1
|
Lin S, He J, Zhou Y, Bao Y, Feng X, Cheng H, Cai H, Hu S, Wang L, Zheng Y, Zhang M, Fan Q, Wen S, Lin Y, Liu C, Chen X, Wang F, Ge X, Yang X. Cross-sectional and Longitudinal Associations Between Metal Mixtures and Serum C3, C4: Result from the Manganese‑exposed Workers Healthy Cohort. Biol Trace Elem Res 2025; 203:18-29. [PMID: 38492120 DOI: 10.1007/s12011-024-04143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Exposure to metal mixtures compromises the immune system, with the complement system connecting innate and adaptive immunity. Herein, we sought to explore the relationships between blood cell metal mixtures and the third and fourth components of serum complement (C3, C4). A total of 538 participants were recruited in November 2017, and 289 participants were followed up in November 2021. We conducted a cross-sectional analysis at baseline and a longitudinal analysis over 4 years. Least Absolute Shrinkage and Selection Operator (LASSO) was employed to identify the primary metals related to serum C3, C4; generalized linear model (GLM) was further used to evaluate the cross-sectional associations of the selected metals and serum C3, C4. Furthermore, participants were categorized into three groups according to the percentage change in metal concentrations over 4 years. GLM was performed to assess the associations between changes in metal concentrations and changes in serum C3, C4 levels. At baseline, each 1-unit increase in log10-transformed in magnesium, manganese, copper, rubidium, and lead was significantly associated with a change in serum C3 of 0.226 (95% CI: 0.146, 0.307), 0.055 (95% CI: 0.022, 0.088), 0.113 (95% CI: 0.019, 0.206), - 0.173 (95% CI: - 0.262, - 0.083), and - 0.020 (95% CI: - 0.039, - 0.001), respectively. Longitudinally, decreased copper concentrations were negatively associated with an increment in serum C3 levels, while decreased lead concentrations were positively associated with an increment in serum C3 levels. However, no metal was found to be primarily associated with serum C4 in LASSO, so we did not further explore the relationship between them. Our research indicates that copper and lead may affect complement system homeostasis by influencing serum C3 levels. Further investigation is necessary to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Sencai Lin
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junxiu He
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yinghua Zhou
- School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Yu Bao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiuming Feng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Hong Cheng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Haiqing Cai
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Sihan Hu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Lin Wang
- School of Science, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Yuan Zheng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Mengdi Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Qinghua Fan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shifeng Wen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yuanxin Lin
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Chaoqun Liu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xing Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fei Wang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoting Ge
- School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Wang S, Tong S, Jin X, Li N, Dang P, Sui Y, Liu Y, Wang D. Single-cell RNA sequencing analysis of the retina under acute high intraocular pressure. Neural Regen Res 2024; 19:2522-2531. [PMID: 38526288 PMCID: PMC11090430 DOI: 10.4103/1673-5374.389363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00032/figure1/v/2024-03-08T184507Z/r/image-tiff High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases, yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown. Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel (Healaflow®). Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure. Our results identified a total of 12 cell types, namely retinal pigment epithelial cells, rod-photoreceptor cells, bipolar cells, Müller cells, microglia, cone-photoreceptor cells, retinal ganglion cells, endothelial cells, retinal progenitor cells, oligodendrocytes, pericytes, and fibroblasts. The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells, with ganglion cells decreased by 23%. Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure. We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression. We found upregulation of the B3gat2 gene, which is associated with neuronal migration and adhesion, and downregulation of the Tsc22d gene, which participates in inhibition of inflammation. This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure. These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.
Collapse
Affiliation(s)
- Shaojun Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Siti Tong
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Xin Jin
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Na Li
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Pingxiu Dang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Yang Sui
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Ying Liu
- Department of Ophthalmology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Dajiang Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Muramatsu A, Nakamura S, Hirayama T, Nagasawa H, Ohira A, Kitaoka T, Hara H, Shimazawa M. Both hemoglobin and hemin cause damage to retinal pigment epithelium through the iron ion accumulation. J Pharmacol Sci 2024; 155:44-51. [PMID: 38677785 DOI: 10.1016/j.jphs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/29/2024] Open
Abstract
Subretinal hemorrhages result in poor vision and visual field defects. During hemorrhage, several potentially toxic substances are released from iron-based hemoglobin and hemin, inducing cellular damage, the detailed mechanisms of which remain unknown. We examined the effects of excess intracellular iron on retinal pigment epithelial (RPE) cells. A Fe2+ probe, SiRhoNox-1 was used to investigate Fe2+ accumulation after treatment with hemoglobin or hemin in the human RPE cell line ARPE-19. We also evaluated the production of reactive oxygen species (ROS) and lipid peroxidation. Furthermore, the protective effect of-an iron chelator, 2,2'-bipyridyl (BP), and ferrostatin-1 (Fer-1) on the cell damage, was evaluated. Fe2+ accumulation increased in the hemoglobin- or hemin-treated groups, as well as intracellular ROS production and lipid peroxidation. In contrast, BP treatment suppressed RPE cell death, ROS production, and lipid peroxidation. Pretreatment with Fer-1 ameliorated cell death in a concentration-dependent manner and suppressed ROS production and lipid peroxidation. Taken together, these findings indicate that hemoglobin and hemin, as well as subretinal hemorrhage, may induce RPE cell damage and visual dysfunction via intracellular iron accumulation.
Collapse
Affiliation(s)
- Aomi Muramatsu
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Akihiro Ohira
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Kitaoka
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
4
|
Liu D, Liu Z, Liao H, Chen ZS, Qin B. Ferroptosis as a potential therapeutic target for age-related macular degeneration. Drug Discov Today 2024; 29:103920. [PMID: 38369100 DOI: 10.1016/j.drudis.2024.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Cell death plays a crucial part in the process of age-related macular degeneration (AMD), but its mechanisms remain elusive. Accumulating evidence suggests that ferroptosis, a novel form of regulatory cell death characterized by iron-dependent accumulation of lipid hydroperoxides, has a crucial role in the pathogenesis of AMD. Numerous studies have suggested that ferroptosis participates in the degradation of retinal cells and accelerates the progression of AMD. Furthermore, inhibitors of ferroptosis exhibit notable protective effects in AMD, underscoring the significance of ferroptosis as a pivotal mechanism in the death of retinal cells during the process of AMD. This review aims to summarize the molecular mechanisms of ferroptosis in AMD, enumerate potential inhibitors and discuss the challenges and future opportunities associated with targeting ferroptosis as a therapeutic strategy, providing important information references and insights for the prevention and treatment of AMD.
Collapse
Affiliation(s)
- Dongcheng Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Ziling Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Hongxia Liao
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China; Aier Eye Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
5
|
Barrozo ER, Seferovic MD, Hamilton MP, Moorshead DN, Jochum MD, Do T, O'Neil DS, Suter MA, Aagaard KM. Zika virus co-opts microRNA networks to persist in placental niches detected by spatial transcriptomics. Am J Obstet Gynecol 2024; 230:251.e1-251.e17. [PMID: 37598997 PMCID: PMC10840961 DOI: 10.1016/j.ajog.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Zika virus congenital infection evades double-stranded RNA detection and may persist in the placenta for the duration of pregnancy without accompanying overt histopathologic inflammation. Understanding how viruses can persist and replicate in the placenta without causing overt cellular or tissue damage is fundamental to deciphering mechanisms of maternal-fetal vertical transmission. OBJECTIVE Placenta-specific microRNAs are believed to be a tenet of viral resistance at the maternal-fetal interface. We aimed to test the hypothesis that the Zika virus functionally disrupts placental microRNAs, enabling viral persistence and fetal pathogenesis. STUDY DESIGN To test this hypothesis, we used orthogonal approaches in human and murine experimental models. In primary human trophoblast cultures (n=5 donor placentae), we performed Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation to identify any significant alterations in the functional loading of microRNAs and their targets onto the RNA-induced silencing complex. Trophoblasts from same-donors were split and infected with a contemporary first-passage Zika virus strain HN16 (multiplicity of infection=1 plaque forming unit per cell) or mock infected. To functionally cross-validate microRNA-messenger RNA interactions, we compared our Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation results with an independent analysis of published bulk RNA-sequencing data from human placental disk specimens (n=3 subjects; Zika virus positive in first, second, or third trimester, CD45- cells sorted by flow cytometry) and compared it with uninfected controls (n=2 subjects). To investigate the importance of these microRNA and RNA interference networks in Zika virus pathogenesis, we used a gnotobiotic mouse model uniquely susceptible to the Zika virus. We evaluated if small-molecule enhancement of microRNA and RNA interference pathways with enoxacin influenced Zika virus pathogenesis (n=20 dams total yielding 187 fetal specimens). Lastly, placentae (n=14 total) from this mouse model were analyzed with Visium spatial transcriptomics (9743 spatial transcriptomes) to identify potential Zika virus-associated alterations in immune microenvironments. RESULTS We found that Zika virus infection of primary human trophoblast cells led to an unexpected disruption of placental microRNA regulation networks. When compared with uninfected controls, Zika virus-infected placentae had significantly altered SLC12A8, SDK1, and VLDLR RNA-induced silencing complex loading and transcript levels (-22; adjusted P value <.05; Wald-test with false discovery rate correction q<0.05). In silico microRNA target analyses revealed that 26 of 119 transcripts (22%) in the transforming growth factor-β signaling pathway were targeted by microRNAs that were found to be dysregulated following Zika virus infection in trophoblasts. In gnotobiotic mice, relative to mock controls, Zika virus-associated fetal pathogenesis included fetal growth restriction (P=.036) and viral persistence in placental tissue (P=.011). Moreover, spatial transcriptomics of murine placentae revealed that Zika virus-specific placental niches were defined by significant up-regulation of complement cascade components and coordinated changes in transforming growth factor-β gene expression. Finally, treatment of Zika virus-infected mice with enoxacin abolished placental Zika virus persistence, rescued the associated fetal growth restriction, and the Zika virus-associated transcriptional changes in placental immune microenvironments were no longer observed. CONCLUSION These results collectively suggest that (1) Zika virus infection and persistence is associated with functionally perturbed microRNA and RNA interference pathways specifically related to immune regulation in placental microenvironments and (2) enhancement of placental microRNA and RNA interference pathways in mice rescued Zika virus-associated pathogenesis, specifically persistence of viral transcripts in placental microenvironments and fetal growth restriction.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Maxim D Seferovic
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Mark P Hamilton
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX; Hematology & Medical Oncology, Stanford School of Medicine, Stanford University, Palo Alto, CA
| | - David N Moorshead
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Michael D Jochum
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Trang Do
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Derek S O'Neil
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Melissa A Suter
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX.
| |
Collapse
|
6
|
Zhang KR, Jankowski CSR, Marshall R, Nair R, Más Gómez N, Alnemri A, Liu Y, Erler E, Ferrante J, Song Y, Bell BA, Baumann BH, Sterling J, Anderson B, Foshe S, Roof J, Fazelinia H, Spruce LA, Chuang JZ, Sung CH, Dhingra A, Boesze-Battaglia K, Chavali VRM, Rabinowitz JD, Mitchell CH, Dunaief JL. Oxidative stress induces lysosomal membrane permeabilization and ceramide accumulation in retinal pigment epithelial cells. Dis Model Mech 2023; 16:dmm050066. [PMID: 37401371 PMCID: PMC10399446 DOI: 10.1242/dmm.050066] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.
Collapse
Affiliation(s)
- Kevin R. Zhang
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor S. R. Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rayna Marshall
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rohini Nair
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Néstor Más Gómez
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingrui Liu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Erler
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Ferrante
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brent A. Bell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bailey H. Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon Anderson
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra Foshe
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Roof
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Lynn A. Spruce
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Venkata R. M. Chavali
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Claire H. Mitchell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua L. Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Ge X, Yu Z, Guo X, Li L, Ye L, Ye M, Yuan J, Zhu C, Hu W, Hou Y. Complement and complement regulatory proteins are upregulated in lungs of COVID-19 patients. Pathol Res Pract 2023; 247:154519. [PMID: 37244049 PMCID: PMC10165854 DOI: 10.1016/j.prp.2023.154519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
We explored the pathological changes and the activation of local complement system in COVID-19 pneumonia. Lung paraffin sections of COVID-19 infected patients were analyzed by HE (hematoxylin-eosin) staining. The deposition of complement C3, the deposition of C3b/iC3b/C3d and C5b-9, and the expression of complement regulatory proteins, CD59, CD46 and CD55 were detected by immunohistochemistry. In COVID-19 patients' lung tissues, fibrin exudation, mixed with erythrocyte, alveolar macrophage and shed pneumocyte are usually observed in the alveoli. The formation of an "alveolar emboli" structure may contribute to thrombosis and consolidation in lung tissue. In addition, we also found that compared to normal tissue, the lung tissues of COVID-19 patients displayed the hyper-activation of complement that is represented by extensive deposition of C3, C3b/iC3b/C3d and C5b-9, and the increased expression level of complement regulatory proteins CD55, and especially CD59 but not CD46. The thrombosis and consolidation in lung tissues may contribute to the pathogenesis of COVID-19. The increased expression of CD55 and CD59 may reflect a feedback of self-protection on the complement hyper-activation. Further, the increased C3 deposition and the strongly activated complement system in lung tissues may suggest the rationale of complement-targeted therapeutics in conquering COVID-19.
Collapse
Affiliation(s)
- Xiaowen Ge
- Department of Pathology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, PR China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Xinxin Guo
- Department of Pathology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, PR China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Dongan Road 270, Shanghai 200032, PR China
| | - Ling Ye
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Maosong Ye
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Chouwen Zhu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Dongan Road 270, Shanghai 200032, PR China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, PR China.
| |
Collapse
|
8
|
Li C, Xiao C, Tao H, Tang X. Research progress of iron metabolism in retinal diseases. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:93-100. [PMID: 37846377 PMCID: PMC10577842 DOI: 10.1016/j.aopr.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 10/18/2023]
Abstract
Background Retinal diseases can lead to severe visual impairment and even blindness, but current treatments are limited. For precise targeted therapy, the pathophysiological mechanisms of the diseases still need to be further explored. Iron serves an essential role in many biological activities and helps maintain the function and morphology of the retina. The vision problems caused by retinal diseases are affecting more and more people, the study of iron metabolism in retinal diseases possesses great potential for clinical application. Main text Iron maintains a dynamic balance in the retina but in excess is toxic to the retina. Iron overload can lead to various pathological changes in the retina through oxidative stress, inflammation, cell death, angiogenesis and other pathways. It is therefore involved in the progression of retinal diseases such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and hereditary iron overload. In recent years, iron chelators have been shown to be effective in the treatment of retinal diseases, but the exact mechanism is not yet fully understood. This question prompted further investigation into the specific mechanisms by which iron metabolism is involved in retinal disease. Conclusions This review summarizes iron metabolism processes in the retina and mechanistic studies of iron metabolism in the progression of retinal disease. It also highlights the therapeutic potential of iron chelators in retinal diseases.
Collapse
Affiliation(s)
- Cunzi Li
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunyu Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Tao
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianling Tang
- Department of Ophthalmology, Shenzhen Third People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Construction of a ferroptosis-associated circRNA-miRNA-mRNA network in age-related macular degeneration. Exp Eye Res 2022; 224:109234. [PMID: 36044964 DOI: 10.1016/j.exer.2022.109234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe vision impairment in the aging population. However, the underlying molecular mechanism remains unclear. Ferroptosis is a novel non-apoptotic programmed cell death pathway, that contributes to AMD. In addition, non-coding RNA-led epigenetic profile was identified in the regulation of AMD progression. Considering that non-coding RNAs are vital regulators of ferroptosis-related genes in various pathological events, we explored and constructed a ferroptosis-associated circRNA-miRNA-mRNA network in AMD. Differential expression of fourteen ferroptosis-associated genes were identified based on our microarray analysis and the FerrDb tool at the threshold of P < 0.05 and log2|fold change| ≥ 1, which were subsequently validated by the public datasets. We further screened eight miRNAs via public datasets and the miRNet database. Based on these eight miRNAs, 23 circRNAs were mined using the Starbase tool. Taking all these together, we obtained a ferroptosis-related network with 414 pairs of circRNA-miRNA-mRNA, which are potential targets in future AMD treatments.
Collapse
|
10
|
Long HZ, Zhou ZW, Cheng Y, Luo HY, Li FJ, Xu SG, Gao LC. The Role of Microglia in Alzheimer’s Disease From the Perspective of Immune Inflammation and Iron Metabolism. Front Aging Neurosci 2022; 14:888989. [PMID: 35847685 PMCID: PMC9284275 DOI: 10.3389/fnagi.2022.888989] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD), the most common type of senile dementia, includes the complex pathogenesis of abnormal deposition of amyloid beta-protein (Aβ), phosphorylated tau (p-tau) and neuroimmune inflammatory. The neurodegenerative process of AD triggers microglial activation, and the overactivation of microglia produces a large number of neuroimmune inflammatory factors. Microglia dysfunction can lead to disturbances in iron metabolism and enhance iron-induced neuronal degeneration in AD, while elevated iron levels in brain areas affect microglia phenotype and function. In this manuscript, we firstly discuss the role of microglia in AD and then introduce the role of microglia in the immune-inflammatory pathology of AD. Their role in AD iron homeostasis is emphasized. Recent studies on microglia and ferroptosis in AD are also reviewed. It will help readers better understand the role of microglia in iron metabolism in AD, and provides a basis for better regulation of iron metabolism disorders in AD and the discovery of new potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Hui-Zhi Long
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Feng-Jiao Li
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
- *Correspondence: Li-Chen Gao,
| |
Collapse
|
11
|
Sterling JK, Baumann B, Foshe S, Voigt A, Guttha S, Alnemri A, McCright SJ, Li M, Zauhar RJ, Montezuma SR, Kapphahn RJ, Chavali VRM, Hill DA, Ferrington DA, Stambolian D, Mullins RF, Merrick D, Dunaief JL. Inflammatory adipose activates a nutritional immunity pathway leading to retinal dysfunction. Cell Rep 2022; 39:110942. [PMID: 35705048 PMCID: PMC9248858 DOI: 10.1016/j.celrep.2022.110942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/24/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Age-related macular degeneration (AMD), the leading cause of irreversible blindness among Americans over 50, is characterized by dysfunction and death of retinal pigment epithelial (RPE) cells. The RPE accumulates iron in AMD, and iron overload triggers RPE cell death in vitro and in vivo. However, the mechanism of RPE iron accumulation in AMD is unknown. We show that high-fat-diet-induced obesity, a risk factor for AMD, drives systemic and local inflammatory circuits upregulating interleukin-1β (IL-1β). IL-1β upregulates RPE iron importers and downregulates iron exporters, causing iron accumulation, oxidative stress, and dysfunction. We term this maladaptive, chronic activation of a nutritional immunity pathway the cellular iron sequestration response (CISR). RNA sequencing (RNA-seq) analysis of choroid and retina from human donors revealed that hallmarks of this pathway are present in AMD microglia and macrophages. Together, these data suggest that inflamed adipose tissue, through the CISR, can lead to RPE pathology in AMD.
Collapse
Affiliation(s)
- Jacob K Sterling
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bailey Baumann
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sierra Foshe
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew Voigt
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Samyuktha Guttha
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sam J McCright
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Randy J Zauhar
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19104, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rebecca J Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkata R M Chavali
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David A Hill
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dwight Stambolian
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert F Mullins
- Institute for Vision Research, The University of Iowa, Iowa City, IA 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - David Merrick
- Department of Medicine, Division of Endocrinology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua L Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022; 10:1206. [PMID: 35625943 PMCID: PMC9138510 DOI: 10.3390/biomedicines10051206] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are essential for normal brain development and functioning. They respond to brain injury and disease through a process referred to as reactive astrogliosis, where the reactivity is highly heterogenous and context-dependent. Reactive astrocytes are active contributors to brain pathology and can exert beneficial, detrimental, or mixed effects following brain insults. Transforming growth factor-β (TGF-β) has been identified as one of the key factors regulating astrocyte reactivity. The genetic and pharmacological manipulation of the TGF-β signaling pathway in animal models of central nervous system (CNS) injury and disease alters pathological and functional outcomes. This review aims to provide recent understanding regarding astrocyte reactivity and TGF-β signaling in brain injury, aging, and neurodegeneration. Further, it explores how TGF-β signaling modulates astrocyte reactivity and function in the context of CNS disease and injury.
Collapse
Affiliation(s)
- Jian Luo
- Palo Alto Veterans Institute for Research, VAPAHCS, Palo Alto, CA 94304, USA
| |
Collapse
|
13
|
Abstract
The eye presents a unique opportunity for complement component 3 (C3) therapeutics. Drugs can be delivered directly to specific parts of the eye, and growing evidence has established a pivotal role for C3 in age-related macular degeneration (AMD). Emerging data show that C3 may be important to the pathophysiology of other eye diseases as well. This article will discuss the location of C3 expression in the eye as well as the preclinical and clinical data regarding C3's functions in AMD. We will provide a comprehensive review of developing C3 inhibitors for the eye, including the Phase 2 and 3 data for the C3 inhibitor pegcetacoplan as a treatment for the geographic atrophy of AMD. Developing evidence also points toward C3 as a therapeutic target for stages of AMD preceding geographic atrophy. We will also discuss data illuminating C3's relationship to other eye diseases, such as Stargardt disease, diabetic retinopathy, and glaucoma. In addition to being a converging point and centerpiece of the complement cascade, C3 has broad effects as a multifaceted controller of opsonophagocytosis, microglia/macrophage recruitment, and downstream terminal pathway activity. C3 is a crucial player in the pathophysiology of AMD but also seems to have importance in other diseases that are major causes of blindness. Directions for further investigation will be highlighted, as culminating evidence suggests that we may be approaching an era of C3 therapeutics for the eye.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tianyu Liu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Kim BJ, Mastellos DC, Li Y, Dunaief JL, Lambris JD. Targeting complement components C3 and C5 for the retina: Key concepts and lingering questions. Prog Retin Eye Res 2021; 83:100936. [PMID: 33321207 PMCID: PMC8197769 DOI: 10.1016/j.preteyeres.2020.100936] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) remains a major cause of legal blindness, and treatment for the geographic atrophy form of AMD is a significant unmet need. Dysregulation of the complement cascade is thought to be instrumental for AMD pathophysiology. In particular, C3 and C5 are pivotal components of the complement cascade and have become leading therapeutic targets for AMD. In this article, we discuss C3 and C5 in detail, including their roles in AMD, biochemical and structural aspects, locations of expression, and the functions of C3 and C5 fragments. Further, the article critically reviews developing therapeutics aimed at C3 and C5, underscoring the potential effects of broad inhibition of complement at the level of C3 versus more specific inhibition at C5. The relationships of complement biology to the inflammasome and microglia/macrophage activity are highlighted. Concepts of C3 and C5 biology will be emphasized, while we point out questions that need to be settled and directions for future investigations.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Yafeng Li
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Wen S, Sha Y, Li Y, Rui Z, Si C, Zhou Y, Yan F, Wang B, Hu J, Han X, Shi D. Serum Iron and Ferritin Levels Are Correlated with Complement C3. Biol Trace Elem Res 2021; 199:2482-2488. [PMID: 32935207 DOI: 10.1007/s12011-020-02379-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Iron is one of the most important trace elements in the body, and its homeostasis is essential to the normal function of the immune system. Complement component C3, which is the converging of three main pathways of complement system activation, plays a key role in the innate immunity. However, the relationship between iron homeostasis and complement C3 remains unknown. The aim of our study was to analyze the relationship between serum iron and ferritin level and complement C3 and C4. A total of 590 healthy individuals were recruited in our study. Higher serum complement C3 level (p < 0.001) was found in individuals with higher serum ferritin level (> 104.0 μg/L). Moreover, serum iron level and serum ferritin level were positively correlated with complement C3 (r = 0.133, p = 0.001; r = 0.221, p < 0.001) and complement C4 (r = 0.117, p = 0.004; r = 0.123, p = 0.003). The linear regression analysis displayed that both serum iron level and serum ferritin level were linearly correlated with serum complement C3 level (adjusted beta: 2.382, 95% CI: 0.841-3.923; adjusted beta: 42.911, 95% CI: 29.070-56.751). To explore the relationship between iron homeostasis and complement C3 further, the serum samples from C3-/- mice and the wild-type (WT) control mice were obtained. Significantly lower serum iron level and higher ferritin level were found in C3-/- mice than those in WT mice (p < 0.001; p < 0.001), indicating that complement C3 might influence iron distribution and utilization. Overall, these data suggested that serum iron and ferritin levels were correlated with complement C3. The deficiency of complement C3 may disrupt the regular iron metabolism in the body.
Collapse
Affiliation(s)
- Shuang Wen
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yeqin Sha
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yinling Li
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhilian Rui
- Department of Laboratory Medicine, Liyang People's Hospital, Liyang, 213300, Jiangsu, China
| | - Chenhong Si
- Department of Pediatrics, Liyang Women and Children Health Hospital, Liyang, 213000, Jiangsu, China
| | - Yuning Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Fengfeng Yan
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Bicheng Wang
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jingming Hu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xu Han
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
16
|
Chen W, He S, Xiang D. Hypoxia-induced retinal pigment epithelium cell-derived bFGF promotes the migration and angiogenesis of HUVECs through regulating TGF-β1/smad2/3 pathway. Gene 2021; 790:145695. [PMID: 33964379 DOI: 10.1016/j.gene.2021.145695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/18/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Hypoxia promotes the secretion of basic fibroblast growth factor (bFGF) in retinal pigment epithelium (RPE), which plays an important part in retinopathy of prematurity (ROP). This study preliminarily explored the effect of hypoxia-induced RPE-derived bFGF on the biological functions of human umbilical vein endothelial cells (HUVECs). After cell culture in hypoxia conditions, the cell viability, apoptosis, and the expressions of bFGF and vascular endothelial growth factor A (VEGFA) in human RPEs were detected by 3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, western blot, RT-qPCR, or ELISA. The HUVECs were transfected with siRNA for bFGF (sibFGF) or transforming growth factor-β1 (TGF-β1) (siTGF-β1) and grown in the supernatant RPE under normoxia conditions or hypoxia conditions to further determine the cell viability, migration, angiogenesis, and the expressions of TGF-β1, p-smad2/3, and smad2/3 in the cells by performing MTT, transwell, tube formation, Western blot, or RT-qPCR. Hypoxia culture decreased the cell viability and promoted the apoptosis as well as the expressions of bFGF and VEGFA in RPEs. In both normoxia and hypoxia conditions, RPE-derived bFGF increased the cell viability, migration, angiogenesis, and the expressions of TGF-β1 and p-smad2/3 in the HUVECs, with hypoxia-induced RPE-derived bFGF showing a stronger effect than bFGF induced by normoxia. However, sibFGF reversed the effects caused by RPE-derived bFGF. Moreover, siTGF-β1 decreased the high cell viability, migration and angiogenesis of HUVECs, and downregulated the expressions of TGF-β1 and phosphorylated (p)-smad2/3 upregulated by hypoxia-induced RPE-derived bFGF. Hypoxia-induced RPE-derived bFGF could promote the migration and angiogenesis of HUVECs through regulating TGF-β1/smad2/3 pathway.
Collapse
Affiliation(s)
- Wensi Chen
- Department of Pediatric Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Shiping He
- Department of Ophthalmology, Aier Eye Hospital, China
| | - Daoman Xiang
- Department of Pediatric Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China.
| |
Collapse
|
17
|
Zhao T, Guo X, Sun Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis 2021; 12:529-551. [PMID: 33815881 PMCID: PMC7990372 DOI: 10.14336/ad.2020.0912] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential component in many biological processes in the human body. It is critical for the visual phototransduction cascade in the retina. However, excess iron can be toxic. Iron accumulation and reduced efficiency of intracellular antioxidative defense systems predispose the aging retina to oxidative stress-induced cell death. Age-related macular degeneration (AMD) is characterized by retinal iron accumulation and lipid peroxidation. The mechanisms underlying AMD include oxidative stress-mediated death of retinal pigment epithelium (RPE) cells and subsequent death of retinal photoreceptors. Understanding the mechanism of the disruption of iron and redox homeostasis in the aging retina and AMD is crucial to decipher these mechanisms of cell death and AMD pathogenesis. The mechanisms of retinal cell death in AMD are an area of active investigation; previous studies have proposed several types of cell death as major mechanisms. Ferroptosis, a newly discovered programmed cell death pathway, has been associated with the pathogenesis of several neurodegenerative diseases. Ferroptosis is initiated by lipid peroxidation and is characterized by iron-dependent accumulation. In this review, we provide an overview of the mechanisms of iron accumulation and lipid peroxidation in the aging retina and AMD, with an emphasis on ferroptosis.
Collapse
Affiliation(s)
- Tantai Zhao
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
18
|
ASSOCIATION BETWEEN ORAL IRON SUPPLEMENTATION AND RETINAL OR SUBRETINAL HEMORRHAGE IN THE COMPARISON OF AGE-RELATED MACULAR DEGENERATION TREATMENT TRIALS. Retina 2020; 39:1965-1972. [PMID: 30157115 DOI: 10.1097/iae.0000000000002295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE Because patients often take iron supplements without medical indication, and iron can accumulate in vascular endothelial cells, the authors evaluated the association of oral iron supplementation with retinal/subretinal hemorrhage in patients with neovascular age-related macular degeneration. METHODS A post hoc secondary data analysis of comparison of age-related macular degeneration treatments trials was performed. Participants were interviewed for use of oral iron supplements. Trained readers evaluated retinal/subretinal hemorrhage in baseline fundus photographs. Adjusted odds ratios from multivariate logistic regression models assessed the association between iron use and baseline hemorrhage adjusted by age, sex, smoking, hypertension, anemia, and use of antiplatelet/anticoagulant drugs. RESULTS Among 1,165 participants, baseline retinal/subretinal hemorrhage was present in the study eye in 71% of 181 iron users and in 61% of 984 participants without iron use (adjusted odds ratio = 1.47, P = 0.04), and the association was dose dependent (adjusted linear trend P = 0.048). Iron use was associated with hemorrhage in participants with hypertension (adjusted odds ratio = 1.87, P = 0.006) but not without hypertension. The association of iron use with hemorrhage remained significant among hypertensive participants without anemia (adjusted odds ratio = 1.85, P = 0.02). CONCLUSION Among participants of comparison of age-related macular degeneration treatments trials, the use of oral iron supplements was associated with retinal/subretinal hemorrhage in a dose-response manner. Unindicated iron supplementation may be detrimental in patients with wet age-related macular degeneration.
Collapse
|
19
|
Micera A, Bruno L, Cacciamani A, Rongioletti M, Squitti R. Alzheimer's Disease and Retinal Degeneration: A Glimpse at Essential Trace Metals in Ocular Fluids and Tissues. Curr Alzheimer Res 2020; 16:1073-1083. [PMID: 31642780 DOI: 10.2174/1567205016666191023114015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Life expectancy is increasing all over the world, although neurodegenerative disorders might drastically affect the individual activity of aged people. Of those, Alzheimer's Disease (AD) is one of the most social-cost age-linked diseases of industrialized countries. To date, retinal diseases seem to be more common in the developing world and characterize principally aged people. Agerelated Macular Degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with AD, including stress stimuli such as oxidative stress, inflammation and amyloid formations. METHODS In both diseases, the detrimental intra/extra-cellular deposits have many similarities. Aging, hypercholesterolemia, hypertension, obesity, arteriosclerosis and smoking are risk factors to develop both diseases. Cellular aging routes have similar organelle and signaling patterns in retina and brain. The possibility to find out new research strategies represent a step forward to disclose potential treatment for both of them. Essential trace metals play critical roles in both physiological and pathological condition of retina, optic nerve and brain, by influencing metabolic processes chiefly upon complex multifactorial pathogenesis. CONCLUSION Hence, this review addresses current knowledge about some up-to-date investigated essential trace metals associated with AD and AMD. Changes in the levels of systemic and ocular fluid essential metals might reflect the early stages of AMD, possibly disclosing neurodegeneration pathways shared with AD, which might open to potential early detection.
Collapse
Affiliation(s)
- Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Luca Bruno
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Andrea Cacciamani
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Rosanna Squitti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, BS, Italy
| |
Collapse
|
20
|
Courtois Y, Youale J, Behar-Cohen F, Picard É. [Iron and age-related macular degeneration: a new track]. Med Sci (Paris) 2020; 36:616-625. [PMID: 32614313 DOI: 10.1051/medsci/2020096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Iron has a fundamental role for cell physiology and especially in retina as a cofactor of many pathways of the visual transduction. A tightly regulated homeostasis avoids the accumulation of prooxidant and proinflammatory free iron. A dysfunction of iron retinal homeostasis is associated with many genetic or age-related degenerative diseases such as age-related macular degeneration (AMD). Here, we describe various mechanisms reported during AMD, enhanced by iron accumulation and its homeostasis dysregulation. We have investigated a local treatment with transferrin, the natural iron carrier, to control these pathological pathways and iron dysfunction, without side effects. Iron has a central role in pathogenesis of AMD and is a target for futures therapies.
Collapse
Affiliation(s)
- Yves Courtois
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, UMRS1138, 15 rue de l'École de Médecine, F-75006 Paris, France
| | - Jenny Youale
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, UMRS1138, 15 rue de l'École de Médecine, F-75006 Paris, France
| | - Francine Behar-Cohen
- Hôpital Cochin, AP-HP, Assistance Publique-Hôpitaux de Paris, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Émilie Picard
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, UMRS1138, 15 rue de l'École de Médecine, F-75006 Paris, France
| |
Collapse
|
21
|
Shu W, Baumann BH, Song Y, Liu Y, Wu X, Dunaief JL. Ferrous but not ferric iron sulfate kills photoreceptors and induces photoreceptor-dependent RPE autofluorescence. Redox Biol 2020; 34:101469. [PMID: 32362442 PMCID: PMC7327978 DOI: 10.1016/j.redox.2020.101469] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/28/2020] [Accepted: 02/16/2020] [Indexed: 11/18/2022] Open
Abstract
Iron has been implicated in the pathogenesis of retinal degenerative diseases, including ocular siderosis. However, the mechanisms of iron-induced retinal toxicity are incompletely understood. Previous work shows that intravitreal injection of Fe2+ leads to photoreceptor (PR) oxidative stress, resulting in PR death within 14 days, and cones are more susceptible than rods to iron-induced oxidative damage. In order to further investigate the mechanism of intravitreal iron-induced retinal toxicity and shed light on mechanisms of iron-induced retinopathy in other mouse models, Fe2+, Fe3+, or saline were injected into the vitreous of adult wild-type mice. Pre-treatment with Ferrostatin-1 was used to investigate whether iron-induced retinal toxicity resulted from ferroptosis. Color and autofluorescence in vivo retinal imaging and optical coherence tomography were performed on day 2 and day 7 post-injection. Eyes were collected for quantitative PCR and Western analysis on day 1 and for immunofluorescence on both day 2 and 7. In vivo imaging and immunofluorescence revealed that Fe2+, but not Fe3+, induced PR oxidative damage and autofluorescence on day 2, resulting in PR death and retinal pigment epithelial cell (RPE) autofluorescence on day 7. Quantitative PCR and Western analysis on day 1 indicated that both Fe2+ and Fe3+ induced iron accumulation in the retina. However, only Fe2+ elevated levels of oxidative stress markers and components of ferroptosis in the retina, and killed PRs. Ferrostatin-1 failed to protect the retina from Fe2+-induced oxidative damage. To investigate the mechanism of Fe2+-induced RPE autofluorescence, rd10 mutant mice aged 6 weeks, with almost total loss of PRs, were given intravitreal Fe2+ or Fe3+ injections: neither induced RPE autofluorescence. This result suggests Fe2+-induced RPE autofluorescence in wild-type mice resulted from phagocytosed, oxidized outer segments. Together these data suggest that intraretinal Fe2+ causes PR oxidative stress, leading to PR death and RPE autofluorescence. Intravitreal ferrous but not ferric sulfate induces photoreceptor oxidative stress. Ferrous sulfate causes photoreceptor death within 7 days. Ferrous sulfate causes outer segment and RPE autofluorescence. RPE autofluorescence does not develop in retinas lacking photoreceptors. Ferrous sulfate activates a subset of ferroptosis genes.
Collapse
Affiliation(s)
- Wanting Shu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080, China; F.M.Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Bailey H Baumann
- F.M.Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Ying Song
- F.M.Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Yingrui Liu
- F.M.Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA; Department of Ophthalmology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, Jilin, 130041, China.
| | - Xingwei Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080, China.
| | - Joshua L Dunaief
- F.M.Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Picard E, Daruich A, Youale J, Courtois Y, Behar-Cohen F. From Rust to Quantum Biology: The Role of Iron in Retina Physiopathology. Cells 2020; 9:cells9030705. [PMID: 32183063 PMCID: PMC7140613 DOI: 10.3390/cells9030705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Iron is essential for cell survival and function. It is a transition metal, that could change its oxidation state from Fe2+ to Fe3+ involving an electron transfer, the key of vital functions but also organ dysfunctions. The goal of this review is to illustrate the primordial role of iron and local iron homeostasis in retinal physiology and vision, as well as the pathological consequences of iron excess in animal models of retinal degeneration and in human retinal diseases. We summarize evidence of the potential therapeutic effect of iron chelation in retinal diseases and especially the interest of transferrin, a ubiquitous endogenous iron-binding protein, having the ability to treat or delay degenerative retinal diseases.
Collapse
Affiliation(s)
- Emilie Picard
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
- Correspondence: ; Tel.: +331-44-27-81-82
| | - Alejandra Daruich
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
- Ophthalmology Department, Necker-Enfants Malades University Hospital, APHP, 75015 Paris, France
| | - Jenny Youale
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
| | - Yves Courtois
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
- Ophtalmopole, Cochin Hospital, AP-HP, Assistance Publique Hôpitaux de Paris, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| |
Collapse
|
23
|
Schultz H, Song Y, Baumann BH, Kapphahn RJ, Montezuma SR, Ferrington DA, Dunaief JL. Increased serum proteins in non-exudative AMD retinas. Exp Eye Res 2019; 186:107686. [PMID: 31158383 PMCID: PMC6703940 DOI: 10.1016/j.exer.2019.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Abstract
The blood retinal barrier (BRB) closely regulates the retinal microenvironment. Its compromise leads to the accumulation of retinal fluid containing potentially harmful plasma components. While eyes with non-exudative age-related macular degeneration (AMD) were previously felt to have an intact BRB, we propose that the BRB in non-exudative AMD eyes may be subclinically compromised, allowing entry of retina-toxic plasma proteins. We test this hypothesis by measuring retinal levels of abundant plasma proteins that should not cross the intact BRB. Two cohorts of frozen, post mortem neurosensory retinas were studied by Western analysis. One cohort from Alabama had 4 normal controls and 4 eyes with various forms of AMD. Another cohort from Minnesota had 5 intermediate AMD eyes and 5 normals. Both cohorts were age/post mortem interval (PMI) matched. The non-exudative AMD retinas in the Alabama cohort had significantly higher levels of albumin and complement component 9 (C9) than normal controls. The positive control exudative AMD donor retina had higher levels of all but one serum protein. In both macular and peripheral neurosensory retina samples, intermediate AMD retinas in the Minnesota cohort had significantly higher levels of albumin, fibrinogen, IgG, and C9 than controls. Our results suggest that there may be moderate subclinical BRB leakage in non-exudative AMD. Potentially harmful plasma components including complement or iron could enter the neurosensory retina in AMD patients prior to advanced disease. Thus, therapies aiming to stabilize the BRB might have a role in the management of non-exudative AMD.
Collapse
Affiliation(s)
- Hannah Schultz
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Bailey H Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Rebecca J Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Porter LF, Saptarshi N, Fang Y, Rathi S, den Hollander AI, de Jong EK, Clark SJ, Bishop PN, Olsen TW, Liloglou T, Chavali VRM, Paraoan L. Whole-genome methylation profiling of the retinal pigment epithelium of individuals with age-related macular degeneration reveals differential methylation of the SKI, GTF2H4, and TNXB genes. Clin Epigenetics 2019; 11:6. [PMID: 30642396 PMCID: PMC6332695 DOI: 10.1186/s13148-019-0608-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is a degenerative disorder of the central retina and the foremost cause of blindness. The retinal pigment epithelium (RPE) is a primary site of disease pathogenesis. The genetic basis of AMD is relatively well understood; however, this knowledge is yet to yield a treatment for the most prevalent non-neovascular disease forms. Therefore, tissue-specific epigenetic mechanisms of gene regulation are of considerable interest in AMD. We aimed to identify differentially methylated genes associated with AMD in the RPE and differentiate local DNA methylation aberrations from global DNA methylation changes, as local DNA methylation changes may be more amenable to therapeutic manipulation. Methods Epigenome-wide association study and targeted gene expression profiling were carried out in RPE cells from eyes of human donors. We performed genome-wide DNA methylation profiling (Illumina 450k BeadChip array) on RPE cells from 44 human donor eyes (25 AMD and 19 normal controls). We validated the findings using bisulfite pyrosequencing in 55 RPE samples (30 AMD and 25 normal controls) including technical (n = 38) and independent replicate samples (n = 17). Long interspersed nucleotide element 1 (LINE-1) analysis was then applied to assess global DNA methylation changes in the RPE. RT-qPCR on independent donor RPE samples was performed to assess gene expression changes. Results Genome-wide DNA methylation profiling identified differential methylation of multiple loci including the SKI proto-oncogene (SKI) (p = 1.18 × 10−9), general transcription factor IIH subunit H4 (GTF2H4) (p = 7.03 × 10−7), and Tenascin X (TNXB) (p = 6.30 × 10−6) genes in AMD. Bisulfite pyrosequencing validated the differentially methylated locus cg18934822 in SKI, and cg22508626 within GTF2H4, and excluded global DNA methylation changes in the RPE in AMD. We further demonstrated the differential expression of SKI, GTF2H4, and TNXB in the RPE of independent AMD donors. Conclusions We report the largest genome-wide methylation analysis of RPE in AMD along with associated gene expression changes to date, for the first-time reaching genome-wide significance, and identified novel targets for functional and future therapeutic intervention studies. The novel differentially methylated genes SKI and GTF2H4 have not been previously associated with AMD, and regulate disease pathways implicated in AMD, including TGF beta signaling (SKI) and transcription-dependent DNA repair mechanisms (GTF2H4). Electronic supplementary material The online version of this article (10.1186/s13148-019-0608-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louise F Porter
- St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK. .,Department of Eye and Vision Science, William Duncan Building, University of Liverpool, Liverpool, UK.
| | - Neil Saptarshi
- Department of Eye and Vision Science, William Duncan Building, University of Liverpool, Liverpool, UK
| | - Yongxiang Fang
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Sonika Rathi
- Department of Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon J Clark
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul N Bishop
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | | | - Venkata R M Chavali
- Department of Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Luminita Paraoan
- Department of Eye and Vision Science, William Duncan Building, University of Liverpool, Liverpool, UK
| |
Collapse
|
25
|
Sfera A, Gradini R, Cummings M, Diaz E, Price AI, Osorio C. Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease. Front Neurol 2018; 9:1062. [PMID: 30564191 PMCID: PMC6288235 DOI: 10.3389/fneur.2018.01062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease, the most common form of dementia, is marked by progressive cognitive and functional impairment believed to reflect synaptic and neuronal loss. Recent preclinical data suggests that lipopolysaccharide (LPS)-activated microglia may contribute to the elimination of viable neurons and synapses by promoting a neurotoxic astrocytic phenotype, defined as A1. The innate immune cells, including microglia and astrocytes, can either facilitate or inhibit neuroinflammation in response to peripherally applied inflammatory stimuli, such as LPS. Depending on previous antigen encounters, these cells can assume activated (trained) or silenced (tolerized) phenotypes, augmenting or lowering inflammation. Iron, reactive oxygen species (ROS), and LPS, the cell wall component of gram-negative bacteria, are microglial activators, but only the latter can trigger immune tolerization. In Alzheimer's disease, tolerization may be impaired as elevated LPS levels, reported in this condition, fail to lower neuroinflammation. Iron is closely linked to immunity as it plays a key role in immune cells proliferation and maturation, but it is also indispensable to pathogens and malignancies which compete for its capture. Danger signals, including LPS, induce intracellular iron sequestration in innate immune cells to withhold it from pathogens. However, excess cytosolic iron increases the risk of inflammasomes' activation, microglial training and neuroinflammation. Moreover, it was suggested that free iron can awaken the dormant central nervous system (CNS) LPS-shedding microbes, engendering prolonged neuroinflammation that may override immune tolerization, triggering autoimmunity. In this review, we focus on iron-related innate immune pathology in Alzheimer's disease and discuss potential immunotherapeutic agents for microglial de-escalation along with possible delivery vehicles for these compounds.
Collapse
Affiliation(s)
- Adonis Sfera
- Psychiatry, Loma Linda University, Loma Linda, CA, United States.,Patton State Hospital, San Bernardino, CA, United States
| | - Roberto Gradini
- Department of Pathology, La Sapienza University of Rome, Rome, Italy
| | | | - Eddie Diaz
- Patton State Hospital, San Bernardino, CA, United States
| | - Amy I Price
- Evidence Based Medicine, University of Oxford, Oxford, United Kingdom
| | - Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
26
|
Scumaci D, Oliva A, Concolino A, Curcio A, Fiumara CV, Tammè L, Campuzano O, Pascali VL, Coll M, Iglesias A, Berne P, Casu G, Olivo E, Ausania F, Ricci P, Indolfi C, Brugada J, Brugada R, Cuda G. Integration of "Omics" Strategies for Biomarkers Discovery and for the Elucidation of Molecular Mechanisms Underlying Brugada Syndrome. Proteomics Clin Appl 2018; 12:e1800065. [PMID: 29956481 DOI: 10.1002/prca.201800065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/26/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE The Brugada syndrome (BrS) is a severe inherited cardiac disorder. Given the high genetic and phenotypic heterogeneity of this disease, three different "omics" approaches are integrated in a synergic way to elucidate the molecular mechanisms underlying the pathophysiology of BrS as well as for identifying reliable diagnostic/prognostic markers. EXPERIMENTAL DESIGN The profiling of plasma Proteome and MiRNome is perfomed in a cohort of Brugada patients that were preliminary subjected to genomic analysis to assess a peculiar gene mutation profile. RESULTS The integrated analysis of "omics" data unveiled a cooperative activity of mutated genes, deregulated miRNAs and proteins in orchestrating transcriptional and post-translational events that are critical determining factors for the development of the Brugada pattern. CONCLUSIONS AND CLINICAL RELEVANCE This study provides the basis to shed light on the specific molecular fingerprints underlying BrS development and to gain further insights on the pathogenesis of this life-threatening cardiac disease.
Collapse
Affiliation(s)
- Domenica Scumaci
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Antonio Oliva
- Fondazione Policlinico A. Gemelli IRCCS, Roma, Università Cattolica del Sacro Cuore, Large Francesco Vito 1, 00168, Rome, Italy
| | - Antonio Concolino
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Science, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Claudia Vincenza Fiumara
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Laura Tammè
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Oscar Campuzano
- Cardiovascular Genetics Center, Gencardio Institut d'Investigacions Biomèdiques de Girona,, 17290, Girona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) 17007, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, 17004, Girona, Spain
| | - Vincenzo L Pascali
- Fondazione Policlinico A. Gemelli IRCCS, Roma, Università Cattolica del Sacro Cuore, Large Francesco Vito 1, 00168, Rome, Italy
| | - Monica Coll
- Cardiovascular Genetics Center, Gencardio Institut d'Investigacions Biomèdiques de Girona,, 17290, Girona, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, Gencardio Institut d'Investigacions Biomèdiques de Girona,, 17290, Girona, Spain
| | - Paola Berne
- Unità Operativa Complessa di Cardiologia Ospedale "San Francesco", 08100, Nuoro, Italy
| | - Gavino Casu
- Unità Operativa Complessa di Cardiologia Ospedale "San Francesco", 08100, Nuoro, Italy
| | - Erika Olivo
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Francesco Ausania
- Fondazione Policlinico A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Roma
| | - Pietrantonio Ricci
- Department of Medical Sciences, School of Medicine, University of Girona, 17004, Girona, Spain.,Institute of Legal Medicine, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Science, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Josep Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) 17007, Girona, Spain.,Arrhythmia's Unit, Hospital Clinic, 08036, Barcelona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Gencardio Institut d'Investigacions Biomèdiques de Girona,, 17290, Girona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) 17007, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, 17004, Girona, Spain.,Cardiology Service, Hospital Josep Trueta, 17007, Girona, Spain
| | - Giovanni Cuda
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| |
Collapse
|
27
|
Cathcart JM, Banach A, Liu A, Chen J, Goligorsky M, Cao J. Interleukin-6 increases matrix metalloproteinase-14 (MMP-14) levels via down-regulation of p53 to drive cancer progression. Oncotarget 2018; 7:61107-61120. [PMID: 27531896 PMCID: PMC5308639 DOI: 10.18632/oncotarget.11243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/20/2016] [Indexed: 01/05/2023] Open
Abstract
Matrix metalloproteinases (MMPs) play critical roles in cancer invasion and metastasis by digesting basement membrane and extracellular matrix (ECM). Much attention has focused on the enzymatic activities of MMPs; however, the regulatory mechanism of MMP expression remains elusive. By employing bioinformatics analysis, we identified a potential p53 response element within the MMP-14 promoter. Experimentally, we found that p53 can repress MMP-14 promoter activity, whereas deletion of this p53 response element abrogated this effect. Furthermore, we found that p53 expression decreases MMP-14 mRNA and protein levels and attenuates MMP-14-mediated cellular functions. Additional promoter analysis and chromatin immunoprecipitation studies identified a mechanism of regulation of MMP-14 expression by which p53 and transcription factor Sp1 competitively bind to the promoter. As the correlation between inflammation and cancer aggressiveness is well described, we next sought to evaluate if inflammatory cytokines could differentially affect p53 and MMP-14 levels. We demonstrate that interleukin-6 (IL-6) down-regulates p53 protein levels and thus results in a concomitant increase in MMP-14 expression, leading to enhanced cancer cell invasion and metastasis. Our data collectively indicate a novel mechanism of regulation of MMP-14 by a cascade of IL-6 and p53, demonstrating that the tumor microenvironment directly stimulates molecular changes in cancer cells to drive an invasive phenotype.
Collapse
Affiliation(s)
- Jillian M Cathcart
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Molecular and Cellular Pharmacology Program, Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Anna Banach
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Alice Liu
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jun Chen
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, NY, USA
| | - Michael Goligorsky
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, NY, USA
| | - Jian Cao
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
28
|
Baumann B, Sterling J, Song Y, Song D, Fruttiger M, Gillies M, Shen W, Dunaief JL. Conditional Müller Cell Ablation Leads to Retinal Iron Accumulation. Invest Ophthalmol Vis Sci 2017; 58:4223-4234. [PMID: 28846772 PMCID: PMC5574447 DOI: 10.1167/iovs.17-21743] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Abstract
Purpose Retinal iron accumulation is observed in a wide range of retinal degenerative diseases, including AMD. Previous work suggests that Müller glial cells may be important mediators of retinal iron transport, distribution, and regulation. A transgenic model of Müller cell loss recently demonstrated that primary Müller cell ablation leads to blood-retinal barrier leakage and photoreceptor degeneration, and it recapitulates clinical features observed in macular telangiectasia type 2 (MacTel2), a rare human disease that features Müller cell loss. We used this mouse model to determine the effect of Müller cell loss on retinal iron homeostasis. Methods Changes in total retinal iron levels after Müller cell ablation were measured using inductively coupled plasma mass spectrometry. Corresponding changes in the expression of iron flux and iron storage proteins were determined using quantitative PCR, Western analysis, and immunohistochemistry. Results Müller cell loss led to blood-retinal barrier breakdown and increased iron levels throughout the neurosensory retina. There were corresponding changes in mRNA and/or protein levels of ferritin, transferrin receptor, ferroportin, Zip8, and Zip14. There were also increased iron levels within the RPE of retinal sections from a patient with MacTel2 and both RPE and neurosensory retina of a patient with diabetic retinopathy, which, like MacTel2, causes retinal vascular leakage. Conclusion This study shows that Müller cells and the blood-retinal barrier play pivotal roles in the regulation of retinal iron homeostasis. The retinal iron accumulation resulting from blood-retinal barrier dysfunction may contribute to retinal degeneration in this model and in diseases such as MacTel2 and diabetic retinopathy.
Collapse
Affiliation(s)
- Bailey Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Delu Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Mark Gillies
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Weiyong Shen
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Joshua L. Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
29
|
Sterling J, Guttha S, Song Y, Song D, Hadziahmetovic M, Dunaief JL. Iron importers Zip8 and Zip14 are expressed in retina and regulated by retinal iron levels. Exp Eye Res 2017; 155:15-23. [PMID: 28057442 PMCID: PMC5359041 DOI: 10.1016/j.exer.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 01/25/2023]
Abstract
Intracellular retinal iron accumulation has been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of irreversible blindness among individuals over the age of 50. Ceruloplasmin/hephaestin double knockout mice (Cp/Heph DKO) and hepcidin knockout mice (Hepc KO) accumulate retinal iron and model some features of AMD. Two canonical pathways govern cellular iron import - transferrin-bound iron import and non-transferrin bound iron import. In Cp/Heph DKO and Hepc KO iron-loaded retinas, transferrin-bound iron import is downregulated. Despite this effort to reduce cellular iron burden, iron continues to accumulate in these retinas in an age-dependent manner. Quantitative RT-PCR and Western analysis were used to quantify the expression of three ferrous iron importers, Dmt1, Zip8, and Zip14, in wild-type (Wt), Cp/Heph DKO, and Hepc KO retinas. Zip8 and Zip14 protein levels were analyzed using Western analysis in mice injected intravitreally with either apo- or holo-transferrin to elucidate one possible mechanism of Zip14 regulation in the retina. Both zip8 and zip14 were expressed in the mouse retina. Paradoxically, protein levels of non-transferrin bound iron importers were upregulated in both Cp/Heph DKO and Hepc KO retinas. Intravitreal holo-transferrin injection decreased Zip 14 protein levels. These data indicate that Zip8 and Zip14 may take up increasing amounts of non-transferrin bound iron in these two mouse models of retinal iron accumulation. Their upregulation in these already iron-loaded retinas suggests a vicious cycle leading to toxicity.
Collapse
Affiliation(s)
- Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| | - Samyuktha Guttha
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| | - Delu Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| | - Majda Hadziahmetovic
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Mishra S, Peterson K, Yin L, Berger A, Fan J, Wistow G. Accumulation of cholesterol and increased demand for zinc in serum-deprived RPE cells. Mol Vis 2016; 22:1387-1404. [PMID: 28003730 PMCID: PMC5166821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/08/2016] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Having observed that confluent ARPE-19 cells (derived from human RPE) survive well in high-glucose serum-free medium (SFM) without further feeding for several days, we investigated the expression profile of RPE cells under the same conditions. METHODS Expression profiles were examined with microarray and quantitative PCR (qPCR) analyses, followed by western blot analysis of key regulated proteins. The effects of low-density lipoprotein (LDL) and zinc supplementation were examined with qPCR. Immunofluorescence was used to localize the LDL receptor and to examine LDL uptake. Cellular cholesterol levels were measured with filipin binding. Expression patterns in primary fetal RPE cells were compared using qPCR. RESULTS Microarray analyses of gene expression in ARPE-19, confirmed with qPCR, showed upregulation of lipid and cholesterol biosynthesis pathways in SFM. At the protein level, the cholesterol synthesis control factor SRBEF2 was activated, and other key lipid synthesis proteins increased. Supplementation of SFM with LDL reversed the upregulation of lipid and cholesterol synthesis genes, but not of cholesterol transport genes. The LDL receptor relocated to the plasma membrane, and LDL uptake was activated by day 5-7 in SFM, suggesting increased demand for cholesterol. Confluent ARPE-19 cells in SFM accumulated intracellular cholesterol, compared with cells supplemented with serum, over 7 days. Over the same time course in SFM, the expression of metallothioneins decreased while the major zinc transporter was upregulated, consistent with a parallel increase in demand for zinc. Supplementation with zinc reversed expression changes for metallothionein genes, but not for other zinc-related genes. Similar patterns of regulation were also seen in primary fetal human RPE cells in SFM. CONCLUSIONS ARPE-19 cells respond to serum deprivation and starvation with upregulation of the lipid and cholesterol pathways, accumulation of intracellular cholesterol, and increased demand for zinc. Similar trends are seen in primary fetal RPE cells. Cholesterol accumulation basal to RPE is a prominent feature of age-related macular degeneration (AMD), while dietary zinc is protective. It is conceivable that accumulating defects in Bruch's membrane and dysfunction of the choriocapillaris could impede transport between RPE and vasculature in AMD. Thus, this pattern of response to serum deprivation in RPE-derived cells may have relevance for some aspects of the progression of AMD.
Collapse
Affiliation(s)
- Sanghamitra Mishra
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Katherine Peterson
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Lili Yin
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Alan Berger
- Lowe Family Genomics Core, Johns Hopkins University - School of Medicine, Baltimore, MD
| | - Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
Michailidou I, Naessens DMP, Hametner S, Guldenaar W, Kooi EJ, Geurts JJG, Baas F, Lassmann H, Ramaglia V. Complement C3 on microglial clusters in multiple sclerosis occur in chronic but not acute disease: Implication for disease pathogenesis. Glia 2016; 65:264-277. [PMID: 27778395 PMCID: PMC5215693 DOI: 10.1002/glia.23090] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
Abstract
Microglial clusters with C3d deposits are observed in the periplaque of multiple sclerosis (MS) brains and were proposed as early stage of lesion formation. As such they should appear in the brain of MS donors with acute disease but thus far this has not been shown. Using postmortem brain tissue from acute (n = 10) and chronic (n = 15) MS cases we investigated whether C3d+ microglial clusters are part of an acute attack against myelinated axons, which could have implications for disease pathogenesis. The specificity of our findings to MS was tested in ischemic stroke cases (n = 8) with initial or advanced lesions and further analyzed in experimental traumatic brain injury (TBI, n = 26), as both conditions are primarily nondemyelinating but share essential features of neurodegeneration with MS lesions. C3d+ microglial clusters were found in chronic but not acute MS. They were not associated with antibody deposits or terminal complement activation. They were linked to slowly expanding lesions, localized on axons with impaired transport and associated with neuronal C3 production. C3d+ microglial clusters were not specific to MS as they were also found in stroke and experimental TBI. We conclude that C3d+ microglial clusters in MS are not part of an acute attack against myelinated axons. As such it is unlikely that they drive formation of new lesions but could represent a physiological mechanism to remove irreversibly damaged axons in chronic disease. GLIA 2017;65:264–277
Collapse
Affiliation(s)
- Iliana Michailidou
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105, The Netherlands
| | - Daphne M P Naessens
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105, The Netherlands
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, 1090, Austria
| | - Willemijn Guldenaar
- Department of Anatomy and Neurosciences, VU University Medical Center, De Boelelaan 1118, Amsterdam, 1081, The Netherlands
| | - Evert-Jan Kooi
- Department of Anatomy and Neurosciences, VU University Medical Center, De Boelelaan 1118, Amsterdam, 1081, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, VU University Medical Center, De Boelelaan 1118, Amsterdam, 1081, The Netherlands
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105, The Netherlands
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, 1090, Austria
| | - Valeria Ramaglia
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105, The Netherlands
| |
Collapse
|
32
|
Song D, Kanu LN, Li Y, Kelly KL, Bhuyan RK, Aleman T, Morgan JIW, Dunaief JL. AMD-like retinopathy associated with intravenous iron. Exp Eye Res 2016; 151:122-33. [PMID: 27565570 DOI: 10.1016/j.exer.2016.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
Abstract
Iron accumulation in the retina is associated with the development of age-related macular degeneration (AMD). IV iron is a common method to treat iron deficiency anemia in adults, and its retinal manifestations have not hitherto been identified. To assess whether IV iron formulations can be retina-toxic, we generated a mouse model for iron-induced retinal damage. Male C57BL/6J mice were randomized into groups receiving IV iron-sucrose (+Fe) or 30% sucrose (-Fe). Iron levels in neurosensory retina (NSR), retinal pigment epithelium (RPE), and choroid were assessed using immunofluorescence, quantitative PCR, and the Perls' iron stain. Iron levels were most increased in the RPE and choroid while levels in the NSR did not differ significantly in +Fe mice compared to controls. Eyes from +Fe mice shared histological features with AMD, including Bruch's membrane (BrM) thickening with complement C3 deposition, as well as RPE hypertrophy and vacuolization. This focal degeneration correlated with areas of high choroidal iron levels. Ultrastructural analysis provided further detail of the RPE/photoreceptor outer segment vacuolization and Bruch's membrane thickening. Findings were correlated with a clinical case of a 43-year-old patient who developed numerous retinal drusen, the hallmark of AMD, within 11 months of IV iron therapy. Our results suggest that IV iron therapy may have the potential to induce or exacerbate a form of retinal degeneration. This retinal degeneration shares features with AMD, indicating the need for further study of AMD risk in patients receiving IV iron treatment.
Collapse
Affiliation(s)
- Delu Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Levi N Kanu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Yafeng Li
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen L Kelly
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Rupak K Bhuyan
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomas Aleman
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica I W Morgan
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Diniz WJDS, Coutinho LL, Tizioto PC, Cesar ASM, Gromboni CF, Nogueira ARA, de Oliveira PSN, de Souza MM, Regitano LCDA. Iron Content Affects Lipogenic Gene Expression in the Muscle of Nelore Beef Cattle. PLoS One 2016; 11:e0161160. [PMID: 27532424 PMCID: PMC4988672 DOI: 10.1371/journal.pone.0161160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Iron (Fe) is an essential mineral for metabolism and plays a central role in a range of biochemical processes. Therefore, this study aimed to identify differentially expressed (DE) genes and metabolic pathways in Longissimus dorsi (LD) muscle from cattle with divergent iron content, as well as to investigate the likely role of these DE genes in biological processes underlying beef quality parameters. Samples for RNA extraction for sequencing and iron, copper, manganese, and zinc determination were collected from LD muscles at slaughter. Eight Nelore steers, with extreme genomic estimated breeding values for iron content (Fe-GEBV), were selected from a reference population of 373 animals. From the 49 annotated DE genes (FDR<0.05) found between the two groups, 18 were up-regulated and 31 down-regulated for the animals in the low Fe-GEBV group. The functional enrichment analyses identified several biological processes, such as lipid transport and metabolism, and cell growth. Lipid metabolism was the main pathway observed in the analysis of metabolic and canonical signaling pathways for the genes identified as DE, including the genes FASN, FABP4, and THRSP, which are functional candidates for beef quality, suggesting reduced lipogenic activities with lower iron content. Our results indicate metabolic pathways that are partially influenced by iron, contributing to a better understanding of its participation in skeletal muscle physiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marcela Maria de Souza
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | |
Collapse
|
34
|
Normal human CD4(+) helper T cells express Kv1.1 voltage-gated K(+) channels, and selective Kv1.1 block in T cells induces by itself robust TNFα production and secretion and activation of the NFκB non-canonical pathway. J Neural Transm (Vienna) 2015; 123:137-57. [PMID: 26611796 DOI: 10.1007/s00702-015-1446-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/16/2015] [Indexed: 10/22/2022]
Abstract
TNFα is a very potent and pleiotropic pro-inflammatory cytokine, essential to the immune system for eradicating cancer and microorganisms, and to the nervous system, for brain development and ongoing function. Yet, excess and/or chronic TNFα secretion causes massive tissue damage in autoimmune, inflammatory and neurological diseases and injuries. Therefore, many patients with autoimmune/inflammatory diseases receive anti-TNFα medications. TNFα is secreted primarily by CD4(+) T cells, macrophages, monocytes, neutrophils and NK cells, mainly after immune stimulation. Yet, the cause for the pathologically high and chronic TNFα secretion is unknown. Can blocking of a particular ion channel in T cells induce by itself TNFα secretion? Such phenomenon was never revealed or even hypothesized. In this interdisciplinary study we discovered that: (1) normal human T cells express Kv1.1 voltage-gated potassium channel mRNA, and the Kv1.1 membrane-anchored protein channel; (2) Kv1.1 is expressed in most CD4(+)CD3(+) helper T cells (mean CD4(+)CD3(+)Kv1.1(+) T cells of 7 healthy subjects: 53.09 ± 22.17 %), but not in CD8(+)CD3(+) cytotoxic T cells (mean CD8(+)CD3(+)Kv1.1(+) T cells: 4.12 ± 3.04 %); (3) electrophysiological whole-cell recordings in normal human T cells revealed Kv currents; (4) Dendrotoxin-K (DTX-K), a highly selective Kv1.1 blocker derived from snake toxin, increases the rate of rise and decay of Kv currents in both resting and activated T cells, without affecting the peak current; (5) DTX-K by itself induces robust TNFα production and secretion by normal human T cells, without elevating IFNγ, IL-4 and IL-10; (6) intact Ca(2+) channels are required for DTX-induced TNFα secretion; (7) selective anti-Kv1.1 antibodies also induce by themselves TNFα secretion; (8) DTX-K activates NFκB in normal human T cells via the unique non-canonical-pathway; (9) injection of Kv1.1-blocked human T cells to SCID mice, causes recruitment of resident mouse cells into the liver, alike reported after TNFα injection into the brain. Based on our discoveries we speculate that abnormally blocked Kv1.1 in T cells (and other immune cells?), due to either anti-Kv1.1 autoimmune antibodies, or Kv1.1-blocking toxins alike DTX-K, or Kv1.1-blocking genetic mutations, may be responsible for the chronic/excessive TNFα in autoimmune/inflammatory diseases. Independently, we also hypothesize that selective block of Kv1.1 in CD4(+) T cells of patients with cancer or chronic infectious diseases could be therapeutic, since it may: a. augment beneficial secretion and delivery of TNFα to the disease-affected sites; b. induce recruitment and extravasation of curative immune cells and factors; c. improve accessibility of drugs to the brain and few peripheral organs thanks to TNFα-induced increased permeability of organ's barriers.
Collapse
|