1
|
Xing H, Liu H, Chang Z, Zhang J. Research progress on the immunological functions of Piezo1 a receptor molecule that responds to mechanical force. Int Immunopharmacol 2024; 139:112684. [PMID: 39008939 DOI: 10.1016/j.intimp.2024.112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
The human immune system is capable of defending against, monitoring, and self-stabilizing various immune cells. Differentiation, proliferation, and development of these cells are regulated by biochemical signals. Moreover, biophysical signals, such as mechanical forces, have been found to affect immune cell function, thus introducing a new area of immunological research. Piezo1, a mechanically sensitive ion channel, was awarded the Nobel Prize for Physiology and Medicine in 2021. This channel is present on the surface of many cells, and when stimulated by mechanical force, it controls calcium (Ca2+) inside the cells, leading to changes in downstream signals and thus regulating cell functions. Piezo1 is also expressed in various innate and adaptive immune cells and plays a major role in the immune function. In this review, we will explore the physiological functions and regulatory mechanisms of Piezo1 and its impact on innate and adaptive immunity. This may offer new insights into diagnostics and therapeutics for the prevention and treatment of diseases and surgical infections.
Collapse
Affiliation(s)
- Hao Xing
- Department of Orthopaedics, The 960th Hospital of PLA, Jinan 250031, China
| | - Huan Liu
- Department of Orthopaedics, The 960th Hospital of PLA, Jinan 250031, China; The Second Medical University of Shandong, Weifang, Shandong 261000, China
| | - Zhengqi Chang
- Department of Orthopaedics, The 960th Hospital of PLA, Jinan 250031, China.
| | - Ji Zhang
- Department of Immunology, Basic Medical College, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
2
|
Sarna NS, Desai SH, Kaufman BG, Curry NM, Hanna AM, King MR. Enhanced and sustained T cell activation in response to fluid shear stress. iScience 2024; 27:109999. [PMID: 38883838 PMCID: PMC11177201 DOI: 10.1016/j.isci.2024.109999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The efficacy of T cell therapies in treating solid tumors is limited by poor in vivo persistence, proliferation, and cytotoxicity, which can be attributed to limited and variable ex vivo activation. Herein, we present a 10-day kinetic profile of T cells subjected to fluid shear stress (FSS) ex vivo, with and without stimulation utilizing bead-conjugated anti-CD3/CD28 antibodies. We demonstrate that mechanical stimulation via FSS combined with bead-bound anti-CD3/CD28 antibodies yields a synergistic effect, resulting in amplified and sustained downstream signaling (NF-κB, c-Fos, and NFAT), expression of activation markers (CD69 and CD25), proliferation and production of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2). This study represents the first characterization of the dynamic response of primary T cells to FSS. Collectively, our findings underscore the critical role of mechanosensitive ion channel-mediated mechanobiological signaling in T cell activation and fitness, enabling the development of strategies to address the current challenges associated with poor immunotherapy outcomes.
Collapse
Affiliation(s)
- Nicole S Sarna
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Shanay H Desai
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
- Department of Neuroscience, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Benjamin G Kaufman
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Natalie M Curry
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Anne M Hanna
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| |
Collapse
|
3
|
Langley D, Zimmermann K, Krenske E, Stefanutti G, Kimble RM, Holland AJA, Fear MW, Wood FM, Kenna T, Cuttle L. Unremitting pro-inflammatory T-cell phenotypes, and macrophage activity, following paediatric burn injury. Clin Transl Immunology 2024; 13:e1496. [PMID: 38463658 PMCID: PMC10921233 DOI: 10.1002/cti2.1496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
Objectives The aim of this study was to characterise the dynamic immune profile of paediatric burn patients for up to 18 months post-burn. Methods Flow cytometry was used to measure 25 cell markers, chemokines and cytokines which reflected both pro-inflammatory and anti-inflammatory immune profiles. Peripheral blood mononuclear cells from 6 paediatric burn patients who had returned for repeated burn and scar treatments for > 4 timepoints within 12 months post-burn were compared to four age-matched healthy controls. Results While overall proportions of T cells, NK cells and macrophages remained relatively constant, over time percentages of these immune cells differentiated into effector and proinflammatory cell phenotypes including Th17 and activated γδ T cells. Circulating proportions of γδ T cells increased their expression of pro-inflammatory mediators throughout the burn recovery, with a 3-6 fold increase of IL-17 at 1-3 weeks, and NFκβ 9-18 months post-burn. T-regulatory cell plasticity was also observed, and Treg phenotype proportions changed from systemically reduced skin-homing T-regs (CCR4+) and increased inflammatory (CCR6+) at 1-month post-burn, to double-positive cell types (CCR4+CCR6+) elevated in circulation for 18 months post-burn. Furthermore, Tregs were observed to proportionally express less IL-10 but increased TNF-α over 18 months. Conclusion Overall, these results indicate the circulating percentages of immune cells do not increase or decrease over time post-burn, instead they become highly specialised, inflammatory and skin-homing. In this patient population, these changes persisted for at least 18 months post-burn, this 'immune distraction' may limit the ability of immune cells to prioritise other threats post-burn, such as respiratory infections.
Collapse
Affiliation(s)
- Donna Langley
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Immunology and Infection Control (CIIC)QIMR Berghofer Medical Research Institute, Queensland University of Technology (QUT)BrisbaneQLDAustralia
- Centre for Biomedical Technology (CBT)Queensland University of Technology (QUT)Kelvin GroveQLDAustralia
| | - Kate Zimmermann
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Immunology and Infection Control (CIIC)QIMR Berghofer Medical Research Institute, Queensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Emma Krenske
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Immunology and Infection Control (CIIC)QIMR Berghofer Medical Research Institute, Queensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Giorgio Stefanutti
- Department of Paediatric Surgery, Urology, Burns and TraumaChildren's Health Queensland, Queensland Children's HospitalSouth BrisbaneQLDAustralia
| | - Roy M Kimble
- Department of Paediatric Surgery, Urology, Burns and TraumaChildren's Health Queensland, Queensland Children's HospitalSouth BrisbaneQLDAustralia
| | - Andrew JA Holland
- The Children's Hospital at Westmead Burns Unit, Department of Paediatrics and Child Health, Kids Research InstituteSydney Medical School, The University of SydneySydneyNSWAustralia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
- Burns Service of Western AustraliaPerth Children's Hospital and Fiona Stanley HospitalPerthWAAustralia
| | - Tony Kenna
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Immunology and Infection Control (CIIC)QIMR Berghofer Medical Research Institute, Queensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Leila Cuttle
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Biomedical Technology (CBT)Queensland University of Technology (QUT)Kelvin GroveQLDAustralia
| |
Collapse
|
4
|
Cetin M, Pinamonti V, Schmid T, Boschert T, Mellado Fuentes A, Kromer K, Lerner T, Zhang J, Herzig Y, Ehlert C, Hernandez-Hernandez M, Samaras G, Torres CM, Fisch L, Dragan V, Kouwenhoven A, Van Schoubroeck B, Wils H, Van Hove C, Platten M, Green EW, Stevenaert F, Felix NJ, Lindner JM. T-FINDER: A highly sensitive, pan-HLA platform for functional T cell receptor and ligand discovery. SCIENCE ADVANCES 2024; 10:eadk3060. [PMID: 38306432 PMCID: PMC10836725 DOI: 10.1126/sciadv.adk3060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Effective, unbiased, high-throughput methods to functionally identify both class II and class I HLA-presented T cell epitopes and their cognate T cell receptors (TCRs) are essential for and prerequisite to diagnostic and therapeutic applications, yet remain underdeveloped. Here, we present T-FINDER [T cell Functional Identification and (Neo)-antigen Discovery of Epitopes and Receptors], a system to rapidly deconvolute CD4 and CD8 TCRs and targets physiologically processed and presented by an individual's unmanipulated, complete human leukocyte antigen (HLA) haplotype. Combining a highly sensitive TCR signaling reporter with an antigen processing system to overcome previously undescribed limitations to target expression, T-FINDER both robustly identifies unknown peptide:HLA ligands from antigen libraries and rapidly screens and functionally validates the specificity of large TCR libraries against known or predicted targets. To demonstrate its capabilities, we apply the platform to multiple TCR-based applications, including diffuse midline glioma, celiac disease, and rheumatoid arthritis, providing unique biological insights and showcasing T-FINDER's potency and versatility.
Collapse
Affiliation(s)
- Miray Cetin
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Veronica Pinamonti
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Theresa Schmid
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Tamara Boschert
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmoltz Institute for Translational Oncology (HI-TRON), Heidelberg, Germany
| | | | - Kristina Kromer
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Taga Lerner
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Jing Zhang
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Yonatan Herzig
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Christopher Ehlert
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), 69118 Heidelberg, Germany
| | | | - Georgios Samaras
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | | | - Laura Fisch
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Valeriia Dragan
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | - Hans Wils
- Janssen Research and Development, Beerse, Belgium
| | | | - Michael Platten
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmoltz Institute for Translational Oncology (HI-TRON), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | - Edward W. Green
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | | | | | - John M. Lindner
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Gross S, Womer L, Kappes DJ, Soboloff J. Multifaceted control of T cell differentiation by STIM1. Trends Biochem Sci 2023; 48:1083-1097. [PMID: 37696713 PMCID: PMC10787584 DOI: 10.1016/j.tibs.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
In T cells, stromal interaction molecule (STIM) and Orai are dispensable for conventional T cell development, but critical for activation and differentiation. This review focuses on novel STIM-dependent mechanisms for control of Ca2+ signals during T cell activation and its impact on mitochondrial function and transcriptional activation for control of T cell differentiation and function. We highlight areas that require further work including the roles of plasma membrane Ca2+ ATPase (PMCA) and partner of STIM1 (POST) in controlling Orai function. A major knowledge gap also exists regarding the independence of T cell development from STIM and Orai, despite compelling evidence that it requires Ca2+ signals. Resolving these and other outstanding questions ensures that the field will remain active for many years to come.
Collapse
Affiliation(s)
- Scott Gross
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Lauren Womer
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | | | - Jonathan Soboloff
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
6
|
Shim JA, Lee SM, Jeong JW, Kim H, Son WJ, Park JH, Song P, Im SH, Bae S, Park JH, Jo Y, Hong C. NFAT1 and NFκB regulates expression of the common γ-chain cytokine receptor in activated T cells. Cell Commun Signal 2023; 21:309. [PMID: 37904191 PMCID: PMC10617197 DOI: 10.1186/s12964-023-01326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
INTRODUCTION Cytokines of the common γ chain (γc) family are critical for the development, differentiation, and survival of T lineage cells. Cytokines play key roles in immunodeficiencies, autoimmune diseases, allergies, and cancer. Although γc is considered an assistant receptor to transmit cytokine signals and is an indispensable receptor in the immune system, its regulatory mechanism is not yet well understood. OBJECTIVE This study focused on the molecular mechanisms that γc expression in T cells is regulated under T cell receptor (TCR) stimulation. METHODS The γc expression in TCR-stimulated T cells was determined by flow cytometry, western blot and quantitative RT-PCR. The regulatory mechanism of γc expression in activated T cells was examined by promoter-luciferase assay and chromatin immunoprecipitation assays. NFAT1 and NFκB deficient cells generated using CRISPR-Cas9 and specific inhibitors were used to examine their role in regulation of γc expression. Specific binding motif was confirmed by γc promotor mutant cells generated using CRISPR-Cas9. IL-7TgγcTg mice were used to examine regulatory role of γc in cytokine signaling. RESULTS We found that activated T cells significantly upregulated γc expression, wherein NFAT1 and NFκB were key in transcriptional upregulation via T cell receptor stimulation. Also, we identified the functional binding site of the γc promoter and the synergistic effect of NFAT1 and NFκB in the regulation of γc expression. Increased γc expression inhibited IL-7 signaling and rescued lymphoproliferative disorder in an IL-7Tg animal model, providing novel insights into T cell homeostasis. CONCLUSION Our results indicate functional cooperation between NFAT1 and NFκB in upregulating γc expression in activated T cells. As γc expression also regulates γc cytokine responsiveness, our study suggests that γc expression should be considered as one of the regulators in γc cytokine signaling and the development of T cell immunotherapies. Video Abstract.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - So Min Lee
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Jin Woo Jeong
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Hyori Kim
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Woo Jae Son
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
- University of Science & Technology (UST), KIOM Campus, Korean Convergence Medicine Major, Daejeon, 34054, Republic of Korea
| | - Parkyong Song
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yuna Jo
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
- Department of Anatomy, Pusan National University School of Medicine, Room 515, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea.
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea.
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
7
|
Novakovic MM, Korshunov KS, Grant RA, Martin ME, Valencia HA, Budinger GRS, Radulovic J, Prakriya M. Astrocyte reactivity and inflammation-induced depression-like behaviors are regulated by Orai1 calcium channels. Nat Commun 2023; 14:5500. [PMID: 37679321 PMCID: PMC10485021 DOI: 10.1038/s41467-023-40968-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Astrocytes contribute to brain inflammation in neurological disorders but the molecular mechanisms controlling astrocyte reactivity and their relationship to neuroinflammatory endpoints are complex and poorly understood. In this study, we assessed the role of the calcium channel, Orai1, for astrocyte reactivity and inflammation-evoked depression behaviors in mice. Transcriptomics and metabolomics analysis indicated that deletion of Orai1 in astrocytes downregulates genes in inflammation and immunity, metabolism, and cell cycle pathways, and reduces cellular metabolites and ATP production. Systemic inflammation by peripheral lipopolysaccharide (LPS) increases hippocampal inflammatory markers in WT but not in astrocyte Orai1 knockout mice. Loss of Orai1 also blunts inflammation-induced astrocyte Ca2+ signaling and inhibitory neurotransmission in the hippocampus. In line with these cellular changes, Orai1 knockout mice showed amelioration of LPS-evoked depression-like behaviors including anhedonia and helplessness. These findings identify Orai1 as an important signaling hub controlling astrocyte reactivity and astrocyte-mediated brain inflammation that is commonly observed in many neurological disorders.
Collapse
Affiliation(s)
- Michaela M Novakovic
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kirill S Korshunov
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rogan A Grant
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Megan E Martin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hiam A Valencia
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - G R Scott Budinger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jelena Radulovic
- Department of Neuroscience, Albert Einstein School of Medicine, Bronx, NY, 10461, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Kunkl M, Amormino C, Spallotta F, Caristi S, Fiorillo MT, Paiardini A, Kaempfer R, Tuosto L. Bivalent binding of staphylococcal superantigens to the TCR and CD28 triggers inflammatory signals independently of antigen presenting cells. Front Immunol 2023; 14:1170821. [PMID: 37207220 PMCID: PMC10189049 DOI: 10.3389/fimmu.2023.1170821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Staphylococcus aureus superantigens (SAgs) such as staphylococcal enterotoxin A (SEA) and B (SEB) are potent toxins stimulating T cells to produce high levels of inflammatory cytokines, thus causing toxic shock and sepsis. Here we used a recently released artificial intelligence-based algorithm to better elucidate the interaction between staphylococcal SAgs and their ligands on T cells, the TCR and CD28. The obtained computational models together with functional data show that SEB and SEA are able to bind to the TCR and CD28 stimulating T cells to activate inflammatory signals independently of MHC class II- and B7-expressing antigen presenting cells. These data reveal a novel mode of action of staphylococcal SAgs. By binding to the TCR and CD28 in a bivalent way, staphylococcal SAgs trigger both the early and late signalling events, which lead to massive inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Silvana Caristi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Raymond Kaempfer
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
9
|
Zhao D, Chen X, Wang L, Zhang J, Zhao Z, Yue N, Zhu Y, Fei W, Li X, Tan L, He W. Bidirectional and persistent immunomodulation of Astragalus polysaccharide as an adjuvant of influenza and recombinant SARS-CoV-2 vaccine. Int J Biol Macromol 2023; 234:123635. [PMID: 36801224 PMCID: PMC9932796 DOI: 10.1016/j.ijbiomac.2023.123635] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Respiratory viral infections, such as coronavirus disease of 2019 (COVID-19) and influenza, cause significant morbidity and mortality and have become a worldwide public health concern with tremendous economic and societal burdens. Vaccination is a major strategy for preventing infections. However, some new vaccines have an unmet need for impairing responses in certain individuals, especially COVID-19 vaccines, despite ongoing vaccine and adjuvant research. Here, we evaluated the effectiveness of Astragalus polysaccharide (APS), a bioactive polysaccharide extracted from the traditional Chinese herb Astragalus membranaceus as an immune adjuvant to regulate the efficacy of influenza split vaccine (ISV) and recombinant severe acute respiratory syndrome (SARS)-Cov-2 vaccine in mice. Our data indicated that APS as an adjuvant can facilitate the induction of high levels of hemagglutination inhibition (HAI) titer and specific antibody immunoglobulin G (IgG) and confer protection against the lethal challenge of influenza A viruses, including increased survival and amelioration of weight loss in mice immunized with the ISV. RNA sequencing (RNA-seq) analysis revealed that the NF-κB and Fc gamma R-mediated phagocytosis signaling pathways are essential for the immune response of mice immunized with the recombinant SARS-Cov-2 vaccine (RSV). Another important finding was that bidirectional immunomodulation of APS on cellular and humoral immunity was observed, and APS-adjuvant-induced antibodies persisted at a high level for at least 20 weeks. These findings suggest that APS is a potent adjuvant for influenza and COVID-19 vaccines, and has the advantages of bidirectional immunoregulation and persistent immunity.
Collapse
Affiliation(s)
- Danping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuhong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Zhongpeng Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Na Yue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yingli Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lingyun Tan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Nieto-Felipe J, Macias-Diaz A, Sanchez-Collado J, Berna-Erro A, Jardin I, Salido GM, Lopez JJ, Rosado JA. Role of Orai-family channels in the activation and regulation of transcriptional activity. J Cell Physiol 2023; 238:714-726. [PMID: 36952615 DOI: 10.1002/jcp.30971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 03/25/2023]
Abstract
Store operated Ca2+ entry (SOCE) is a cornerstone for the maintenance of intracellular Ca2+ homeostasis and the regulation of a variety of cellular functions. SOCE is mediated by STIM and Orai proteins following the activation of inositol 1,4,5-trisphosphate receptors. Then, a reduction of the endoplasmic reticulum intraluminal Ca2+ concentration is sensed by STIM proteins, which undergo a conformational change and activate plasma membrane Ca2+ channels comprised by Orai proteins. STIM1/Orai-mediated Ca2+ signals are finely regulated and modulate the activity of different transcription factors, including certain isoforms of the nuclear factor of activated T-cells, the cAMP-response element binding protein, the nuclear factor κ-light chain-enhancer of activated B cells, c-fos, and c-myc. These transcription factors associate SOCE with a plethora of signaling events and cellular functions. Here we provide an overview of the current knowledge about the role of Orai channels in the regulation of transcription factors through Ca2+ -dependent signaling pathways.
Collapse
Affiliation(s)
- Joel Nieto-Felipe
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Alvaro Macias-Diaz
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Jose Sanchez-Collado
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Alejandro Berna-Erro
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Isaac Jardin
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Gines M Salido
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Jose J Lopez
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Juan A Rosado
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| |
Collapse
|
11
|
The store-operated Ca 2+ channel Orai1α is required for agonist-evoked NF-κB activation by a mechanism dependent on PKCβ2. J Biol Chem 2023; 299:102882. [PMID: 36623731 PMCID: PMC9922819 DOI: 10.1016/j.jbc.2023.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Store-operated Ca2+ entry is a ubiquitous mechanism for Ca2+ influx in mammalian cells that regulates a variety of physiological processes. The identification of two forms of Orai1, the predominant store-operated channel, Orai1α and Orai1β, raises the question whether they differentially regulate cell function. Orai1α is the full-length Orai1, containing 301 amino acids, whereas Orai1β lacks the N-terminal 63 amino acids. Here, using a combination of biochemistry and imaging combined with the use of human embryonic kidney 293 KO cells, missing the native Orai1, transfected with plasmids encoding for either Orai1α or Orai1β, we show that Orai1α plays a relevant role in agonist-induced NF-κB transcriptional activity. In contrast, functional Orai1β is not required for the activation of these transcription factors. The role of Orai1α in the activation of NF-κB is entirely dependent on Ca2+ influx and involves PKCβ activation. Our results indicate that Orai1α interacts with PKCβ2 by a mechanism involving the Orai1α exclusive AKAP79 association region, which strongly suggests a role for AKAP79 in this process. These findings provide evidence of the role of Orai1α in agonist-induced NF-κB transcriptional activity and reveal functional differences between Orai1 variants.
Collapse
|
12
|
Tang YL, Kong YH, Qin S, Merchant A, Shi JZ, Zhou XG, Li MW, Wang Q. Transcriptomic dissection of termite gut microbiota following entomopathogenic fungal infection. Front Physiol 2023; 14:1194370. [PMID: 37153226 PMCID: PMC10161392 DOI: 10.3389/fphys.2023.1194370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Termites are social insects that live in the soil or in decaying wood, where exposure to pathogens should be common. However, these pathogens rarely cause mortality in established colonies. In addition to social immunity, the gut symbionts of termites are expected to assist in protecting their hosts, though the specific contributions are unclear. In this study, we examined this hypothesis in Odontotermes formosanus, a fungus-growing termite in the family Termitidae, by 1) disrupting its gut microbiota with the antibiotic kanamycin, 2) challenging O. formosanus with the entomopathogenic fungus Metarhizium robertsii, and finally 3) sequencing the resultant gut transcriptomes. As a result, 142531 transcripts and 73608 unigenes were obtained, and unigenes were annotated following NR, NT, KO, Swiss-Prot, PFAM, GO, and KOG databases. Among them, a total of 3,814 differentially expressed genes (DEGs) were identified between M. robertsii infected termites with or without antibiotics treatment. Given the lack of annotated genes in O. formosanus transcriptomes, we examined the expression profiles of the top 20 most significantly differentially expressed genes using qRT-PCR. Several of these genes, including APOA2, Calpain-5, and Hsp70, were downregulated in termites exposed to both antibiotics and pathogen but upregulated in those exposed only to the pathogen, suggesting that gut microbiota might buffer/facilitate their hosts against infection by finetuning physiological and biochemical processes, including innate immunity, protein folding, and ATP synthesis. Overall, our combined results imply that stabilization of gut microbiota can assist termites in maintaining physiological and biochemical homeostasis when foreign pathogenic fungi invade.
Collapse
Affiliation(s)
- Ya-ling Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun-hui Kong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu Province, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Ji-zhe Shi
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xu-guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
- *Correspondence: Xu-guo Zhou, ; Mu-wang Li, ; Qian Wang,
| | - Mu-wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu Province, China
- *Correspondence: Xu-guo Zhou, ; Mu-wang Li, ; Qian Wang,
| | - Qian Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Xu-guo Zhou, ; Mu-wang Li, ; Qian Wang,
| |
Collapse
|
13
|
Pharmacologic modulation of intracellular Na
+
concentration with ranolazine impacts inflammatory response in humans and mice. Proc Natl Acad Sci U S A 2022; 119:e2207020119. [PMID: 35858345 PMCID: PMC9303949 DOI: 10.1073/pnas.2207020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation is a key process accompanying cardiovascular disease. Reducing inflammation is therefore an important therapeutic option. We provide evidence, that Na+ and Ca2+ modulation regulate the inflammatory response. Reducing intracellular Na+ pharmacologically using the drug ranolazine reduced the influx of Ca2+ during inflammation and thereby reduced the cellular production of inflammatory mediators. Similarly, reduction of extracellular Na+ and knockdown of a Na+–Ca2+ exchanger led to reduced inflammation. Our in vitro finding translated to in vivo experiments as ranolazine treatment led to reduced atherosclerotic plaque growth, increased plaque stability, and diminished inflammation in a mouse model. Finally, we were able to observe the antiinflammatory effect of Na+ modulation in human patients, demonstrating that inflammation was reduced after treatment with ranolazine. Changes in Ca2+ influx during proinflammatory stimulation modulates cellular responses, including the subsequent activation of inflammation. Whereas the involvement of Ca2+ has been widely acknowledged, little is known about the role of Na+. Ranolazine, a piperazine derivative and established antianginal drug, is known to reduce intracellular Na+ as well as Ca2+ levels. In stable coronary artery disease patients (n = 51) we observed reduced levels of high-sensitive C-reactive protein (CRP) 3 mo after the start of ranolazine treatment (n = 25) as compared to the control group. Furthermore, we found that in 3,808 acute coronary syndrome patients of the MERLIN‐TIMI 36 trial, individuals treated with ranolazine (1,934 patients) showed reduced CRP values compared to placebo-treated patients. The antiinflammatory effects of sodium modulation were further confirmed in an atherosclerotic mouse model. LDL−/− mice on a high-fat diet were treated with ranolazine, resulting in a reduced atherosclerotic plaque burden, increased plaque stability, and reduced activation of the immune system. Pharmacological Na+ inhibition by ranolazine led to reduced express of adhesion molecules and proinflammatory cytokines and reduced adhesion of leukocytes to activated endothelium both in vitro and in vivo. We demonstrate that functional Na+ shuttling is required for a full cellular response to inflammation and that inhibition of Na+ influx results in an attenuated inflammatory reaction. In conclusion, we demonstrate that inhibition of Na+–Ca2+ exchange during inflammation reduces the inflammatory response in human endothelial cells in vitro, in a mouse atherosclerotic disease model, and in human patients.
Collapse
|
14
|
Birla H, Xia J, Gao X, Zhao H, Wang F, Patel S, Amponsah A, Bekker A, Tao YX, Hu H. Toll-like receptor 4 activation enhances Orai1-mediated calcium signal promoting cytokine production in spinal astrocytes. Cell Calcium 2022; 105:102619. [PMID: 35780680 PMCID: PMC9928533 DOI: 10.1016/j.ceca.2022.102619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Abstract
Toll-like receptor 4 (TLR4) has been implicated in pathological conditions including chronic pain. Activation of astrocytic TLRs leads to the synthesis of pro-inflammatory cytokines like interleukin 6 (IL-6) and tumor necrosis factor-ɑ (TNF-α), which can cause pathological inflammation and tissue damage in the central nervous system. However, the mechanisms of TLR4-mediated cytokine releases from astrocytes are incomplete understood. Our previous study has shown that Orai1, a key component of calcium release activated calcium channels (CRACs), mediates Ca2+ entry in astrocytes. How Orai1 contributes to TLR4 signaling remains unclear. Here we show that Orai1 deficiency drastically attenuated lipopolysaccharides (LPS)-induced TNF-α and IL-6 production in astrocytes. Acute LPS treatment did not induce Ca2+ response and had no effect on thapsigargin (Ca2+-ATPase inhibitor)-induced store-dependent Ca2+ entry. Inhibition or knockdown of Orai1 showed no reduction in LPS-induced p-ERK1/2, p-c-Jun N-terminal kinase, or p-p38 MAPK activation. Interestingly, Orai1 protein level was significantly increased after LPS exposure, which was blocked by inhibition of NF-κB activity. LPS significantly increased basal Ca2+ level and SOCE after exposure to astrocytes. Moreover, elevating extracellular Ca2+ concentration increased cytosolic Ca2+ level, which was almost eliminated in Orai1 KO astrocytes. Our study reports novel findings that Orai1 acts as a Ca2+ leak channel regulating the basal Ca2+ level and enhancing cytokine production in astrocytes under the inflammatory condition. These findings highlight an important role of Orai1 in astrocytic TRL4 function and may suggest that Orai1 could be a potential therapeutic target for neuroinflammatory disorders including chronic pain.
Collapse
Affiliation(s)
- Hareram Birla
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Jingsheng Xia
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Xinghua Gao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Hui Zhao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Fengying Wang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Shivam Patel
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Akwasi Amponsah
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103,Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA; Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
15
|
ORAI1-Regulated Gene Expression in Breast Cancer Cells: Roles for STIM1 Binding, Calcium Influx and Transcription Factor Translocation. Int J Mol Sci 2022; 23:ijms23115867. [PMID: 35682546 PMCID: PMC9180186 DOI: 10.3390/ijms23115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
A remodeling of calcium homeostasis, including calcium influx via store-operated calcium entry (SOCE), is a feature of breast cancers. SOCE is critical to maintain calcium balance in the endoplasmic reticulum calcium store and is an important mechanism for calcium signaling in a variety of cell types, including breast cancer cells. The canonical mechanism of SOCE is stromal interacting molecule 1 (STIM1)-mediated activation of ORAI. Elevated ORAI1 expression is a feature of basal breast cancer cells. However, the role of ORAI1 in the regulation of transcription in breast cancer cells of the basal molecular subtype is still unclear. Using CRISPR-Cas9 gene editing, ORAI1 protein expression was disrupted in MDA-MB-231 and MDA-MB-468 basal breast cancer cells. The ORAI1 wild-type and mutants were reintroduced into ORAI1 knockout cells to study the role of ORAI1 in gene transcriptional regulation. In the absence of calcium store depletion, ORAI1 regulated PTGS2 in MDA-MB-231 cells, and this was dependent on ORAI1 pore function and STIM1 binding. The activation of SOCE by thapsigargin resulted in ORAI1-dependent increases in IL6 transcription in MDA-MB-468 cells; this was also dependent on ORAI1 pore function and STIM1 binding and was associated with the translocation of NFAT1. Given the upregulation of ORAI1 in basal breast cancer cells, our results provide further evidence that ORAI1 may contribute to cancer progression through regulation of gene expression.
Collapse
|
16
|
Hope JM, Dombroski JA, Pereles RS, Lopez-Cavestany M, Greenlee JD, Schwager SC, Reinhart-King CA, King MR. Fluid shear stress enhances T cell activation through Piezo1. BMC Biol 2022; 20:61. [PMID: 35260156 PMCID: PMC8904069 DOI: 10.1186/s12915-022-01266-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/25/2022] [Indexed: 12/25/2022] Open
Abstract
Background T cell activation is a mechanical process as much as it is a biochemical process. In this study, we used a cone-and-plate viscometer system to treat Jurkat and primary human T cells with fluid shear stress (FSS) to enhance the activation of the T cells through mechanical means. Results The FSS treatment of T cells in combination with soluble and bead-bound CD3/CD28 antibodies increased the activation of signaling proteins essential for T cell activation, such as zeta-chain-associated protein kinase-70 (ZAP70), nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-κB), and AP-1 (activator protein 1). The FSS treatment also enhanced the expression of the cytokines tumor necrosis factor alpha (TNF-α), interleukin 2 (IL-2), and interferon gamma (IFN-γ), which are necessary for sustained T cell activation and function. The enhanced activation of T cells by FSS was calcium dependent. The calcium signaling was controlled by the mechanosensitive ion channel Piezo1, as GsMTx-4 and Piezo1 knockout reduced ZAP70 phosphorylation by FSS. Conclusions These results demonstrate an intriguing new dynamic to T cell activation, as the circulatory system consists of different magnitudes of FSS and could have a proinflammatory role in T cell function. The results also identify a potential pathophysiological relationship between T cell activation and FSS, as hypertension is a disease characterized by abnormal blood flow and is correlated with multiple autoimmune diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01266-7.
Collapse
Affiliation(s)
- Jacob M Hope
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Jenna A Dombroski
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Rebecca S Pereles
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Maria Lopez-Cavestany
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Joshua D Greenlee
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37235, USA.
| |
Collapse
|
17
|
Meng M, Wang L, Wang Y, Ma N, Xie W, Chang G, Shen X. A high-concentrate diet provokes inflammation, endoplasmic reticulum stress, and apoptosis in mammary tissue of dairy cows through the upregulation of STIM1/ORAI1. J Dairy Sci 2022; 105:3416-3429. [PMID: 35094865 DOI: 10.3168/jds.2021-21187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
High-concentrate feeding can induce subacute ruminal acidosis, which leads to mammary tissue injury in dairy cows. Therefore, the purpose of this research was to evaluate the effect of high-concentrate feeding on STIM1 (stromal interaction molecule 1)/ORAI1 (Orai calcium release-activated calcium modulator 1)-mediated inflammation, endoplasmic reticulum stress (ERS), and apoptosis in the mammary tissue of dairy cows. A total of 12 healthy mid-lactating Holstein cows of similar weight were randomly allotted into the following 2 groups: a high-concentrate (HC) group (concentrate:forage = 6:4) and a low-concentrate (LC) group (concentrate:forage = 4:6). The trial lasted for 3 wk. After the feeding experiment, rumen fluid, lacteal vein blood, and mammary tissue samples were collected. The results showed that the HC diet significantly increased blood lipopolysaccharide levels, decreased ruminal pH, and upregulated the concentrations of Ca2+ and proinflammatory cytokines, including TNF-α, IL-1β, and IL-6, and the enzyme activities of caspase-3, caspase-9, PKC, and IKK. The upregulation of STIM1, ORAI1, PKCα, IKKβ, phosphorylated-IκBα, phosphorylated-p65, TNF-α, and IL-1α proteins in the HC group indicated activation of the STIM1/ORAI1-mediated inflammatory signaling pathway compared with that in the LC group. The HC diet also induced ERS by increasing the mRNA and protein abundances of GRP78, CHOP, PERK, ATF6, and IRE1α in the mammary tissue. Compared with the LC group, the mRNA expression levels and protein abundances of caspase-3, cleaved caspase-3, caspase-9, and BAX were markedly increased in the HC group. However, the mRNA and protein expression levels of Bcl-2 were significantly decreased in the HC group. Therefore, this study demonstrated that the HC diet can activate the store-operated calcium entry channel by upregulating the expression of STIM1 and ORAI1 and induce inflammation, ERS, and apoptosis in the mammary tissue of dairy cows.
Collapse
Affiliation(s)
- Meijuan Meng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Lairong Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China.
| |
Collapse
|
18
|
Collins HE, Anderson JC, Wende AR, Chatham JC. Cardiomyocyte stromal interaction molecule 1 is a key regulator of Ca 2+ -dependent kinase and phosphatase activity in the mouse heart. Physiol Rep 2022; 10:e15177. [PMID: 35179826 PMCID: PMC8855923 DOI: 10.14814/phy2.15177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 04/26/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) is a major regulator of store-operated calcium entry in non-excitable cells. Recent studies have suggested that STIM1 plays a role in pathological hypertrophy; however, the physiological role of STIM1 in the heart is not well understood. We have shown that mice with a cardiomyocyte deletion of STIM1 (cr STIM1-/- ) develop ER stress, mitochondrial, and metabolic abnormalities, and dilated cardiomyopathy. However, the specific signaling pathways and kinases regulated by STIM1 are largely unknown. Therefore, we used a discovery-based kinomics approach to identify kinases differentially regulated by STIM1. Twelve-week male control and cr STIM1-/- mice were injected with saline or phenylephrine (PE, 15 mg/kg, s.c, 15 min), and hearts obtained for analysis of the Serine/threonine kinome. Primary analysis was performed using BioNavigator 6.0 (PamGene), using scoring from the Kinexus PhosphoNET database and GeneGo network modeling, and confirmed using standard immunoblotting. Kinomics revealed significantly lower PKG and protein kinase C (PKC) signaling in the hearts of the cr STIM1-/- in comparison to control hearts, confirmed by immunoblotting for the calcium-dependent PKC isoform PKCα and its downstream target MARCKS. Similar reductions in cr STIM1-/- hearts were found for the kinases: MEK1/2, AMPK, and PDPK1, and in the activity of the Ca2+ -dependent phosphatase, calcineurin. Electrocardiogram analysis also revealed that cr STIM1-/- mice have significantly lower HR and prolonged QT interval. In conclusion, we have shown several calcium-dependent kinases and phosphatases are regulated by STIM1 in the adult mouse heart. This has important implications in understanding how STIM1 contributes to the regulation of cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental MedicineDepartment of MedicineUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Joshua C. Anderson
- Department of Radiation OncologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Adam R. Wende
- Division of Molecular and Cellular PathologyDepartment of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - John C. Chatham
- Division of Molecular and Cellular PathologyDepartment of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
19
|
Lyu M, Wang S, Gao K, Wang L, Zhu X, Liu Y, Wang M, Liu X, Li B, Tian L. Dissecting the Landscape of Activated CMV-Stimulated CD4+ T Cells in Humans by Linking Single-Cell RNA-Seq With T-Cell Receptor Sequencing. Front Immunol 2021; 12:779961. [PMID: 34950144 PMCID: PMC8691692 DOI: 10.3389/fimmu.2021.779961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/12/2021] [Indexed: 11/14/2022] Open
Abstract
CD4+ T cells are crucial in cytomegalovirus (CMV) infection, but their role in infection remains unclear. The heterogeneity and potential functions of CMVpp65-reactivated CD4+ T cell subsets isolated from human peripheral blood, as well as their potential interactions, were analyzed by single-cell RNA-seq and T cell receptor (TCR) sequencing. Tregs comprised the largest population of these reactivated cells, and analysis of Treg gene expression showed transcripts associated with both inflammatory and inhibitory functions. The detailed phenotypes of CMV-reactivated CD4+ cytotoxic T1 (CD4+ CTL1), CD4+ cytotoxic T2 (CD4+ CTL2), and recently activated CD4+ T (Tra) cells were analyzed in single cells. Assessment of the TCR repertoire of CMV-reactivated CD4+ T cells confirmed the clonal expansion of stimulated CD4+ CTL1 and CD4+ CTL2 cells, which share a large number of TCR repertoires. This study provides clues for resolving the functions of CD4+ T cell subsets and their interactions during CMV infection. The specific cell groups defined in this study can provide resources for understanding T cell responses to CMV infection.
Collapse
Affiliation(s)
- Menghua Lyu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | - Shiyu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | - Kai Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | - Longlong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | | | - Ya Liu
- BGI-Shenzhen, Shenzhen, China
| | | | - Xiao Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lei Tian
- BGI-Shenzhen, Shenzhen, China.,Department of Neurology, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, China
| |
Collapse
|
20
|
Kong F, You H, Zheng K, Tang R, Zheng C. The crosstalk between pattern-recognition receptor signaling and calcium signaling. Int J Biol Macromol 2021; 192:745-756. [PMID: 34634335 DOI: 10.1016/j.ijbiomac.2021.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023]
Abstract
The innate immune system is the first line of host defense, and it is capable of resisting both exogenous pathogenic challenges and endogenous danger signals via different pattern recognition receptors (PRRs), including Toll-like receptors, retinoic acid-inducible gene-1 (RIG-1)-like receptors, cytosolic DNA sensors, as well as nucleotide-binding oligomerization domain (NOD)-like receptors. After recognizing the pathogen-associated molecular patterns from exogenous microbes or the damage-associated molecular patterns from endogenous immune-stimulatory signals, these PRRs signaling pathways can induce the expression of interferons and inflammatory factors against microbial pathogen invasion and endogenous stresses. Calcium (Ca2+) is a second messenger that participates in the modulation of various biological processes, including survival, proliferation, apoptosis, and immune response, and is involved in diverse diseases, such as autoimmune diseases and virus infection. To date, accumulating evidence elucidated that the PRR signaling exhibited a regulatory effect on Ca2+ signaling. Meanwhile, Ca2+ signaling also played a critical role in controlling biological processes mediated by the PRR adaptors. Since the importance of these two signalings, it would be interesting to clarify the deeper biological implications of their interplays. This review focuses on the crosstalk between Ca2+ signaling and PRR signaling to regulate innate immune responses.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
21
|
Mudasani G, Paidikondala K, Gurská S, Maddirala SJ, Džubák P, Das V, Gundla R. C‐5 Aryl Substituted Azaspirooxindolinones Derivatives: Synthesis and Biological Evaluation as Potential Inhibitors of Tec Family Kinases. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gopal Mudasani
- Department of Chemistry, School of Science GITAM (Deemed to be University) Hyderabad 502102 Telangana India
- Medicinal Chemistry Laboratory Division AragenLifesciences Pvt. Ltd Survey No: 125(Part) & 126, IDA Mallapur Hyderabad 500 076 India
| | - Kalyani Paidikondala
- Department of Chemistry, School of Science GITAM (Deemed to be University) Hyderabad 502102 Telangana India
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry Czech Advanced Technology and Research Institute Palacký University Olomouc Hněvotínská 1333/5 77900 Olomouc Czech Republic
| | - Shambabu Joseph Maddirala
- Medicinal Chemistry Laboratory Division AragenLifesciences Pvt. Ltd Survey No: 125(Part) & 126, IDA Mallapur Hyderabad 500 076 India
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry Czech Advanced Technology and Research Institute Palacký University Olomouc Hněvotínská 1333/5 77900 Olomouc Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry Czech Advanced Technology and Research Institute Palacký University Olomouc Hněvotínská 1333/5 77900 Olomouc Czech Republic
| | - Rambabu Gundla
- Department of Chemistry, School of Science GITAM (Deemed to be University) Hyderabad 502102 Telangana India
| |
Collapse
|
22
|
Mapping the landscape of chromatin dynamics during naïve CD4+ T-cell activation. Sci Rep 2021; 11:14101. [PMID: 34238961 PMCID: PMC8266878 DOI: 10.1038/s41598-021-93509-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
T-cell activation induces context-specific gene expression programs that promote energy generation and biosynthesis, progression through the cell cycle and ultimately cell differentiation. The aim of this study was to apply the omni ATAC-seq method to characterize the landscape of chromatin changes induced by T-cell activation in mature naïve CD4+ T-cells. Using a well-established ex vivo protocol of canonical T-cell receptor signaling, we generated genome-wide chromatin maps of naïve T-cells from pediatric donors in quiescent or recently activated states. We identified thousands of individual chromatin accessibility peaks that are associated with T-cell activation, the majority of which were annotated intronic and intergenic enhancer regions. A core set of 3268 gene promoters underwent chromatin remodeling and concomitant changes in gene expression in response to activation, and were enriched in multiple pathways controlling cell cycle regulation, metabolism, inflammatory response genes and cell survival. Leukemia inhibitory factor (LIF) was among those factors that gained the highest accessibility and expression, in addition to IL2-STAT5 dependent chromatin remodeling in the T-cell activation response. Using publicly available data we found the chromatin response was far more dynamic at 24-h compared with 72-h post-activation. In total 546 associations were reproduced at both time-points with similar strength of evidence and directionality of effect. At the pathways level, the IL2-STAT5, KRAS signalling and UV response pathways were replicable at both time-points, although differentially modulated from 24 to 72 h post-activation.
Collapse
|
23
|
Truong L, Zheng YM, Kandhi S, Wang YX. Overview on Interactive Role of Inflammation, Reactive Oxygen Species, and Calcium Signaling in Asthma, COPD, and Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:147-164. [PMID: 34019268 DOI: 10.1007/978-3-030-68748-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Inflammatory signaling is a major component in the development and progression of many lung diseases, including asthma, chronic obstructive pulmonary disorder (COPD), and pulmonary hypertension (PH). This chapter will provide a brief overview of asthma, COPD, and PH and how inflammation plays a vital role in these diseases. Specifically, we will discuss the role of reactive oxygen species (ROS) and Ca2+ signaling in inflammatory cellular responses and how these interactive signaling pathways mediate the development of asthma, COPD, and PH. We will also deliberate the key cellular responses of pulmonary arterial (PA) smooth muscle cells (SMCs) and airway SMCs (ASMCs) in these devastating lung diseases. The analysis of the importance of inflammation will shed light on the key questions remaining in this field and highlight molecular targets that are worth exploring. The crucial findings will not only demonstrate the novel roles of essential signaling molecules such as Rieske iron-sulfur protein and ryanodine receptor in the development and progress of asthma, COPD, and PH but also offer advanced insight for creating more effective and new therapeutic targets for these devastating inflammatory lung diseases.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Sharath Kandhi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
24
|
Berry CT, May MJ, Freedman BD. Analysis of Calcium Control of Canonical NF-κB Signaling in B Lymphocytes. Methods Mol Biol 2021; 2366:145-164. [PMID: 34236637 DOI: 10.1007/978-1-0716-1669-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The central role of calcium (Ca2+) signaling in lymphocyte development and acquisition of functional immunity and tolerance is well established. Ca2+ signals are initiated upon antigen binding to cognate receptors on lymphocytes that trigger store operated Ca2+ entry (SOCE). The underlying mechanism of SOCE in lymphocytes involves TCR and BCR mediated activation of Stromal Interaction Molecule 1 and 2 (STIM1/2) embedded in the ER membrane. Once activated, STIM proteins oligomerize and re-localize to ER domains juxtaposed to the plasma membrane where they activate Orai channels to allow Ca2+ to enter the cell across the plasma membrane. Importantly, STIM/Orai-dependent Ca2+ signals guide antigen induced lymphocyte development and function principally by regulating the activity of transcription factors.The most widely studied of these transcription factors is the Nuclear Factor of Activated T cells (NFAT). NFAT is expressed ubiquitously and the mechanism by which Ca2+ regulates NFAT activation and signaling is well known. By contrast, a mechanistic understanding of how Ca2+ signals also shape the activation and specificity of NF-κB to control the expression of pro-inflammatory genes has lagged. Here we discuss the methodology used to investigate Ca2+ dependent mechanisms of NF-κB activation in lymphocytes. Our approach focuses on three main areas of signal transduction and signaling: (1) antigen receptor engagement and Ca2+ dependent initiation of NF-kB signaling, (2) Ca2+ dependent induction of NF-κB heterodimer activation and nuclear localization, and (3) and how Ca2+ regulates NF-κB dependent expression of target genes and proteins.
Collapse
Affiliation(s)
- Corbett T Berry
- Department of Pathobiology, The University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Michael J May
- Department of Biomedical Sciences, The University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Bruce D Freedman
- Department of Pathobiology, The University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Signal Transduction in Immune Cells and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:133-149. [PMID: 33539014 DOI: 10.1007/978-3-030-49844-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immune response relies upon several intracellular signaling events. Among the protein kinases involved in these pathways, members of the protein kinase C (PKC) family are prominent molecules because they have the capacity to acutely and reversibly modulate effector protein functions, controlling both spatial distribution and dynamic properties of the signals. Different PKC isoforms are involved in distinct signaling pathways, with selective functions in a cell-specific manner.In innate system, Toll-like receptor signaling is the main molecular event triggering effector functions. Various isoforms of PKC can be common to different TLRs, while some of them are specific for a certain type of TLR. Protein kinases involvement in innate immune cells are presented within the chapter emphasizing their coordination in many aspects of immune cell function and, as important players in immune regulation.In adaptive immunity T-cell receptor and B-cell receptor signaling are the main intracellular pathways involved in seminal immune specific cellular events. Activation through TCR and BCR can have common intracellular pathways while others can be specific for the type of receptor involved or for the specific function triggered. Various PKC isoforms involvement in TCR and BCR Intracellular signaling will be presented as positive and negative regulators of the immune response events triggered in adaptive immunity.
Collapse
|
26
|
Davoulou P, Aggeletopoulou I, Panagoulias I, Georgakopoulos T, Mouzaki A. Transcription factor Ets-2 regulates the expression of key lymphotropic factors. Mol Biol Rep 2020; 47:7871-7881. [PMID: 33006713 DOI: 10.1007/s11033-020-05865-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/25/2020] [Indexed: 01/20/2023]
Abstract
Transcription factor Ets-2 downregulates the expression of cytokine genes and HIV-1 in resting T-cells. Herein, we studied whether Ets-2 regulates the expression of lymphotropic factors (LFs) NFAT2, NF-κΒ/p65, c-Jun, c-Fos, which regulate the activation/differentiation of T-cells, and kinase CDK10, which controls Ets-2 degradation and repression activity. In silico analysis revealed Ets-2 binding sites on the promoters of NFAT2, c-Jun, c-Fos. The T-cell lines Jurkat (models T-cell signaling/activation) and H938 (contains the HIV-1-LTR) were transfected with an Ets-2 overexpressing vector, in the presence/absence of mitogens. mRNA and protein levels were assessed by qPCR and Western immunoblotting, respectively. Ets-2 overexpression in unstimulated Jurkat increased NFAT2 and c-Jun mRNA/protein, c-Fos mRNA and NF-κΒ/p65 protein, and decreased CDK10 protein. In unstimulated H938, Ets-2 upregulated NFAT2, c-Jun and CDK10 mRNA/protein and NF-κΒ/p65 protein. In stimulated Jurkat, Ets-2 increased NFAT2, c-Jun and c-Fos mRNA/protein and decreased CDK10 mRNA/protein. In stimulated H938 Ets-2 increased NFAT2, c-Jun and c-Fos protein and reduced CDK10 protein levels. Furthermore, Ets-2 overexpression modulated the expression of pro- and anti-apoptotic genes in both cell lines. Ets-2 upregulates the expression of key LFs involved in the activation of cytokine genes or HIV-1 in T-cells, either through its physical interaction with gene promoters or through its involvement in signaling pathways that directly impact their expression. The effect of Ets-2 on CDK10 expression in H938 vs Jurkat cells dictates that, additionally to Ets-2 degradation, CDK10 may facilitate Ets-2 repression activity in cells carrying the HIV-1-LTR, contributing thus to the regulation of HIV latency in virus-infected T-cells.
Collapse
Affiliation(s)
- Panagiota Davoulou
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Ioanna Aggeletopoulou
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Ioannis Panagoulias
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Tassos Georgakopoulos
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
27
|
Wang YH, Tao AY, Feske S. To B, or not to B: Is calcium the answer? Cell Calcium 2020; 90:102227. [PMID: 32563861 PMCID: PMC7483609 DOI: 10.1016/j.ceca.2020.102227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
Abstract
B lymphocytes are an important component of the adaptive and innate immune system because of their ability to secrete antibodies and to present antigens to T cells, which is critical for immune responses to many pathogens. Abnormal B cell function is the cause of diseases including autoimmune, paraneoplastic, and immunodeficiency disorders. The development, survival, and function of B cells depend on signaling through the B cell receptor (BCR) and costimulatory receptors. One of the signaling pathways induced by antigen binding to the BCR is store-operated Ca2+ entry (SOCE), which depends on the Ca2+ channel ORAI1 and its activators stromal interaction molecule (STIM) 1 and 2. A recent study by Berry et al. [1] reports that B cells lacking STIM1 and STIM2 fail to survive and proliferate because abolished SOCE results in impaired expression of two key anti-apoptotic genes and blunted activation of mTORC1 and c-Myc signaling. The associated Ca2+ regulated checkpoints of B cell survival and proliferation can be bypassed, at least partially, by costimulation through CD40 or TLR9. This study provides important new insights on how SOCE controls B cell function.
Collapse
Affiliation(s)
- Yin-Hu Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Anthony Y Tao
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Lechner KS, Neurath MF, Weigmann B. Role of the IL-2 inducible tyrosine kinase ITK and its inhibitors in disease pathogenesis. J Mol Med (Berl) 2020; 98:1385-1395. [PMID: 32808093 PMCID: PMC7524833 DOI: 10.1007/s00109-020-01958-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 01/18/2023]
Abstract
ITK (IL-2-inducible tyrosine kinase) belongs to the Tec family kinases and is mainly expressed in T cells. It is involved in TCR signalling events driving processes like T cell development as well as Th2, Th9 and Th17 responses thereby controlling the expression of pro-inflammatory cytokines. Studies have shown that ITK is involved in the pathogenesis of autoimmune diseases as well as in carcinogenesis. The loss of ITK or its activity either by mutation or by the use of inhibitors led to a beneficial outcome in experimental models of asthma, inflammatory bowel disease and multiple sclerosis among others. In humans, biallelic mutations in the ITK gene locus result in a monogenetic disorder leading to T cell dysfunction; in consequence, mainly EBV infections can lead to severe immune dysregulation evident by lymphoproliferation, lymphoma and hemophagocytic lymphohistiocytosis. Furthermore, patients who suffer from angioimmunoblastic T cell lymphoma have been found to express significantly more ITK. These findings put ITK in the strong focus as a target for drug development.
Collapse
Affiliation(s)
- Kristina S Lechner
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054, Erlangen, Germany
- Ludwig Demling Endoscopy Center of Excellence, Ulmenweg 18, 91054, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich-Alexander University Erlangen-Nürnberg, 91052, Erlangen, Germany.
| |
Collapse
|
29
|
Vaeth M, Kahlfuss S, Feske S. CRAC Channels and Calcium Signaling in T Cell-Mediated Immunity. Trends Immunol 2020; 41:878-901. [PMID: 32711944 DOI: 10.1016/j.it.2020.06.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
Calcium (Ca2+) signals play fundamental roles in immune cell function. The main sources of Ca2+ influx in mammalian lymphocytes following antigen receptor stimulation are Ca2+ release-activated Ca2+ (CRAC) channels. These are formed by ORAI proteins in the plasma membrane and are activated by stromal interaction molecules (STIM) located in the endoplasmic reticulum (ER). Human loss-of-function (LOF) mutations in ORAI1 and STIM1 that abolish Ca2+ influx cause a unique disease syndrome called CRAC channelopathy that is characterized by immunodeficiency autoimmunity and non-immunological symptoms. Studies in mice lacking Stim and Orai genes have illuminated many cellular and molecular mechanisms by which these molecules control lymphocyte function. CRAC channels are required for the differentiation and function of several T lymphocyte subsets that provide immunity to infection, mediate inflammation and prevent autoimmunity. This review examines new insights into how CRAC channels control T cell-mediated immunity.
Collapse
Affiliation(s)
- Martin Vaeth
- Institute of Systems Immunology, Julius-Maximilians University of Würzburg, Würzburg, Germany; Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Yukawa M, Jagannathan S, Vallabh S, Kartashov AV, Chen X, Weirauch MT, Barski A. AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. J Exp Med 2020; 217:jem.20182009. [PMID: 31653690 PMCID: PMC7037242 DOI: 10.1084/jem.20182009] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/06/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Activation of T cells is dependent on the organized and timely opening and closing of chromatin. Herein, we identify AP-1 as the transcription factor that directs most of this remodeling. Chromatin accessibility profiling showed quick opening of closed chromatin in naive T cells within 5 h of activation. These newly opened regions were strongly enriched for the AP-1 motif, and indeed, ChIP-seq demonstrated AP-1 binding at >70% of them. Broad inhibition of AP-1 activity prevented chromatin opening at AP-1 sites and reduced the expression of nearby genes. Similarly, induction of anergy in the absence of co-stimulation during activation was associated with reduced induction of AP-1 and a failure of proper chromatin remodeling. The translational relevance of these findings was highlighted by the substantial overlap of AP-1-dependent elements with risk loci for multiple immune diseases, including multiple sclerosis, inflammatory bowel disease, and allergic disease. Our findings define AP-1 as the key link between T cell activation and chromatin remodeling.
Collapse
Affiliation(s)
- Masashi Yukawa
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sajjeev Jagannathan
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sushmitha Vallabh
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Andrey V Kartashov
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
31
|
Mookerjee‐Basu J, Hooper R, Gross S, Schultz B, Go CK, Samakai E, Ladner J, Nicolas E, Tian Y, Zhou B, Zaidi MR, Tourtellotte W, He S, Zhang Y, Kappes DJ, Soboloff J. Suppression of Ca 2+ signals by EGR4 controls Th1 differentiation and anti-cancer immunity in vivo. EMBO Rep 2020; 21:e48904. [PMID: 32212315 PMCID: PMC7202224 DOI: 10.15252/embr.201948904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
While the zinc finger transcription factors EGR1, EGR2, and EGR3 are recognized as critical for T-cell function, the role of EGR4 remains unstudied. Here, we show that EGR4 is rapidly upregulated upon TCR engagement, serving as a critical "brake" on T-cell activation. Hence, TCR engagement of EGR4-/- T cells leads to enhanced Ca2+ responses, driving sustained NFAT activation and hyperproliferation. This causes profound increases in IFNγ production under resting and diverse polarizing conditions that could be reversed by pharmacological attenuation of Ca2+ entry. Finally, an in vivo melanoma lung colonization assay reveals enhanced anti-tumor immunity in EGR4-/- mice, attributable to Th1 bias, Treg loss, and increased CTL generation in the tumor microenvironment. Overall, these observations reveal for the first time that EGR4 is a key regulator of T-cell differentiation and function.
Collapse
Affiliation(s)
| | - Robert Hooper
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Scott Gross
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Christina K Go
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Elsie Samakai
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | | | | | - Yuanyuan Tian
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | - Bo Zhou
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Warren Tourtellotte
- Department of Pathology and Laboratory MedicineCedars Sinai Medical CenterWest HollywoodCAUSA
| | - Shan He
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | | | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
32
|
Contribution of FP receptors in M1 macrophage polarization via IL-10-regulated nuclear translocation of NF-κB p65. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158654. [DOI: 10.1016/j.bbalip.2020.158654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
|
33
|
Berry CT, Liu X, Myles A, Nandi S, Chen YH, Hershberg U, Brodsky IE, Cancro MP, Lengner CJ, May MJ, Freedman BD. BCR-Induced Ca 2+ Signals Dynamically Tune Survival, Metabolic Reprogramming, and Proliferation of Naive B Cells. Cell Rep 2020; 31:107474. [PMID: 32294437 PMCID: PMC7301411 DOI: 10.1016/j.celrep.2020.03.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/10/2020] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
B cell receptor (BCR) engagement induces naive B cells to differentiate and perform critical immune-regulatory functions. Acquisition of functional specificity requires that a cell survive, enter the cell cycle, and proliferate. We establish that quantitatively distinct Ca2+ signals triggered by variations in the extent of BCR engagement dynamically regulate these transitions by controlling nuclear factor κB (NF-κB), NFAT, and mTORC1 activity. Weak BCR engagement induces apoptosis by failing to activate NF-κB-driven anti-apoptotic gene expression. Stronger signals that trigger more robust Ca2+ signals promote NF-κB-dependent survival and NFAT-, mTORC1-, and c-Myc-dependent cell-cycle entry and proliferation. Finally, we establish that CD40 or TLR9 costimulation circumvents these Ca2+-regulated checkpoints of B cell activation and proliferation. As altered BCR signaling is linked to autoimmunity and B cell malignancies, these results have important implications for understanding the pathogenesis of aberrant B cell activation and differentiation and therapeutic approaches to target these responses.
Collapse
Affiliation(s)
- Corbett T Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, PA 19104, USA
| | - Xiaohong Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satabdi Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University, PA 19104, USA; Department of Human Biology, Faculty of Sciences, University of Haifa, Haifa 3498838, Israel
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; University of Pennsylvania Institute for Regenerative Medicine, Philadelphia, PA 19104, USA
| | - Michael J May
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Philipson BI, O'Connor RS, May MJ, June CH, Albelda SM, Milone MC. 4-1BB costimulation promotes CAR T cell survival through noncanonical NF-κB signaling. Sci Signal 2020; 13:13/625/eaay8248. [PMID: 32234960 DOI: 10.1126/scisignal.aay8248] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Clinical response to chimeric antigen receptor (CAR) T cell therapy is correlated with CAR T cell persistence, especially for CAR T cells that target CD19+ hematologic malignancies. 4-1BB-costimulated CAR (BBζ) T cells exhibit longer persistence after adoptive transfer than do CD28-costimulated CAR (28ζ) T cells. 4-1BB signaling improves T cell persistence even in the context of 28ζ CAR activation, which indicates distinct prosurvival signals mediated by the 4-1BB cytoplasmic domain. To specifically study signal transduction by CARs, we developed a cell-free, ligand-based activation and ex vivo culture system for CD19-specific CAR T cells. We observed greater ex vivo survival and subsequent expansion of BBζ CAR T cells when compared to 28ζ CAR T cells. We showed that only BBζ CARs activated noncanonical nuclear factor κB (ncNF-κB) signaling in T cells basally and that the anti-CD19 BBζ CAR further enhanced ncNF-κB signaling after ligand engagement. Reducing ncNF-κB signaling reduced the expansion and survival of anti-CD19 BBζ T cells and was associated with a substantial increase in the abundance of the most pro-apoptotic isoforms of Bim. Although our findings do not exclude the importance of other signaling differences between BBζ and 28ζ CARs, they demonstrate the necessary and nonredundant role of ncNF-κB signaling in promoting the survival of BBζ CAR T cells, which likely underlies the engraftment persistence observed with this CAR design.
Collapse
Affiliation(s)
- Benjamin I Philipson
- Medical Scientist Training Program, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roddy S O'Connor
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J May
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Mohanty S, Barik P, Debata N, Nagarajan P, Devadas S. iCa 2+ Flux, ROS and IL-10 Determines Cytotoxic, and Suppressor T Cell Functions in Chronic Human Viral Infections. Front Immunol 2020; 11:83. [PMID: 32210950 PMCID: PMC7068714 DOI: 10.3389/fimmu.2020.00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Exhaustion of CD8+ T cells and increased IL-10 production is well-known in chronic viral infections but mechanisms leading to loss of their cytotoxic capabilities and consequent exhaustion remain unclear. Exhausted CD8+T cells also called T suppressors are highly immune suppressive with altered T cell receptor signaling characteristics that mark it exclusively from their cytotoxic counterparts. Our study found that iCa2+ flux is reduced following T cell receptor activation in T suppressor cells when compared to their effector counterpart. Importantly chronic activation of murine cytotoxic CD8+ T cells lead to reduced iCa2+ influx, decreased IFN-γ and enhanced IL-10 production and this profile is mimicked in Tc1 cells upon reduction of iCa2+ flux by extracellular calcium channel inhibitors. Further reduced iCa2+ flux induced ROS which lead to IFN-γ reduction and increased IL-10 producing T suppressors through the STAT3—STAT5 axis. The above findings were substantiated by our human data where reduced iCa2+ flux in chronic Hepatitis infections displayed CD8+ T cells with low IFN-γ and increased IL-10 production. Importantly treatment with an antioxidant led to increased IFN-γ and reduced IL-10 production in human chronic Hep-B/C samples suggesting overall a proximal regulatory role for iCa2+ influx, ROS, and IL-10 in determining the effector/ suppressive axis of CD8+ T cells.
Collapse
Affiliation(s)
- Subhasmita Mohanty
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Prakash Barik
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Nagen Debata
- Department of Pathology, Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Perumal Nagarajan
- Experimental Animal Facility, National Institute of Immunology, New Delhi, India
| | - Satish Devadas
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
36
|
Tang SE, Liao WI, Wu SY, Pao HP, Huang KL, Chu SJ. The Blockade of Store-Operated Calcium Channels Improves Decompression Sickness in Rats. Front Physiol 2020; 10:1616. [PMID: 32082179 PMCID: PMC7005134 DOI: 10.3389/fphys.2019.01616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022] Open
Abstract
Background Previous investigations reveal that BTP2, a store-operated calcium channel blocker, has protective and anti-inflammatory properties in multiple inflammatory diseases. This study investigates whether BTP2 can protect against decompression sickness (DCS) in a rat model. Methods BTP2 (2 mg/kg) was administered to male Sprague–Dawley rats 30 min before subjecting them to hyperbaric pressure. Control rats were not treated. After decompression, signs of DCS were examined, and samples of bronchoalveolar lavage fluid and lung tissue were obtained for evaluation. Results The incidence and mortality of DCS were decreased significantly in rats treated with BTP2 compared to those treated with dimethyl sulfoxide. BTP2 significantly attenuated DCS-induced lung edema, histological evidence of lung inflammation, necroptosis, and apoptosis, while it decreased levels of tumor necrosis factor alpha, interleukin-6, and cytokine-induced neutrophil chemoattractant-1 in bronchoalveolar lavage fluid. In addition, BTP2 reduced the expression of nuclear factor of activated T cells and early growth response protein 3 in lung tissue. BTP2 also significantly increased the levels of inhibitor kappa B alpha and suppressed the levels of nuclear factor kappa B in lung tissue. Conclusion The results suggest that BTP2 may has potential as a prophylactic therapy to attenuate DCS-induced injury.
Collapse
Affiliation(s)
- Shih-En Tang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
37
|
Blaser N, Backert S, Pachathundikandi SK. Immune Cell Signaling by Helicobacter pylori: Impact on Gastric Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:77-106. [PMID: 31049845 DOI: 10.1007/5584_2019_360] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori represents a highly successful colonizer of the human stomach. Infections with this Gram-negative bacterium can persist lifelong, and although in the majority of cases colonization is asymptomatic, it can trigger pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The interaction of the bacteria with the human host modulates immune responses in different ways to enable bacterial survival and persistence. H. pylori uses various pathogenicity-associated factors such as VacA, NapA, CGT, GGT, lipopolysaccharide, peptidoglycan, heptose 1,7-bisphosphate, ADP-heptose, cholesterol glucosides, urease and a type IV secretion system for controlling immune signaling and cellular functions. It appears that H. pylori manipulates multiple extracellular immune receptors such as integrin-β2 (CD18), EGFR, CD74, CD300E, DC-SIGN, MINCLE, TRPM2, T-cell and Toll-like receptors as well as a number of intracellular receptors including NLRP3, NOD1, NOD2, TIFA and ALPK1. Consequently, downstream signaling pathways are hijacked, inducing tolerogenic dendritic cells, inhibiting effector T cell responses and changing the gastrointestinal microbiota. Here, we discuss in detail the interplay of bacterial factors with multiple immuno-regulatory cells and summarize the main immune evasion and persistence strategies employed by H. pylori.
Collapse
Affiliation(s)
- Nicole Blaser
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Suneesh Kumar Pachathundikandi
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
38
|
Lee HY, Register A, Shim J, Contreras E, Wu Q, Jiang G. Characterization of a single reporter-gene potency assay for T-cell-dependent bispecific molecules. MAbs 2019; 11:1245-1253. [PMID: 31348721 PMCID: PMC6748617 DOI: 10.1080/19420862.2019.1640548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023] Open
Abstract
T-cell-dependent bispecific antibodies (TDBs) are promising cancer immunotherapies that recruit patients' T cells to kill cancer cells. There are many TDBs in clinical trials, demonstrating their widely recognized therapeutic potential. However, their complex, multi-step mechanism of action (MoA), which includes bispecific antigen binding, T-cell activation, and target-cell killing, presents unique challenges for biological characterization and potency assay selection. Here, we describe the development of a single reporter-gene potency assay for a TDB (TDB1) that is MoA reflective and sensitive to binding of both antigens. Our reporter-gene assay measures T-cell activation using Jurkat cells engineered to express luciferase under the control of an NFkB response element. The potencies of select samples were measured both by this assay and by a flow-cytometry-based cell-killing assay using human lymphocytes as effector cells. Correlating the two sets of potency results clearly establishes our reporter-gene assay as MoA reflective. Furthermore, correlating potencies for the same panel of samples against binding data measured by binding assays for each individual arm demonstrates that the reporter-gene potency assay reflects dual-antigen binding and can detect changes in affinity for either arm. This work demonstrates that one reporter-gene assay can be used to measure the potency of TDB1 while capturing key aspects of its MoA, thus serving as a useful case study of selection and justification of reporter-gene potency assays for TDBs. Furthermore, our strategy of correlating reporter-gene potency, target-cell killing, and antigen binding for each individual arm serves as a useful example of a thorough, holistic approach to biological characterization for TDBs that can be applied to other bispecific molecules.
Collapse
Affiliation(s)
- Ho Young Lee
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech, A member of the Roche group, South San Francisco, CA, USA
| | - Ames Register
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech, A member of the Roche group, South San Francisco, CA, USA
| | - Jeongsup Shim
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech, A member of the Roche group, South San Francisco, CA, USA
| | - Edward Contreras
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech, A member of the Roche group, South San Francisco, CA, USA
| | - Qiang Wu
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech, A member of the Roche group, South San Francisco, CA, USA
| | - Guoying Jiang
- Biological Technologies, Department of Analytical Development and Quality Control, Genentech, A member of the Roche group, South San Francisco, CA, USA
| |
Collapse
|
39
|
Waldron RT, Chen Y, Pham H, Go A, Su HY, Hu C, Wen L, Husain SZ, Sugar CA, Roos J, Ramos S, Lugea A, Dunn M, Stauderman K, Pandol SJ. The Orai Ca 2+ channel inhibitor CM4620 targets both parenchymal and immune cells to reduce inflammation in experimental acute pancreatitis. J Physiol 2019; 597:3085-3105. [PMID: 31050811 PMCID: PMC6582954 DOI: 10.1113/jp277856] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS This work confirms previous reports that CM4620, a small molecule inhibitor of Ca2+ entry via store operated Ca2+ entry (SOCE) channels formed by stromal interaction molecule 1 (STIM1)/Orai complexes, attenuates acinar cell pathology and acute pancreatitis in mouse experimental models. Here we report that intravenous administration of CM4620 reduces the severity of acute pancreatitis in the rat, a hitherto untested species. Using CM4620, we probe further the mechanisms whereby SOCE via STIM1/Orai complexes contributes to the disease in pancreatic acinar cells, supporting a role for endoplasmic reticulum stress/cell death pathways in these cells. Using CM4620, we show that SOCE via STIM1/Orai complexes promotes neutrophil oxidative burst and inflammatory gene expression during acute pancreatitis, including in immune cells which may be either circulating or invading the pancreas. Using CM4620, we show that SOCE via STIM1/Orai complexes promotes activation and fibroinflammatory gene expression within pancreatic stellate cells. ABSTRACT Key features of acute pancreatitis include excess cellular Ca2+ entry driven by Ca2+ depletion from the endoplasmic reticulum (ER) and subsequent activation of store-operated Ca2+ entry (SOCE) channels in the plasma membrane. In several cell types, including pancreatic acinar, stellate cells (PaSCs) and immune cells, SOCE is mediated via channels composed primarily of Orai1 and stromal interaction molecule 1 (STIM1). CM4620, a selective Orai1 inhibitor, prevents Ca2+ entry in acinar cells. This study investigates the effects of CM4620 in preventing or reducing acute pancreatitis features and severity. We tested the effects of CM4620 on SOCE, trypsinogen activation, acinar cell death, activation of NFAT and NF-κB, and inflammatory responses in ex vivo and in vivo rodent models of acute pancreatitis and human pancreatic acini. We also examined whether CM4620 inhibited cytokine release in immune cells, fibro-inflammatory responses in PaSCs, and oxidative burst in neutrophils, all cell types participating in pancreatitis. CM4620 administration to rats by i.v. infusion starting 30 min after induction of pancreatitis significantly diminished pancreatitis features including pancreatic oedema, acinar cell vacuolization, intrapancreatic trypsin activity, cell death signalling and acinar cell death. CM4620 also decreased myeloperoxidase activity and inflammatory cytokine expression in pancreas and lung tissues, fMLF peptide-induced oxidative burst in human neutrophils, and cytokine production in human peripheral blood mononuclear cells (PBMCs) and rodent PaSCs, indicating that Orai1/STIM1 channels participate in the inflammatory responses of these cell types during acute pancreatitis. These findings support pathological Ca2+ entry-mediated cell death and proinflammatory signalling as central mechanisms in acute pancreatitis pathobiology.
Collapse
Affiliation(s)
- Richard T. Waldron
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
- Veterans Affairs Greater Los Angeles Healthcare System,University of California, Los Angeles, CA
- University of California, Los Angeles, CA
| | - Yafeng Chen
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hung Pham
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
| | - Ariel Go
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
| | - Hsin-Yuan Su
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
| | - Cheng Hu
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan, China
| | - Li Wen
- University of Pittsburgh
- the Children’s Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | - Sohail Z. Husain
- University of Pittsburgh
- the Children’s Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | | | | | | | - Aurelia Lugea
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
- Veterans Affairs Greater Los Angeles Healthcare System,University of California, Los Angeles, CA
- University of California, Los Angeles, CA
| | | | | | - Stephen J. Pandol
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
- Veterans Affairs Greater Los Angeles Healthcare System,University of California, Los Angeles, CA
- University of California, Los Angeles, CA
| |
Collapse
|
40
|
Song X, Liu Y, Dong L, Wang Y. Stromal-Interacting Molecule 1 (Stim1)/Orai1 Modulates Endothelial Permeability in Ventilator-Induced Lung Injury. Med Sci Monit 2018; 24:9413-9423. [PMID: 30589833 PMCID: PMC6322368 DOI: 10.12659/msm.911268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Increased endothelial permeability is involved in ventilator-induced lung injury (VILI). Stim1/Orai1 mediates store-operated Ca2+ activation, which modulates endothelial permeability. However, the underlying mechanisms of the Stim1/Orai1 pathway in VILI are poorly understood. Material/Methods Wistar rats were exposed to low tidal volume (7 mL/kg) or high tidal volume (40 mL/kg) ventilation. Human Lung Microvascular Endothelial Cells (HULEC) were subjected to 8% or 18% cyclic stretching (CS). BTP2 pretreatment was performed. Lung wet/dry weight ratio, histological changes of lung injury, and bronchoalveolar lavage fluid (BALF) protein were measured. Endothelial permeability and intracellular calcium concentration were evaluated in HULECs. Protein expression was determined by Western blotting. Results High tidal volume mechanical ventilation-induced lung injury (such as severe congestion and hemorrhage) and BTP2 pretreatment protected lungs from injury. The expression of Stim1, Orai1, and PKCα, lung wet/dry weight ratio, and BALF protein level significantly increased in the high tidal volume group compared to the control group and low tidal volume group. Importantly, BTP2 pretreatment alleviated the above-mentioned effects. Compared with exposure to 8% CS, the protein levels of Stim1, Orai1, and PKCα in HULECs significantly increased after exposure to 18% CS for 4 h, whereas BTP2 pretreatment significantly inhibited the increase (P<0.05). BTP2 pretreatment also suppressed increase of endothelial permeability and the intracellular calcium induced by 18% CS (P<0.05). Conclusions When exposed to high tidal volume or large-magnitude CS, Stim1 and Orai1 expression are upregulated, which further activates calcium-sensitive PKCα and results in calcium overload, endothelial hyperpermeability, and, finally, lung injury.
Collapse
Affiliation(s)
- Xiumei Song
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Yang Liu
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Ling Dong
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Yuelan Wang
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
41
|
EGR-mediated control of STIM expression and function. Cell Calcium 2018; 77:58-67. [PMID: 30553973 DOI: 10.1016/j.ceca.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022]
Abstract
Ca2+ is a ubiquitous, dynamic and pluripotent second messenger with highly context-dependent roles in complex cellular processes such as differentiation, proliferation, and cell death. These Ca2+ signals are generated by Ca2+-permeable channels located on the plasma membrane (PM) and endoplasmic reticulum (ER) and shaped by PM- and ER-localized pumps and transporters. Differences in the expression of these Ca2+ homeostasis proteins contribute to cell and context-dependent differences in the spatiotemporal organization of Ca2+ signals and, ultimately, cell fate. This review focuses on the Early Growth Response (EGR) family of zinc finger transcription factors and their role in the transcriptional regulation of Stromal Interaction Molecule (STIM1), a critical regulator of Ca2+ entry in both excitable and non-excitable cells.
Collapse
|
42
|
Chanzyme TRPM7 Mediates the Ca 2+ Influx Essential for Lipopolysaccharide-Induced Toll-Like Receptor 4 Endocytosis and Macrophage Activation. Immunity 2018; 48:59-74.e5. [PMID: 29343440 DOI: 10.1016/j.immuni.2017.11.026] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/08/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) sense pathogen-associated molecular patterns to activate the production of inflammatory mediators. TLR4 recognizes lipopolysaccharide (LPS) and drives the secretion of inflammatory cytokines, often contributing to sepsis. We report that transient receptor potential melastatin-like 7 (TRPM7), a non-selective but Ca2+-conducting ion channel, mediates the cytosolic Ca2+ elevations essential for LPS-induced macrophage activation. LPS triggered TRPM7-dependent Ca2+ elevations essential for TLR4 endocytosis and the subsequent activation of the transcription factor IRF3. In a parallel pathway, the Ca2+ signaling initiated by TRPM7 was also essential for the nuclear translocation of NFκB. Consequently, TRPM7-deficient macrophages exhibited major deficits in the LPS-induced transcriptional programs in that they failed to produce IL-1β and other key pro-inflammatory cytokines. In accord with these defects, mice with myeloid-specific deletion of Trpm7 are protected from LPS-induced peritonitis. Our study highlights the importance of Ca2+ signaling in macrophage activation and identifies the ion channel TRPM7 as a central component of TLR4 signaling.
Collapse
|
43
|
Li H, Xia JQ, Zhu FS, Xi ZH, Pan CY, Gu LM, Tian YZ. LPS promotes the expression of PD-L1 in gastric cancer cells through NF-κB activation. J Cell Biochem 2018; 119:9997-10004. [PMID: 30145830 DOI: 10.1002/jcb.27329] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022]
Abstract
Gastric cancers are a group of highly aggressive malignancies with a huge disease burden worldwide. Gastric infections, such as helicobacter pylori, can induce the occurrence of gastric cancers. However, the role of gastric infection in gastric cancer development is unclear. Programmed death-ligand 1 (PD-L1, B7-H1) is a member of the B7 family of cell surface ligands, which binds the PD-1 transmembrane receptor and inhibits T-cell activation within cancer tissues. It has been reported that the expression of PD-L1 is inversely related to the prognosis of patients with gastric cancers. Therefore, the regulation of PD-L1 expression in gastric cancers needs to be studied. In the current study, we explored the possible effects of lipopolysaccharide (LPS) on PD-L1 expression in gastric cancer cells. We observed that LPS stimulation could markedly increase PD-L1 expression in gastric cancer cells. Furthermore, we found that nuclear factor-κB (NF-κB) activation was involved in PD-L1 expression in gastric cancer cells exposed to LPS stimulation through p65-binding to the PD-L1 promoter. Taken together, these data indicate that gastric infection might promote the development of gastric cancers thought the LPS-NF-κB-PD-L1 axis.
Collapse
Affiliation(s)
- Hui Li
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jun-Quan Xia
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fang-Shi Zhu
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhao-Hong Xi
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Cheng-Yu Pan
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li-Mei Gu
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yao-Zhou Tian
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Mei Y, Barrett JE, Hu H. Calcium release-activated calcium channels and pain. Cell Calcium 2018; 74:180-185. [PMID: 30096536 DOI: 10.1016/j.ceca.2018.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/10/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022]
Abstract
Calcium release-activated calcium (CRAC) channels are unique among ion channels that are activated in response to depletion of intracellular calcium stores and are highly permeable to Ca2+ compared to other cations. CRAC channels mediate an important calcium signal for a wide variety of cell types and are well studied in the immune system. They have been implicated in a number of disorders such as immunodeficiency, musculosketal disorders and cancer. There is growing evidence showing that CRAC channels are expressed in the nervous system and are involved in pathological conditions including pain. This review summarizes the expression, distribution, and function of the CRAC channel family in the dorsal root ganglion, spinal cord and some brain regions, and discusses their functional significance in neurons and glial cells and involvement in nociception and chronic pain. Although further studies are needed to understand how these channels are activated under physiological conditions, the recent findings indicate that the CRAC channel Orai1 is an important player in pain modulation and could represent a new target for pathological pain.
Collapse
Affiliation(s)
- Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - James E Barrett
- Department of Neurology, Drexel University College of Medicine Philadelphia, PA 19102, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States.
| |
Collapse
|
45
|
STIM- and Orai-mediated calcium entry controls NF-κB activity and function in lymphocytes. Cell Calcium 2018; 74:131-143. [PMID: 30048879 DOI: 10.1016/j.ceca.2018.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022]
Abstract
The central role of Ca2+ signaling in the development of functional immunity and tolerance is well established. These signals are initiated by antigen binding to cognate receptors on lymphocytes that trigger store operated Ca2+ entry (SOCE). The underlying mechanism of SOCE in lymphocytes involves TCR and BCR mediated activation of Stromal Interaction Molecule 1 and 2 (STIM1/2) molecules embedded in the ER membrane leading to their activation of Orai channels in the plasma membrane. STIM/Orai dependent Ca2+ signals guide key antigen induced lymphocyte development and function principally through direct regulation of Ca2+ dependent transcription factors. The role of Ca2+ signaling in NFAT activation and signaling is well known and has been studied extensively, but a wide appreciation and mechanistic understanding of how Ca2+ signals also shape the activation and specificity of NF-κB dependent gene expression has lagged. Here we discuss and interpret what is known about Ca2+ dependent mechanisms of NF-kB activation, including what is known and the gaps in our understanding of how these signals control lymphocyte development and function.
Collapse
|
46
|
STIM1 and STIM2 cooperatively regulate mouse neutrophil store-operated calcium entry and cytokine production. Blood 2017; 130:1565-1577. [PMID: 28724541 DOI: 10.1182/blood-2016-11-751230] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 07/05/2017] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are key effector cells of the innate immune system. Calcium-dependent signaling pathways initiated by store-operated calcium entry (SOCE) are known to regulate neutrophil activation; however, the precise mechanism of this process remains unclear. STIM1 and STIM2 are calcium-sensing molecules that link calcium depletion of the endoplasmic reticulum with opening of plasma membrane calcium channels. Although a role for STIM1 in neutrophil SOCE and activation has been established, the function of STIM2 is unknown. Here we use mice with conditional ablation of Stim1 and/or Stim2 to investigate the role of STIM2 in neutrophil activation. We demonstrate that loss of STIM2 results in decreased SOCE, particularly at lower doses of agonists. Reactive oxygen species (ROS) production, degranulation, and phagocytosis are normal in the absence of STIM2, suggesting STIM1 is the dominant calcium sensor required for classical short-term neutrophil responses. However, neutrophil cytokine production required STIM2, but not STIM1, at least in part as a result of redox regulation of cytokine gene expression. In vivo loss of STIM2 results in lower cytokine levels and protection from mortality in a mouse model of systemic inflammatory response syndrome. These data, combined with previous studies focusing on STIM1, define distinct but cooperative functions for STIM1 and STIM2 in modulating neutrophil bactericidal and cytokine responses.
Collapse
|
47
|
Lee AM, Colin-York H, Fritzsche M. CalQuo 2 : Automated Fourier-space, population-level quantification of global intracellular calcium responses. Sci Rep 2017; 7:5416. [PMID: 28710416 PMCID: PMC5511169 DOI: 10.1038/s41598-017-05322-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Intracellular calcium acts as a secondary messenger in a wide variety of crucial biological signaling processes. Advances in fluorescence microscopy and calcium sensitive dyes has led to the routine quantification of calcium responses in non-excitable cells. However, the automatization of global intracellular calcium analysis at the single-cell level within a large population simultaneously remains challenging. One software, CalQuo (Calcium Quantification), offers some automatic features in calcium analysis. Here, we present an advanced version of the software package: CalQuo 2 . CalQuo 2 analyzes the calcium response in the Fourier-domain, allowing the number of user-defined filtering parameters to be reduced to one and a greater diversity of calcium responses to be recognized, compared to CalQuo that directly interprets the calcium intensity signal. CalQuo 2 differentiates cells that release a single calcium response and those that release oscillatory calcium fluxes. We have demonstrated the use of CalQuo 2 by measuring the calcium response in genetically modified Jurkat T-cells under varying ligand conditions, in which we show that peptide:MHCs and anti-CD3 antibodies trigger a fraction of T cells to release oscillatory calcium fluxes that increase with increasing koff rates. These results show that CalQuo 2 is a robust and user-friendly tool for characterizing global, single cell calcium responses.
Collapse
Affiliation(s)
- Angela M Lee
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom.
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7FY, United Kingdom.
| |
Collapse
|
48
|
Dose-Dependent Responses of I3C and DIM on T-Cell Activation in the Human T Lymphocyte Jurkat Cell Line. Int J Mol Sci 2017; 18:ijms18071409. [PMID: 28671563 PMCID: PMC5535901 DOI: 10.3390/ijms18071409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Indole-3-carbinol (I3C) and its dimer diindolylmethane (DIM) are bioactive metabolites of a glucosinolate, glucobrassicin, found in cruciferous vegetables. Both I3C and DIM have been reported to possess pro-apoptotic, anti-proliferative and anti-carcinogenic properties via modulation of immune pathways. However, results from these studies remain inconclusive since they lack thorough evaluation of these bioactives’ physiological versus pharmacological effects. In the present study, we investigated I3C and DIM’s dose-dependent effects on cytokines production in human T lymphocytes Jurkat cell line (Clone E6-1). The results showed that I3C and DIM pretreatment, at higher concentrations of 50 and 10 μM, respectively, significantly increased PMA/ionomycin-induced interleukin-2 (IL-2), interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α) production, measured by real time polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA). As a plausible mechanism underlying such pronounced cytokine release, we found robust increase in downstream nuclear factor κB (NF-κB) and nuclear factor of activated T-cells 1 (NFAT1) signaling with I3C pretreatment, whereas DIM pretreatment only significantly induced NF-κB activation, but not NFAT1. We hypothesize that I3C/DIM pretreatment primes the T cells to become hyperresponsive upon PMA/ionomycin stimulation which in turn differentially induces two major downstream Ca2+-dependent inflammatory pathways, NF-κB and NFAT1. Our data show novel insights into the mechanisms underlying induction of pro-inflammatory cytokine release by pharmacological concentrations of I3C and DIM, an effect negligible under physiological conditions.
Collapse
|
49
|
Yu Y, Dong J, Wang Y, Wang Y, Min H, Shan Z, Teng W, Chen J. Maternal marginal iodine deficiency limits dendritic growth of cerebellar purkinje cells in rat offspring by NF-κB signaling and MAP1B. ENVIRONMENTAL TOXICOLOGY 2017; 32:1241-1251. [PMID: 27444543 DOI: 10.1002/tox.22320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Iodine deficiency (ID) during early pregnancy had an adverse effect on children's psychomotor and motor function. It is worth noting that maternal marginal ID tends to be a common public health problem. Whether marginal ID potentially had adverse effects on the development of cerebellum and the underlying mechanisms remain unclear. Therefore, our aim was to study the effects of marginal ID on the dendritic growth in filial cerebellar Purkinje cells (PCs) and the underlying mechanism. In the present study, we established Wistar rat models by feeding dam rats with a diet deficient in iodine and deionized water supplemented with potassium iodide. We examined the total dendritic length using immunofluorescence, and Western blot analysis was conducted to investigate the activity of nuclear factor-κB (NF-κB) signaling and microtubule-associated protein 1B (MAP1B). Our results showed that marginal ID reduced the total dendritic length of cerebellar PCs, slightly down-regulated the activity of NF-κB signaling and decreased MAP1B in cerebellar PCs on postnatal day (PN) 7, PN14, and PN21. Our study may support the hypothesis that decreased T4 induced by marginal ID limits PCs dendritic growth, which may involve in the disturbance of NF-κB signaling and MAP1B on the cerebellum. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1241-1251, 2017.
Collapse
Affiliation(s)
- Ye Yu
- Department of Occupational and Environmental Health School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Jing Dong
- Department of Occupational and Environmental Health School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yuan Wang
- Department of Occupational and Environmental Health School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Hui Min
- Department of Occupational and Environmental Health School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jie Chen
- Department of Occupational and Environmental Health School of Public Health, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
50
|
Immunological Disorders: Regulation of Ca 2+ Signaling in T Lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:397-424. [PMID: 28900926 DOI: 10.1007/978-3-319-57732-6_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engagement of T cell receptors (TCRs) with cognate antigens triggers cascades of signaling pathways in helper T cells. TCR signaling is essential for the effector function of helper T cells including proliferation, differentiation, and cytokine production. It also modulates effector T cell fate by inducing cell death, anergy (nonresponsiveness), exhaustion, and generation of regulatory T cells. One of the main axes of TCR signaling is the Ca2+-calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway. Stimulation of TCRs triggers depletion of intracellular Ca2+ store and, in turn, activates store-operated Ca2+ entry (SOCE) to raise the intracellular Ca2+ concentration. SOCE in T cells is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which have been very well characterized in terms of their electrophysiological properties. Identification of STIM1 as a sensor to detect depletion of the endoplasmic reticulum (ER) Ca2+ store and Orai1 as the pore subunit of CRAC channels has dramatically advanced our understanding of the regulatory mechanism of Ca2+ signaling in T cells. In this review, we discuss our current understanding of Ca2+ signaling in T cells with specific focus on the mechanism of CRAC channel activation and regulation via protein interactions. In addition, we will discuss the role of CRAC channels in effector T cells, based on the analyses of genetically modified animal models.
Collapse
|