cell surface expression and cytokine profiles across eight different stimulation conditions including human full-length BiP protein (20 μg/ml), TLR-9a (0.5 μM), BiP/TLR-9a combination, isoniazid (1 μM), H37Rv (MOI: 1: 10), and pooled bronchoalveolar lavage (BAL) samples collected at TB diagnosis (TBdx) and at month 6 (M6) of anti-TB treatment. Our results revealed that BiP-stimulated PBMCs showed a significant reduction of interleukin (IL)-10 secretion, along with increased IL-4, IL-5, IL-13, and soluble Fas-L (sFasL) secretion. We also observed that BiP stimulation enhanced the expression of membrane bound Fas-L (CD178) and IL5Ra (CD125) in B-cells isolated from both QFN- and QFN+ groups. Additionally, BiP exhibited a synergistic effect with TLR-9a, further boosting this co-expression. Moreover, we observed that BiP induced IL5Ra expression in both CD3+CD5lo and CD3+CD5hi T-cell populations. This study explores the effects of exogenous BiP on cell functionality and provides valuable insights into its potential to modulate host cell responses, which could be explored as a host-directed therapy for TB in the future.
Collapse
Affiliation(s)
- Bongani Motaung
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice Snyders
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus Malherbe
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andrea Gutschmidt
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ilana van Rensburg
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G Loxton
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
4
|
Bhamidipati P, Nagaraju GP, Malla R. Immunoglobulin-binding protein and Toll-like receptors in immune landscape of breast cancer. Life Sci 2024; 358:123196. [PMID: 39481836 DOI: 10.1016/j.lfs.2024.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Breast cancer (BC) is a complex disease exhibiting significant heterogeneity and encompassing various molecular subtypes. Among these, triple-negative breast cancer (TNBC) stands out as one of the most challenging types, characterized by its aggressive nature and poor prognosis. This review embarks on a comprehensive exploration of the immune landscape of BC, with a primary focus on the functional and structural characterization of immunoglobulin-binding protein (BiP) and its pivotal role in regulating the unfolded response (UPR) pathway of proteins. Moreover, we unravel the multifaceted functions of BiP in BC, with a special emphasis on the involvement of cell surface BiP in TNBC metastasis, drug resistance, and its contribution to the formation of the tumor microenvironment (TME). We also provide mechanistic insights into how ER-resident BiP mediates the sensitization of drug-resistant BC to different treatment strategies, thereby offering promising avenues for therapeutic intervention. We also delve into the role of Toll-like receptors (TLRs), shedding light on their diverse expression patterns across BC and their influence on modulating the tumor immune response. Understanding the interplay between BiP, TLRs, and the immune response, especially in TNBC, opens avenues for novel immunotherapies. Future research should focus on developing targeted therapies that activate ER-resident BiP or inhibit cell surface BiP, and modulate TLR signaling. Moreover, exploring BiP as a biomarker for TNBC diagnosis, prognosis, and treatment response will be crucial for personalized medicine.
Collapse
Affiliation(s)
- Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - RamaRao Malla
- Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India.
| |
Collapse
|
5
|
Harada N, Yoshikatsu A, Yamamoto H, Nakaya Y. 2-Deoxy-D-Glucose Downregulates Fatty Acid Synthase Gene Expression Via an Endoplasmic Reticulum Stress-Dependent Pathway in HeLa Cells. Cell Biochem Biophys 2024; 82:2285-2296. [PMID: 38824236 DOI: 10.1007/s12013-024-01339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Fatty acid synthase (FASN) catalyzes the rate-limiting step of cellular lipogenesis. FASN expression is upregulated in various types of cancer cells, implying that FASN is a potential target for cancer therapy. 2-Deoxy-D-glucose (2-DG) specifically targets cancer cells by inhibiting glycolysis and glucose metabolism, resulting in multiple anticancer effects. However, whether the effects of 2-DG involve lipogenic metabolism remains to be elucidated. We investigated the effect of 2-DG administration on FASN expression in HeLa human cervical cancer cells. 2-DG treatment for 24 h decreased FASN mRNA and protein levels and suppressed the activity of an exogenous rat Fasn promoter. The use of a chemical activator or inhibitors or of a mammalian expression plasmid showed that neither AMPK nor the Sp1 transcription factor is responsible for the inhibitory effect of 2-DG on FASN expression. Administration of thapsigargin, an endoplasmic reticulum (ER) stress inducer, or 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), a site 1 protease inhibitor, mimicked the inhibitory effect of 2-DG on FASN expression. 2-DG did not further decrease FASN expression in the presence of thapsigargin or AEBSF. Site 1 protease mediates activation of ATF6, an ER stress mediator, as well as sterol regulatory element-binding protein 1 (SREBP1), a robust transcription factor for FASN. Administration of 2-DG or thapsigargin for 24 h suppressed activation of ATF6 and SREBP1, as did AEBSF. We speculated that these effects of 2-DG or thapsigargin are due to feedback inhibition via increased GRP78 expression following ER stress. Supporting this, exogenous overexpression of GRP78 in HeLa cells suppressed SREBP1 activation and Fasn promoter activity. These results suggest that 2-DG suppresses FASN expression via an ER stress-dependent pathway, providing new insight into the molecular basis of FASN regulation in cancer.
Collapse
Affiliation(s)
- Nagakatsu Harada
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, 151 Nishihayashigi, Izumo city, 693-8550, Shimane, Japan.
| | - Aya Yoshikatsu
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima city, 770-8503, Tokushima, Japan
| | - Hironori Yamamoto
- Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, 3-1-1 Ohde-cho, Echizen city, 915-8568, Fukui, Japan
| | - Yutaka Nakaya
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima city, 770-8503, Tokushima, Japan
| |
Collapse
|
6
|
Zheng L, Wang H, Zhou J, Shi G, Ma J, Jiang Y, Dong Z, Li J, He YQ, Wu D, Sun J, Xu C, Li Z, Wang J. Off-the-shelf CAR-NK cells targeting immunogenic cell death marker ERp57 execute robust antitumor activity and have a synergistic effect with ICD inducer oxaliplatin. J Immunother Cancer 2024; 12:e008888. [PMID: 38964787 PMCID: PMC11227840 DOI: 10.1136/jitc-2024-008888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor natural killer (CAR-NK) therapy holds great promise for treating hematologic tumors, but its efficacy in solid tumors is limited owing to the lack of suitable targets and poor infiltration of engineered NK cells. Here, we explore whether immunogenic cell death (ICD) marker ERp57 translocated from endoplasmic reticulum to cell surface after drug treatment could be used as a target for CAR-NK therapy. METHODS To target ERp57, a VHH phage display library was used for screening ERp57-targeted nanobodies (Nbs). A candidate Nb with high binding affinity to both human and mouse ERp57 was used for constructing CAR-NK cells. Various in vitro and in vivo studies were performed to assess the antitumor efficacy of the constructed CAR-NK cells. RESULTS We demonstrate that the translocation of ERp57 can not only be induced by low-dose oxaliplatin (OXP) treatment but also is spontaneously expressed on the surface of various types of tumor cell lines. Our results show that G6-CAR-NK92 cells can effectively kill various tumor cell lines in vitro on which ERp57 is induced or intrinsically expressed, and also exhibit potent antitumor effects in cancer cell-derived xenograft and patient-derived xenograft mouse models. Additionally, the antitumor activity of G6-CAR-NK92 cells is synergistically enhanced by the low-dose ICD-inducible drug OXP. CONCLUSION Collectively, our findings suggest that ERp57 can be leveraged as a new tumor antigen for CAR-NK targeting, and the resultant CAR-NK cells have the potential to be applied as a broad-spectrum immune cell therapy for various cancers by combining with ICD inducer drugs.
Collapse
Affiliation(s)
- Liuhai Zheng
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Huifang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Jihao Zhou
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- Department of Hematology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Guangwei Shi
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Guangzhou, Guangdong, China
| | - Jingbo Ma
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Yuke Jiang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Zhiyu Dong
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Jiexuan Li
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Yuan-Qiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of New Drug Evaluation and Transformation of Jiangxi Province Nanchang Royo Biotech Co,. Ltd, Nanchang, Jiangxi, China
| | - Dinglan Wu
- Shenzhen Key Laboratory of Viral Oncology, Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Jichao Sun
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Chengchao Xu
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhijie Li
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
| | - Jigang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan, China
| |
Collapse
|
7
|
Johnson N, Pattinson C, Burgoyne K, Hijazi K, Houssen WE, Milne BF. SARS-CoV-2 Spike Protein-Derived Cyclic Peptides as Modulators of Spike Interaction with GRP78. Chembiochem 2024; 25:e202300789. [PMID: 38613462 PMCID: PMC11497264 DOI: 10.1002/cbic.202300789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
The human glucose-regulated protein GRP78 is a human chaperone that translocactes to the cell surface when cells are under stress. Theoretical studies suggested it could be involved in SARS-CoV-2 virus entry to cells. In this work, we used in vitro surface plasmon resonance-based assays to show that human GRP78 indeed binds to SARS-CoV-2 spike protein. We have designed and synthesised cyclic peptides based on the loop structure of amino acids 480-488 of the SARS-CoV-2 spike protein S1 domain from the Wuhan and Omicron variants and showed that both peptides bind to GRP78. Consistent with the greater infectiousness of the Omicron variant, the Omicron-derived peptide displays slower dissociation from the target protein. Both peptides significantly inhibit the binding of wild-type S1 protein to the human protein GRP78 suggesting that further development of these cyclic peptide motifs may provide a viable route to novel anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Nicholas Johnson
- Institute of Medical SciencesUniversity of AberdeenAshgrove Road WestAberdeenAB25 2ZDUK
| | - Craig Pattinson
- School of MedicineMedical Sciences and NutritionUniversity of AberdeenAberdeenAB25 2ZDUK
| | - Kate Burgoyne
- School of MedicineMedical Sciences and NutritionUniversity of AberdeenAberdeenAB25 2ZDUK
| | - Karolin Hijazi
- School of MedicineMedical Sciences and NutritionUniversity of AberdeenAberdeenAB25 2ZDUK
| | - Wael E. Houssen
- Institute of Medical SciencesUniversity of AberdeenAshgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenMeston WalkAberdeenAB24 3UEUK
| | - Bruce F. Milne
- Department of ChemistryUniversity of AberdeenMeston WalkAberdeenAB24 3UEUK
- CFisUCDepartment of PhysicsUniversity of CoimbraRua Larga3004-516CoimbraPortugal
| |
Collapse
|
8
|
Sornjai W, Promma P, Priewkhiew S, Ramphan S, Jaratsittisin J, Jinagool P, Wikan N, Greenwood M, Murphy D, Smith DR. The interaction of GRP78 and Zika virus E and NS1 proteins occurs in a chaperone-client manner. Sci Rep 2024; 14:10407. [PMID: 38710792 PMCID: PMC11074156 DOI: 10.1038/s41598-024-61195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Glucose regulated protein 78 (GRP78) is a chaperone protein that is a central mediator of the unfolded protein response, a key cellular stress response pathway. GRP78 has been shown to be critically required for infection and replication of a number of flaviviruses, and to interact with both non-structural (NS) and structural flavivirus proteins. However, the nature of the specific interaction between GRP78 and viral proteins remains largely unknown. This study aimed to characterize the binding domain and critical amino acid residues that mediate the interaction of GRP78 to ZIKV E and NS1 proteins. Recombinant EGFP fused GRP78 and individual subdomains (the nucleotide binding domain (NBD) and the substrate binding domain (SBD)) were used as a bait protein and co-expressed with full length or truncated ZIKV E and NS1 proteins in HEK293T/17 cells. Protein-protein interactions were determined by a co-immunoprecipitation assay. From the results, both the NBD and the SBD of GRP78 were crucial for an effective interaction. Single amino acid substitutions in the SBD showed that R492E and T518A mutants significantly reduced the binding affinity of GRP78 to ZIKV E and NS1 proteins. Notably, the interaction of GRP78 with ZIKV E was stably maintained against various single amino acid substitutions on ZIKV E domain III and with all truncated ZIKV E and NS1 proteins. Collectively, the results suggest that the principal binding between GRP78 and viral proteins is mainly a classic canonical chaperone protein-client interaction. The blocking of GRP78 chaperone function effectively inhibited ZIKV infection and replication in neuronal progenitor cells. Our findings reveal that GRP78 is a potential host target for anti-ZIKV therapeutics.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Ploenphit Promma
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suphansa Priewkhiew
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suwipa Ramphan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Janejira Jaratsittisin
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pailin Jinagool
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nitwara Wikan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Michael Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
9
|
Angelini G, Russo S, Mingrone G. Intestinal heat shock proteins in metabolic syndrome: Novel mediators of obesity and its comorbidities resolution after metabolic surgery. Cell Stress Chaperones 2024; 29:217-226. [PMID: 38412940 PMCID: PMC10939036 DOI: 10.1016/j.cstres.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. Metabolic surgery has proven to be highly effective in treating obesity, leading to significant improvements or complete resolution of obesity-related comorbidities. Research conducted in both animals and humans suggests that the metabolic benefits achieved through metabolic surgery cannot be solely attributed to weight loss. Indeed, there has been an increasing recognition of intestinal inflammation as a novel factor influencing obesity. The gastrointestinal tract is continuously exposed to dietary components, particularly diets rich in saturated fats, which are known to contribute to obesity. It is now widely accepted that heat shock proteins can be released from various cells including intestinal epithelial cells and act as proinflammatory signals. Several studies have shown that circulating levels of glucose-regulated protein 78 (GRP78) are increased in subjects with obesity and correlate with the severity of the disease. Moreover, mice with a partial knockout of GRP78 are protected from diet-induced obesity. In this review, we discuss the role of GRP78 in the development of obesity. Several evidence suggests that GRP78 can influence adipogenesis, lipid droplets stabilization, insulin resistance, and liver steatosis. We also provide an update on GRP78 regulation following metabolic surgery, focusing on the bypass of the small intestine as a key factor for GRP78 secretion. Finally, we discuss the potential role of monoclonal antibodies against GRP78 as a treatment for obesity.
Collapse
Affiliation(s)
- Giulia Angelini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Sara Russo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Jia J, Zhu L, Yue X, Tang S, Jing S, Tan C, Du Y, Gao J, Lee I, Qian Y. Crosstalk between KDEL receptor and EGF receptor mediates cell proliferation and migration via STAT3 signaling. Cell Commun Signal 2024; 22:140. [PMID: 38378560 PMCID: PMC10880305 DOI: 10.1186/s12964-024-01517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Hostile microenvironment of cancer cells provoke a stressful condition for endoplasmic reticulum (ER) and stimulate the expression and secretion of ER chaperones, leading to tumorigenic effects. However, the molecular mechanism underlying these effects is largely unknown. In this study, we reveal that the last four residues of ER chaperones, which are recognized by KDEL receptor (KDELR), is required for cell proliferation and migration induced by secreted chaperones. By combining proximity-based mass spectrometry analysis, split venus imaging and membrane yeast two hybrid assay, we present that EGF receptor (EGFR) may be a co-receptor for KDELR on the surface. Prior to ligand addition, KDELR spontaneously oligomerizes and constantly undergoes recycling near the plasma membrane. Upon KDEL ligand binding, the interactions of KDELR with itself and with EGFR increase rapidly, leading to augmented internalization of KDELR and tyrosine phosphorylation in the C-terminus of EGFR. STAT3, which binds the phosphorylated tyrosine motif on EGFR, is subsequently activated by EGFR and mediates cell growth and migration. Taken together, our results suggest that KDELR serves as a bona fide cell surface receptor for secreted ER chaperones and transactivates EGFR-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jie Jia
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Lianhui Zhu
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Shuocheng Tang
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Shuaiyang Jing
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
- Present address: Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chuanting Tan
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Yulei Du
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Jingkai Gao
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.
| |
Collapse
|
11
|
Zhao T, Jiang T, Li X, Chang S, Sun Q, Kong F, Kong X, Wei F, He J, Hao J, Xie K. Nuclear GRP78 Promotes Metabolic Reprogramming and Therapeutic Resistance in Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2023; 29:5183-5195. [PMID: 37819952 DOI: 10.1158/1078-0432.ccr-23-1143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Stromal fibrosis limits nutritional supply and disarrays metabolism in pancreatic cancer (PDA, pancreatic ductal adenocarcinoma). Understanding of the molecular basis underlying metabolic cues would improve PDA management. The current study determined the interaction between glucose-regulated proteins 78 (GRP78) and hypoxia-inducible factor 1α (HIF-1α) and its mechanistic roles underlying PDA response to oxygen and glucose restrains. EXPERIMENTAL DESIGN Gene expression and its association with clinicopathologic characteristics of patients with PDA and mouse models were analyzed using IHC. Protein expression and their regulation were measured by Western blot and immunoprecipitation analyses. Protein interactions were determined using gain- and loss-of-function assays and molecular methods, including chromatin immunoprecipitation, co-immunoprecipitation, and dual luciferase reporter. RESULTS There was concomitant overexpression of both GRP78 and HIF-1α in human and mouse PDA tissues and cells. Glucose deprivation increased the expression of GRP78 and HIF-1α, particularly colocalization in nucleus. Induction of HIF-1α expression by glucose deprivation in PDA cells depended on the expression of and its own interaction with GRP78. Mechanistically, increased expression of both HIF-1α and LDHA under glucose deprivation was caused by the direct binding of GRP78 and HIF-1α protein complexes to the promoters of HIF-1α and LDHA genes and transactivation of their transcriptional activity. CONCLUSIONS Protein complex of GRP78 and HIF-1α directly binds to HIF-1α own promoter and LDHA promoter, enhances the transcription of both HIF-1α and LDHA, whereas glucose deprivation increases GRP78 expression and further enhances HIF-1α and LDHA transcription. Therefore, crosstalk and integration of hypoxia- and hypoglycemia-responsive signaling critically impact PDA metabolic reprogramming and therapeutic resistance.
Collapse
Affiliation(s)
- Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Shaofei Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qihui Sun
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Fanyang Kong
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Fang Wei
- Institute of Digestive Diseases, Guangzhou First People's Hospital and The Second Affiliated Hospital, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases, Guangzhou First People's Hospital and The Second Affiliated Hospital, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- Institute of Digestive Diseases, Guangzhou First People's Hospital and The Second Affiliated Hospital, The South China University of Technology School of Medicine, Guangzhou, China
- The South China University of Technology Comprehensive Cancer Center, Guangzhou, China
| |
Collapse
|
12
|
Ibanez J, Hebbar N, Thanekar U, Yi Z, Houke H, Ward M, Nevitt C, Tian L, Mack SC, Sheppard H, Chiang J, Velasquez MP, Krenciute G. GRP78-CAR T cell effector function against solid and brain tumors is controlled by GRP78 expression on T cells. Cell Rep Med 2023; 4:101297. [PMID: 37992682 PMCID: PMC10694756 DOI: 10.1016/j.xcrm.2023.101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Lack of targetable antigens is a key limitation for developing successful T cell-based immunotherapies. Members of the unfolded protein response (UPR) represent ideal immunotherapy targets because the UPR regulates the ability of cancer cells to resist cell death, sustain proliferation, and metastasize. Glucose-regulated protein 78 (GRP78) is a key UPR regulator that is overexpressed and translocated to the cell surface of a wide variety of cancers in response to elevated endoplasmic reticulum (ER) stress. We show that GRP78 is highly expressed on the cell surface of multiple solid and brain tumors, making cell surface GRP78 a promising chimeric antigen receptor (CAR) T cell target. We demonstrate that GRP78-CAR T cells can recognize and kill GRP78+ brain and solid tumors in vitro and in vivo. Additionally, our findings demonstrate that GRP78 is upregulated on CAR T cells upon T cell activation; however, this expression is tumor-cell-line specific and results in heterogeneous GRP78-CAR T cell therapeutic response.
Collapse
Affiliation(s)
- Jorge Ibanez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Nikhil Hebbar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Unmesha Thanekar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zhongzhen Yi
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Haley Houke
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Meghan Ward
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chris Nevitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Liqing Tian
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephen C Mack
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason Chiang
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - M Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
13
|
Tee JH, Vijayakumar U, Shanmugasundaram M, Lam TYW, Liao W, Yang Y, Wong WSF, Ge R. Isthmin-1 attenuates allergic Asthma by stimulating adiponectin expression and alveolar macrophage efferocytosis in mice. Respir Res 2023; 24:269. [PMID: 37932719 PMCID: PMC10626717 DOI: 10.1186/s12931-023-02569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Allergic asthma is a common respiratory disease that significantly impacts human health. Through in silico analysis of human lung RNASeq, we found that asthmatic lungs display lower levels of Isthmin-1 (ISM1) expression than healthy lungs. ISM1 is an endogenous anti-inflammatory protein that is highly expressed in mouse lungs and bronchial epithelial cells, playing a crucial role in maintaining lung homeostasis. However, how ISM1 influences asthma remains unclear. This study aims to investigate the potential involvement of ISM1 in allergic airway inflammation and uncover the underlying mechanisms. METHODS We investigated the pivotal role of ISM1 in airway inflammation using an ISM1 knockout mouse line (ISM1-/-) and challenged them with house dust mite (HDM) extract to induce allergic-like airway/lung inflammation. To examine the impact of ISM1 deficiency, we analyzed the infiltration of immune cells into the lungs and cytokine levels in bronchoalveolar lavage fluid (BALF) using flow cytometry and multiplex ELISA, respectively. Furthermore, we examined the therapeutic potential of ISM1 by administering recombinant ISM1 (rISM1) via the intratracheal route to rescue the effects of ISM1 reduction in HDM-challenged mice. RNA-Seq, western blot, and fluorescence microscopy techniques were subsequently used to elucidate the underlying mechanisms. RESULTS ISM1-/- mice showed a pronounced worsening of allergic airway inflammation and hyperresponsiveness upon HDM challenge. The heightened inflammation in ISM1-/- mice correlated with enhanced lung cell necroptosis, as indicated by higher pMLKL expression. Intratracheal delivery of rISM1 significantly reduced the number of eosinophils in BALF and goblet cell hyperplasia. Mechanistically, ISM1 stimulates adiponectin secretion by type 2 alveolar epithelial cells partially through the GRP78 receptor and enhances adiponectin-facilitated apoptotic cell clearance via alveolar macrophage efferocytosis. Reduced adiponectin expression under ISM1 deficiency also contributed to intensified necroptosis, prolonged inflammation, and heightened severity of airway hyperresponsiveness. CONCLUSIONS This study revealed for the first time that ISM1 functions to restrain airway hyperresponsiveness to HDM-triggered allergic-like airway/lung inflammation in mice, consistent with its persistent downregulation in human asthma. Direct administration of rISM1 into the airway alleviates airway inflammation and promotes immune cell clearance, likely by stimulating airway adiponectin production. These findings suggest that ISM1 has therapeutic potential for allergic asthma.
Collapse
Affiliation(s)
- Jong Huat Tee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Udhaya Vijayakumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalakshmi Shanmugasundaram
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Terence Y W Lam
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, A*STAR, Singapore, 138668, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore, 138602, Singapore.
- Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore, 117600, Singapore.
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
14
|
Michael BNR, Mariaselvam CM, Kavadichanda CG, Negi VS. Synovial-fluid-derived microparticles express vimentin and GRP78 in their surface and exhibit an in vitro stimulatory effect on fibroblast-like synoviocytes in rheumatoid arthritis. Int J Rheum Dis 2023; 26:2183-2194. [PMID: 37695005 DOI: 10.1111/1756-185x.14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/29/2022] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVES To investigate the hypothesis that microparticles (MP) may be a source of autoantigens and drive disease progression in rheumatoid arthritis (RA) synovium. METHODS Synovial fluid (SF) was collected from the knee joints of 41 disease-modifying anti-rheumatic drug-naive RA patients and 30 osteoarthritis (OA) patients. Samples were stained with either anti-vimentin-AlexaFluor-488 or anti-glucose-regulated protein-78-Dylight-488 (GRP78) and Annexin-V-allophycocyanin for flow cytometry analysis. RA and OA fibroblast-like synoviocytes (FLS) were co-cultured with respective SF-derived MP in vitro for 24 h. Supernatant and cell-free SF was assayed for pro-inflammatory analytes by multiplex assays. RESULTS Elevated percentages of AnnexinV+ Vimentin+ MP (median 0.8, interquartile range [IQR] 1.30) and AnnexinV+ GRP78+ MP (median 0.3, IQR 0.28) were present in RA compared with OA patients. We observed that CXCL6 and CCL8 were secreted in excess by RA-FLS stimulated with RA-SF-MP but not by stimulation with MP-free RA-SF. CONCLUSIONS Microparticles express vimentin and GRP78 on their surface and stimulate synoviocytes to produce inflammatory molecules, thus sustaining local inflammation in the synovium in RA.
Collapse
Affiliation(s)
- Benita Nancy Reni Michael
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Christina Mary Mariaselvam
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Chengappa G Kavadichanda
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| |
Collapse
|
15
|
Shin J, Shimomura I. COVID-19, Obesity, and GRP78: Unraveling the Pathological Link. J Obes Metab Syndr 2023; 32:183-196. [PMID: 37752707 PMCID: PMC10583770 DOI: 10.7570/jomes23053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to an unprecedented global surge in infections and fatalities. Notably, obesity has emerged as an important susceptibility factor for COVID-19; however, the pathological mechanisms for this remain poorly understood. Recent studies proposed a role for glucose-regulated protein 78 (GRP78), a protein implicated in both obesity and metabolic syndrome, which may function as a binding partner and/or co-receptor for SARS-CoV-2. Given its crucial involvement in diverse biological processes, GRP78 likely plays a major role in multiple facets of the viral life cycle and the pathology of COVID-19. This perspective review discusses the potential contributions of GRP78 to the dynamics of SARS-CoV-2 infection and pathology, particularly in the context of obesity. The primary objective is to facilitate a deeper understanding of the pathogenesis of COVID-19. Through this exploration, we aim to illuminate the complex interactions underpinning the nexus of COVID-19, obesity, and GRP78, ultimately paving the way for informed therapeutic strategies and preventive measures.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
16
|
Menghuan L, Yang Y, Qianhe M, Na Z, Shicheng C, Bo C, XueJie YI. Advances in research of biological functions of Isthmin-1. J Cell Commun Signal 2023; 17:507-521. [PMID: 36995541 PMCID: PMC10409700 DOI: 10.1007/s12079-023-00732-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/07/2023] [Indexed: 03/31/2023] Open
Abstract
Isthmin-1 (ISM1) was initially thought to be a brain secretory factor, but with the development of technical means of research and the refinement of animal models, numerous studies have shown that this molecule is expressed in multiple tissues, suggesting that it may have multiple biological functions. As a factor that regulates growth and development, ISM1 is expressed in different animals with spatial and temporal variability and can coordinate the normal development of multiple organs. Recent studies have found that under the dependence of a non-insulin pathway, ISM1 can lower blood glucose, inhibit insulin-regulated lipid synthesis, promote protein synthesis, and affect the body's glucolipid and protein metabolism. In addition, ISM1 plays an important role in cancer development by promoting apoptosis and anti-angiogenesis, and by regulating multiple inflammatory pathways to influence the body's immune response. The purpose of this paper is to summarize relevant research results from recent years and to describe the key features of the biological functions of ISM1. We aimed to provide a theoretical basis for the study of ISM1 related diseases, and potential therapeutic strategies. The main biological functions of ISM1. Current studies on the biological functions of ISM1 focus on growth and development, metabolism, and anticancer treatment. During embryonic development, ISM1 is dynamically expressed in the zebrafish, African clawed frog, chick, mouse, and human, is associated with craniofacial malformations, abnormal heart localization, and hematopoietic dysfunction. ISM1 plays an important role in regulating glucose metabolism, lipid metabolism, and protein metabolism in the body. ISM1 affects cancer development by regulating cellular autophagy, angiogenesis, and the immune microenvironment.
Collapse
Affiliation(s)
- Li Menghuan
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China
| | - Yang Yang
- School of Sports and Human Sciences, Shanghai Sport University, Shanghai, 200438, China
| | - Ma Qianhe
- School of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Zhang Na
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China
| | - Cao Shicheng
- Department of Sports Medicine, China Medical University, Shenyang, China
| | - Chang Bo
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China.
| | - Y I XueJie
- Exercise and Health Research Center/Department of Kinesiology, Shenyang Sport University, No.36 Qiangsong East Road, Sujiatun District, Shenyang, 110115, Liaoning Province, China.
| |
Collapse
|
17
|
Tokuda N, Watanabe D, Naito A, Yamauchi N, Ashida Y, Cheng AJ, Yamada T. Intrinsic contractile dysfunction due to impaired sarcoplasmic reticulum Ca 2+ release in compensatory hypertrophied muscle fibers following synergist ablation. Am J Physiol Cell Physiol 2023; 325:C599-C612. [PMID: 37486068 DOI: 10.1152/ajpcell.00127.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Synergist ablation (SA) is an experimental procedure for the induction of hypertrophy. However, SA causes a decrease in specific force (i.e., force per cross-sectional area), likely due to excessive muscle use. Here, we investigated the mechanisms behind the SA-induced intrinsic contractile dysfunction, especially focusing on the excitation-contraction (EC) coupling. Male Wistar rats had unilateral surgical ablation of gastrocnemius and soleus muscles to induce compensatory hypertrophy in the plantaris muscles. Two weeks after SA, plantaris muscle was dissected from each animal and used for later analyses. SA significantly increased the mean fiber cross-sectional area (+18%). On the other hand, the ratio of depolarization-induced force to the maximum Ca2+-activated specific force, an indicator of sarcoplasmic reticulum (SR) Ca2+ release, was markedly reduced in mechanically skinned fibers from the SA group (-51%). These functional defects were accompanied by an extensive fragmentation of the SR Ca2+ release channel, the ryanodine receptor 1 (RyR1), and a decrease in the amount of other triad proteins (i.e., DHPR, STAC3, and junctophilin1). SA treatment also caused activation of calpain-1 and increased the amount of NADPH oxidase 2, endoplasmic reticulum (ER) stress proteins (i.e., Grp78, Grp94, PDI, and Ero1), and lipid peroxidation [i.e., 4-hydroxynonenal (4-HNE)] in SA-treated muscles. Our findings show that SA causes skeletal muscle weakness due to impaired EC coupling. This is likely to be induced by Ca2+-dependent degradation of triad proteins, which may result from Ca2+ leak from fragmented RyR1 triggered by increased oxidative stress.NEW & NOTEWORTHY Synergist ablation (SA) has widely been used to understand the mechanisms behind skeletal muscle hypertrophy. However, compensatory hypertrophied muscles display intrinsic contractile dysfunction, i.e., a hallmark of overuse. Here, we demonstrate that SA-induced compensatory hypertrophy is accompanied by muscle weakness due to impaired sarcoplasmic reticulum Ca2+ release. This dysfunction may be caused by the degradation of triad proteins due to the reciprocal amplification of reactive oxygen species and Ca2+ signaling at the junctional space microdomain.
Collapse
Affiliation(s)
- Nao Tokuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daiki Watanabe
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Azuma Naito
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Yamauchi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Arthur J Cheng
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
18
|
Peña MS, Tang FHF, Franco FADL, Rodrigues AT, Carrara GMP, Araujo TLS, Giordano RJ, Palmisano G, de Camargo MM, Uliana SRB, Stolf BS. Leishmania (L.) amazonensis LaLRR17 increases parasite entry in macrophage by a mechanism dependent on GRP78. Parasitology 2023; 150:922-933. [PMID: 37553284 PMCID: PMC10577668 DOI: 10.1017/s0031182023000720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Leishmaniases affect 12 million people worldwide. They are caused by Leishmania spp., protozoan parasites transmitted to mammals by female phlebotomine flies. During the life cycle, promastigote forms of the parasite live in the gut of infected sandflies and convert into amastigotes inside the vertebrate macrophages. The parasite evades macrophage's microbicidal responses due to virulence factors that affect parasite phagocytosis, survival and/or proliferation. The interaction between Leishmania and macrophage molecules is essential to phagocytosis and parasite survival. Proteins containing leucine-rich repeats (LRRs) are common in several organisms, and these motifs are usually involved in protein–protein interactions. We have identified the LRR17 gene, which encodes a protein with 6 LRR domains, in the genomes of several Leishmania species. We show here that promastigotes of Leishmania (L.) amazonensis overexpressing LaLRR17 are more infective in vitro. We produced recombinant LaLRR17 protein and identified macrophage 78 kDa glucose-regulated protein (GRP78) as a ligand for LaLRR17 employing affinity chromatography followed by mass spectrometry. We showed that GRP78 binds to LaLRR17 and that its blocking precludes the increase of infection conferred by LaLRR17. Our results are the first to report LRR17 gene and protein, and we hope they stimulate further studies on how this protein increases phagocytosis of Leishmania.
Collapse
Affiliation(s)
- Mauricio S. Peña
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fenny Hui Fen Tang
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Ricardo José Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Ham BK, Wang X, Toscano-Morales R, Lin J, Lucas WJ. Plasmodesmal endoplasmic reticulum proteins regulate intercellular trafficking of cucumber mosaic virus in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4401-4414. [PMID: 37210666 PMCID: PMC10838158 DOI: 10.1093/jxb/erad190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Plasmodesmata (PD) are plasma membrane-lined cytoplasmic nanochannels that mediate cell-to-cell communication across the cell wall. A range of proteins are embedded in the PD plasma membrane and endoplasmic reticulum (ER), and function in regulating PD-mediated symplasmic trafficking. However, knowledge of the nature and function of the ER-embedded proteins in the intercellular movement of non-cell-autonomous proteins is limited. Here, we report the functional characterization of two ER luminal proteins, AtBiP1/2, and two ER integral membrane proteins, AtERdj2A/B, which are located within the PD. These PD proteins were identified as interacting proteins with cucumber mosaic virus (CMV) movement protein (MP) in co-immunoprecipitation studies using an Arabidopsis-derived plasmodesmal-enriched cell wall protein preparation (PECP). The AtBiP1/2 PD location was confirmed by TEM-based immunolocalization, and their AtBiP1/2 signal peptides (SPs) function in PD targeting. In vitro/in vivo pull-down assays revealed the association between AtBiP1/2 and CMV MP, mediated by AtERdj2A, through the formation of an AtBiP1/2-AtERdj2-CMV MP complex within PD. The role of this complex in CMV infection was established, as systemic infection was retarded in bip1/bip2w and erdj2b mutants. Our findings provide a model for a mechanism by which the CMV MP mediates cell-to-cell trafficking of its viral ribonucleoprotein complex.
Collapse
Affiliation(s)
- Byung-Kook Ham
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Xiaohua Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Roberto Toscano-Morales
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Jinxing Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
20
|
Gu Z, Wang L, Dong Q, Xu K, Ye J, Shao X, Yang S, Lu C, Chang C, Hou Y, Zhai Y, Wang X, He F, Sun A. Aberrant LYZ expression in tumor cells serves as the potential biomarker and target for HCC and promotes tumor progression via csGRP78. Proc Natl Acad Sci U S A 2023; 120:e2215744120. [PMID: 37428911 PMCID: PMC10629575 DOI: 10.1073/pnas.2215744120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) takes the predominant malignancy of hepatocytes with bleak outcomes owing to high heterogeneity among patients. Personalized treatments based on molecular profiles will better improve patients' prognosis. Lysozyme (LYZ), a secretory protein with antibacterial function generally expressed in monocytes/macrophages, has been observed for the prognostic implications in different types of tumors. However, studies about the explicit applicative scenarios and mechanisms for tumor progression are still quite limited, especially for HCC. Here, based on the proteomic molecular classification data of early-stage HCC, we revealed that the LYZ level was elevated significantly in the most malignant HCC subtype and could serve as an independent prognostic predictor for HCC patients. Molecular profiles of LYZ-high HCCs were typical of those for the most malignant HCC subtype, with impaired metabolism, along with promoted proliferation and metastasis characteristics. Further studies demonstrated that LYZ tended to be aberrantly expressed in poorly differentiated HCC cells, which was regulated by STAT3 activation. LYZ promoted HCC proliferation and migration in both autocrine and paracrine manners independent of the muramidase activity through the activation of downstream protumoral signaling pathways via cell surface GRP78. Subcutaneous and orthotopic xenograft tumor models indicated that targeting LYZ inhibited HCC growth markedly in NOD/SCID mice. These results propose LYZ as a prognostic biomarker and therapeutic target for the subclass of HCC with an aggressive phenotype.
Collapse
Affiliation(s)
- Zhiwen Gu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Lei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Qian Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Kaikun Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Jingnan Ye
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Xianfeng Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Songpeng Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Cuixiu Lu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Yushan Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Yuanjun Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Xinxin Wang
- Department of Pathology, Beijing You’an Hospital, Capital Medical University, Beijing100069, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Aihua Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| |
Collapse
|
21
|
Amaresan R, Gopal U. Cell surface GRP78: a potential mechanism of therapeutic resistant tumors. Cancer Cell Int 2023; 23:100. [PMID: 37221596 DOI: 10.1186/s12935-023-02931-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/19/2023] [Indexed: 05/25/2023] Open
Abstract
GRP78 is a protein that acts as a chaperone within the endoplasmic reticulum (ER) and has multiple functions. It is induced by stress and abets cells from survival. Despite, multiple Stress conditions like ER, chronic psychological and nutritional stress, hypoxia, chemotherapy, radiation therapy, and drug resistance induce cell surface GRP78 (CS-GRP78) expression in cancer cells. Further, CS-GRP78 is associated with increased malignancy and resistance to anti-cancer therapies and is considered a high-value druggable target. Recent preclinical research suggests that targeting CS-GRP78 with anti-GRP78 monoclonal antibodies (Mab) in combination with other agents may be effective in reversing the failure of chemotherapy, radiotherapy, or targeted therapies and increasing the efficacy of solid tumors treatment. This article will review recent evidence on the role of CS-GRP78 in developing resistance to anti-cancer treatments and the potential benefits of combining anti-GRP78 Mab with other cancer therapies for specific patient populations. Furthermore, our limited understanding of how CS-GRP78 regulated in human studies is a major drawback for designing effective CS-GRP78-targeted therapies. Hence, more research is still warranted to translate these potential therapies into clinical applications.
Collapse
Affiliation(s)
- Rajalakshmi Amaresan
- Department of Zoology, Auxilium College, Gandhi Nagar, Vellore, 632 006, Tamil Nadu, India
| | - Udhayakumar Gopal
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
22
|
Yang L, Wang X, Zhao Y, Xue K, Liang J, Wang X, Deng J, Qi Z. An AIE luminogen targeting the endoplasmic reticulum inhibits cancer cell growth via multicellular organelle oxidative stress. Bioorg Chem 2023; 132:106361. [PMID: 36720178 DOI: 10.1016/j.bioorg.2023.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Organelle-targeted photodynamic therapy has been increasingly investigated in recent decades, but little attention has been paid to the damage caused to other non-primary target organelles during the course of action, even though these non-primary target organelles may play a substantial role in inhibiting the growth of cancer cells. In this contribution, we report an AIE-type strong endoplasmic reticulum-targeted luminogen (MTOQS) with a distorted structure, which is efficient in producing ROS both in cellular and non-cellular environment, causing an effective reduction of high levels of GSH and MDA in cancer cells through the efficient accumulation of intracellular ROS, and the levels of ATP, l-lactic acid, anti-apoptotic factor Bcl-2 and apoptotic protein caspase-3 were determined. Through the identification of these markers, it was evidenced that MTOQS-induced dual organelle oxidative stress could diminish the degree of oxidative phosphorylation and glycolysis in cancer cells and trigger an alteration in the culture environment of cancer cells, while causing damage to the endoplasmic reticulum and mitochondria through multiorganelle oxidative stress, turning on the pathway of apoptosis and consequently driving cancer cells to apoptosis.
Collapse
Affiliation(s)
- Li Yang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xing Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Yongfei Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Ke Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Jiankang Liang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xiaohan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Jing Deng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| |
Collapse
|
23
|
Yao B, Wang L, Xie C, Li M, Peng C, Li Z, Lu W, Chen J. Biological evaluation of a novel stable peptide PET molecular probe [ 18F]AlF-NOTA- DVAP targeting to tumor cell surface GRP78. Nucl Med Biol 2023; 118-119:108330. [PMID: 36889247 DOI: 10.1016/j.nucmedbio.2023.108330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUNDS Glucose-Regulated Protein 78 (GRP78) is an attractive anticancer target for its selective anchoring on the surface of tumor cells and cancer endothelial cells rather than normal cells. Cell-surface GRP78 overexpression of tumor indicates that GRP78 is a crucial target for relative tumor imaging and clinical treatment. Herein, we report the design and preclinical evaluation of a new D peptide ligand [18F]AlF-NOTA-DVAP recognizing GRP78 expressed on the cell surface of breast cancer. METHODS Radiochemical synthesis of [18F]AlF-NOTA-DVAP was achieved via a one-pot labeling process by heating NOTA-DVAP in the presence of in situ prepared [18F]AlF for 15 min at 110 °C and purified through HPLC. RESULTS The radiotracer showed high in vitro stability in rat serum at 37 °C over 3 h. Both biodistribution studies and in vivo micro-PET/CT imaging studies in BALB/c mice bearing 4 T1 tumor showed [18F]AlF-NOTA-DVAP had a rapid and high uptake in tumor, as well as a long residence time. The high hydrophilicity of the radiotracer enables its fast clearance from most normal tissues and thus improves the tumor-to-normal tissue ratios (4.40 at 60 min) which is better than [18F]FDG (1.31 at 60 min). Pharmacokinetic studies showed the average in vivo mean residence time of the radiotracer was just 0.6432 h and indicated that this hydrophilic radiotracer was quickly eliminated from the body to reduce the distribution of non-target tissues. CONCLUSIONS These results suggest that [18F]AlF-NOTA-DVAP is a very promising PET probe for tumor-specific imaging of cell-surface GRP78-positive tumor.
Collapse
Affiliation(s)
- Bolin Yao
- Radiopharmacy and Molecular Imaging Center, School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| | - Luting Wang
- Radiopharmacy and Molecular Imaging Center, School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Cao Xie
- Radiopharmacy and Molecular Imaging Center, School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Ming Li
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Chengyuan Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhuoyun Li
- Radiopharmacy and Molecular Imaging Center, School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| | - Weiyue Lu
- Radiopharmacy and Molecular Imaging Center, School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| | - Jian Chen
- Radiopharmacy and Molecular Imaging Center, School of Pharmacy, Fudan University, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
24
|
Friedrich A, Gounot JS, Tsouris A, Bleykasten C, Freel K, Caradec C, Schacherer J. Contrasting Genomic Evolution Between Domesticated and Wild Kluyveromyces lactis Yeast Populations. Genome Biol Evol 2023; 15:evad004. [PMID: 36634937 PMCID: PMC9897184 DOI: 10.1093/gbe/evad004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
The process of domestication has variable consequences on genome evolution leading to different phenotypic signatures. Access to the complete genome sequences of a large number of individuals makes it possible to explore the different facets of this domestication process. Here, we sought to explore the genome evolution of Kluyveromyces lactis, a yeast species well known for its involvement in dairy processes and also present in natural environments. Using a combination of short- and long-read sequencing strategies, we investigated the genomic variability of 41 K. lactis isolates and found that the overall genetic diversity of this species is very high (θw = 3.3 × 10-2) compared with other species such as Saccharomyces cerevisiae (θw = 1.6 × 10-2). However, the domesticated dairy population shows a reduced level of diversity (θw = 1 × 10-3), probably due to a domestication bottleneck. In addition, this entire population is characterized by the introgression of the LAC4 and LAC12 genes, responsible for lactose fermentation and coming from the closely related species, Kluyveromyces marxianus, as previously described. Our results highlighted that the LAC4/LAC12 gene cluster was acquired through multiple and independent introgression events. Finally, we also identified several genes that could play a role in adaptation to dairy environments through copy number variation. These genes are involved in sugar consumption, flocculation, and drug resistance, and may play a role in dairy processes. Overall, our study illustrates contrasting genomic evolution and sheds new light on the impact of domestication processes on it.
Collapse
Affiliation(s)
- Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
| | | | - Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
| | | | - Kelle Freel
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
| | - Claudia Caradec
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| |
Collapse
|
25
|
Dent P, Booth L, Roberts JL, Poklepovic A, Martinez J, Cridebring D, Reiman EM. AR12 increases BAG3 expression which is essential for Tau and APP degradation via LC3-associated phagocytosis and macroautophagy. Aging (Albany NY) 2022; 14:8221-8242. [PMID: 36227739 PMCID: PMC9648812 DOI: 10.18632/aging.204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
We defined the mechanisms by which the chaperone ATPase inhibitor AR12 and the multi-kinase inhibitor neratinib interacted to reduce expression of Tau and amyloid-precursor protein (APP) in microglia and neuronal cells. AR12 and neratinib interacted to increase the phosphorylation of eIF2A S51 and the expression of BAG3, Beclin1 and ATG5, and in parallel, enhanced autophagosome formation and autophagic flux. Knock down of BAG3, Beclin1 or ATG5 abolished autophagosome formation and significantly reduced degradation of p62, LAMP2, Tau, APP, and GRP78 (total and plasma membrane). Knock down of Rubicon, a key component of LC3-associated phagocytosis (LAP), significantly reduced autophagosome formation but not autophagic flux and prevented degradation of Tau, APP, and cell surface GRP78, but not ER-localized GRP78. Knock down of Beclin1, ATG5 or Rubicon or over-expression of GRP78 prevented the significant increase in eIF2A phosphorylation. Knock down of eIF2A prevented the increase in BAG3 expression and significantly reduced autophagosome formation, autophagic flux, and it prevented Tau and APP degradation. We conclude that AR12 has the potential to reduce Tau and APP levels in neurons and microglia via the actions of LAP, endoplasmic reticulum stress signaling and macroautophagy. We hypothesize that the initial inactivation of GRP78 catalytic function by AR12 facilitates an initial increase in eIF2A phosphorylation which in turn is essential for greater levels of eIF2A phosphorylation, greater levels of BAG3 and macroautophagy and eventually leading to significant amounts of APP/Tau degradation.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jennifer Martinez
- National Institute of Environmental Health Sciences, Inflammation and Autoimmunity Group, Triangle Park, Durham, NC 27709, USA
| | - Derek Cridebring
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Eric M Reiman
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| |
Collapse
|
26
|
Integrin β1/Cell Surface GRP78 Complex Regulates TGFβ1 and Its Profibrotic Effects in Response to High Glucose. Biomedicines 2022; 10:biomedicines10092247. [PMID: 36140347 PMCID: PMC9496450 DOI: 10.3390/biomedicines10092247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of kidney failure worldwide. Characterized by overproduction and accumulation of extracellular matrix (ECM) proteins, glomerular sclerosis is its earliest manifestation. High glucose (HG) plays a central role by increasing matrix production by glomerular mesangial cells (MC). We previously showed that HG induces translocation of GRP78 from the endoplasmic reticulum to the cell surface (csGRP78), where it acts as a signaling molecule to promote intracellular profibrotic FAK/Akt activation. Here, we identify integrin β1 as a key transmembrane signaling partner for csGRP78. We show that it is required for csGRP78-regulated FAK/Akt activation in response to HG, as well as downstream production, secretion and activity of the well characterized profibrotic cytokine transforming growth factor β1 (TGFβ1). Intriguingly, integrin β1 also itself promotes csGRP78 translocation. Furthermore, integrin β1 effects on cytoskeletal organization are not required for its function in csGRP78 translocation and signaling. These data together support an important pathologic role for csGRP78/integrin β1 in mediating key profibrotic responses to HG in kidney cells. Inhibition of their interaction will be further evaluated as a therapeutic target to limit fibrosis progression in DKD.
Collapse
|
27
|
Shin J, Toyoda S, Fukuhara A, Shimomura I. GRP78, a Novel Host Factor for SARS-CoV-2: The Emerging Roles in COVID-19 Related to Metabolic Risk Factors. Biomedicines 2022; 10:biomedicines10081995. [PMID: 36009544 PMCID: PMC9406123 DOI: 10.3390/biomedicines10081995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
The outbreak of coronavirus disease 19 (COVID-19), caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in an unprecedented amount of infection cases and deaths, leading to the global health crisis. Despite many research efforts, our understanding of COVID-19 remains elusive. Recent studies have suggested that cell surface glucose-regulated protein 78 (GRP78) acts as a host co-receptor for SARS-CoV-2 infection and is related to COVID-19 risks, such as older age, obesity, and diabetes. Given its significance in a wide range of biological processes, such as protein homeostasis and cellular signaling, GRP78 might also play an important role in various stages of the viral life cycle and pathology of SARS-CoV-2. In this perspective, we explore the emerging and potential roles of GRP78 in SARS-CoV-2 infection. Additionally, we discuss the association with COVID-19 risks and symptoms. We hope this review article will be helpful to understand COVID-19 pathology and promote attention and study of GRP78 from many clinical and basic research fields.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Correspondence:
| | - Shinichiro Toyoda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Avila H, Yu J, Boddu G, Phan A, Truong A, Peddi S, Guo H, Lee SJ, Alba M, Canfield E, Yamamoto V, Paton JC, Paton AW, Lee AS, MacKay JA. Hydra-Elastin-like Polypeptides Increase Rapamycin Potency When Targeting Cell Surface GRP78. Biomacromolecules 2022; 23:3116-3129. [PMID: 35786858 PMCID: PMC10231879 DOI: 10.1021/acs.biomac.2c00048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapalogues are powerful therapeutic modalities for breast cancer; however, they suffer from low solubility and dose-limiting side effects. To overcome these challenges, we developed a long-circulating multiheaded drug carrier called 5FA, which contains rapamycin-binding domains linked with elastin-like polypeptides (ELPs). To target these "Hydra-ELPs" toward breast cancer, we here linked 5FA with four distinct peptides which are reported to engage the cell surface form of the 78 kDa glucose-regulated protein (csGRP78). To determine if these peptides affected the carrier solubility, this library was characterized by light scattering and mass spectrometry. To guide in vitro selection of the most potent functional carrier for rapamycin, its uptake and inhibition of mTORC1 were monitored in a ductal breast cancer model (BT474). Using flow cytometry to track cellular association, it was found that only the targeted carriers enhanced cellular uptake and were susceptible to proteolysis by SubA, which specifically targets csGRP78. The functional inhibition of mTOR was monitored by Western blot for pS6K, whereby the best carrier L-5FA reduced mTOR activity by 3-fold compared to 5FA or free rapamycin. L-5FA was further visualized using super-resolution confocal laser scanning microscopy, which revealed that targeting increased exposure to the carrier by ∼8-fold. This study demonstrates how peptide ligands for GRP78, such as the L peptide (RLLDTNRPLLPY), may be incorporated into protein-based drug carriers to enhance targeting.
Collapse
Affiliation(s)
- Hugo Avila
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Jingmei Yu
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Geetha Boddu
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Alvin Phan
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Anh Truong
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Shin-Jae Lee
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
- Department of Biomedical Engineering, USC Viterbi School of Engineering, Los Angeles, California 90089, United States
| | - Mario Alba
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Ethan Canfield
- Mass Spectrometry Core, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Vicky Yamamoto
- Department of Biochemistry and Molecular Medicine, USC Keck School of Medicine, Los Angeles, California 90033, United States
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, USC Keck School of Medicine, Los Angeles, California 90033, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
- Department of Biomedical Engineering, USC Viterbi School of Engineering, Los Angeles, California 90089, United States
- Department of Ophthalmology, USC Keck School of Medicine, Los Angeles, California 90033, United States
| |
Collapse
|
29
|
Pan Q, Xu Q, Liu T, Zhang Y, Xin J. Mycoplasma hyopneumoniae
membrane protein Mhp271 interacts with host
UPR
protein
GRP78
to facilitate infection. Mol Microbiol 2022; 118:208-222. [PMID: 35791781 PMCID: PMC9542919 DOI: 10.1111/mmi.14963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 12/03/2022]
Abstract
The unfolded protein response (UPR) plays a crucial role in Mycoplasma hyopneumoniae (M. hyopneumoniae) pathogenesis. We previously demonstrated that M. hyopneumoniae interferes with the host UPR to foster bacterial adhesion and infection. However, the underlying molecular mechanism of this UPR modulation is unclear. Here, we report that M. hyopneumoniae membrane protein Mhp271 interacts with host GRP78, a master regulator of UPR localized to the porcine tracheal epithelial cells (PTECs) surface. The interaction of Mhp271 with GRP78 reduces the porcine beta‐defensin 2 (PBD‐2) production, thereby facilitating M. hyopneumoniae adherence and infection. Furthermore, the R1‐2 repeat region of Mhp271 is crucial for GRP78 binding and the regulation of PBD‐2 expression. Intriguingly, a coimmunoprecipitation (Co‐IP) assay and molecular docking prediction indicated that the ATP, rather than the substrate‐binding domain of GRP78, is targeted by Mhp271 R1‐2. Overall, our findings identify host GRP78 as a target for M. hyopneumoniae Mhp271 modulating the host UPR to facilitate M. hyopneumoniae adherence and infection.
Collapse
Affiliation(s)
- Qiao Pan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Qingyuan Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Tong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Yujuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Jiuqing Xin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| |
Collapse
|
30
|
Zhang S, Wang C, Ju J, Wang C. Extracellular Hsp90α Supports the ePKM2-GRP78-AKT Axis to Promote Tumor Metastasis. Front Oncol 2022; 12:906080. [PMID: 35847880 PMCID: PMC9280132 DOI: 10.3389/fonc.2022.906080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor-secreted proteins can provide numerous molecular targets for cancer diagnosis and treatment. Of note, pyruvate kinase M2 (PKM2) is secreted by tumor cells to promote malignant progression, while its regulatory mechanism or the interacting network remains uncovered. In the present study, we identified extracellular heat shock protein 90 alpha (eHsp90α) as one potential interacting protein of ePKM2 by mass spectrometry (MS), which was further verified by pull-down and co-immunoprecipitation analysis. Later, we found that eHsp90α enhanced the effect of ePKM2 on migration and invasion of lung cancer cells. Blocking of Hsp90α activity, on the other hand, attenuated tumor migration or invasion induced by ePKM2. Eventually, the in vivo role of Hsp90α in regulating ePKM2 activity was validated by the mouse xenograft tumor model. Mechanistically, we found that eHsp90α binds to and stabilizes ePKM2 to protect it from degradation in the extracellular environment. Besides, eHsp90α promoted the interaction of ePKM2 with cell surface receptor GRP78, which leads to the activation of the ePKM2/GRP78/AKT axis. Collectively, we unraveled the novel molecular mechanism of eHsp90α in regulating ePKM2 activity during tumor progression, which is beneficial for the development of new treatments against lung cancer.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caihong Wang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiujun Ju
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Caixia Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- *Correspondence: Caixia Wang,
| |
Collapse
|
31
|
Fu X, Liu H, Liu J, DiSanto ME, Zhang X. The Role of Heat Shock Protein 70 Subfamily in the Hyperplastic Prostate: From Molecular Mechanisms to Therapeutic Opportunities. Cells 2022; 11:cells11132052. [PMID: 35805135 PMCID: PMC9266107 DOI: 10.3390/cells11132052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/11/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common causes of lower urinary tract symptoms (LUTS) in men, which is characterized by a noncancerous enlargement of the prostate. BPH troubles the vast majority of aging men worldwide; however, the pathogenetic factors of BPH have not been completely identified. The heat shock protein 70 (HSP70) subfamily, which mainly includes HSP70, glucose-regulated protein 78 (GRP78) and GRP75, plays a crucial role in maintaining cellular homeostasis. HSP70s are overexpressed in the course of BPH and involved in a variety of biological processes, such as cell survival and proliferation, cell apoptosis, epithelial/mesenchymal transition (EMT) and fibrosis, contributing to the development and progress of prostate diseases. These chaperone proteins also participate in oxidative stress, a cellular stress response that takes place under stress conditions. In addition, HSP70s can bind to the androgen receptor (AR) and act as a regulator of AR activity. This interaction of HSP70s with AR provides insight into the importance of the HSP70 chaperone family in BPH pathogenesis. In this review, we discuss the function of the HSP70 family in prostate glands and the role of HSP70s in the course of BPH. We also review the potential applications of HSP70s as biomarkers of prostate diseases for targeted therapies.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08028, USA;
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
- Correspondence:
| |
Collapse
|
32
|
Gonzalez-Gronow M, Pizzo SV. Physiological Roles of the Autoantibodies to the 78-Kilodalton Glucose-Regulated Protein (GRP78) in Cancer and Autoimmune Diseases. Biomedicines 2022; 10:biomedicines10061222. [PMID: 35740249 PMCID: PMC9219851 DOI: 10.3390/biomedicines10061222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/02/2023] Open
Abstract
The 78 kDa glucose-regulated protein (GRP78), a member of the 70 kDa heat-shock family of molecular chaperones (HSP70), is essential for the regulation of the unfolded protein response (UPR) resulting from cellular endoplasmic reticulum (ER) stress. During ER stress, GRP78 evades retention mechanisms and is translocated to the cell surface (csGRP78) where it functions as an autoantigen. Autoantibodies to GRP78 appear in prostate, ovarian, gastric, malignant melanoma, and colorectal cancers. They are also found in autoimmune pathologies such as rheumatoid arthritis (RA), neuromyelitis optica (NMO), anti-myelin oligodendrocyte glycoprotein antibody-associated disorder (AMOGAD), Lambert-Eaton myasthenic syndrome (LEMS), multiple sclerosis (MS), neuropsychiatric systemic lupus erythematosus (NPSLE) and type 1 diabetes (T1D). In NMO, MS, and NPSLE these autoantibodies disrupt and move across the blood-brain barrier (BBB), facilitating their entry and that of other pathogenic antibodies to the brain. Although csGRP78 is common in both cancer and autoimmune diseases, there are major differences in the specificity of its autoantibodies. Here, we discuss how ER mechanisms modulate csGRP78 antigenicity and the production of autoantibodies, permitting this chaperone to function as a dual compartmentalized receptor with independent signaling pathways that promote either pro-proliferative or apoptotic signaling, depending on whether the autoantibodies bind csGRP78 N- or C-terminal regions.
Collapse
|
33
|
Chen J, Lynn EG, Yousof TR, Sharma H, MacDonald ME, Byun JH, Shayegan B, Austin RC. Scratching the Surface—An Overview of the Roles of Cell Surface GRP78 in Cancer. Biomedicines 2022; 10:biomedicines10051098. [PMID: 35625836 PMCID: PMC9138746 DOI: 10.3390/biomedicines10051098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
The 78 kDa glucose-regulated protein (GRP78) is considered an endoplasmic reticulum (ER)-resident molecular chaperone that plays a crucial role in protein folding homeostasis by regulating the unfolded protein response (UPR) and inducing numerous proapoptotic and autophagic pathways within the eukaryotic cell. However, in cancer cells, GRP78 has also been shown to migrate from the ER lumen to the cell surface, playing a role in several cellular pathways that promote tumor growth and cancer cell progression. There is another insidious consequence elicited by cell surface GRP78 (csGRP78) on cancer cells: the accumulation of csGRP78 represents a novel neoantigen leading to the production of anti-GRP78 autoantibodies that can bind csGRP78 and further amplify these cellular pathways to enhance cell growth and mitigate apoptotic cell death. This review examines the current body of literature that delineates the mechanisms by which ER-resident GRP78 localizes to the cell surface and its consequences, as well as potential therapeutics that target csGRP78 and block its interaction with anti-GRP78 autoantibodies, thereby inhibiting further amplification of cancer cell progression.
Collapse
Affiliation(s)
- Jack Chen
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Edward G. Lynn
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Tamana R. Yousof
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Hitesh Sharma
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Melissa E. MacDonald
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Bobby Shayegan
- Department of Surgery, Division of Urology, The Research Institute of St. Joe′s Hamilton, McMaster University, ON L8N 4A6, Canada;
| | - Richard C. Austin
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
- Correspondence: ; Tel.: +1-905-522-1155 (ext. 35175)
| |
Collapse
|
34
|
Ghasemzadeh M, Ahmadi J, Hosseini E. Platelet-leukocyte crosstalk in COVID-19: How might the reciprocal links between thrombotic events and inflammatory state affect treatment strategies and disease prognosis? Thromb Res 2022; 213:179-194. [PMID: 35397313 PMCID: PMC8969450 DOI: 10.1016/j.thromres.2022.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023]
Abstract
Platelet-leukocyte crosstalk is commonly manifested by reciprocal links between thrombosis and inflammation. Platelet thrombus acts as a reactive matrix that recruits leukocytes to the injury site where their massive accumulation, activation and migration promote thrombotic events while triggering inflammatory responses. As a life-threatening condition with the associations between inflammation and thrombosis, COVID-19 presents diffuse alveolar damage due to exaggerated macrophage activity and cytokine storms. These events, together with direct intracellular virus invasion lead to pulmonary vascular endothelialitis, cell membranes disruption, severe endothelial injury, and thrombosis. The developing pre-alveolar thrombus provides a hyper-reactive milieu that recruits circulating leukocytes to the injury site where their activation contributes to thrombus stabilization and thrombosis propagation, primarily through the formation of Neutrophil extracellular trap (NET). NET fragments can also circulate and deposit in further distance where they may disseminate intravascular thrombosis in severe cases of disease. Thrombi may also facilitate leukocytes migration into alveoli where their accumulation and activation exacerbate cytokine storms and tissue damage, further complicating the disease. Based on these mechanisms, whether an effective anti-inflammatory protocol can prevent thrombotic events, or on the other hand; efficient antiplatelet or anticoagulant regimens may be associated with reduced cytokine storms and tissue damage, is now of interests for several ongoing researches. Thus shedding more light on platelet-leukocyte crosstalk, the review presented here discusses the detailed mechanisms by which platelets may contribute to the pathogenesis of COVID-19, especially in severe cases where their interaction with leukocytes can intensify both inflammatory state and thrombosis in a reciprocal manner.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Corresponding authors at: Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, Iran
| | | | - Ehteramolsadat Hosseini
- Corresponding authors at: Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, Iran
| |
Collapse
|
35
|
White A, Parekh RU, Theobald D, Pakala P, Myers AL, Van Dross R, Sriramula S. Kinin B1R Activation Induces Endoplasmic Reticulum Stress in Primary Hypothalamic Neurons. Front Pharmacol 2022; 13:841068. [PMID: 35350763 PMCID: PMC8957924 DOI: 10.3389/fphar.2022.841068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle involved in homeostatic functions including protein synthesis and transport, and the storage of free calcium. ER stress potentiates neuroinflammation and neurodegeneration and is a key contributor to the pathogenesis of neurogenic hypertension. Recently, we showed that kinin B1 receptor (B1R) activation plays a vital role in modulating neuroinflammation and hypertension. However, whether B1R activation results in the progression and enhancement of ER stress has not yet been studied. In this brief research report, we tested the hypothesis that B1R activation in neurons contributes to unfolded protein response (UPR) and the development of ER stress. To test this hypothesis, we treated primary hypothalamic neuronal cultures with B1R specific agonist Lys-Des-Arg9-Bradykinin (LDABK) and measured the components of UPR and ER stress. Our data show that B1R stimulation via LDABK, induced the upregulation of GRP78, a molecular chaperone of ER stress. B1R stimulation was associated with an increased expression and activation of transmembrane ER stress sensors, ATF6, IRE1α, and PERK, the critical components of UPR. In the presence of overwhelming ER stress, activated ER stress sensors can lead to oxidative stress, autophagy, or apoptosis. To determine whether B1R activation induces apoptosis we measured intracellular Ca2+ and extracellular ATP levels, caspases 3/7 activity, and cell viability. Our data show that LDABK treatment does increase Ca2+ and ATP levels but does not alter caspase activity or cell viability. These findings suggest that B1R activation initiates the UPR and is a key factor in the ER stress pathway.
Collapse
Affiliation(s)
- Acacia White
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Rohan Umesh Parekh
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Drew Theobald
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Pranaya Pakala
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Ariel Lynn Myers
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| |
Collapse
|
36
|
Schneider M, Winkler K, Kell R, Pfaffl MW, Atkinson MJ, Moertl S. The Chaperone Protein GRP78 Promotes Survival and Migration of Head and Neck Cancer After Direct Radiation Exposure and Extracellular Vesicle-Transfer. Front Oncol 2022; 12:842418. [PMID: 35299733 PMCID: PMC8921984 DOI: 10.3389/fonc.2022.842418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose Increased levels of the chaperone protein GRP78 have been implicated in poorer outcomes of cancer therapy. We have therefore explored the functional connection between the expression of GRP78 and the development of radioresistance and metastatic behavior in HNSCC. Material and Methods The association between gene expression of GRP78 and survival in HNSCC patients was examined using the TCGA database. The influence of ionizing radiation on the GRP78 levels in HNSCC cell lines, their secreted extracellular vesicles (EV) and non-irradiated EV-recipient cells was investigated by Western Blot and FACS. The consequences of chemical inhibition or experimental overexpression of GRP78 on radioresistance and migration of HNSCC cells were analyzed by clonogenic survival and gap closure assays. Results Elevated levels of GRP78 RNA in HNSCC correlated with poorer overall survival. Radiation increased GRP78 protein expression on the surface of HNSCC cell lines. Experimental overexpression of GRP78 increased both radioresistance and migratory potential. Chemical inhibition of GRP78 impaired cell migration. EVs were identified as a potential source of increased GRP78 content as elevated levels of surface GRP78 were found in EVs released by irradiated cells. These vesicles transferred GRP78 to non-irradiated recipient cells during co-cultivation. Conclusions We have identified the chaperone protein GRP78 as a potential driver of increased radioresistance and motility in HNSCC. The uptake of GRP78-rich EVs originating from irradiated cells may contribute to a poorer prognosis through bystander effects mediated by the transfer of GRP78 to non-irradiated cells. Therefore, we consider the chaperone protein GRP78 to be an attractive target for improving radiotherapy strategies.
Collapse
Affiliation(s)
- Michael Schneider
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Klaudia Winkler
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rosemarie Kell
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology, TUM School of Life Science, Technical University of Munich, Freising, Germany
| | - Michael J Atkinson
- Chair of Radiation Biology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Moertl
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleißheim, Germany
| |
Collapse
|
37
|
Shan S, Niu J, Yin R, Shi J, Zhang L, Wu C, Li H, Li Z. Peroxidase from foxtail millet bran exerts anti-colorectal cancer activity via targeting cell-surface GRP78 to inactivate STAT3 pathway. Acta Pharm Sin B 2022; 12:1254-1270. [PMID: 35530132 PMCID: PMC9069399 DOI: 10.1016/j.apsb.2021.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Molecular targeted therapy has become an emerging promising strategy in cancer treatment, and screening the agents targeting at cancer cell specific targets is very desirable for cancer treatment. Our previous study firstly found that a secretory peroxidase of class III derived from foxtail millet bran (FMBP) exhibited excellent targeting anti-colorectal cancer (CRC) activity in vivo and in vitro, whereas its underlying target remains unclear. The highlight of present study focuses on the finding that cell surface glucose-regulated protein 78 (csGRP78) abnormally located on CRC is positively correlated with the anti-CRC effects of FMBP, indicating it serves as a potential target of FMBP against CRC. Further, we demonstrated that the combination of FMBP with the nucleotide binding domain (NBD) of csGRP78 interfered with the downstream activation of signal transducer and activator of transcription 3 (STAT3) in CRC cells, thus promoting the intracellular accumulation of reactive oxygen species (ROS) and cell grown inhibition. These phenomena were further confirmed in nude mice tumor model. Collectively, our study highlights csGRP78 acts as an underlying target of FMBP against CRC, uncovering the clinical potential of FMBP as a targeted agent for CRC in the future.
Collapse
Key Words
- CAC, colitis-associated carcinogenesis
- CDKs, cyclin-dependent kinases
- CETSA, cellular thermal shift assay
- CRC, colorectal cancer
- Co-IP, co-immunoprecipitation
- Colorectal cancer
- DCFH-DA, dichloro-dihydro-fluorescein diacetate
- EGFR, epidermal growth factor receptor
- ER, endoplasmic reticulum
- FDA, U.S. Food and Drug Administration
- FMBP
- FMBP, peroxidase derived from foxtail millet bran
- Foxtail millet bran
- GRP78, glucose-regulated protein 78
- H&E, hematoxylin & eosin
- ISM, isthmin
- MPs, membrane proteins
- NBD, the nucleotide binding domain of csGRP78
- PD-1, programmed death-1
- ROS
- ROS, reactive oxygen species
- SBD, substrate-binding domain of csGRP78
- SPF, specific pathogen free
- STAT3
- STAT3, signal transducer and activator of transcription 3
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
- csGRP78
- csGRP78, cell surface glucose-regulated protein 78
- rGRP78, recombinant GRP78
Collapse
|
38
|
Angeles-Floriano T, Rivera-Torruco G, García-Maldonado P, Juárez E, Gonzalez Y, Parra-Ortega I, Vilchis-Ordoñez A, Lopez-Martinez B, Arriaga-Pizano L, Orozco-Ruíz D, Torres-Nava JR, Licona-Limón P, López-Sosa F, Bremer A, Alvarez-Arellano L, Valle-Rios R. Cell surface expression of GRP78 and CXCR4 is associated with childhood high-risk acute lymphoblastic leukemia at diagnostics. Sci Rep 2022; 12:2322. [PMID: 35149705 PMCID: PMC8837614 DOI: 10.1038/s41598-022-05857-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Acute lymphocytic leukemia is the most common type of cancer in pediatric individuals. Glucose regulated protein (GRP78) is an endoplasmic reticulum chaperone that facilitates the folding and assembly of proteins and regulates the unfolded protein response pathway. GRP78 has a role in survival of cancer and metastasis and cell-surface associated GRP78 (sGRP78) is expressed on cancer cells but not in normal cells. Here, we explored the presence of sGRP78 in pediatric B-ALL at diagnosis and investigated the correlation with bona fide markers of leukemia. By using a combination of flow cytometry and high multidimensional analysis, we found a distinctive cluster containing high levels of sGRP78, CD10, CD19, and CXCR4 in bone marrow samples obtained from High-risk leukemia patients, which was absent in the compartment of Standard-risk leukemia. We confirmed that sGRP78+CXCR4+ blood-derived cells were more frequent in High-risk leukemia patients. Finally, we analyzed the dissemination capacity of sGRP78 leukemia cells in a model of xenotransplantation. sGRP78+ cells emigrated to the bone marrow and lymph nodes, maintaining the expression of CXCR4. Testing the presence of sGRP78 and CXCR4 together with conventional markers may help to achieve a better categorization of High and Standard-risk pediatric leukemia at diagnosis.
Collapse
Affiliation(s)
- Tania Angeles-Floriano
- Unidad Universitaria de Investigación, División de Investigación, Facultad de Medicina, UNAM-Hospital Infantil de México Federico Gómez, Universidad 3000, CP 04510, Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Guadalupe Rivera-Torruco
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Departamento de Fisiología y Neurociencias, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Paulina García-Maldonado
- Unidad Universitaria de Investigación, División de Investigación, Facultad de Medicina, UNAM-Hospital Infantil de México Federico Gómez, Universidad 3000, CP 04510, Mexico City, Mexico
| | - Esmeralda Juárez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Yolanda Gonzalez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Israel Parra-Ortega
- Subdirección de Diagnóstico clínico y Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Armando Vilchis-Ordoñez
- Subdirección de Diagnóstico clínico y Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Briceida Lopez-Martinez
- Subdirección de Diagnóstico clínico y Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, CMN Siglo XXI, IMSS, Mexico City, Mexico
| | | | | | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Francisco López-Sosa
- Departamento de Ortopedia, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Alhelí Bremer
- Departamento de Ortopedia, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | | | - Ricardo Valle-Rios
- Unidad Universitaria de Investigación, División de Investigación, Facultad de Medicina, UNAM-Hospital Infantil de México Federico Gómez, Universidad 3000, CP 04510, Mexico City, Mexico.
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
| |
Collapse
|
39
|
Shin SM, Wang F, Qiu C, Itson-Zoske B, Hogan QH, Yu H. Sigma-1 receptor activity in primary sensory neurons is a critical driver of neuropathic pain. Gene Ther 2022; 29:1-15. [PMID: 32424233 PMCID: PMC7671947 DOI: 10.1038/s41434-020-0157-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
The Sigma-1 receptor (σ1R) is highly expressed in the primary sensory neurons (PSNs) that are the critical site of initiation and maintenance of pain following peripheral nerve injury. By immunoblot and immunohistochemistry, we observed increased expression of both σ1R and σ1R-binding immunoglobulin protein (BiP) in the lumbar (L) dorsal root ganglia (DRG) ipsilateral to painful neuropathy induced by spared nerve injury (SNI). To evaluate the therapeutic potential of PSN-targeted σ1R inhibition at a selected segmental level, we designed a recombinant adeno-associated viral (AAV) vector expressing a small hairpin RNA (shRNA) against rat σ1R. Injection of this vector into the L4/L5 DRGs induced downregulation of σ1R in DRG neurons of all size groups, while expression of BiP was not affected. This was accompanied by attenuation of SNI-induced cutaneous mechanical and thermal hypersensitivity. Whole-cell current-clamp recordings of dissociated neurons showed that knockdown of σ1R suppressed neuronal excitability, suggesting that σ1R silencing attenuates pain by reversal of injury-induced neuronal hyperexcitability. These findings support a critical role of σ1R in modulating PSN nociceptive functions, and that the nerve injury-induced elevated σ1R activity in the PSNs can be a significant driver of neuropathic pain. Further understanding the role of PSN-σ1R in pain pathology may open routes to exploit this system for DRG-targeted pain therapy.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Fei Wang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, PR China
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, PR China
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA.
| |
Collapse
|
40
|
Hebbar N, Epperly R, Vaidya A, Thanekar U, Moore SE, Umeda M, Ma J, Patil SL, Langfitt D, Huang S, Cheng C, Klco JM, Gottschalk S, Velasquez MP. CAR T cells redirected to cell surface GRP78 display robust anti-acute myeloid leukemia activity and do not target hematopoietic progenitor cells. Nat Commun 2022; 13:587. [PMID: 35102167 PMCID: PMC8803836 DOI: 10.1038/s41467-022-28243-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Developing CAR T cells for acute myeloid leukemia (AML) has been hampered by a paucity of targets that are expressed on AML blasts and not on hematopoietic progenitor cells (HPCs). Here we demonstrate that GRP78 is expressed on the cell surface of primary AML blasts but not HPCs. To target GRP78, we generate T cell expressing a GRP78-specific peptide-based CAR, which show evidence of minimal fratricide post activation/transduction and antigen-dependent T cell differentiation. GRP78-CAR T cells recognize and kill GRP78-positive AML cells without toxicity to HPCs. In vivo, GRP78-CAR T cells have significant anti-AML activity. To prevent antigen-dependent T cell differentiation, we block CAR signaling and GRP78 cell surface expression post activation by using dasatinib during GRP78-CAR T cell manufacturing. This significantly improves their effector function in vitro and in vivo. Thus, targeting cell surface GRP78-positive AML with CAR T cells is feasible, and warrants further active exploration.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cell Survival/drug effects
- Cytokines/metabolism
- Cytotoxicity, Immunologic/drug effects
- Dasatinib/pharmacology
- Endoplasmic Reticulum Chaperone BiP/immunology
- Gene Expression Regulation, Leukemic/drug effects
- Hematopoietic Stem Cells/immunology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Nikhil Hebbar
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Rebecca Epperly
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Abishek Vaidya
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Unmesha Thanekar
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sarah E Moore
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sagar L Patil
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Deanna Langfitt
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sujuan Huang
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Stephen Gottschalk
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - M Paulina Velasquez
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
41
|
Lee CH, Chiang CF, Lin FH, Kuo FC, Su SC, Huang CL, Li PF, Liu JS, Lu CH, Hsieh CH, Hung YJ, Shieh YS. PDIA4, a new endoplasmic reticulum stress protein, modulates insulin resistance and inflammation in skeletal muscle. Front Endocrinol (Lausanne) 2022; 13:1053882. [PMID: 36619574 PMCID: PMC9816868 DOI: 10.3389/fendo.2022.1053882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Endoplasmic reticulum (ER) stress has emerged as a key player in insulin resistance (IR) progression in skeletal muscle. Recent reports revealed that ER stress-induced the expression of protein disulfide isomerase family a member 4 (PDIA4), which may be involved in IR-related diseases. A previous study showed that metformin modulated ER stress-induced IR. However, it remained unclear whether metformin alleviated IR by regulating PDIA4 expression in skeletal muscle. METHODS Herein, we used palmitate-induced IR in C2C12 cells and a high-fat diet-induced IR mouse model to document the relations between metformin, IR, and PDIA4. RESULTS In C2C12 cells, palmitate-induced IR increased inflammatory cytokines and PDIA4 expression. Besides, knocking down PDIA4 decreased palmitate-induced IR and inflammation in C2C12 cells. Furthermore, metformin modulated PDIA4 expression and alleviated IR both in vitro and in vivo. In addition, serum PDIA4 concentrations are associated with IR and inflammatory cytokines levels in human subjects. DISCUSSION Thus, this study is the first to demonstrate that PDIA4 participates in the metformin-induced effects on skeletal muscle IR and indicates that PDIA4 is a potential novel therapeutic target for directly alleviating IR.
Collapse
Affiliation(s)
- Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Chien-Hsing Lee,
| | - Chi-Fu Chiang
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Chih Kuo
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Chiang Su
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Luen Huang
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Peng-Fei Li
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jhih-Syuan Liu
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shing Shieh
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
42
|
Hernandez I, Cohen M. Linking cell-surface GRP78 to cancer: From basic research to clinical value of GRP78 antibodies. Cancer Lett 2022; 524:1-14. [PMID: 34637844 DOI: 10.1016/j.canlet.2021.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 01/01/2023]
Abstract
Glucose-related protein 78 (GRP78) is a chaperone protein localized primarily in the endoplasmic reticulum (ER) lumen, where it helps in proper protein folding by targeting misfolded proteins and facilitating protein assembly. In stressed cells, GRP78 is translocated to the cell surface (csGRP78) where it binds to various ligands and triggers different intracellular pathways. Thus, csGRP78 expression is associated with cancer, involved in the maintenance and progression of the disease. Extracellular exposition of csGRP78 leads to the production of autoantibodies as observed in patients with prostate or ovarian cancer, in which the ability to target csGRP78 affects the tumor development. Present on the surface of cancer cells and not normal cells in vivo, csGRP78 represents an interesting target for therapeutic antibody strategies. Here we give an overview of the csGRP78 function in the cell and its role in oncogenesis, thereby providing insight into the clinical value of GRP78 monoclonal antibodies for cancer prognosis and treatment.
Collapse
Affiliation(s)
- Isabelle Hernandez
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
43
|
Ajoolabady A, Wang S, Kroemer G, Klionsky DJ, Uversky VN, Sowers JR, Aslkhodapasandhokmabad H, Bi Y, Ge J, Ren J. ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocr Rev 2021; 42:839-871. [PMID: 33693711 DOI: 10.1210/endrev/bnab006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) hosts linear polypeptides and fosters natural folding of proteins through ER-residing chaperones and enzymes. Failure of the ER to align and compose proper protein architecture leads to accumulation of misfolded/unfolded proteins in the ER lumen, which disturbs ER homeostasis to provoke ER stress. Presence of ER stress initiates the cytoprotective unfolded protein response (UPR) to restore ER homeostasis or instigates a rather maladaptive UPR to promote cell death. Although a wide array of cellular processes such as persistent autophagy, dysregulated mitophagy, and secretion of proinflammatory cytokines may contribute to the onset and progression of cardiometabolic diseases, it is well perceived that ER stress also evokes the onset and development of cardiometabolic diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and chronic kidney disease (CKD). Meanwhile, these pathological conditions further aggravate ER stress, creating a rather vicious cycle. Here in this review, we aimed at summarizing and updating the available information on ER stress in CVDs, diabetes mellitus, obesity, and CKD, hoping to offer novel insights for the management of these cardiometabolic comorbidities through regulation of ER stress.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - James R Sowers
- Dalton and Diabetes and Cardiovascular Center, University of Missouri Columbia, Columbia, Missouri 65212, USA
| | | | - Yaguang Bi
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
44
|
Lin J, Jiang X, Dong M, Liu X, Shen Q, Huang Y, Zhang H, Ye R, Zhou H, Yan C, Yuan S, Wu X, Chen L, Wang Y, He M, Tao Y, Zhang Z, Jin W. Hepatokine Pregnancy Zone Protein Governs the Diet-Induced Thermogenesis Through Activating Brown Adipose Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101991. [PMID: 34514733 PMCID: PMC8564441 DOI: 10.1002/advs.202101991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Indexed: 05/06/2023]
Abstract
Intermittent fasting (IF), as a dietary intervention for weight loss, takes effects primarily through increasing energy expenditure. However, whether inter-organ systems play a key role in IF remains unclear. Here, a novel hepatokine, pregnancy zone protein (PZP) is identified, which has significant induction during the refeeding stage of IF. Further, loss of function studies and protein therapeutic experiment in mice revealed that PZP promotes diet-induced thermogenesis through activating brown adipose tissue (BAT). Mechanistically, circulating PZP can bind to cell surface glucose-regulated protein of 78 kDa (GRP78) to promote uncoupling protein 1 (UCP1) expression via a p38 MAPK-ATF2 signaling pathway in BAT. These studies illuminate a systemic regulation in which the IF promotes BAT thermogenesis through the endocrinal system and provide a novel potential target for treating obesity and related disorders.
Collapse
Affiliation(s)
- Jun Lin
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Xiaoxiao Jiang
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational MedicineCollege of Life Science and AgronomyZhoukou Normal UniversityZhoukou466000China
| | - Qiwei Shen
- Department of General SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Yuanyuan Huang
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Rongcai Ye
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huiqiao Zhou
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chunlong Yan
- College of AgricultureYanbian UniversityYanji133000China
| | - Shouli Yuan
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiangnan Wu
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Li Chen
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanfang Wang
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193China
| | - Min He
- Division of Endocrinology and MetabolismHuashan HospitalFudan UniversityShanghaiChina
| | - Yi Tao
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Zhaoyun Zhang
- Division of Endocrinology and MetabolismHuashan HospitalFudan UniversityShanghaiChina
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
45
|
De Maio A, Hightower L. The interaction of heat shock proteins with cellular membranes: a historical perspective. Cell Stress Chaperones 2021; 26:769-783. [PMID: 34478113 PMCID: PMC8413713 DOI: 10.1007/s12192-021-01228-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
The interaction of heat shock proteins (HSP) with cellular membranes has been an enigmatic process, initially observed by morphological studies, inferred during the purification of HSP70s, and confirmed after the detection of these proteins on the surface of cancer cells and their insertion into artificial lipid bilayers. Today, the association of several HSP with lipid membranes is well established. However, the mechanisms for membrane insertion have been elusive. There is conclusive evidence indicating that HSP70s have a great selectivity for negatively charged phospholipids, whereas other HSP have a broader spectrum of lipid specificity. HSP70 also oligomerizes upon membrane insertion, forming ion conductance channels. The functional role of HSP70 lipid interactions appears related to membrane stabilization that may play a role during cell membrane biogenesis. They could also play a role as membrane chaperones as well as during endocytosis, microautophagy, and signal transduction. Moreover, HSP membrane association is a key component in the extracellular export of these proteins. The presence of HSP70 on the surface of cancer cells and its interaction with lysosome membranes have been envisioned as potential therapeutic targets. Thus, the biology and function of HSP membrane association are reaching a new level of excitement. This review is an attempt to preserve the recollection of the pioneering contributions of many investigators that have participated in this endeavor.
Collapse
Affiliation(s)
- Antonio De Maio
- Department of Surgery, Division of Trauma, Critical Care, Burns, and Acute Care Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Investigations of Health and Education Disparities, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Lawrence Hightower
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
46
|
Puzyrenko A, Jacobs ER, Sun Y, Felix JC, Sheinin Y, Ge L, Lai S, Dai Q, Gantner BN, Nanchal R, North PE, Simpson PM, Rui H, Benjamin IJ. Pneumocytes are distinguished by highly elevated expression of the ER stress biomarker GRP78, a co-receptor for SARS-CoV-2, in COVID-19 autopsies. Cell Stress Chaperones 2021; 26:859-868. [PMID: 34382151 PMCID: PMC8357488 DOI: 10.1007/s12192-021-01230-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccinations are widely credited with reducing death rates from COVID-19, but the underlying host-viral mechanisms/interactions for morbidity and mortality of SARS-CoV-2 infection remain poorly understood. Acute respiratory distress syndrome (ARDS) describes the severe lung injury, which is pathologically associated with alveolar damage, inflammation, non-cardiogenic edema, and hyaline membrane formation. Because proteostatic pathways play central roles in cellular protection, immune modulation, protein degradation, and tissue repair, we examined the pathological features for the unfolded protein response (UPR) using the surrogate biomarker glucose-regulated protein 78 (GRP78) and co-receptor for SARS-CoV-2. At autopsy, immunostaining of COVID-19 lungs showed highly elevated expression of GRP78 in both pneumocytes and macrophages compared with that of non-COVID control lungs. GRP78 expression was detected in both SARS-CoV-2-infected and un-infected pneumocytes as determined by multiplexed immunostaining for nucleocapsid protein. In macrophages, immunohistochemical staining for GRP78 from deceased COVID-19 patients was increased but overlapped with GRP78 expression taken from surgical resections of non-COVID-19 controls. In contrast, the robust in situ GRP78 immunostaining of pneumocytes from COVID-19 autopsies exhibited no overlap and was independent of age, race/ethnicity, and gender compared with that from non-COVID-19 controls. Our findings bring new insights for stress-response pathways involving the proteostatic network implicated for host resilience and suggest that targeting of GRP78 expression with existing therapeutics might afford an alternative therapeutic strategy to modulate host-viral interactions during SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Andrii Puzyrenko
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Elizabeth R Jacobs
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Yunguang Sun
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Juan C Felix
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yuri Sheinin
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Linna Ge
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Shuping Lai
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Qiang Dai
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Benjamin N Gantner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Rahul Nanchal
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paula E North
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pippa M Simpson
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Milwaukee, WI, USA
| | - Hallgeir Rui
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Ivor J Benjamin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
47
|
Arboretto P, Cillo M, Leonardi A. New Insights into Cancer Targeted Therapy: Nodal and Cripto-1 as Attractive Candidates. Int J Mol Sci 2021; 22:ijms22157838. [PMID: 34360603 PMCID: PMC8345935 DOI: 10.3390/ijms22157838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor beta (TGF-β) signaling is fundamental for correct embryonic development. However, alterations of this pathway have been correlated with oncogenesis, tumor progression and sustaining of cancer stem cells (CSCs). Cripto-1 (CR-1) and Nodal are two embryonic proteins involved in TGF-β signaling. Their expression is almost undetectable in terminally differentiated cells, but they are often re-expressed in tumor cells, especially in CSCs. Moreover, cancer cells that show high levels of CR-1 and/or Nodal display more aggressive phenotypes in vitro, while in vivo their expression correlates with a worse prognosis in several human cancers. The ability to target CSCs still represents an unmet medical need for the complete eradication of certain types of tumors. Given the prognostic role and the selective expression of CR-1 and Nodal on cancer cells, they represent archetypes for targeted therapy. The aim of this review is to clarify the role of CR-1 and Nodal in cancer stem populations and to summarize the current therapeutic strategy to target CSCs using monoclonal antibodies (mAbs) or other molecular tools to interfere with these two proteins.
Collapse
|
48
|
Cotman SL, Lefrancois S. CLN3, at the crossroads of endocytic trafficking. Neurosci Lett 2021; 762:136117. [PMID: 34274435 DOI: 10.1016/j.neulet.2021.136117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022]
Abstract
The CLN3 gene was identified over two decades ago, but the primary function of the CLN3 protein remains unknown. Recessive inheritance of loss of function mutations in CLN3 are responsible for juvenile neuronal ceroid lipofuscinosis (Batten disease, or CLN3 disease), a fatal childhood onset neurodegenerative disease causing vision loss, seizures, progressive dementia, motor function loss and premature death. CLN3 is a multipass transmembrane protein that primarily localizes to endosomes and lysosomes. Defects in endocytosis, autophagy, and lysosomal function are common findings in CLN3-deficiency model systems. However, the molecular mechanisms underlying these defects have not yet been fully elucidated. In this mini-review, we will summarize the current understanding of the CLN3 protein interaction network and discuss how this knowledge is starting to delineate the molecular pathogenesis of CLN3 disease. Accumulating evidence strongly points towards CLN3 playing a role in regulation of the cytoskeleton and cytoskeletal associated proteins to tether cellular membranes, regulation of membrane complexes such as channels/transporters, and modulating the function of small GTPases to effectively mediate vesicular movement and membrane dynamics.
Collapse
Affiliation(s)
- Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Mass General Research Institute, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, United States.
| | - Stéphane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval H7V 1B7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada.
| |
Collapse
|
49
|
Gonzalez-Gronow M, Gopal U, Austin RC, Pizzo SV. Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life 2021; 73:843-854. [PMID: 33960608 DOI: 10.1002/iub.2502] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
The 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum (ER)-resident molecular chaperone. GRP78 is a member of the 70 kDa heat shock family of proteins involved in correcting and clearing misfolded proteins in the ER. In response to cellular stress, GRP78 escapes from the ER and moves to the plasma membrane where it (a) functions as a receptor for many ligands, and (b) behaves as an autoantigen for autoantibodies that contribute to human disease and cancer. Cell surface GRP78 (csGRP78) associates with the major histocompatibility complex class I (MHC-I), and is the port of entry for several viruses, including the predictive binding of the novel SARS-CoV-2. Furthermore, csGRP78 is found in association with partners as diverse as the teratocarcinoma-derived growth factor 1 (Cripto), the melanocortin-4 receptor (MC4R) and the DnaJ-like protein MTJ-1. CsGRP78 also serves as a receptor for a large variety of ligands including activated α2 -macroglobulin (α2 M*), plasminogen kringle 5 (K5), microplasminogen, the voltage-dependent anion channel (VDAC), tissue factor (TF), and the prostate apoptosis response-4 protein (Par-4). In this review, we discuss the mechanisms involved in the translocation of GRP78 from the ER to the cell surface, and the role of secreted GRP78 and its autoantibodies in cancer and neurological disorders.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile.,Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Udhayakumar Gopal
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University and The Research Institute of St. Joseph's Hamilton, Hamilton, Ontario, Canada
| | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
50
|
Lager TW, Conner C, Keating CR, Warshaw JN, Panopoulos AD. Cell surface GRP78 and Dermcidin cooperate to regulate breast cancer cell migration through Wnt signaling. Oncogene 2021; 40:4050-4059. [PMID: 33981001 PMCID: PMC8197743 DOI: 10.1038/s41388-021-01821-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022]
Abstract
The heat shock protein GRP78 typically resides in the endoplasmic reticulum in normal tissues, but it has been shown to be expressed on the cell surface of several cancer cells, and some stem cells, where it can act as a signaling molecule by not-yet-fully defined mechanisms. Although cell surface GRP78 (sGRP78) has emerged as an attractive chemotherapeutic target, understanding how sGRP78 is functioning in cancer has been complicated by the fact that sGRP78 can function in a cell-context dependent manner, with a diverse array of reported binding partners, to regulate a variety of cellular responses. We had previously shown that sGRP78 was important in regulating pluripotent stem cell (PSC) functions, and hypothesized that embryonic-like mechanisms of GRP78 were critical to regulating aggressive breast cancer cell functions. Here, using proteomics we identify Dermcidin (DCD) as a novel sGRP78 binding partner common to both PSCs and breast cancer cells. We show that GRP78 and DCD cooperate to regulate stem cell and cancer cell migration that is dependent on the cell surface functions of these proteins. Finally, we identify Wnt/β-catenin signaling, a critical pathway in stem cell and cancer cell biology, as an important downstream intermediate in regulating this migration phenotype.
Collapse
Affiliation(s)
- Tyson W Lager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Clay Conner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Claudia R Keating
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Jane N Warshaw
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Departments of Cell Biology and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Athanasia D Panopoulos
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|