1
|
Huang T, Kou X, Qiao L, Li J, Luo D, Wang X, Cao S. Maintaining quality of postharvest green pepper fruit using melatonin by regulating membrane lipid metabolism and enhancing antioxidant capacity. Food Chem 2024; 460:140671. [PMID: 39089033 DOI: 10.1016/j.foodchem.2024.140671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Green pepper quality often deteriorates during storage because of membrane lipid damage and oxidative stress. This study investigated the effects of exogenous melatonin (MT) on green pepper storage quality, membrane lipids, and antioxidant metabolism. The results showed that MT increased the activities of superoxide dismutase, catalase, ascorbate peroxidase, peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase in green peppers compared to the control group. It upregulated expression of multiple enzymes; reduced accumulation of reactive oxygen species such as dehydroascorbic acid, H2O2, and O2.-; and maintained high ascorbic acid, glutathione, coenzyme II, and nicotinamide adenine dinucleotide while reducing oxidized glutathione levels. In addition, MT decreased lipoxygenase and phospholipase D activities, downregulated ReLOX and RePLD expression, and delayed the degradation of phosphatidylcholine, phosphatidylethanolamine, and oleic, linoleic, and linolenic acids in green peppers. These results suggest that MT helps to improve the chilling injury and quality of green peppers and extends shelf life.
Collapse
Affiliation(s)
- Tianyu Huang
- School of Food Science and Engineering, Guiyang University, Guizhou Province, 550005, People's Republic of China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - LinXiang Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiangkuo Li
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Donglan Luo
- School of Food Science and Engineering, Guiyang University, Guizhou Province, 550005, People's Republic of China
| | - Xiufen Wang
- School of Food Science and Engineering, Guiyang University, Guizhou Province, 550005, People's Republic of China
| | - Sen Cao
- School of Food Science and Engineering, Guiyang University, Guizhou Province, 550005, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Gao B, Yu B, Huang X, Li H, Jia Y, Wang M, Lu Y, Zhang X, Li W. Cadmium and calcium ions' effects on the growth of Pleurotus ostreatus mycelia are related to phosphatidylethanolamine content. Fungal Biol 2024; 128:2190-2196. [PMID: 39384288 DOI: 10.1016/j.funbio.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/11/2024]
Abstract
Heavy metal Cd2+ can easily be accumulated by fungi, causing significant stress, with the fungal cell membrane being one of the primary targets. However, the understanding of the mechanisms behind this stress remains limited. This study investigated the changes in membrane lipid molecules of Pleurotus ostreatus mycelia under Cd2+ stress and the antagonistic effect of Ca2+ on this stress. Cd2+ in the growth media significantly inhibited mycelial growth, with increasing intensity at higher concentrations. The addition of Ca2+ mitigated this Cd2+-induced growth inhibition. Lipidomic analysis showed that Cd2+ reduced membrane lipid content and altered lipid composition, while Ca2+ counteracted these changes. The effects of both Cd2+ and Ca2+ on lipids are dose dependent and phosphatidylethanolamine appeared most affected. Cd2+ also caused a phosphatidylcholine/phosphatidylethanolamine ratio increase at high concentrations, but Ca2+ helped maintain normal levels. The acyl chain length and unsaturation of lipids remained unaffected, suggesting Cd2+ doesn't alter acyl chain structure of lipids. These findings suggest that Cd2+ may affect the growth of mycelia by inhibiting the synthesis of membrane lipids, particular the synthesis of phosphatidylethanolamine, providing novel insights into the mechanisms of Cd2+ stress in fungi and the role of Ca2+ in mitigating the stress.
Collapse
Affiliation(s)
- Bo Gao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing, 100039, China; College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, Yunnan, China
| | - Buzhu Yu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Yuxi Normal University, Yuxi, 653100, Yunnan, China
| | - Xing Huang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - He Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, Yunnan, China
| | - Yanxia Jia
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Mulan Wang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, Yunnan Minzu University, Kunming, 650504, China
| | - Yuanxue Lu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xudong Zhang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Weiqi Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
3
|
Chaudary AS, Guo Y, Utkin YN, Barancheshmeh M, Dagda RK, Gasanoff ES. Sphingomyelin Inhibits Hydrolytic Activity of Heterodimeric PLA 2 in Model Myelin Membranes: Pharmacological Relevance. J Membr Biol 2024:10.1007/s00232-024-00327-y. [PMID: 39438323 DOI: 10.1007/s00232-024-00327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
In this work, the heterodimeric phospholipase A2, HDP-2, from viper venom was investigated for its hydrolytic activity in model myelin membranes as well as for its effects on intermembrane exchange of phospholipids (studied by phosphorescence quenching) and on phospholipid polymorphism (studied by 1H-NMR spectroscopy) to understand the role of sphingomyelin (SM) in the demyelination of nerve fibers. By using well-validated in vitro approaches, we show that the presence of SM in model myelin membranes leads to a significant inhibition of the hydrolytic activity of HDP-2, decreased intermembrane phospholipid exchange, and reduced phospholipid polymorphism. Using AutoDock software, we show that the NHδ+ group of the sphingosine backbone of SM binds to Tyr22(C=Opbδ-) of HDP-2 via a hydrogen bond which keeps only the polar head of SM inside the HDP-2's active center and positions the sn-2 acyl ester bond away from the active center, thus making it unlikely to hydrolyze the alkyl chains at the sn-2 position. This observation strongly suggests that SM inhibits the catalytic activity of HDP-2 by blocking access to other phospholipids to the active center of the enzyme. Should this observation be verified in further studies, it would offer a tantalizing opportunity for developing effective pharmaceuticals to stop the demyelination of nerve fibers by aberrant PLA2s with overt activity - as observed in brain degenerative diseases - by inhibiting SM hydrolysis and/or facilitating SM synthesis in the myelin sheath membrane.
Collapse
Affiliation(s)
- Anwaar S Chaudary
- Advanced STEM Research Center, Chaoyang Kaiwen Academy, Beijing, 100018, China
| | - Yanglin Guo
- Advanced STEM Research Center, Chaoyang Kaiwen Academy, Beijing, 100018, China
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Maryam Barancheshmeh
- Universal Scientific Education and Research Network (USERN), Reno, NV, 89512, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada Medical School, Reno, NV, 89557, USA
| | - Edward S Gasanoff
- Advanced STEM Research Center, Chaoyang Kaiwen Academy, Beijing, 100018, China.
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Vela-Corcia D, Hierrezuelo J, Pérez-Lorente AI, Stincone P, Pakkir Shah AK, Grélard A, Zi-Long Y, de Vicente A, Pérez García A, Bai L, Loquet A, Petras D, Romero D. Cyclo(Pro-Tyr) elicits conserved cellular damage in fungi by targeting the [H +]ATPase Pma1 in plasma membrane domains. Commun Biol 2024; 7:1253. [PMID: 39362977 PMCID: PMC11449911 DOI: 10.1038/s42003-024-06947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Bioactive metabolites play a crucial role in shaping interactions among diverse organisms. In this study, we identified cyclo(Pro-Tyr), a metabolite produced by Bacillus velezensis, as a potent inhibitor of Botrytis cinerea and Caenorhabditis elegans, two potential cohabitant eukaryotic organisms. Based on our investigation, cyclo(Pro-Tyr) disrupts plasma membrane polarization, induces oxidative stress and increases membrane fluidity, which compromises fungal membrane integrity. These cytological and physiological changes induced by cyclo(Pro-Tyr) may be triggered by the destabilization of membrane microdomains containing the [H+]ATPase Pma1. In response to cyclo(Pro-Tyr) stress, fungal cells activate a transcriptomic and metabolomic response, which primarily involves lipid metabolism and Reactive Oxygen Species (ROS) detoxification, to mitigate membrane damage. This similar response occurs in the nematode C. elegans, indicating that cyclo(Pro-Tyr) targets eukaryotic cellular membranes.
Collapse
Affiliation(s)
- D Vela-Corcia
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - J Hierrezuelo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - A I Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - P Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - A K Pakkir Shah
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
| | - A Grélard
- L'Institut de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), Unité Mixte de Recherche (UMR) 5248, Centre National de la Recherche (CNRS), University of Bordeaux, Pessac, France
| | - Y Zi-Long
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - A de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - A Pérez García
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - L Bai
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - A Loquet
- L'Institut de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), Unité Mixte de Recherche (UMR) 5248, Centre National de la Recherche (CNRS), University of Bordeaux, Pessac, France
| | - D Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| | - D Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
5
|
Zuo WY, Wen M, Zhao YC, Li XY, Xue CH, Yanagita T, Wang YM, Zhang TT. Effects of short-term supplementation with DHA-enriched phosphatidylcholine and phosphatidylserine on lipid profiles in the brain and liver of n-3 PUFA-deficient mice in early life after weaning. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7939-7952. [PMID: 38843481 DOI: 10.1002/jsfa.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Lack of n-3 polyunsaturated fatty acids during the period of maternity drastically lowers the docosahexaenoic acid (DHA) level in the brain of offspring and studies have demonstrated that different molecular forms of DHA are beneficial to brain development. The aim of this study was to investigate the effect of short-term supplementation with DHA-enriched phosphatidylserine (PS) and phosphatidylcholine (PC) on DHA levels in the liver and brain of congenital n-3-deficient mice. RESULTS Dietary supplementation with DHA significantly changed the fatty acid composition of various phospholipid molecules in the cerebral cortex and liver while DHA-enriched phospholipid was more effective than DHA triglyceride (TG) in increasing brain and liver DHA. Both DHA-PS and DHA-PC could effectively increase the DHA levels, but DHA in the PS form was superior to PC in the contribution of DHA content in the brain ether-linked PC (ePC) and liver lyso-phosphatidylcholine molecular species. DHA-PC showed more significant effects on the increase of DHA in liver TG, PC, ePC, phosphatidylethanolamine (PE) and PE plasmalogen (pPE) molecular species and decreasing the arachidonic acid level in liver PC plasmalogen, ePC, PE and pPE molecular species compared with DHA-PS. CONCLUSION The effect of dietary interventions with different molecular forms of DHA for brain and liver lipid profiles is different, which may provide theoretical guidance for dietary supplementation of DHA for people. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei-Ya Zuo
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Min Wen
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga, Japan
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
Zhu J, Li S, Chen W, Xu X, Wang X, Wang X, Han J, Jouhet J, Amato A, Maréchal E, Hu H, Allen AE, Gong Y, Jiang H. Delta-5 elongase knockout reduces docosahexaenoic acid and lipid synthesis and increases heat sensitivity in a diatom. PLANT PHYSIOLOGY 2024; 196:1356-1373. [PMID: 38796833 DOI: 10.1093/plphys/kiae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
Recent global marine lipidomic analysis reveals a strong relationship between ocean temperature and phytoplanktonic abundance of omega-3 long-chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are essential for human nutrition and primarily sourced from phytoplankton in marine food webs. In phytoplanktonic organisms, EPA may play a major role in regulating the phase transition temperature of membranes, while the function of DHA remains unexplored. In the oleaginous diatom Phaeodactylum tricornutum, DHA is distributed mainly on extraplastidial phospholipids, which is very different from the EPA enriched in thylakoid lipids. Here, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9-mediated knockout of delta-5 elongase (ptELO5a), which encodes a delta-5 elongase (ELO5) catalyzing the elongation of EPA to synthesize DHA, led to a substantial interruption of DHA synthesis in P. tricornutum. The ptELO5a mutants showed some alterations in transcriptome and glycerolipidomes, including membrane lipids and triacylglycerols under normal temperature (22 °C), and were more sensitive to elevated temperature (28 °C) than wild type. We conclude that PtELO5a-mediated synthesis of small amounts of DHA has indispensable functions in regulating membrane lipids, indirectly contributing to storage lipid accumulation, and maintaining thermomorphogenesis in P. tricornutum. This study also highlights the significance of DHA synthesis and lipid composition for environmental adaptation of P. tricornutum.
Collapse
Affiliation(s)
- Junkai Zhu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shuangqing Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Life and Ecology Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Weizhong Chen
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xinde Xu
- Department of Human Nutrition, Zhejiang Medicine Co. Ltd., Xinchang 312500, China
- Department of Human Nutrition, Zhejiang Keming Biopharmaceuticals Co. Ltd., Xinchang 312500, China
| | - Xiaoping Wang
- Department of Human Nutrition, Zhejiang Medicine Co. Ltd., Xinchang 312500, China
- Department of Human Nutrition, Zhejiang Keming Biopharmaceuticals Co. Ltd., Xinchang 312500, China
| | - Xinwei Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jichang Han
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041 Grenoble, France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041 Grenoble, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Yangmin Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Life and Ecology Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
7
|
Sari IP, Ortiz CLD, Yang LW, Chen MH, Perng MD, Wu TY. Development of Fusion-Based Assay as a Drug Screening Platform for Nipah Virus Utilizing Baculovirus Expression Vector System. Int J Mol Sci 2024; 25:9102. [PMID: 39201788 PMCID: PMC11354753 DOI: 10.3390/ijms25169102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Nipah virus (NiV) is known to be a highly pathogenic zoonotic virus, which is included in the World Health Organization Research & Development Blueprint list of priority diseases with up to 70% mortality rate. Due to its high pathogenicity and outbreak potency, a therapeutic countermeasure against NiV is urgently needed. As NiV needs to be handled within a Biological Safety Level (BSL) 4 facility, we had developed a safe drug screening platform utilizing a baculovirus expression vector system (BEVS) based on a NiV-induced syncytium formation that could be handled within a BSL-1 facility. To reconstruct the NiV-induced syncytium formation in BEVS, two baculoviruses were generated to express recombinant proteins that are responsible for inducing the syncytium formation, including one baculovirus exhibiting co-expressed NiV fusion protein (NiV-F) and NiV attachment glycoprotein (NiV-G) and another exhibiting human EphrinB2 protein. Interestingly, syncytium formation was observed in infected insect cells when the medium was modified to have a lower pH level and supplemented with cholesterol. Fusion inhibitory properties of several compounds, such as phytochemicals and a polysulfonated naphthylamine compound, were evaluated using this platform. Among these compounds, suramin showed the highest fusion inhibitory activity against NiV-induced syncytium in the baculovirus expression system. Moreover, our in silico results provide a molecular-level glimpse of suramin's interaction with NiV-G's central hole and EphrinB2's G-H loop, which could be the possible reason for its fusion inhibitory activity.
Collapse
Affiliation(s)
- Indah Permata Sari
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (I.P.S.); (M.-H.C.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| | - Christopher Llynard D. Ortiz
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan; (C.L.D.O.); (L.-W.Y.)
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Lee-Wei Yang
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan; (C.L.D.O.); (L.-W.Y.)
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Hsiang Chen
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (I.P.S.); (M.-H.C.)
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (I.P.S.); (M.-H.C.)
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| |
Collapse
|
8
|
Al-Sulaiti H, Anwardeen N, Bashraheel SS, Naja K, Elrayess MA. Alterations in Choline Metabolism in Non-Obese Individuals with Insulin Resistance and Type 2 Diabetes Mellitus. Metabolites 2024; 14:457. [PMID: 39195553 DOI: 10.3390/metabo14080457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The prevalence of non-obese individuals with insulin resistance (IR) and type 2 diabetes (T2D) is increasing worldwide. This study investigates the metabolic signature of phospholipid-associated metabolites in non-obese individuals with IR and T2D, aiming to identify potential biomarkers for these metabolic disorders. The study cohort included non-obese individuals from the Qatar Biobank categorized into three groups: insulin sensitive, insulin resistant, and patients with T2D. Each group comprised 236 participants, totaling 708 individuals. Metabolomic profiling was conducted using high-resolution mass spectrometry, and statistical analyses were performed to identify metabolites associated with the progression from IS to IR and T2D. The study observed significant alterations in specific phospholipid metabolites across the IS, IR, and T2D groups. Choline phosphate, glycerophosphoethanolamine, choline, glycerophosphorylcholine (GPC), and trimethylamine N-oxide showed significant changes correlated with disease progression. A distinct metabolic signature in non-obese individuals with IR and T2D was characterized by shifts in choline metabolism, including decreased levels of choline and trimethylamine N-oxide and increased levels of phosphatidylcholines, phosphatidylethanolamines, and their degradation products. These findings suggest that alterations in choline metabolism may play a critical role in the development of glucose intolerance and insulin resistance. Targeting choline metabolism could offer potential therapeutic strategies for treating T2D. Further research is needed to validate these biomarkers and understand their functional significance in the pathogenesis of IR and T2D in non-obese populations.
Collapse
Affiliation(s)
- Haya Al-Sulaiti
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Sara S Bashraheel
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
9
|
Clare J, Lindley MR, Ratcliffe E. The Potential of Fish Oil Components and Manuka Honey in Tackling Chronic Wound Treatment. Microorganisms 2024; 12:1593. [PMID: 39203434 PMCID: PMC11356504 DOI: 10.3390/microorganisms12081593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic wounds are becoming an increasing burden on healthcare services, as they have extended healing times and are susceptible to infection, with many failing to heal, which can lead ultimately to amputation. Due to the additional rise in antimicrobial resistance and emergence of difficult-to-treat Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE pathogens), novel treatments will soon be required asides from traditional antibiotics. Many natural substances have been identified as having the potential to aid in both preventing infection and increasing the speed of wound closure processes. Manuka honey is already in some cases used as a topical treatment in the form of ointments, which in conjunction with dressings and fish skin grafts are an existing US Food and Drug Administration-approved treatment option. These existing treatment options indicate that fatty acids from fish oil and manuka honey are well tolerated by the body, and if the active components of the treatments were better understood, they could make valuable additions to topical treatment options. This review considers two prominent natural substances with established manufacturing and global distribution-marine based fatty acids (including their metabolites) and manuka honey-their function as antimicrobials and how they can aid in wound repair, two important aspects leading to resolution of chronic wounds.
Collapse
Affiliation(s)
- Jenna Clare
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Martin R. Lindley
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney 2052, Australia;
| | - Elizabeth Ratcliffe
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
10
|
Daly ML, Nishi K, Klawa SJ, Hinton KY, Gao Y, Freeman R. Designer peptide-DNA cytoskeletons regulate the function of synthetic cells. Nat Chem 2024; 16:1229-1239. [PMID: 38654104 PMCID: PMC11322001 DOI: 10.1038/s41557-024-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
The bottom-up engineering of artificial cells requires a reconfigurable cytoskeleton that can organize at distinct locations and dynamically modulate its structural and mechanical properties. Here, inspired by the vast array of actin-binding proteins and their ability to reversibly crosslink or bundle filaments, we have designed a library of peptide-DNA crosslinkers varying in length, valency and geometry. Peptide filaments conjoint through DNA hybridization give rise to tactoid-shaped bundles with tunable aspect ratios and mechanics. When confined in cell-sized water-in-oil droplets, the DNA crosslinker design guides the localization of cytoskeletal structures at the cortex or within the lumen of the synthetic cells. The tunable spatial arrangement regulates the passive diffusion of payloads within the droplets and complementary DNA handles allow for the reversible recruitment and release of payloads on and off the cytoskeleton. Heat-induced reconfiguration of peptide-DNA architectures triggers shape deformations of droplets, regulated by DNA melting temperatures. Altogether, the modular design of peptide-DNA architectures is a powerful strategy towards the bottom-up assembly of synthetic cells.
Collapse
Affiliation(s)
- Margaret L Daly
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kengo Nishi
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kameryn Y Hinton
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Yuan Gao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Ernst R, Renne MF, Jain A, von der Malsburg A. Endoplasmic Reticulum Membrane Homeostasis and the Unfolded Protein Response. Cold Spring Harb Perspect Biol 2024; 16:a041400. [PMID: 38253414 PMCID: PMC11293554 DOI: 10.1101/cshperspect.a041400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The endoplasmic reticulum (ER) is the key organelle for membrane biogenesis. Most lipids are synthesized in the ER, and most membrane proteins are first inserted into the ER membrane before they are transported to their target organelle. The composition and properties of the ER membrane must be carefully controlled to provide a suitable environment for the insertion and folding of membrane proteins. The unfolded protein response (UPR) is a powerful signaling pathway that balances protein and lipid production in the ER. Here, we summarize our current knowledge of how aberrant compositions of the ER membrane, referred to as lipid bilayer stress, trigger the UPR.
Collapse
Affiliation(s)
- Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Aamna Jain
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Alexander von der Malsburg
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
12
|
Kelly ET, Mack LK, Attardo GM. Exploring the Wilderness within: An Integrative Metabolomics and Transcriptomics Study on Near-Wild and Colonized Aedes aegypti. INSECTS 2024; 15:507. [PMID: 39057240 PMCID: PMC11277204 DOI: 10.3390/insects15070507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
This study examines the phenotypic differences between wild-derived F2 Central Valley mosquitoes and the insecticide-susceptible Rockefeller (Rock) lab strain of Ae. aegypti. Given the rarity of wild pyrethroid-susceptible populations, the focus of this work is to develop an understanding of the resistance physiology in this invasive mosquito population and explore the potential of metabolites as diagnostic biomarkers for metabolic resistance. This study utilizes metabolomic, gene expression, and lifespan data for a comparison between strains. The findings indicate that wild-derived mosquitoes with greater metabolic resistance have a lifespan sensitivity to restricted larval nutrition. In terms of metabolism and gene expression, Central Valley mosquitoes show increased activity in oxidoreductase, glutathione metabolism, and the pentose phosphate pathway. Conversely, Rock mosquitoes display signs of metabolic inefficiency and mitochondrial dysregulation, likely tolerated due to the consistency and nutritional abundance of a controlled lab environment. The study also examines Ae. aegypti P450 and GSTE profiles in relation to other insecticide-resistant groups. While metabolomic data can differentiate our study groups, the challenges in biomarker development arise from few detected markers meeting high fold change thresholds.
Collapse
Affiliation(s)
| | | | - Geoffrey M. Attardo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA; (E.T.K.); (L.K.M.)
| |
Collapse
|
13
|
Hu G, Gu L, Wang R, Jian Q, Lv K, Xia M, Lai M, Shen T, Hu J, Yang S, Ye C, Zhang X, Wang Y, Xu X, Zhang F. Ethanolamine as a biomarker and biomarker-based therapy for diabetic retinopathy in glucose-well-controlled diabetic patients. Sci Bull (Beijing) 2024; 69:1920-1935. [PMID: 38423871 DOI: 10.1016/j.scib.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 12/29/2023] [Indexed: 03/02/2024]
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness among the working-age population. Although controlling blood glucose levels effectively reduces the incidence and development of DR to less than 50%, there are currently no diagnostic biomarkers or effective treatments for DR development in glucose-well-controlled diabetic patients (GW-DR). In this study, we established a prospective GW-DR cohort by strictly adhering to glycemic control guidelines and maintaining regular retinal examinations over a median 2-year follow-up period. The discovery cohort encompassed 71 individuals selected from a pool of 292 recruited diabetic patients at baseline, all of whom consistently maintained hemoglobin A1c (HbA1c) levels below 7% without experiencing hypoglycemia. Within this cohort of 71 individuals, 21 subsequently experienced new-onset GW-DR, resulting in an incidence rate of 29.6%. In the validation cohort, we also observed a significant GW-DR incidence rate of 17.9%. Employing targeted metabolomics, we investigated the metabolic characteristics of serum in GW-DR, revealing a significant association between lower levels of ethanolamine and GW-DR risk. This association was corroborated in the validation cohort, exhibiting superior diagnostic performance in distinguishing GW-DR from diabetes compared to the conventional risk factor HbA1c, with AUCs of 0.954 versus 0.506 and 0.906 versus 0.521 in the discovery and validation cohorts, respectively. Furthermore, in a streptozotocin (STZ)-induced diabetic rat model, ethanolamine attenuated diabetic retinal inflammation, accompanied by suppression of microglial diacylglycerol (DAG)-dependent protein kinase C (PKC) pathway activation. In conclusion, we propose that ethanolamine is a potential biomarker and represents a viable biomarker-based therapeutic option for GW-DR.
Collapse
Affiliation(s)
- Guangyi Hu
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Eye Institute of Shanghai Jiao Tong University School, Shanghai 200080, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Liping Gu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ruonan Wang
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Eye Institute of Shanghai Jiao Tong University School, Shanghai 200080, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Qizhi Jian
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Eye Institute of Shanghai Jiao Tong University School, Shanghai 200080, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Kangjia Lv
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Eye Institute of Shanghai Jiao Tong University School, Shanghai 200080, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Mengxue Xia
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Eye Institute of Shanghai Jiao Tong University School, Shanghai 200080, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Mengyu Lai
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tingting Shen
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jing Hu
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Eye Institute of Shanghai Jiao Tong University School, Shanghai 200080, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Sen Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaonan Zhang
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yufan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Xun Xu
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Eye Institute of Shanghai Jiao Tong University School, Shanghai 200080, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China.
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Eye Institute of Shanghai Jiao Tong University School, Shanghai 200080, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China.
| |
Collapse
|
14
|
Winnikoff JR, Milshteyn D, Vargas-Urbano SJ, Pedraza-Joya MA, Armando AM, Quehenberger O, Sodt A, Gillilan RE, Dennis EA, Lyman E, Haddock SHD, Budin I. Homeocurvature adaptation of phospholipids to pressure in deep-sea invertebrates. Science 2024; 384:1482-1488. [PMID: 38935710 DOI: 10.1126/science.adm7607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Hydrostatic pressure increases with depth in the ocean, but little is known about the molecular bases of biological pressure tolerance. We describe a mode of pressure adaptation in comb jellies (ctenophores) that also constrains these animals' depth range. Structural analysis of deep-sea ctenophore lipids shows that they form a nonbilayer phase at pressures under which the phase is not typically stable. Lipidomics and all-atom simulations identified phospholipids with strong negative spontaneous curvature, including plasmalogens, as a hallmark of deep-adapted membranes that causes this phase behavior. Synthesis of plasmalogens enhanced pressure tolerance in Escherichia coli, whereas low-curvature lipids had the opposite effect. Imaging of ctenophore tissues indicated that the disintegration of deep-sea animals when decompressed could be driven by a phase transition in their phospholipid membranes.
Collapse
Affiliation(s)
- Jacob R Winnikoff
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Aaron M Armando
- Department of Pharmacology, University of California San Diego Health Sciences, La Jolla, CA 92093, USA
| | - Oswald Quehenberger
- Department of Pharmacology, University of California San Diego Health Sciences, La Jolla, CA 92093, USA
| | - Alexander Sodt
- Unit on Membrane Chemical Physics, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Richard E Gillilan
- Center for High-Energy X-ray Sciences, Cornell High Energy Synchrotron Source (CHESS), Ithaca, NY 14850, USA
| | - Edward A Dennis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego Health Sciences, La Jolla, CA 92093, USA
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Khristiani Rahayu A, Fibriani A, Irasonia Tan M. Exploring the potential of black cumin derived nanovesicles for miRNA drug delivery. Eur J Pharm Biopharm 2024; 199:114275. [PMID: 38582178 DOI: 10.1016/j.ejpb.2024.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Liposomes is a non-viral vector drug delivery system. Nevertheless, the existing commercial liposomes are quite expensive and not always affordable, particularly in developing countries. To address this challenge, plant-derived nanoparticles offer a cost-effective alternative while maintaining similar drug delivery capabilities. Hence, this study aimed to explore the potential of nanovesicles derived from black cumin (Nigella sativa) as a miRNA delivery system. Gradient sucrose-centrifugation was utilized to separate the nanovesicles derived from black cumin. Subsequently, these isolated nanovesicles, originating from black cumin, underwent centrifugation at a speed of 11,000 rpm. The miRNAs were encapsulated within these nanovesicles through the ethanol injection method. Morphological examinations of the nanovesicles derived from black cumin and DOTAP, as the positive control, were conducted using TEM and SEM. Furthermore, the cytotoxicity of the nanovesicles derived from black cumin was evaluated through the MTT assay on the MCF-7 cell line. Lastly, the process of internalization for both the black cumin-derived nanovesicles and DOTAP was visualized using a confocal microscope. Results demonstrated the successful isolation of nanovesicles from black cumin using the sucrose gradient method. These particles exhibited a spherical shape with diameters ranging from 100 nm to 200 nm, featuring a negative surface charge. When MCF-7 cells were exposed to black cumin-derived nanovesicles at a concentration of 12 mg/mL, cell viability reached 89.8 %, showing no significant difference compared to the positive control (p > 0.05). Furthermore, the MCF-7 cell line effectively internalized the black cumin-derived nanovesicles after a 45-minute incubation period. Notably, the encapsulation of miRNA within these nanovesicles demonstrated an impressive entrapment efficiency of 76.4 %. Subsequent transfection of miRNA-loaded black cumin-derived nanovesicles resulted in a substantial inhibition of MCF-7 cell viability, reducing it to 67 % after 48 h of treatment. These findings underscore the potential of black cumin-derived nanovesicles as potential nanovectors for the encapsulation and delivery of miRNA within drug delivery systems, offering a cost-effective and accessible solution for advanced drug delivery technologies, particularly in developing country.
Collapse
Affiliation(s)
- Adelina Khristiani Rahayu
- Doctoral Program of Biology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat, Indonesia
| | - Azzania Fibriani
- School of Life Sciences and Technology, Jl. Ganesha No. 10, Bandung, Institut Teknologi Bandung, Indonesia
| | - Marselina Irasonia Tan
- School of Life Sciences and Technology, Jl. Ganesha No. 10, Bandung, Institut Teknologi Bandung, Indonesia.
| |
Collapse
|
16
|
Nunes LGA, Ma C, Hoffmann FW, Shay AE, Pitts MW, Hoffmann PR. Selenoprotein I is indispensable for ether lipid homeostasis and proper myelination. J Biol Chem 2024; 300:107259. [PMID: 38582453 PMCID: PMC11061234 DOI: 10.1016/j.jbc.2024.107259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
Selenoprotein I (SELENOI) catalyzes the final reaction of the CDP-ethanolamine branch of the Kennedy pathway, generating the phospholipids phosphatidylethanolamine (PE) and plasmenyl-PE. Plasmenyl-PE is a key component of myelin and is characterized by a vinyl ether bond that preferentially reacts with oxidants, thus serves as a sacrificial antioxidant. In humans, multiple loss-of-function mutations in genes affecting plasmenyl-PE metabolism have been implicated in hereditary spastic paraplegia, including SELENOI. Herein, we developed a mouse model of nervous system-restricted SELENOI deficiency that circumvents embryonic lethality caused by constitutive deletion and recapitulates phenotypic features of hereditary spastic paraplegia. Resulting mice exhibited pronounced alterations in brain lipid composition, which coincided with motor deficits and neuropathology including hypomyelination, elevated reactive gliosis, and microcephaly. Further studies revealed increased lipid peroxidation in oligodendrocyte lineage cells and disrupted oligodendrocyte maturation both in vivo and in vitro. Altogether, these findings detail a critical role for SELENOI-derived plasmenyl-PE in myelination that is of paramount importance for neurodevelopment.
Collapse
Affiliation(s)
- Lance G A Nunes
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - FuKun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Ashley E Shay
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
17
|
Frank HM, Walujkar S, Walsh RM, Laursen WJ, Theobald DL, Garrity PA, Gaudet R. Structural basis of ligand specificity and channel activation in an insect gustatory receptor. Cell Rep 2024; 43:114035. [PMID: 38573859 PMCID: PMC11100771 DOI: 10.1016/j.celrep.2024.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Gustatory receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors, making their structural investigation a vital step toward such applications. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect odorant receptors (ORs). Upon fructose binding, BmGr9's channel gate opens through helix S7b movements. In contrast to ORs, BmGr9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also, unlike ORs, fructose binding by BmGr9 involves helix S5 and a pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with different ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.
Collapse
Affiliation(s)
- Heather M Frank
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Sanket Walujkar
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Richard M Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Willem J Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | | | - Paul A Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Zhou J, Ji J, Li X, Zhang Y, Gu L, Zheng X, Li Y, He J, Yang C, Xiao K, Gong Q, Gu Z, Luo K. Homomultivalent Polymeric Nanotraps Disturb Lipid Metabolism Homeostasis and Tune Pyroptosis in Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312528. [PMID: 38240412 DOI: 10.1002/adma.202312528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Genetic manipulations and pharmaceutical interventions to disturb lipid metabolism homeostasis have emerged as an attractive approach for the management of cancer. However, the research on the utilization of bioactive materials to modulate lipid metabolism homeostasis remains constrained. In this study, heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin (TMCD) is utilized to fabricate homomultivalent polymeric nanotraps, and surprisingly, its unprecedented ability to perturb lipid metabolism homeostasis and induce pyroptosis in tumor cells is found. Through modulation of the density of TMCD arrayed on the polymers, one top-performing nanotrap, PTMCD4, exhibits the most powerful cholesterol-trapping and depletion capacity, thus achieving prominent cytotoxicity toward different types of tumor cells and encouraging antitumor effects in vivo. The interactions between PTMCD4 and biomembranes of tumor cells effectively enable the reduction of cellular phosphatidylcholine and cholesterol levels, thus provoking damage to the biomembrane integrity and perturbation of lipid metabolism homeostasis. Additionally, the interplays between PTMCD4 and lysosomes also induce lysosomal stress, activate the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasomes, and subsequently trigger tumor cell pyroptosis. To sum up, this study first introduces dendronized bioactive polymers to manipulate lipid metabolism and has shed light on another innovative insight for cancer therapy.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiecheng Ji
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xue Li
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxin Zhang
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuli Zheng
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunkun Li
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhan He
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Kai Xiao
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| | - Zhongwei Gu
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
19
|
Han G, Kim H, Jang H, Kim ES, Kim SH, Yang Y. Oral TNF-α siRNA delivery via milk-derived exosomes for effective treatment of inflammatory bowel disease. Bioact Mater 2024; 34:138-149. [PMID: 38223538 PMCID: PMC10784143 DOI: 10.1016/j.bioactmat.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Oral administration facilitates the direct delivery of drugs to lesions within the small intestine and colon, making it an ideal approach for treating patients with inflammatory bowel disease. However, multiple physical barriers impede the delivery of oral RNA drugs through the gastrointestinal tract. Herein, we developed a novel oral siRNA delivery system that protects nucleic acids in extreme environments by employing exosomes derived from milk to encapsulate tumor necrosis factor-alpha (TNF-α) siRNA completely. The remarkable structural stability of milk-derived exosomes (M-Exos), as opposed to those from HEK293T cells, makes them exceptional siRNA carriers. Results demonstrate that milk exosomes loaded with TNF-α siRNA (M-Exo/siR) can effectively inhibit the expression of TNF-α-related inflammatory cytokines. Moreover, given that milk exosomes are composed of unique lipids with high bioavailability, orally administered M-Exo/siR effectively reach colonic tissues, leading to decreased TNF-α expression and successful alleviation of colitis symptoms in a dextran sulfate sodium-induced inflammatory bowel disease murine model. Hence, milk-derived exosomes carrying TNF-α siRNA can be effectively employed to treat inflammatory bowel disease. Indeed, using exosomes naturally derived from milk may shift the current paradigm of oral gene delivery, including siRNA.
Collapse
Affiliation(s)
- Geonhee Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eun Sun Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yoosoo Yang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
20
|
Reinhard J, Starke L, Klose C, Haberkant P, Hammarén H, Stein F, Klein O, Berhorst C, Stumpf H, Sáenz JP, Hub J, Schuldiner M, Ernst R. MemPrep, a new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. EMBO J 2024; 43:1653-1685. [PMID: 38491296 PMCID: PMC11021466 DOI: 10.1038/s44318-024-00063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Biological membranes have a stunning ability to adapt their composition in response to physiological stress and metabolic challenges. Little is known how such perturbations affect individual organelles in eukaryotic cells. Pioneering work has provided insights into the subcellular distribution of lipids in the yeast Saccharomyces cerevisiae, but the composition of the endoplasmic reticulum (ER) membrane, which also crucially regulates lipid metabolism and the unfolded protein response, remains insufficiently characterized. Here, we describe a method for purifying organelle membranes from yeast, MemPrep. We demonstrate the purity of our ER membrane preparations by proteomics, and document the general utility of MemPrep by isolating vacuolar membranes. Quantitative lipidomics establishes the lipid composition of the ER and the vacuolar membrane. Our findings provide a baseline for studying membrane protein biogenesis and have important implications for understanding the role of lipids in regulating the unfolded protein response (UPR). The combined preparative and analytical MemPrep approach uncovers dynamic remodeling of ER membranes in stressed cells and establishes distinct molecular fingerprints of lipid bilayer stress.
Collapse
Affiliation(s)
- John Reinhard
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Leonhard Starke
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | | | - Per Haberkant
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | | | - Frank Stein
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | - Ofir Klein
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Charlotte Berhorst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Heike Stumpf
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - James P Sáenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Jochen Hub
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | - Maya Schuldiner
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Robert Ernst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany.
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany.
| |
Collapse
|
21
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
22
|
Driggers CM, Kuo YY, Zhu P, ElSheikh A, Shyng SL. Structure of an open K ATP channel reveals tandem PIP 2 binding sites mediating the Kir6.2 and SUR1 regulatory interface. Nat Commun 2024; 15:2502. [PMID: 38509107 PMCID: PMC10954709 DOI: 10.1038/s41467-024-46751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
ATP-sensitive potassium (KATP) channels, composed of four pore-lining Kir6.2 subunits and four regulatory sulfonylurea receptor 1 (SUR1) subunits, control insulin secretion in pancreatic β-cells. KATP channel opening is stimulated by PIP2 and inhibited by ATP. Mutations that increase channel opening by PIP2 reduce ATP inhibition and cause neonatal diabetes. Although considerable evidence has implicated a role for PIP2 in KATP channel function, previously solved open-channel structures have lacked bound PIP2, and mechanisms by which PIP2 regulates KATP channels remain unresolved. Here, we report the cryoEM structure of a KATP channel harboring the neonatal diabetes mutation Kir6.2-Q52R, in the open conformation, bound to amphipathic molecules consistent with natural C18:0/C20:4 long-chain PI(4,5)P2 at two adjacent binding sites between SUR1 and Kir6.2. The canonical PIP2 binding site is conserved among PIP2-gated Kir channels. The non-canonical PIP2 binding site forms at the interface of Kir6.2 and SUR1. Functional studies demonstrate both binding sites determine channel activity. Kir6.2 pore opening is associated with a twist of the Kir6.2 cytoplasmic domain and a rotation of the N-terminal transmembrane domain of SUR1, which widens the inhibitory ATP binding pocket to disfavor ATP binding. The open conformation is particularly stabilized by the Kir6.2-Q52R residue through cation-π bonding with SUR1-W51. Together, these results uncover the cooperation between SUR1 and Kir6.2 in PIP2 binding and gating, explain the antagonistic regulation of KATP channels by PIP2 and ATP, and provide a putative mechanism by which Kir6.2-Q52R stabilizes an open channel to cause neonatal diabetes.
Collapse
Affiliation(s)
- Camden M Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Yi-Ying Kuo
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Phillip Zhu
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
23
|
Mu F, Wang M, Zeng X, Liu L, Wang F. Preconception Non-criteria Antiphospholipid Antibodies and Risk of Subsequent Early Pregnancy Loss: a Retrospective Study. Reprod Sci 2024; 31:746-753. [PMID: 37932551 PMCID: PMC10912122 DOI: 10.1007/s43032-023-01388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
The aim of this study was to investigate the subsequent early pregnancy outcomes in women positive for non-criteria antiphospholipid antibodies (NC-aPLs) before pregnancy. A total of 273 patients who had experienced sporadic or recurrent pregnancy loss and had been screened for 13 NC-aPLs at preconception were recruited in this study from September 2019 to February 2022. Serum levels of NC-aPLs were measured by ELISA using specific kits. The primary outcome was early pregnancy loss, and the secondary outcomes were biochemical pregnancy, clinically confirmed pregnancy loss, and ongoing pregnancy. Among these subjects, 56 patients had one previous pregnancy loss, and 217 had recurrent pregnancy loss (RPL). The NC-aPLs (+) and NC-aPLs (-) groups had similar rates of early pregnancy loss (EPL) after adjustment, regardless of the number of positive NC-aPLs (aOR = 1.054, 95% CI 0.602-1.846). Other outcomes were comparable in both groups, including the rates of biochemical pregnancy (aOR = 1.344, 95% CI 0.427-4.236), clinically confirmed pregnancy loss (aOR = 0.744, 95% CI 0.236-2.344), and ongoing pregnancy (aOR = 0.949, 95% CI 0.542-1.660). Based on sensitivity analysis, the NC-aPLs (+) were not associated with adverse early pregnancy outcomes in women with RPL. Furthermore, the difference in gestational weeks of pregnancy loss between the two groups was also insignificant. This study found no evidence linking preconception NC-aPL positivity to early pregnancy outcomes but offers a reference for future research to clarify NC-aPLs' potential clinical impact.
Collapse
Affiliation(s)
- Fangxiang Mu
- Department of Reproductive Medicine, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
| | - Mei Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
| | - Xianghui Zeng
- Department of Reproductive Medicine, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
| | - Ling Liu
- Department of Reproductive Medicine, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
| | - Fang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China.
| |
Collapse
|
24
|
Banerjee S, Daetwyler S, Bai X, Michaud M, Jouhet J, Madhugiri S, Johnson E, Wang CW, Fiolka R, Toulmay A, Prinz WA. The Vps13-like protein BLTP2 is pro-survival and regulates phosphatidylethanolamine levels in the plasma membrane to maintain its fluidity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578804. [PMID: 38370643 PMCID: PMC10871178 DOI: 10.1101/2024.02.04.578804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Lipid transport proteins (LTPs) facilitate nonvesicular lipid exchange between cellular compartments and have critical roles in lipid homeostasis1. A new family of bridge-like LTPs (BLTPs) is thought to form lipid-transporting conduits between organelles2. One, BLTP2, is conserved across species but its function is not known. Here, we show that BLTP2 and its homolog directly regulate plasma membrane (PM) fluidity by increasing the phosphatidylethanolamine (PE) level in the PM. BLTP2 localizes to endoplasmic reticulum (ER)-PM contact sites34, 5, suggesting it transports PE from the ER to the PM. We find BLTP2 works in parallel with another pathway that regulates intracellular PE distribution and PM fluidity6, 7. BLTP2 expression correlates with breast cancer aggressiveness8-10. We found BLTP2 facilitates growth of a human cancer cell line and sustains its aggressiveness in an in vivo model of metastasis, suggesting maintenance of PM fluidity by BLTP2 may be critical for tumorigenesis in humans.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofei Bai
- Department of Biology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Morgane Michaud
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Juliette Jouhet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Shruthi Madhugiri
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Emma Johnson
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao-Wen Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandre Toulmay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William A Prinz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
25
|
Zhang L, Zhao J, Lam SM, Chen L, Gao Y, Wang W, Xu Y, Tan T, Yu H, Zhang M, Liao X, Wu M, Zhang T, Huang J, Li B, Zhou QD, Shen N, Lee HJ, Ye C, Li D, Shui G, Zhang J. Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development. Nat Cell Biol 2024; 26:278-293. [PMID: 38302721 DOI: 10.1038/s41556-023-01341-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
Lipids are indispensable for energy storage, membrane structure and cell signalling. However, dynamic changes in various categories of endogenous lipids in mammalian early embryonic development have not been systematically characterized. Here we comprehensively investigated the dynamic lipid landscape during mouse and human early embryo development. Lipid signatures of different developmental stages are distinct, particularly for the phospholipid classes. We highlight that the high degree of phospholipid unsaturation is a conserved feature as embryos develop to the blastocyst stage. Moreover, we show that lipid desaturases such as SCD1 are required for in vitro blastocyst development and blastocyst implantation. One of the mechanisms is through the regulation of unsaturated fatty-acid-mediated fluidity of the plasma membrane and apical proteins and the establishment of apical-basal polarity during development of the eight-cell embryo to the blastocyst. Overall, our study provides an invaluable resource about the remodelling of the endogenous lipidome in mammalian preimplantation embryo development and mechanistic insights into the regulation of embryogenesis and implantation by lipid unsaturation.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jing Zhao
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies, Changzhou, China
| | - Lang Chen
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingzhuo Gao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Wenjie Wang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyan Xu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyu Tan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xufeng Liao
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengchen Wu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyun Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jie Huang
- College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Bowen Li
- LipidALL Technologies, Changzhou, China
| | - Quan D Zhou
- Institute of Immunology, Department of Surgical Oncology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Shen
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Center of Gene and Cell Therapy and Genome Medicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
26
|
Ugwuodo CJ, Colosimo F, Adhikari J, Bloodsworth K, Wright SA, Eder J, Mouser PJ. Changes in environmental and engineered conditions alter the plasma membrane lipidome of fractured shale bacteria. Microbiol Spectr 2024; 12:e0233423. [PMID: 38059585 PMCID: PMC10782966 DOI: 10.1128/spectrum.02334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Microorganisms inadvertently introduced into the shale reservoir during fracturing face multiple stressors including brine-level salinities and starvation. However, some anaerobic halotolerant bacteria adapt and persist for long periods of time. They produce hydrogen sulfide, which sours the reservoir and corrodes engineering infrastructure. In addition, they form biofilms on rock matrices, which decrease shale permeability and clog fracture networks. These reduce well productivity and increase extraction costs. Under stress, microbes remodel their plasma membrane to optimize its roles in protection and mediating cellular processes such as signaling, transport, and energy metabolism. Hence, by observing changes in the membrane lipidome of model shale bacteria, Halanaerobium congolense WG10, and mixed consortia enriched from produced fluids under varying subsurface conditions and growth modes, we provide insight that advances our knowledge of the fractured shale biosystem. We also offer data-driven recommendations for improving biocontrol efficacy and the efficiency of energy recovery from unconventional formations.
Collapse
Affiliation(s)
- Chika Jude Ugwuodo
- Natural Resources and Earth Systems Science, University of New Hampshire, Durham, New Hampshire, USA
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | | | | | - Kent Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Stephanie A. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Josie Eder
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Paula J. Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
27
|
Frank HM, Walujkar S, Walsh RM, Laursen WJ, Theobald DL, Garrity PA, Gaudet R. Structure of an insect gustatory receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572336. [PMID: 38187590 PMCID: PMC10769236 DOI: 10.1101/2023.12.19.572336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Gustatory Receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors. However, GR structures have not been experimentally determined. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect Olfactory Receptors (ORs). Upon fructose binding, BmGr9's ion channel gate opens through helix S7b movements. In contrast to ORs, BmGR9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also unlike ORs, fructose binding by BmGr9 involves helix S5 and a binding pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with distinct ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.
Collapse
Affiliation(s)
- Heather M. Frank
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Sanket Walujkar
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Richard M. Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally
| | - Willem J. Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | | | - Paul A. Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- Lead contact
| |
Collapse
|
28
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim K, Pasolli HA, Phan S, Lippincott‐Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. EMBO J 2023; 42:e114054. [PMID: 37933600 PMCID: PMC10711667 DOI: 10.15252/embj.2023114054] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Christopher T Lee
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Guadalupe C Garcia
- Computational Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
- Present address:
Applied Physical SciencesUniversity of North Carolina Chapel HillChapel HillNCUSA
| | - Daniel Milshteyn
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Keun‐Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - H Amalia Pasolli
- Howard Hughes Medical InstituteAshburnVAUSA
- Present address:
Electron Microscopy Resource CenterThe Rockefeller UniversityNew YorkNYUSA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Itay Budin
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
29
|
Roberts JA, Rosales CA, Wasslen KV, Radnoff AS, Godbout E, Diallo JS, Manthorpe JM, Smith JC. An In Silico Database for Automated Feature Identification of High-Resolution Tandem Mass Spectrometry 13C-Trimethylation Enhancement Using Diazomethane ( 13C-TrEnDi)-Modified Lipid Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2722-2730. [PMID: 37929927 DOI: 10.1021/jasms.3c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
13C-Trimethylation enhancement using diazomethane (13C-TrEnDi) is a chemical derivatization technique that uses 13C-labeled diazomethane to increase mass spectrometry (MS) signal intensities for phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipid classes, both of which are of major interest in biochemistry. In silico mass spectrometry databases have become mainstays in lipidomics experiments; however, 13C-TrEnDi-modified PC and PE species have altered m/z and fragmentation patterns from their native counterparts. To build a database of 13C-TrEnDi-modified PC and PE species, a lipid extract from nutritional yeast was derivatized and fragmentation spectra of modified PC and PE species were mined using diagnostic fragmentation filtering by searching 13C-TrEnDi-modified headgroups with m/z 199 (PC) and 202 (PE). Identities of 25 PC and 10 PE species were assigned after comparing to predicted masses from the Lipid Maps Structure Database with no false positive identifications observed; neutral lipids could still be annotated after derivatization. Collision energies from 16 to 52 eV were examined, resulting in three additional class-specific fragment ions emerging, as well as a combined sn-1/sn-2 fragment ion, allowing sum-composition level annotations to be assigned. Using the Lipid Blast templates, a NIST-compatible 13C-TrEnDi database was produced based on fragmentation spectra observed at 36 eV and tested on HEK 293T cell lipid extracts, identifying 47 PC and 24 PE species, representing a 1.8-fold and 2.2-fold increase in annotations, respectively. The 13C-TrEnDi database is freely available, MS vendor-independent, and widely compatible with MS data processing pipelines, increasing the throughput and accessibility of TrEnDi for lipidomics applications.
Collapse
Affiliation(s)
- Joshua A Roberts
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Christian A Rosales
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Karl V Wasslen
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Angela S Radnoff
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Elena Godbout
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Jean-Simon Diallo
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Jeffrey M Manthorpe
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
30
|
Torreno VPM, Molino RJEJ, Junio HA, Yu ET. Comprehensive metabolomics of Philippine Stichopus cf. horrens reveals diverse classes of valuable small molecules for biomedical applications. PLoS One 2023; 18:e0294535. [PMID: 38055702 PMCID: PMC10699614 DOI: 10.1371/journal.pone.0294535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
Stichopus cf. horrens is an economically important sea cucumber species in Southeast Asia due to their presumed nutritional and medicinal benefits. However, compared to other sea cucumbers such as Apostichopus japonicus, there are no biochemical studies on which compounds contribute to the purported bioactivities of S. cf. horrens. To address this, a high-throughput characterization of the global metabolite profile of the species was performed through LC-MS/MS experiments and utilizing open-access platforms such as GNPS, XCMS, and metaboAnalyst. Bioinformatics-based molecular networking and chemometrics revealed the abundance of phospholipids such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), and phosphatidylserines (PSs) in the crude samples. Body wall extracts were observed to have higher levels of structural, diacylated PCs, while the viscera have higher relative abundance of single-tail PCs and PEs that could be involved in digestion via nutrient absorption and transport for sea cucumbers. PEs and sphingolipids could also be implicated in the ecological response and morphological transformations of S. cf. horrens in the presence of predatory and other environmental stress. Interestingly, terpenoid glycosides and saponins with reported anti-cancer benefits were significantly localized in the body wall. The sulfated alkanes and sterols present in S. cf. horrens bear similarity to known kairomones and other signaling molecules. All in all, the results provide a baseline metabolomic profile of S. cf. horrens that may further be used for comparative and exploratory studies and suggest the untapped potential of S. cf. horrens as a source of bioactive molecules.
Collapse
Affiliation(s)
| | | | - Hiyas A. Junio
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City, Philippines
| | - Eizadora T. Yu
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| |
Collapse
|
31
|
Liu L, Qi YF, Wang M, Chen BX, Zhou QB, Tong WX, Zhang Y. A serum metabolomics study of vascular cognitive impairment patients based on Traditional Chinese medicine syndrome differentiation. Front Mol Biosci 2023; 10:1305439. [PMID: 38116379 PMCID: PMC10728729 DOI: 10.3389/fmolb.2023.1305439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
Objective: Vascular cognitive impairment (VCI) accounts for approximately 50%-70% of all dementia cases and poses a significant burden on existing medical systems. Identifying an optimal strategy for preventing VCI and developing efficient symptomatic treatments remains a significant challenge. Syndrome differentiation represents a fundamental approach for personalized diagnosis and treatment in Traditional Chinese Medicine (TCM) and aligns with the principles of precision medicine. The objective of this study was to elucidate the metabolic characteristics of VCI based on TCM syndrome differentiation, thus providing novel insights into the diagnosis and treatment of VCI. Methods: A 2-year cross-sectional cognitive survey was conducted in four communities in Beijing between September 2020 and November 2022. The syndrome differentiation of participants was based on the Kidney-Yang Deficiency Syndrome Scale (KYDSS), which was originally developed by Delphi expert consultation. The identification of serum metabolites was performed by Ultra performance liquid chromatography (UPLC) analysis coupled with an electrospray ionization quadruple time-of-flight mass spectrometer (ESI-QTOF MS). Multivariate, univariate, and pathway analyses were used to investigate metabolic changes. Logistic regression models were also used to construct metabolite panels that were capable of discerning distinct groups. Phospholipase A2 (PLA2) levels were measured by a commercial ELISA kit. Results: A total of 2,337 residents completed the survey, and the prevalence of VCI was 9.84%. Of the patients with VCI, those with Kidney-Yang deficiency syndrome (VCIS) accounted for 70.87% of cases and exhibited more severe cognitive impairments. A total of 80 participants were included in metabolomics study, including 30 with VCIS, 20 without Kidney-Yang deficiency syndrome (VCINS), and 30 healthy control participants (C). Ultimately, 45 differential metabolites were identified when comparing the VCIS group with group C, 65 differential metabolites between the VCINS group and group C, and 27 differential metabolites between the VCIS group and the VCINS group. The downregulation of phosphatidylethanolamine (PE), and phosphatidylcholine (PC) along with the upregulation of lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC), phosphatidic acid (PA) and phospholipase A2 (PLA2) can be considered as the general metabolic characteristics associated with VCI. Dysfunction of glycerophospholipids, particularly LPEs and PCs, was identified as a key metabolic characteristic of VCIS. In particular Glycerophospho-N-Arachidonoyl Ethanolamine (GP-NArE) was discovered for the first time in VCI patients and is considered to represent a potential biomarker for VCIS. The upregulation of PLA2 expression was implicated in the induction of alterations in glycerophospholipid metabolism in both VCIS and VCINS. Moreover, robust diagnostic models were established based on these metabolites, achieving high AUC values of 0.9322, 0.9550, and 0.9450, respectively. Conclusion: These findings contribute valuable information relating to the intricate relationship between metabolic disorders in VCI, neurodegeneration and vascular/neuroinflammation. Our findings also provide a TCM perspective for the precise diagnosis and treatment of VCI in the context of precision medicine.
Collapse
Affiliation(s)
- Li Liu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi-fei Qi
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Bao-xin Chen
- Second Department of Encephalopathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-bing Zhou
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-xin Tong
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Asteriti S, Marino V, Avesani A, Biasi A, Dal Cortivo G, Cangiano L, Dell'Orco D. Recombinant protein delivery enables modulation of the phototransduction cascade in mouse retina. Cell Mol Life Sci 2023; 80:371. [PMID: 38001384 PMCID: PMC10673981 DOI: 10.1007/s00018-023-05022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Inherited retinal dystrophies are often associated with mutations in the genes involved in the phototransduction cascade in photoreceptors, a paradigmatic signaling pathway mediated by G protein-coupled receptors. Photoreceptor viability is strictly dependent on the levels of the second messengers cGMP and Ca2+. Here we explored the possibility of modulating the phototransduction cascade in mouse rods using direct or liposome-mediated administration of a recombinant protein crucial for regulating the interplay of the second messengers in photoreceptor outer segments. The effects of administration of the free and liposome-encapsulated human guanylate cyclase-activating protein 1 (GCAP1) were compared in biological systems of increasing complexity (in cyto, ex vivo, and in vivo). The analysis of protein biodistribution and the direct measurement of functional alteration in rod photoresponses show that the exogenous GCAP1 protein is fully incorporated into the mouse retina and photoreceptor outer segments. Furthermore, only in the presence of a point mutation associated with cone-rod dystrophy in humans p.(E111V), protein delivery induces a disease-like electrophysiological phenotype, consistent with constitutive activation of the retinal guanylate cyclase. Our study demonstrates that both direct and liposome-mediated protein delivery are powerful complementary tools for targeting signaling cascades in neuronal cells, which could be particularly important for the treatment of autosomal dominant genetic diseases.
Collapse
Affiliation(s)
- Sabrina Asteriti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
- Department of Translational Research, University of Pisa, 56123, Pisa, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Anna Avesani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Amedeo Biasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, 56123, Pisa, Italy.
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
33
|
Goellner S, Enkavi G, Prasad V, Denolly S, Eu S, Mizzon G, Witte L, Kulig W, Uckeley ZM, Lavacca TM, Haselmann U, Lozach PY, Brügger B, Vattulainen I, Bartenschlager R. Zika virus prM protein contains cholesterol binding motifs required for virus entry and assembly. Nat Commun 2023; 14:7344. [PMID: 37957166 PMCID: PMC10643666 DOI: 10.1038/s41467-023-42985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
For successful infection of host cells and virion production, enveloped viruses, including Zika virus (ZIKV), extensively rely on cellular lipids. However, how virus protein-lipid interactions contribute to the viral life cycle remains unclear. Here, we employ a chemo-proteomics approach with a bifunctional cholesterol probe and show that cholesterol is closely associated with the ZIKV structural protein prM. Bioinformatic analyses, reverse genetics alongside with photoaffinity labeling assays, and atomistic molecular dynamics simulations identified two functional cholesterol binding motifs within the prM transmembrane domain. Loss of prM-cholesterol association has a bipartite effect reducing ZIKV entry and leading to assembly defects. We propose a model in which membrane-resident M facilitates cholesterol-supported lipid exchange during endosomal entry and, together with cholesterol, creates a platform promoting virion assembly. In summary, we identify a bifunctional role of prM in the ZIKV life cycle by mediating viral entry and virus assembly in a cholesterol-dependent manner.
Collapse
Affiliation(s)
- Sarah Goellner
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vibhu Prasad
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Sungmin Eu
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- d-fine GmbH, Frankfurt, Germany
| | - Giulia Mizzon
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Leander Witte
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Zina M Uckeley
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- Department of Molecular Genetics & Microbiology, University of Florida, Florida, USA
| | - Teresa M Lavacca
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Uta Haselmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Pierre-Yves Lozach
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- INRAE, EPHE, IVPC, University of Lyon, Lyon, France
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany.
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
34
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
35
|
Zhu X, Wang Y, Shen C, Zhang S, Wang W. The participation of vacuoles and the regulation of various metabolic pathways under acid stress promote the differentiation of chlamydospore in Trichoderma harzianum T4. J Appl Microbiol 2023; 134:lxad203. [PMID: 37669895 DOI: 10.1093/jambio/lxad203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023]
Abstract
AIMS Chlamydospores are a special, differentiated type with high environmental resistance. Consequently, the chlamydospores of Trichoderma harzianum T4 can used to industrialize the latter. This study aimed to investigate the key factors affecting the sporulation type of T. harzianum T4 and the mechanisms underlying this effect. METHODS AND RESULTS In the liquid fermentation of T. harzianum T4, ammonium sulfate (AS) inhibited conidia formation and chlamydospore production. Fermentation tests revealed that acid stress induced sporulation type alteration. Transcriptomic analysis was used to evaluate the adaptation strategy and mechanism underlying spore type alteration under acid stress. The fermentation experiments involving the addition of amino acids revealed that branched-chain amino acids benefited conidia production, whereas β-alanine benefited chlamydospore production. Confocal microscope fluorescence imaging and chloroquine intervention demonstrated that vacuole function was closely related to chlamydospore production. CONCLUSION The sporulation type of T. harzianum T4 can be controlled by adjusting the fermentation pH. T. harzianum T4 cells employ various self-protection measures against strong acid stress, including regulating their metabolism to produce a large number of chlamydospores for survival.
Collapse
Affiliation(s)
- Xiaochong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Songhan Zhang
- Agriculture Technology Extension Service Center of Shanghai, Shanghai 201103, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
36
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim KY, Pasolli HA, Phan S, Lippincott-Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532310. [PMID: 36993370 PMCID: PMC10054968 DOI: 10.1101/2023.03.13.532310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cristae are high curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous mechanisms for lipids have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the IMM against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. The model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that CL is essential in low oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of CL is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Guadalupe C Garcia
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla CA 92097
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - H Amalia Pasolli
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn VA 20147
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
- Lead contact
| |
Collapse
|
37
|
Taskinen JH, Ruhanen H, Matysik S, Käkelä R, Olkkonen VM. Systemwide effects of ER-intracellular membrane contact site disturbance in primary endothelial cells. J Steroid Biochem Mol Biol 2023; 232:106349. [PMID: 37321512 DOI: 10.1016/j.jsbmb.2023.106349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Membrane contact sites (MCS) make up a crucial route of inter-organelle non-vesicular transport within the cell. Multiple proteins are involved in this process, which includes the ER-resident proteins vesicle associated membrane protein associated protein A and -B (VAPA/B) that form MCS between the ER and other membrane compartments. Currently most functional data on VAP depleted phenotypes have shown alterations in lipid homeostasis, induction of ER stress, dysfunction of UPR and autophagy, as well as neurodegeneration. Literature on concurrent silencing of VAPA/B is still sparse; therefore, we investigated how it affects the macromolecule pools of primary endothelial cells. Our transcriptomics results showed significant upregulation in genes related to inflammation, ER and Golgi dysfunction, ER stress, cell adhesion, as well as Coat Protein Complex-I and -II (COP-I, COP-II) vesicle transport. Genes related to cellular division were downregulated, as well as key genes of lipid and sterol biosynthesis. Lipidomics analyses revealed reductions in cholesteryl esters, very long chain highly unsaturated and saturated lipids, whereas increases in free cholesterol and relatively short chain unsaturated lipids were evident. Furthermore, the knockdown resulted in an inhibition of angiogenesis in vitro. We speculate that ER MCS depletion has led to multifaceted outcomes, which include elevated ER free cholesterol content and ER stress, alterations in lipid metabolism, ER-Golgi function and vesicle transport, which have led to a reduction in angiogenesis. The silencing also induced an inflammatory response, consistent with upregulation of markers of early atherogenesis. To conclude, ER MCS mediated by VAPA/B play a crucial role in maintaining cholesterol traffic and sustain normal endothelial functions.
Collapse
Affiliation(s)
- Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
38
|
Shi Q, Zhan T, Bi X, Ye BC, Qi N. Cholesterol-autoxidation metabolites in host defense against infectious diseases. Eur J Immunol 2023; 53:e2350501. [PMID: 37369622 DOI: 10.1002/eji.202350501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Cholesterol plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized to oxysterols by enzymatic or nonenzymatic ways. Nonenzymatic cholesterol metabolites, also called cholesterol-autoxidation metabolites, are formed dependent on the oxidation of reactive oxygen species (ROS) such as OH• or reactive nitrogen species, such as ONOO- . Cholesterol-autoxidation metabolites are abundantly produced in diseases such as inflammatory bowel disease and atherosclerosis, which are associated with oxidative stress. Recent studies have shown that cholesterol-autoxidation metabolites can further regulate the immune system. Here, we review the literature and summarize how cholesterol-autoxidation metabolites, such as 25-hydroxycholesterol (25-OHC), 7α/β-OHC, and 7-ketocholesterol, deal with the occurrence and development of infectious diseases through pattern recognition receptors, inflammasomes, ROS production, nuclear receptors, G-protein-coupled receptor 183, and lipid availability. In addition, we include the research regarding the roles of these metabolites in COVID-19 infection and discuss our viewpoints on the future research directions.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tingzhu Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Nan Qi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Department of Basic Research, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Wilson SMG, Peach JT, Fausset H, Miller ZT, Walk ST, Yeoman CJ, Bothner B, Miles MP. Metabolic impact of polyphenol-rich aronia fruit juice mediated by inflammation status of gut microbiome donors in humanized mouse model. Front Nutr 2023; 10:1244692. [PMID: 37727634 PMCID: PMC10505616 DOI: 10.3389/fnut.2023.1244692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Background The Aronia melanocarpa fruit is emerging as a health food owing to its high polyphenolic content and associated antioxidant activity. Antioxidant-rich foods, such as Aronia fruit, may counter inflammatory stimuli and positively modulate the gut microbiome. However, a comprehensive study characterizing the impact of Aronia fruit supplementation has not been completed. Therefore, we completed analyses measuring the metabolic, microbial, and inflammatory effects of a diet supplemented with Aronia fruit juice. Method Humanized mice were generated by colonizing gnotobiotic mice with microbiomes from human donors presenting disparate inflammation levels. Blood and fecal samples were collected throughout the course of an 8-week dietary intervention with either Aronia juice or a carbohydrate-matched beverage alone (2 weeks) or in combination with a high-fat diet to induce inflammation (6 weeks). Samples were analyzed using 16S rRNA gene sequencing (stool) and liquid chromatography-mass spectrometry (serum). Results We demonstrated transfer of microbiome composition and diversity and metabolic characteristics from humans with low and high inflammation levels to second-generation humanized mice. Aronia supplementation provided robust protection against high-fat diet induced metabolic and microbiome changes that were dependent in part on microbiome donor. Aronia induced increases in bacteria of the Eggerthellaceae genus (7-fold) which aligns with its known ability to metabolize (poly)phenols and in phosphatidylcholine metabolites which are consistent with improved gut barrier function. The gut microbiome from a low inflammation phenotype donor provided protection against high-fat diet induced loss of microbiome β-diversity and global metabolomic shifts compared to that from the high inflammation donor. Conclusion These metabolic changes elucidate pathway-specific drivers of reduced inflammation stemming from both Aronia and the gut microbiota.
Collapse
Affiliation(s)
- Stephanie M. G. Wilson
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT, United States
| | - Jesse T. Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Zachary T. Miller
- Department of Research Centers, Montana State University, Bozeman, MT, United States
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Carl J. Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
40
|
Will I, Attardo GM, de Bekker C. Multiomic interpretation of fungus-infected ant metabolomes during manipulated summit disease. Sci Rep 2023; 13:14363. [PMID: 37658067 PMCID: PMC10474057 DOI: 10.1038/s41598-023-40065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
Camponotus floridanus ants show altered behaviors followed by a fatal summiting phenotype when infected with manipulating Ophiocordyceps camponoti-floridani fungi. Host summiting as a strategy to increase transmission is also observed with parasite taxa beyond fungi, including aquatic and terrestrial helminths and baculoviruses. The drastic phenotypic changes can sometimes reflect significant molecular changes in gene expression and metabolite concentrations measured in manipulated hosts. Nevertheless, the underlying mechanisms still need to be fully characterized. To investigate the small molecules producing summiting behavior, we infected C. floridanus ants with O. camponoti-floridani and sampled their heads for LC-MS/MS when we observed the characteristic summiting phenotype. We link this metabolomic data with our previous genomic and transcriptomic data to propose mechanisms that underlie manipulated summiting behavior in "zombie ants." This "multiomic" evidence points toward the dysregulation of neurotransmitter levels and neuronal signaling. We propose that these processes are altered during infection and manipulation based on (1) differential expression of neurotransmitter synthesis and receptor genes, (2) altered abundance of metabolites and neurotransmitters (or their precursors) with known behavioral effects in ants and other insects, and (3) possible suppression of a connected immunity pathway. We additionally report signals for metabolic activity during manipulation related to primary metabolism, detoxification, and anti-stress protectants. Taken together, these findings suggest that host manipulation is likely a multi-faceted phenomenon, with key processes changing at multiple levels of molecular organization.
Collapse
Affiliation(s)
- I Will
- Biology Department, University of Central Florida, Orlando, USA.
| | - G M Attardo
- Entomology and Nematology Department, University of California-Davis, Davis, USA
| | - C de Bekker
- Biology Department, University of Central Florida, Orlando, USA.
- Biology Department, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
41
|
Correia CM, Præstholm SM, Havelund JF, Pedersen FB, Siersbæk MS, Ebbesen MF, Gerhart-Hines Z, Heeren J, Brewer J, Larsen S, Blagoev B, Færgeman NJ, Grøntved L. Acute Deletion of the Glucocorticoid Receptor in Hepatocytes Disrupts Postprandial Lipid Metabolism in Male Mice. Endocrinology 2023; 164:bqad128. [PMID: 37610219 DOI: 10.1210/endocr/bqad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Hepatic lipid metabolism is highly dynamic, and disruption of several circadian transcriptional regulators results in hepatic steatosis. This includes genetic disruption of the glucocorticoid receptor (GR) as the liver develops. To address the functional role of GR in the adult liver, we used an acute hepatocyte-specific GR knockout model to study temporal hepatic lipid metabolism governed by GR at several preprandial and postprandial circadian timepoints. Lipidomics analysis revealed significant temporal lipid metabolism, where GR disruption results in impaired regulation of specific triglycerides, nonesterified fatty acids, and sphingolipids. This correlates with increased number and size of lipid droplets and mildly reduced mitochondrial respiration, most noticeably in the postprandial phase. Proteomics and transcriptomics analyses suggest that dysregulated lipid metabolism originates from pronounced induced expression of enzymes involved in fatty acid synthesis, β-oxidation, and sphingolipid metabolism. Integration of GR cistromic data suggests that induced gene expression is a result of regulatory actions secondary to direct GR effects on gene transcription.
Collapse
Affiliation(s)
- Catarina Mendes Correia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Stine Marie Præstholm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Felix Boel Pedersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Majken Storm Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Morten Frendø Ebbesen
- DaMBIC, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan Brewer
- DaMBIC, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Steen Larsen
- Xlab, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
42
|
Weston WC, Hales KH, Hales DB. Flaxseed Reduces Cancer Risk by Altering Bioenergetic Pathways in Liver: Connecting SAM Biosynthesis to Cellular Energy. Metabolites 2023; 13:945. [PMID: 37623888 PMCID: PMC10456508 DOI: 10.3390/metabo13080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
This article illustrates how dietary flaxseed can be used to reduce cancer risk, specifically by attenuating obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). We utilize a targeted metabolomics dataset in combination with a reanalysis of past work to investigate the "metabo-bioenergetic" adaptations that occur in White Leghorn laying hens while consuming dietary flaxseed. Recently, we revealed how the anti-vitamin B6 effects of flaxseed augment one-carbon metabolism in a manner that accelerates S-adenosylmethionine (SAM) biosynthesis. Researchers recently showed that accelerated SAM biosynthesis activates the cell's master energy sensor, AMP-activated protein kinase (AMPK). Our paper provides evidence that flaxseed upregulates mitochondrial fatty acid oxidation and glycolysis in liver, concomitant with the attenuation of lipogenesis and polyamine biosynthesis. Defatted flaxseed likely functions as a metformin homologue by upregulating hepatic glucose uptake and pyruvate flux through the pyruvate dehydrogenase complex (PDC) in laying hens. In contrast, whole flaxseed appears to attenuate liver steatosis and body mass by modifying mitochondrial fatty acid oxidation and lipogenesis. Several acylcarnitine moieties indicate Randle cycle adaptations that protect mitochondria from metabolic overload when hens consume flaxseed. We also discuss a paradoxical finding whereby flaxseed induces the highest glycated hemoglobin percentage (HbA1c%) ever recorded in birds, and we suspect that hyperglycemia is not the cause. In conclusion, flaxseed modifies bioenergetic pathways to attenuate the risk of obesity, type 2 diabetes, and NAFLD, possibly downstream of SAM biosynthesis. These findings, if reproducible in humans, can be used to lower cancer risk within the general population.
Collapse
Affiliation(s)
- William C. Weston
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Karen H. Hales
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dale B. Hales
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| |
Collapse
|
43
|
Launay N, Ruiz M, Planas-Serra L, Verdura E, Rodríguez-Palmero A, Schlüter A, Goicoechea L, Guilera C, Casas J, Campelo F, Jouanguy E, Casanova JL, Boespflug-Tanguy O, Vazquez Cancela M, Gutiérrez-Solana LG, Casasnovas C, Area-Gomez E, Pujol A. RINT1 deficiency disrupts lipid metabolism and underlies a complex hereditary spastic paraplegia. J Clin Invest 2023; 133:e162836. [PMID: 37463447 DOI: 10.1172/jci162836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 05/26/2023] [Indexed: 07/20/2023] Open
Abstract
The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated families with novel biallelic RINT1 loss-of-function variants who presented with early onset spastic paraplegia, ataxia, optic nerve hypoplasia, and dysmorphic features, broadening the previously described phenotype. Our functional and lipidomic analyses provided evidence that pathogenic RINT1 variants induce defective lipid-droplet biogenesis and profound lipid abnormalities in fibroblasts and plasma that impact both neutral lipid and phospholipid metabolism, including decreased triglycerides and diglycerides, phosphatidylcholine/phosphatidylserine ratios, and inhibited Lands cycle. Further, RINT1 mutations induced intracellular ROS production and reduced ATP synthesis, affecting mitochondria with membrane depolarization, aberrant cristae ultrastructure, and increased fission. Altogether, our results highlighted the pivotal role of RINT1 in lipid metabolism and mitochondria function, with a profound effect in central nervous system development.
Collapse
Affiliation(s)
- Nathalie Launay
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Edgard Verdura
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Agustí Rodríguez-Palmero
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- Pediatric Neurology unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Leire Goicoechea
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Cristina Guilera
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
- CIBEREHD, Centro de Investigación Biomédica en Red de Enfermedades heoaticas y digestivas, ISCIII, Madrid, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Odile Boespflug-Tanguy
- CRMR Leukofrance Service de Neuropédiatrie, Hôpital Robert Debré AP-HP, Paris, France
- UMR1141 Neurodiderot Université de Paris Cité, Paris, France
| | | | - Luis González Gutiérrez-Solana
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Consulta de Neurodegenerativas, Sección de Neurología Pediátrica, Hospital, Infantil Universitario Niño Jesús, Madrid, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Estela Area-Gomez
- Department of Neurology, Columbia University, New York, New York, USA
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
44
|
Chen AY, Brooks BR, Damjanovic A. Ion channel selectivity through ion-modulated changes of selectivity filter p Ka values. Proc Natl Acad Sci U S A 2023; 120:e2220343120. [PMID: 37339196 PMCID: PMC10293820 DOI: 10.1073/pnas.2220343120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/26/2023] [Indexed: 06/22/2023] Open
Abstract
In bacterial voltage-gated sodium channels, the passage of ions through the pore is controlled by a selectivity filter (SF) composed of four glutamate residues. The mechanism of selectivity has been the subject of intense research, with suggested mechanisms based on steric effects, and ion-triggered conformational change. Here, we propose an alternative mechanism based on ion-triggered shifts in pKa values of SF glutamates. We study the NavMs channel for which the open channel structure is available. Our free-energy calculations based on molecular dynamics simulations suggest that pKa values of the four glutamates are higher in solution of K+ ions than in solution of Na+ ions. Higher pKa in the presence of K+ stems primarily from the higher population of dunked conformations of the protonated Glu sidechain, which exhibit a higher pKa shift. Since pKa values are close to the physiological pH, this results in predominant population of the fully deprotonated state of glutamates in Na+ solution, while protonated states are predominantly populated in K+ solution. Through molecular dynamics simulations we calculate that the deprotonated state is the most conductive, the singly protonated state is less conductive, and the doubly protonated state has significantly reduced conductance. Thus, we propose that a significant component of selectivity is achieved through ion-triggered shifts in the protonation state, which favors more conductive states for Na+ ions and less conductive states for K+ ions. This mechanism also suggests a strong pH dependence of selectivity, which has been experimentally observed in structurally similar NaChBac channels.
Collapse
Affiliation(s)
- Ada Y. Chen
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Ana Damjanovic
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
45
|
Denisenko YK, Omatova UM, Novgorodtseva TP, Ermolenko EV. Molecular species of glycerophosphoethanolamines in obesity-associated asthma. BIOMEDITSINSKAIA KHIMIIA 2023; 69:174-183. [PMID: 37384909 DOI: 10.18097/pbmc20236903174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Bronchial asthma (BA) complicated by obesity is a progressive disease phenotype that hardly responds to standard therapy. In this regard, it is important to elucidate cellular and molecular mechanisms of development of this comorbid pathology. In recent years, lipidomics has become an active research tool, opening new opportunities not only for understanding cellular processes in health and disease, but also for providing a personalized approach to medicine. The aim of this study was to characterize the lipidome phenotype based on the study of molecular species of glycerophosphatidylethanolamines (GPEs) in blood plasma of patients with BA complicated by obesity. Molecular species of GPEs were studied in blood samples of 11 patients. Identification and quantification of GPEs was carried out using high resolution tandem mass spectrometry. For the first time in this pathology, a change in the lipidome profile of molecular species of diacyl, alkyl-acyl and alkenyl-acyl HPEs of blood plasma was shown. In BA complicated by obesity, acyl groups 18:2 and 20:4 were dominated in the sn2 position of the molecular composition of diacylphosphoethanolamines. Simultaneously with the increase in the level of GPE diacyls with the fatty acids (FA) 20:4, 22:4, and 18:2, there was a decrease in these FAs in alkyl and alkenyl molecular species of GPEs, thus indicating their redistribution between subclasses. The eicosapentaenoic acid (20:5) deficiency at the sn2 position of alkenyl GPEs in patients with BA complicated by obesity indicates a decrease in the substrate for the synthesis of anti-inflammatory mediators. The resulting imbalance in the distribution of GPE subclasses, due to a pronounced increase in the content of diacyl GPE under conditions of the deficiency of molecular species of ether forms, can probably cause chronic inflammation and the development of oxidative stress. The recognized lipidome profile characterized by the modification of the basic composition and the chemical structure of GPE molecular species in BA complicated by obesity indicates their involvement in the pathogenetic mechanisms underlying BA development. The elucidation of particular roles of individual subclasses of glycerophospholipids and their individual members may contribute to the identification of new therapeutic targets and biomarkers of bronchopulmonary pathology.
Collapse
Affiliation(s)
- Yu K Denisenko
- Vladivostok Branch of the Far Eastern Scientific Center for Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitation Treatment, Vladivostok, Russia
| | - U M Omatova
- Vladivostok Branch of the Far Eastern Scientific Center for Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitation Treatment, Vladivostok, Russia
| | - T P Novgorodtseva
- Vladivostok Branch of the Far Eastern Scientific Center for Physiology and Pathology of Respiration - Research Institute of Medical Climatology and Rehabilitation Treatment, Vladivostok, Russia
| | - E V Ermolenko
- A.V. Zhirmunsky National Scientific Center for Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
46
|
Correa Y, Del Giudice R, Waldie S, Thépaut M, Micciula S, Gerelli Y, Moulin M, Delaunay C, Fieschi F, Pichler H, Haertlein M, Forsyth VT, Le Brun A, Moir M, Russell RA, Darwish T, Brinck J, Wodaje T, Jansen M, Martín C, Roosen-Runge F, Cárdenas M. High-Density Lipoprotein function is modulated by the SARS-CoV-2 spike protein in a lipid-type dependent manner. J Colloid Interface Sci 2023; 645:627-638. [PMID: 37167912 PMCID: PMC10147446 DOI: 10.1016/j.jcis.2023.04.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
There is a close relationship between the SARS-CoV-2 virus and lipoproteins, in particular high-density lipoprotein (HDL). The severity of the coronavirus disease 2019 (COVID-19) is inversely correlated with HDL plasma levels. It is known that the SARS-CoV-2 spike (S) protein binds the HDL particle, probably depleting it of lipids and altering HDL function. Based on neutron reflectometry (NR) and the ability of HDL to efflux cholesterol from macrophages, we confirm these observations and further identify the preference of the S protein for specific lipids and the consequent effects on HDL function on lipid exchange ability. Moreover, the effect of the S protein on HDL function differs depending on the individuals lipid serum profile. Contrasting trends were observed for individuals presenting low triglycerides/high cholesterol serum levels (LTHC) compared to high triglycerides/high cholesterol (HTHC) or low triglycerides/low cholesterol serum levels (LTLC). Collectively, these results suggest that the S protein interacts with the HDL particle and, depending on the lipid profile of the infected individual, it impairs its function during COVID-19 infection, causing an imbalance in lipid metabolism.
Collapse
Affiliation(s)
- Yubexi Correa
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Rita Del Giudice
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Sarah Waldie
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden; Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Samantha Micciula
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Large Scale Structures, Institut Laue Langevin (ILL), Grenoble F-38042, France
| | - Yuri Gerelli
- Marche Polytechnic University, Department of Life and Environmental Sciences, Via Brecce Bianche 12, 60131 Ancona, Italy; CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, Rome, Italy
| | - Martine Moulin
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - Clara Delaunay
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Franck Fieschi
- Partnership for Structural Biology, Grenoble F-38042, France; Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France; Institut universitaire de France (IUF), Paris, France
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Graz University of Technology, Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010 Graz, Austria
| | - Michael Haertlein
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France; Faculty of Medicine, Lund University, 22184 Lund, Sweden; LINXS Institute for Advanced Neutron and X-ray Science, Scheelevagen 19, 22370 Lund, Sweden
| | - Anton Le Brun
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Michael Moir
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | | | | | - Martin Jansen
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Centre, University of Freiburg, Freiburg Im Breisgau, Germany
| | - César Martín
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), 48940 Leioa, Spain
| | - Felix Roosen-Runge
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Marité Cárdenas
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden; Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), 48940 Leioa, Spain; School of Biological Sciences, Nanyang Technological University, Singapore; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
47
|
Yin M, Chen M, Matsuoka R, Song X, Xi Y, Zhang L, Wang X. UHPLC-Q-Exactive Orbitrap MS/MS based untargeted lipidomics reveals fatty acids and lipids profiles in different parts of capelin (Mallotus villosus). J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Cikes D, Elsayad K, Sezgin E, Koitai E, Torma F, Orthofer M, Yarwood R, Heinz LX, Sedlyarov V, Miranda ND, Taylor A, Grapentine S, Al-Murshedi F, Abot A, Weidinger A, Kutchukian C, Sanchez C, Cronin SJF, Novatchkova M, Kavirayani A, Schuetz T, Haubner B, Haas L, Hagelkruys A, Jackowski S, Kozlov AV, Jacquemond V, Knauf C, Superti-Furga G, Rullman E, Gustafsson T, McDermot J, Lowe M, Radak Z, Chamberlain JS, Bakovic M, Banka S, Penninger JM. PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing. Nat Metab 2023; 5:495-515. [PMID: 36941451 DOI: 10.1038/s42255-023-00766-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/10/2023] [Indexed: 03/23/2023]
Abstract
Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.
Collapse
Affiliation(s)
- Domagoj Cikes
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | - Kareem Elsayad
- Division of Anatomy, Center for Anatomy and Cell Biology and Medical Imaging Cluster (MIC), Vienna, Austria.
| | - Erdinc Sezgin
- MRC Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, Oxford, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Erika Koitai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ferenc Torma
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Michael Orthofer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Adrian Taylor
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Fathiya Al-Murshedi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Anne Abot
- Enterosys SAS, Prologue Biotech, Labège, France
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Candice Kutchukian
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Colline Sanchez
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Maria Novatchkova
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Anoop Kavirayani
- VBCF, Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Thomas Schuetz
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernhard Haubner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisa Haas
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Vincent Jacquemond
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Claude Knauf
- INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Cardiovascular Theme, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - John McDermot
- Manchester Centre for Genomics Medicine, St Mary's Hospital, Manchester University Hospital Foundation Trust, Manchester, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington, Seattle, WA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, WA, USA
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Siddharth Banka
- Manchester Centre for Genomics Medicine, St Mary's Hospital, Manchester University Hospital Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
49
|
Haas E, Kim Y, Stanley D. Why can insects not biosynthesize cholesterol? ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21983. [PMID: 36372906 DOI: 10.1002/arch.21983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Two aspects of insect lipid biochemistry differ from the mammalian background. In one aspect, nearly a hundred years ago scientists demonstrated that the polyunsaturated fatty acid (PUFAs), linoleic acid (LA; 18:2n-6) is an essential nutrient in the diets of all mammals that have been studied in that regard. An unknown number of insect species are able to biosynthesize LA de novo. Some species take the biosynthesized LA into fatty acid elongation/desaturation pathways to produce other PUFAs, 18:3n-6, 20:3n-6 and 20:4n-6. A couple of species use the de novo produced LA to biosynthesize prostaglandins and other eicosanoids, short-lived signal moieties that mediate important physiological actions in immunity and reproduction. Insects differ from mammals, also, in their lack of genes that encode enzymes acting in biosynthesis of cholesterol. Insects require dietary cholesterol to meet their cellular, physiological, developmental, and reproductive needs. Looking at a broader view of invertebrate biochemistry, most protostomes lost all or most genes involved in cholesterol biosynthesis. The massive gene loss occurred during the Ediacaran Period, which lasted 96 million years, from the end of the Cryogenian Period (635 million years ago; MYA) to the beginning of the Cambrian Period (538.6 MYA). The key point here is that the inability to biosynthesize cholesterol is not limited to insects; it occured in most protostomes. We address the protostome need and benefits of acquiring exogenous sterols.
Collapse
Affiliation(s)
- Eric Haas
- Department of Chemistry and Biochemistry, Creighton University, Omaha, Nebraska, USA
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Republic of Korea
| | - David Stanley
- Biological Control of Insect Research Laboratory, USDA-Agricultural Research Service, Columbia, Missouri, USA
| |
Collapse
|
50
|
Korsmo HW, Kadam I, Reaz A, Bretter R, Saxena A, Johnson CH, Caviglia JM, Jiang X. Prenatal Choline Supplement in a Maternal Obesity Model Modulates Offspring Hepatic Lipidomes. Nutrients 2023; 15:965. [PMID: 36839327 PMCID: PMC9963284 DOI: 10.3390/nu15040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Maternal obesity during pregnancy adversely impacts offspring health, predisposing them to chronic metabolic diseases characterized by insulin resistance, dysregulated macronutrient metabolism, and lipid overload, such as metabolic-associated fatty liver disease (MAFLD). Choline is a semi-essential nutrient involved in lipid and one-carbon metabolism that is compromised during MAFLD progression. Here, we investigated under high-fat (HF) obesogenic feeding how maternal choline supplementation (CS) influenced the hepatic lipidome of mouse offspring. Our results demonstrate that maternal HF+CS increased relative abundance of a subclass of phospholipids called plasmalogens in the offspring liver at both embryonic day 17.5 and after 6 weeks of postnatal HF feeding. Consistent with the role of plasmalogens as sacrificial antioxidants, HF+CS embryos were presumably protected with lower oxidative stress. After postnatal HF feeding, the maternal HF+CS male offspring also had higher relative abundance of both sphingomyelin d42:2 and its side chain, nervonic acid (FA 24:1). Nervonic acid is exclusively metabolized in the peroxisome and is tied to plasmalogen synthesis. Altogether, this study demonstrates that under the influence of obesogenic diet, maternal CS modulates the fetal and postnatal hepatic lipidome of male offspring, favoring plasmalogen synthesis, an antioxidative response that may protect the mouse liver from damages due to HF feeding.
Collapse
Affiliation(s)
- Hunter W. Korsmo
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Isma’il Kadam
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Aziza Reaz
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Rachel Bretter
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Anjana Saxena
- Department of Biology, Brooklyn College of the City University of New York, New York, NY 11210, USA
| | | | - Jorge Matias Caviglia
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Xinyin Jiang
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| |
Collapse
|