1
|
Danalache M, Umrath F, Riester R, Schwitalle M, Guilak F, Hofmann UK. Proteolysis of the pericellular matrix: Pinpointing the role and involvement of matrix metalloproteinases in early osteoarthritic remodeling. Acta Biomater 2024; 181:297-307. [PMID: 38710401 DOI: 10.1016/j.actbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The pericellular matrix (PCM) serves a critical role in signal transduction and mechanoprotection in chondrocytes. Osteoarthritis (OA) leads to a gradual deterioration of the cartilage, marked by a shift in the spatial arrangement of chondrocytes from initially isolated strands to large cell clusters in end-stage degeneration. These changes coincide with progressive enzymatic breakdown of the PCM. This study aims to assess the role and involvement of specific matrix metalloproteinases (MMPs) in PCM degradation during OA. We selected cartilage samples from 148 OA patients based on the predominant spatial chondrocyte patterns. The presence of various MMPs (-1,-2,-3,-7,-8,-9,-10,-12,-13) was identified by multiplexed immunoassays. For each pattern and identified MMP, the levels and activation states (pro-form vs. active form) were measured by zymograms and western blots. The localization of these MMPs was determined using immunohistochemical labeling. To verify these results, healthy cartilage was exposed to purified MMPs, and the consecutive structural integrity of the PCM was analyzed through immunolabeling and proximity ligation assay. Screening showed elevated levels of MMP-1,-2,-3,-7, and -13, with their expression profile showing a clear dependency of the degeneration stage. MMP-2 and -7 were localized in the PCM, whereas MMP-1,-7, and -13 were predominantly intracellular. We found that MMP-2 and -3 directly disrupt collagen type VI, and MMP-3 and -7 destroy perlecan. MMP-2, -3, and -7 emerge as central players in early PCM degradation in OA. With the disease's initial stages already displaying elevated peaks in MMP expression, this insight may guide early targeted therapies to halt abnormal PCM remodeling. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) causes a gradual deterioration of the articular cartilage, accompanied by a progressive breakdown of the pericellular matrix (PCM). The PCM's crucial function in protecting and transmitting signals within chondrocytes is impaired in OA. By studying 148 OA-patient cartilage samples, the involvement of matrix metalloproteinases (MMPs) in PCM breakdown was explored. Findings highlighted elevated levels of certain MMPs linked to different stages of degeneration. Notably, MMP-2, -3, and -7 were identified as potent contributors to early PCM degradation, disrupting key components like collagen type VI and perlecan. Understanding these MMPs' roles in initiating OA progression, especially in its early stages, provides insights into potential targets for interventions to preserve PCM integrity and potentially impeding OA advancement.
Collapse
Affiliation(s)
- Marina Danalache
- Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany.
| | - Felix Umrath
- Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany; Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, D-72076 Tübingen, Germany
| | - Rosa Riester
- Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany
| | - Maik Schwitalle
- Winghofer Medicum, Röntgenstraße 38, D-72108 Rottenburg am Neckar, Germany
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA
| | - Ulf Krister Hofmann
- Department of Orthopedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074 Aachen, Germany
| |
Collapse
|
2
|
Thorseth ML, Carretta M, Jensen C, Mølgaard K, Jürgensen HJ, Engelholm LH, Behrendt N, Willumsen N, Madsen DH. Uncovering Mediators of Collagen Degradation in the Tumor Microenvironment. Matrix Biol Plus 2022; 13:100101. [PMID: 35198964 PMCID: PMC8841889 DOI: 10.1016/j.mbplus.2022.100101] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 11/26/2022] Open
Abstract
Collagen cleavage in tumors is primarily mediated by FAP+ cancer-associated fibroblasts. Collagen fibers are cleaved in an MMP-dependent manner. Released collagen fragments are internalized by M2-like tumor-associated macrophages and cancer-associated fibroblasts. The mannose receptor is central in collagen internalization by tumor-associated macrophages.
Increased remodeling of the extracellular matrix in malignant tumors has been shown to correlate with tumor aggressiveness and a poor prognosis. This remodeling involves degradation of the original extracellular matrix (ECM) and deposition of a new tumor-supporting ECM. The main constituent of the ECM is collagen and collagen turnover mainly occurs in a sequential manner, where initial proteolytic cleavage of the insoluble fibers is followed by cellular internalization of large well-defined collagen fragments for lysosomal degradation. However, despite extensive research in the field, a lack of consensus on which cell types within the tumor microenvironment express the involved proteases still exists. Furthermore, the relative contribution of different cell types to collagen internalization is not well-established. Here, we developed quantitative ex vivo collagen degradation assays and show that the proteases responsible for the initial collagen cleavage in two murine syngeneic tumor models are matrix metalloproteinases produced by cancer-associated fibroblasts and that collagen degradation fragments are endocytosed primarily by tumor-associated macrophages and cancer-associated fibroblasts from the tumor stroma. Using tumors from mannose receptor-deficient mice, we show that this receptor is essential for collagen-internalization by tumor-associated macrophages. Together, these findings identify the cell types responsible for the entire collagen degradation pathway, from initial cleavage to endocytosis of fragments for intracellular degradation.
Collapse
|
3
|
Li C, Zhao Z, Zhao S. Annexin A2 promotes development of retinal neovascularization through PI3K/ AKT signaling pathway. Curr Eye Res 2021; 47:579-589. [PMID: 34894941 DOI: 10.1080/02713683.2021.2018467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE Retinal Neovascularization (RNV) is a pathological characteristic of ocular diseases. Annexin A2 (ANXA2) plays important roles in RNV while the mechanism remains unclear. The study aimed to explore relationship between ANXA2 and PI3K/AKT signaling pathway in RNV. METHODS We used human retinal vascular endothelial cells (HRECs) and oxygen-induced retinopathy (OIR) mice model to show ANXA2 can promote the development of RNV through PI3K/AKT signaling pathway. We divided HRECs into six groups by infecting lentivirus containing appropriate plasmid and adding corresponding solution. Assays showing ability of HRECs were performed in vitro. Mice were randomly divided into three groups and treated accordingly. RESULTS Expression of ANXA2 and activity of PI3K/AKT signaling pathway in HRECs were detected. RNV and expression of ANXA2 in mice retinas were detected. Results showed that ANXA2 expression is positively related with RNV-forming ability of HRECs in vitro and development of RNV in vivo while low activity of PI3K/AKT signaling pathway could attenuate the role of ANXA2. CONCLUSIONS We can make ANXA2 and PI3K/ AKT signaling pathway as a promising target for the regulation of pathological neovascularization of the retina, which also provides a novel idea for effective prevention and treatment of diseases related to RNV in future.
Collapse
Affiliation(s)
- Chenyue Li
- Department of Ophthalmology, the First Affiliated Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Zichang Zhao
- Department of Ophthalmology, the First Affiliated Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Shihong Zhao
- Department of Ophthalmology, the First Affiliated Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China.,Nanjing Aier Eye Hospital, Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Alves E Silva TL, Radtke A, Balaban A, Pascini TV, Pala ZR, Roth A, Alvarenga PH, Jeong YJ, Olivas J, Ghosh AK, Bui H, Pybus BS, Sinnis P, Jacobs-Lorena M, Vega-Rodríguez J. The fibrinolytic system enables the onset of Plasmodium infection in the mosquito vector and the mammalian host. SCIENCE ADVANCES 2021; 7:7/6/eabe3362. [PMID: 33547079 PMCID: PMC7864569 DOI: 10.1126/sciadv.abe3362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 05/06/2023]
Abstract
Plasmodium parasites must migrate across proteinaceous matrices to infect the mosquito and vertebrate hosts. Plasmin, a mammalian serine protease, degrades extracellular matrix proteins allowing cell migration through tissues. We report that Plasmodium gametes recruit human plasminogen to their surface where it is processed into plasmin by corecruited plasminogen activators. Inhibition of plasminogen activation arrests parasite development early during sexual reproduction, before ookinete formation. We show that increased fibrinogen and fibrin in the blood bolus, which are natural substrates of plasmin, inversely correlate with parasite infectivity of the mosquito. Furthermore, we show that sporozoites, the parasite form transmitted by the mosquito to humans, also bind plasminogen and plasminogen activators on their surface, where plasminogen is activated into plasmin. Surface-bound plasmin promotes sporozoite transmission by facilitating parasite migration across the extracellular matrices of the dermis and of the liver. The fibrinolytic system is a potential target to hamper Plasmodium transmission.
Collapse
Affiliation(s)
- Thiago Luiz Alves E Silva
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Andrea Radtke
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Amanda Balaban
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tales Vicari Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zarna Rajeshkumar Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Patricia H Alvarenga
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yeong Je Jeong
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Janet Olivas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Anil K Ghosh
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hanhvy Bui
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Brandon S Pybus
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Photini Sinnis
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Marcelo Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Joel Vega-Rodríguez
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Bennet D, Viswanath B, Kim S, An JH. An ultra-sensitive biophysical risk assessment of light effect on skin cells. Oncotarget 2018; 8:47861-47875. [PMID: 28599308 PMCID: PMC5564611 DOI: 10.18632/oncotarget.18136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/18/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to analyze photo-dynamic and photo-pathology changes of different color light radiations on human adult skin cells. We used a real-time biophysical and biomechanics monitoring system for light-induced cellular changes in an in vitro model to find mechanisms of the initial and continuous degenerative process. Cells were exposed to intermittent, mild and intense (1-180 min) light with On/Off cycles, using blue, green, red and white light. Cellular ultra-structural changes, damages, and ECM impair function were evaluated by up/down-regulation of biophysical, biomechanical and biochemical properties. All cells exposed to different color light radiation showed significant changes in a time-dependent manner. Particularly, cell growth, stiffness, roughness, cytoskeletal integrity and ECM proteins of the human dermal fibroblasts-adult (HDF-a) cells showed highest alteration, followed by human epidermal keratinocytes-adult (HEK-a) cells and human epidermal melanocytes-adult (HEM-a) cells. Such changes might impede the normal cellular functions. Overall, the obtained results identify a new insight that may contribute to premature aging, and causes it to look aged in younger people. Moreover, these results advance our understanding of the different color light-induced degenerative process and help the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Devasier Bennet
- Department of Bionanotechnology, Gachon University, Seongnam, Gyeonggi-Do 461-701, Republic of Korea
| | - Buddolla Viswanath
- Department of Bionanotechnology, Gachon University, Seongnam, Gyeonggi-Do 461-701, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Seongnam, Gyeonggi-Do 461-701, Republic of Korea
| | - Jeong Ho An
- Department of Polymer Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-Do 440-146, Republic of Korea
| |
Collapse
|
6
|
Madsen DH, Jürgensen HJ, Siersbæk MS, Kuczek DE, Grey Cloud L, Liu S, Behrendt N, Grøntved L, Weigert R, Bugge TH. Tumor-Associated Macrophages Derived from Circulating Inflammatory Monocytes Degrade Collagen through Cellular Uptake. Cell Rep 2017; 21:3662-3671. [PMID: 29281816 PMCID: PMC5753792 DOI: 10.1016/j.celrep.2017.12.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/25/2017] [Accepted: 12/03/2017] [Indexed: 01/27/2023] Open
Abstract
Physiologic turnover of interstitial collagen is mediated by a sequential pathway in which collagen is fragmented by pericellular collagenases, endocytosed by collagen receptors, and routed to lysosomes for degradation by cathepsins. Here, we use intravital microscopy to investigate if malignant tumors, which are characterized by high rates of extracellular matrix turnover, utilize a similar collagen degradation pathway. Tumors of epithelial, mesenchymal, or neural crest origin all display vigorous endocytic collagen degradation. The cells engaged in this process are identified as tumor-associated macrophage (TAM)-like cells that degrade collagen in a mannose receptor-dependent manner. Accordingly, mannose-receptor-deficient mice display increased intratumoral collagen. Whole-transcriptome profiling uncovers a distinct extracellular matrix-catabolic signature of these collagen-degrading TAMs. Lineage-ablation studies reveal that collagen-degrading TAMs originate from circulating CCR2+ monocytes. This study identifies a function of TAMs in altering the tumor microenvironment through endocytic collagen turnover and establishes macrophages as centrally engaged in tumor-associated collagen degradation.
Collapse
Affiliation(s)
- Daniel Hargbøl Madsen
- Proteases and Tissue Remodeling Section , Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; Center for Cancer Immune Therapy, Department of Haematology, Copenhagen University Hospital, 2730 Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; The Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Henrik Jessen Jürgensen
- Proteases and Tissue Remodeling Section , Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; The Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Majken Storm Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Dorota Ewa Kuczek
- Center for Cancer Immune Therapy, Department of Haematology, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Loretta Grey Cloud
- Proteases and Tissue Remodeling Section , Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shihui Liu
- Proteases and Tissue Remodeling Section , Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Roberto Weigert
- Intracellular Membrane Trafficking Unit , Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Cellular and Molecular Biology, CCR, National Cancer Research Bethesda, MD 20892, USA
| | - Thomas Henrik Bugge
- Proteases and Tissue Remodeling Section , Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Liu W, Hajjar KA. The annexin A2 system and angiogenesis. Biol Chem 2017; 397:1005-16. [PMID: 27366903 DOI: 10.1515/hsz-2016-0166] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/28/2016] [Indexed: 01/23/2023]
Abstract
The formation of new blood vessels from pre-existing vasculature, the process known as angiogenesis, is highly regulated by pro- and anti-angiogenic signaling molecules including growth factors and proteases. As an endothelial cell-surface co-receptor for plasminogen and tissue plasminogen activator, the annexin A2 (ANXA2) complex accelerates plasmin generation and facilitates fibrinolysis. Plasmin can subsequently activate a downstream proteolytic cascade involving multiple matrix metalloproteinases. Thus, in addition to maintaining blood vessel patency, the ANXA2 complex can also promote angiogenesis via its pro-fibrinolytic activity. The generation of ANXA2-deficient mice allowed us to first observe the pro-angiogenic role of ANXA2 in vivo. Further investigations have provided additional details regarding the mechanism for ANXA2 regulation of retinal and corneal angiogenesis. Other studies have reported that ANXA2 supports angiogenesis in specific tumor-related settings. Here, we summarize results from in vivo studies that illustrate the pro-angiogenic role of ANXA2, and discuss the critical questions that may lead to an advanced understanding of the molecular mechanisms for ANXA2-mediated angiogenesis. Finally, highlights from studies on ANXA2-interacting agents offer potential therapeutic opportunities for the application of ANXA2-centered pharmaceuticals in angiogenesis-related disorders.
Collapse
|
8
|
Proteolytic Enzymes Clustered in Specialized Plasma-Membrane Domains Drive Endothelial Cells' Migration. PLoS One 2016; 11:e0154709. [PMID: 27152413 PMCID: PMC4859482 DOI: 10.1371/journal.pone.0154709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
In vitro cultured endothelial cells forming a continuous monolayer establish stable cell-cell contacts and acquire a “resting” phenotype; on the other hand, when growing in sparse conditions these cells acquire a migratory phenotype and invade the empty area of the culture. Culturing cells in different conditions, we compared expression and clustering of proteolytic enzymes in cells having migratory versus stationary behavior. In order to observe resting and migrating cells in the same microscopic field, a continuous cell monolayer was wounded. Increased expression of proteolytic enzymes was evident in cell membranes of migrating cells especially at sprouting sites and in shed membrane vesicles. Gelatin zymography and western blotting analyses confirmed that in migrating cells, expression of membrane-bound and of vesicle-associated proteolytic enzymes are increased. The enzymes concerned include MMP-2, MMP-9, MT1-MMP, seprase, DPP4 (DiPeptidyl Peptidase 4) and uPA. Shed membrane vesicles were shown to exert degradative activity on ECM components and produce substrates facilitating cell migration. Vesicles shed by migrating cells degraded ECM components at an increased rate; as a result their effect on cell migration was amplified. Inhibiting either Matrix Metallo Proteases (MMPs) or Serine Integral Membrane Peptidases (SIMPs) caused a decrease in the stimulatory effect of vesicles, inhibiting the spontaneous migratory activity of cells; a similar result was also obtained when a monoclonal antibody acting on DPP4 was tested. We conclude that proteolytic enzymes have a synergistic stimulatory effect on cell migration and that their clustering probably facilitates the proteolytic activation cascades needed to produce maximal degradative activity on cell substrates during the angiogenic process.
Collapse
|
9
|
Smith PC, Cáceres M, Martínez C, Oyarzún A, Martínez J. Gingival wound healing: an essential response disturbed by aging? J Dent Res 2015; 94:395-402. [PMID: 25527254 PMCID: PMC4814024 DOI: 10.1177/0022034514563750] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gingival wound healing comprises a series of sequential responses that allow the closure of breaches in the masticatory mucosa. This process is of critical importance to prevent the invasion of microbes or other agents into tissues, avoiding the establishment of a chronic infection. Wound healing may also play an important role during cell and tissue reaction to long-term injury, as it may occur during inflammatory responses and cancer. Recent experimental data have shown that gingival wound healing is severely affected by the aging process. These defects may alter distinct phases of the wound-healing process, including epithelial migration, granulation tissue formation, and tissue remodeling. The cellular and molecular defects that may explain these deficiencies include several biological responses such as an increased inflammatory response, altered integrin signaling, reduced growth factor activity, decreased cell proliferation, diminished angiogenesis, reduced collagen synthesis, augmented collagen remodeling, and deterioration of the proliferative and differentiation potential of stem cells. In this review, we explore the cellular and molecular basis of these defects and their possible clinical implications.
Collapse
Affiliation(s)
- P C Smith
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Cáceres
- Molecular and Cell Biology Program, Faculty of Medicine, University of Chile, Santiago, Chile
| | - C Martínez
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A Oyarzún
- Faculty of Dentistry, Universidad Finis Terrae, Santiago, Chile
| | - J Martínez
- Laboratory of Cell Biology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
10
|
Hu JH, Touch P, Zhang J, Wei H, Liu S, Lund IK, Høyer-Hansen G, Dichek DA. Reduction of mouse atherosclerosis by urokinase inhibition or with a limited-spectrum matrix metalloproteinase inhibitor. Cardiovasc Res 2015; 105:372-82. [PMID: 25616415 DOI: 10.1093/cvr/cvv007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Elevated activity of urokinase plasminogen activator (uPA) and MMPs in human arteries is associated with accelerated atherosclerosis, aneurysms, and plaque rupture. We used Apoe-null mice with macrophage-specific uPA overexpression (SR-uPA mice; a well-characterized model of protease-accelerated atherosclerosis) to investigate whether systemic inhibition of proteolytic activity of uPA or a subset of MMPs can reduce protease-induced atherosclerosis and aortic dilation. METHODS AND RESULTS SR-uPA mice were fed a high-fat diet for 10 weeks and treated either with an antibody inhibiting mouse uPA (mU1) or a control antibody. mU1-treated mice were also compared with PBS-treated non-uPA-overexpressing Apoe-null mice. Other SR-uPA mice were treated with one of three doses of a limited-spectrum synthetic MMP inhibitor (XL784) or vehicle. mU1 reduced aortic root intimal lesion area (20%; P = 0.05) and aortic root circumference (12%; P = 0.01). All XL784 doses reduced aortic root intimal lesion area (22-29%) and oil-red-O-positive lesion area (36-42%; P < 0.05 for all doses and both end points), with trends towards reduced aortic root circumference (6-10%). Neither mU1 nor XL784 significantly altered percent aortic surface lesion coverage. Several lines of evidence identified MMP-13 as a mediator of uPA-induced aortic MMP activity. CONCLUSIONS Pharmacological inhibition of either uPA or selected MMPs decreased atherosclerosis in SR-uPA mice. uPA inhibition decreased aortic dilation. Differential effects of both agents on aortic root vs. distal aortic atherosclerosis suggest prevention of atherosclerosis progression vs. initiation. Systemic inhibition of uPA or a subset of MMPs shows promise for treating atherosclerosis.
Collapse
Affiliation(s)
- Jie Hong Hu
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Phanith Touch
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jingwan Zhang
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Hao Wei
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Shihui Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ida K Lund
- The Finsen Laboratory, Copenhagen University Hospital and Biotech Research & Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | - Gunilla Høyer-Hansen
- The Finsen Laboratory, Copenhagen University Hospital and Biotech Research & Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | - David A Dichek
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
11
|
Al-Horani RA, Desai UR. Recent advances on plasmin inhibitors for the treatment of fibrinolysis-related disorders. Med Res Rev 2014; 34:1168-1216. [PMID: 24659483 PMCID: PMC8788159 DOI: 10.1002/med.21315] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Growing evidence suggests that plasmin is involved in a number of physiological processes in addition to its key role in fibrin cleavage. Plasmin inhibition is critical in preventing adverse consequences arising from plasmin overactivity, e.g., blood loss that may follow cardiac surgery. Aprotinin was widely used as an antifibrinolytic drug before its discontinuation in 2008. Tranexamic acid and ε-aminocaproic acid, two small molecule plasmin inhibitors, are currently used in the clinic. Several molecules have been designed utilizing covalent, but reversible, chemistry relying on reactive cyclohexanones, nitrile warheads, and reactive aldehyde peptidomimetics. Other major classes of plasmin inhibitors include the cyclic peptidomimetics and polypeptides of the Kunitz and Kazal-type. Allosteric inhibitors of plasmin have also been designed including small molecule lysine analogs that bind to plasmin's kringle domain(s) and sulfated glycosaminoglycan mimetics that bind to plasmin's catalytic domain. Plasmin inhibitors have also been explored for resolving other disease states including cell metastasis, cell proliferation, angiogenesis, and embryo implantation. This review highlights functional and structural aspects of plasmin inhibitors with the goal of advancing their design.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia
| | | |
Collapse
|
12
|
Zhou C, Petroll WM. MMP regulation of corneal keratocyte motility and mechanics in 3-D collagen matrices. Exp Eye Res 2014; 121:147-60. [PMID: 24530619 PMCID: PMC4028095 DOI: 10.1016/j.exer.2014.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/03/2014] [Accepted: 02/05/2014] [Indexed: 01/28/2023]
Abstract
Previous studies have shown that platelet derived growth factor (PDGF) can stimulate corneal keratocyte spreading and migration within 3-D collagen matrices, without inducing transformation to a contractile, fibroblastic phenotype. The goal of this study was to investigate the role of matrix metalloproteinases (MMPs) in regulating PDGF-induced changes in keratocyte motility and mechanical differentiation. Rabbit corneal keratocytes were isolated and cultured in serum-free media (S-) to maintain their quiescent phenotype. A nested collagen matrix construct was used to assess 3-D cell migration, and a standard collagen matrix model was used to assess cell morphology and cell-mediated matrix contraction. In both cases constructs were cultured in S- supplemented with PDGF, with or without the broad spectrum MMP inhibitors GM6001 or BB-94. After 4 days, f-actin, nuclei and collagen fibrils were imaged using confocal microscopy. To assess sub-cellular mechanical activity (extension and retraction of cell processes), time-lapse DIC imaging was also performed. MT1-MMP expression and MMP-mediated collagen degradation were also examined. Results demonstrated that neither GM6001 nor BB-94 affected corneal keratocyte viability or proliferation in 3-D culture. PDGF stimulated elongation and migration of corneal keratocytes within type I collagen matrices, without causing a loss of their dendritic morphology or inducing formation of intracellular stress fibers. Treatment with GM6001 and BB-94 inhibited PDGF-induced keratocyte spreading and migration. Relatively low levels of keratocyte-induced matrix contraction were also maintained in PDGF, and the amount of PDGF-induced collagen degradation was similar to that observed in S- controls. The collagen degradation pattern was consistent with membrane-associated MMP activity, and keratocytes showed positive staining for MT1-MMP, albeit weak. Both matrix contraction and collagen degradation were reduced by MMP inhibition. For most outcome measures, the inhibitory effect of BB-94 was significantly greater than that of GM6001. Overall, the data demonstrate for the first time that even under conditions in which low levels of contractility and extracellular matrix proteolysis are maintained, MMPs still play an important role in mediating cell spreading and migration within 3-D collagen matrices. This appears to be mediated at least in part by membrane-tethered MMPs, such as MT1-MMP.
Collapse
Affiliation(s)
- Chengxin Zhou
- Department of Ophthalmology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9057, USA; Biomedical Engineering Graduate Program, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9057, USA
| | - W Matthew Petroll
- Department of Ophthalmology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9057, USA; Biomedical Engineering Graduate Program, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9057, USA.
| |
Collapse
|
13
|
Mekkawy AH, Pourgholami MH, Morris DL. Involvement of urokinase-type plasminogen activator system in cancer: an overview. Med Res Rev 2014; 34:918-56. [PMID: 24549574 DOI: 10.1002/med.21308] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently, there are several studies supporting the role of urokinase-type plasminogen activator (uPA) system in cancer. The association of uPA to its receptor triggers the conversion of plasminogen into plasmin. This process is regulated by the uPA inhibitors (PAI-1 and PAI-2). Plasmin promotes degradation of basement membrane and extracellular matrix (ECM) components as well as activation of ECM latent matrix metalloproteases. Degradation and remodeling of the surrounding tissues is crucial in the early steps of tumor progression by facilitating expansion of the tumor mass, release of tumor growth factors, activation of cytokines as well as induction of tumor cell proliferation, migration, and invasion. Hence, many tumors showed a correlation between uPA system component levels and tumor aggressiveness and survival. Therefore, this review summarizes the structure of the uPA system, its contribution to cancer progression, and the clinical relevance of uPA family members in cancer diagnosis. In addition, the review evaluates the significance of uPA system in the development of cancer-targeted therapies.
Collapse
Affiliation(s)
- Ahmed H Mekkawy
- Department of Surgery, Cancer Research Laboratories, St. George Hospital, University of New South Wales, Sydney, NSW 2217, Australia
| | | | | |
Collapse
|
14
|
Understanding the pathogenesis of Kawasaki disease by network and pathway analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:989307. [PMID: 23533546 PMCID: PMC3606754 DOI: 10.1155/2013/989307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/04/2013] [Indexed: 12/20/2022]
Abstract
Kawasaki disease (KD) is a complex disease, leading to the damage of multisystems. The pathogen that triggers this sophisticated disease is still unknown since it was first reported in 1967. To increase our knowledge on the effects of genes in KD, we extracted statistically significant genes so far associated with this mysterious illness from candidate gene studies and genome-wide association studies. These genes contributed to susceptibility to KD, coronary artery lesions, resistance to initial IVIG treatment, incomplete KD, and so on. Gene ontology category and pathways were analyzed for relationships among these statistically significant genes. These genes were represented in a variety of functional categories, including immune response, inflammatory response, and cellular calcium ion homeostasis. They were mainly enriched in the pathway of immune response. We further highlighted the compelling immune pathway of NF-AT signal and leukocyte interactions combined with another transcription factor NF- κ B in the pathogenesis of KD. STRING analysis, a network analysis focusing on protein interactions, validated close contact between these genes and implied the importance of this pathway. This data will contribute to understanding pathogenesis of KD.
Collapse
|
15
|
Koenig GC, Rowe RG, Day SM, Sabeh F, Atkinson JJ, Cooke KR, Weiss SJ. MT1-MMP-dependent remodeling of cardiac extracellular matrix structure and function following myocardial infarction. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1863-78. [PMID: 22464947 DOI: 10.1016/j.ajpath.2012.01.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 01/23/2023]
Abstract
The myocardial extracellular matrix (ECM), an interwoven meshwork of proteins, glycoproteins, proteoglycans, and glycosaminoglycans that is dominated by polymeric fibrils of type I collagen, serves as the mechanical scaffold on which myocytes are arrayed for coordinated and synergistic force transduction. Following ischemic injury, cardiac ECM remodeling is initiated via localized proteolysis, the bulk of which has been assigned to matrix metalloproteinase (MMP) family members. Nevertheless, the key effector(s) of myocardial type I collagenolysis both in vitro and in vivo have remained unidentified. In this study, using cardiac explants from mice deficient in each of the major type I collagenolytic MMPs, including MMP-13, MMP-8, MMP-2, MMP-9, or MT1-MMP, we identify the membrane-anchored MMP, MT1-MMP, as the dominant collagenase that is operative within myocardial tissues in vitro. Extending these observations to an in vivo setting, mice heterozygous for an MT1-MMP-null allele display a distinct survival advantage and retain myocardial function relative to wild-type littermates in an experimental model of myocardial infarction, effects associated with preservation of the myocardial type I collagen network as a consequence of the decreased collagenolytic potential of cardiac fibroblasts. This study identifies MT1-MMP as a key MMP responsible for effecting postinfarction cardiac ECM remodeling and cardiac dysfunction.
Collapse
Affiliation(s)
- Gerald C Koenig
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Complex Regulation of the Pericellular Proteolytic Microenvironment during Tumor Progression and Wound Repair: Functional Interactions between the Serine Protease and Matrix Metalloproteinase Cascades. Biochem Res Int 2012; 2012:454368. [PMID: 22454771 PMCID: PMC3290807 DOI: 10.1155/2012/454368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/21/2011] [Indexed: 01/08/2023] Open
Abstract
Spatial and temporal regulation of the pericellular proteolytic environment by local growth factors, such as EGF and TGF-β, initiates a wide repertoire of cellular responses coupled to a plasmin/matrix metalloproteinase (MMP) dependent stromal-remodeling axis. Cell motility and invasion, tumor metastasis, wound healing, and organ fibrosis, for example, represent diverse events controlled by expression of a subset of genes that encode various classes of tissue remodeling proteins. These include members of the serine protease and MMP families that functionally constitute a complex system of interacting protease cascades and titrated by their respective inhibitors. Several structural components of the extracellular matrix are upregulated by TGF-β as are matrix-active proteases (e.g., urokinase (uPA), plasmin, MMP-1, -3, -9, -10, -11, -13, -14). Stringent controls on serine protease/MMP expression and their topographic activity are essential for maintaining tissue homeostasis. Targeting individual elements in this highly interactive network may lead to novel therapeutic approaches for the treatment of cancer, fibrotic diseases, and chronic wounds.
Collapse
|
17
|
Johnson JL, Pillai S, Pernazza D, Sebti SM, Lawrence NJ, Chellappan SP. Regulation of matrix metalloproteinase genes by E2F transcription factors: Rb-Raf-1 interaction as a novel target for metastatic disease. Cancer Res 2011; 72:516-26. [PMID: 22086850 DOI: 10.1158/0008-5472.can-11-2647] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The retinoblastoma (Rb)-E2F transcriptional regulatory pathway plays a major role in cell-cycle regulation, but its role in invasion and metastasis is less well understood. We find that many genes involved in the invasion of cancer cells, such as matrix metalloproteinases (MMP), have potential E2F-binding sites in their promoters. E2F-binding sites were predicted on all 23 human MMP gene promoters, many of which harbored multiple E2F-binding sites. Studies presented here show that MMP genes such as MMP9, MMP14, and MMP15 which are overexpressed in non-small cell lung cancer, have multiple E2F-binding sites and are regulated by the Rb-E2F pathway. Chromatin immunoprecipitation assays showed the association of E2F1 with the MMP9, MMP14, and MMP15 promoters, and transient transfection experiments showed that these promoters are E2F responsive. Correspondingly, depletion of E2F family members by RNA interference techniques reduced the expression of these genes with a corresponding reduction in collagen degradation activity. Furthermore, activating Rb by inhibiting the interaction of Raf-1 with Rb by using the Rb-Raf-1 disruptor RRD-251 was sufficient to inhibit MMP transcription. This led to reduced invasion and migration of cancer cells in vitro and metastatic foci development in a tail vein lung metastasis model in mice. These results suggest that E2F transcription factors may play a role in promoting metastasis through regulation of MMP genes and that targeting the Rb-Raf-1 interaction is a promising approach for the treatment of metastatic disease.
Collapse
Affiliation(s)
- Jackie L Johnson
- Department of Tumor Biology, University of South Florida, Tampa, Florida, USA
| | | | | | | | | | | |
Collapse
|
18
|
Rowe RG, Keena D, Sabeh F, Willis AL, Weiss SJ. Pulmonary fibroblasts mobilize the membrane-tethered matrix metalloprotease, MT1-MMP, to destructively remodel and invade interstitial type I collagen barriers. Am J Physiol Lung Cell Mol Physiol 2011; 301:L683-92. [PMID: 21840960 DOI: 10.1152/ajplung.00187.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In acute and chronic lung disease, widespread disruption of tissue architecture underlies compromised pulmonary function. Pulmonary fibroblasts have been implicated as critical effectors of tissue-destructive extracellular matrix (ECM) remodeling by mobilizing a spectrum of proteolytic enzymes. Although efforts to date have focused on the catabolism of type I collagen, the predominant component of the lung interstitial matrix, the key collagenolytic enzymes employed by pulmonary fibroblasts remain unidentified. Herein, membrane type-1 matrix metalloprotease (MT1-MMP) is identified as the dominant and direct-acting protease responsible for the type I collagenolytic activity mediated by both mouse and human pulmonary fibroblasts. Furthermore, MT1-MMP is shown to be essential for pulmonary fibroblast migration within three-dimensional (3-D) hydrogels of cross-linked type I collagen that recapitulate ECM barriers encountered in the in vivo environment. Together, these findings demonstrate that MT1-MMP serves as a key effector of type I collagenolytic activity in pulmonary fibroblasts and earmark this pericellular collagenase as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- R Grant Rowe
- Divisions of Molecular Medicine & Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | | | |
Collapse
|
19
|
Schaller J, Gerber SS. The plasmin-antiplasmin system: structural and functional aspects. Cell Mol Life Sci 2011; 68:785-801. [PMID: 21136135 PMCID: PMC11115092 DOI: 10.1007/s00018-010-0566-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/03/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
The plasmin-antiplasmin system plays a key role in blood coagulation and fibrinolysis. Plasmin and α(2)-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into soluble fragments. However, besides plasmin(ogen) and α(2)-antiplasmin the system contains a series of specific activators and inhibitors. The main physiological activators of plasminogen are tissue-type plasminogen activator, which is mainly involved in the dissolution of the fibrin polymers by plasmin, and urokinase-type plasminogen activator, which is primarily responsible for the generation of plasmin activity in the intercellular space. Both activators are multidomain serine proteases. Besides the main physiological inhibitor α(2)-antiplasmin, the plasmin-antiplasmin system is also regulated by the general protease inhibitor α(2)-macroglobulin, a member of the protease inhibitor I39 family. The activity of the plasminogen activators is primarily regulated by the plasminogen activator inhibitors 1 and 2, members of the serine protease inhibitor superfamily.
Collapse
Affiliation(s)
- Johann Schaller
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, Switzerland.
| | | |
Collapse
|
20
|
Juncker-Jensen A, Lund LR. Phenotypic overlap between MMP-13 and the plasminogen activation system during wound healing in mice. PLoS One 2011; 6:e16954. [PMID: 21326869 PMCID: PMC3033913 DOI: 10.1371/journal.pone.0016954] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/18/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Proteolytic degradation of extracellular matrix is a crucial step in the healing of incisional skin wounds. Thus, healing of skin wounds is delayed by either plasminogen-deficiency or by treatment with the broad-spectrum metalloproteinase (MP) inhibitor Galardin alone, while the two perturbations combined completely prevent wound healing. Both urokinase-type plasminogen activator and several matrix metallo proteinases (MMPs), such as MMP-3, -9 and -13, are expressed in the leading-edge keratinocytes of skin wounds, which may account for this phenotypic overlap between these classes of proteases. METHODOLOGY To further test that hypothesis we generated Mmp13;Plau and Mmp13;Plg double-deficient mice in a cross between Mmp13- and Plau-deficient mice as well as Mmp13- and Plg-deficient mice. These mice were examined for normal physiology in a large cohort study and in a well-characterized skin wound healing model, in which we made incisional 20 mm-long full-thickness skin wounds. PRINCIPAL FINDINGS While mice that are deficient in Mmp13 have a mean healing time indistinguishable to wild-type mice, wound healing in both Plau- and Plg-deficient mice is significantly delayed. Histological analysis of healed wounds revealed a significant increase in keratin 10/14 immunoreactive layers of kerationcytes in the skin surface in Mmp13;Plau double-deficient mice. Furthermore, we observe, by immunohistological analysis, an aberrant angiogenic pattern during wound healing induced by Plau-deficiency, which has not previously been described. CONCLUSIONS We demonstrate a phenotypic overlap, defined as an additional delay in wound healing in the double-deficient mice compared to the individual single-deficient mice, between MMP-13 and the plasminogen activation system in the process of wound healing, but not during gestation and in postnatal development. Thus, a dual targeting of uPA and MMP-13 might be a possible future strategy in designing therapies aimed at tissue repair or other pathological processes, such as cancer invasion, where proteolytic degradation is a hallmark.
Collapse
Affiliation(s)
- Anna Juncker-Jensen
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark
| | - Leif R. Lund
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
21
|
Kim KS, Choi HM, Lee YA, Choi IA, Lee SH, Hong SJ, Yang HI, Yoo MC. Expression levels and association of gelatinases MMP-2 and MMP-9 and collagenases MMP-1 and MMP-13 with VEGF in synovial fluid of patients with arthritis. Rheumatol Int 2010; 31:543-7. [DOI: 10.1007/s00296-010-1592-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
|
22
|
Sabeh F, Fox D, Weiss SJ. Membrane-type I matrix metalloproteinase-dependent regulation of rheumatoid arthritis synoviocyte function. THE JOURNAL OF IMMUNOLOGY 2010; 184:6396-406. [PMID: 20483788 DOI: 10.4049/jimmunol.0904068] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In rheumatoid arthritis, the coordinated expansion of the synoviocyte mass is coupled with a pathologic angiogenic response that leads to the destructive remodeling of articular as well as surrounding connective tissues. Although rheumatoid synoviocytes express a multiplicity of proteolytic enzymes, the primary effectors of cartilage, ligament, and tendon damage remain undefined. Herein, we demonstrate that human rheumatoid synoviocytes mobilize the membrane-anchored matrix metalloproteinase (MMP), membrane-type I MMP (MT1-MMP), to dissolve and invade type I and type II collagen-rich tissues. Though rheumatoid synoviocytes also express a series of secreted collagenases, these proteinases are ineffective in mediating collagenolytic activity in the presence of physiologic concentrations of plasma- or synovial fluid-derived antiproteinases. Furthermore, MT1-MMP not only directs the tissue-destructive properties of rheumatoid synoviocytes but also controls synoviocyte-initiated angiogenic responses in vivo. Together, these findings identify MT1-MMP as a master regulator of the pathologic extracellular matrix remodeling that characterizes rheumatoid arthritis as well as the coupled angiogenic response that maintains the aggressive phenotype of the advancing pannus.
Collapse
Affiliation(s)
- Farideh Sabeh
- Division of Molecular Medicine and Genetics, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
23
|
Abstract
In response to injury, epithelial cells migrate across the denuded tissue to rapidly close the wound and restore barrier, thereby preventing the entry of pathogens and leakage of fluids. Efficient, proper migration requires a range of processes, acting both inside and out of the cell. Among the extracellular responses is the expression of various matrix metalloproteinases (MMPs). Though long thought to ease cell migration simply by breaking down matrix barriers, findings from various models demonstrate that MMPs facilitate (and sometimes repress) cell movement by other means, such as affecting the state of cell-matrix interactions or proliferation. In this Prospect, we review some key data indicting how specific MMPs function via their activity as proteinases to control closure of epithelial wounds.
Collapse
Affiliation(s)
- Peter Chen
- Center for Lung Biology, Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98109, USA.
| | | |
Collapse
|
24
|
Sabeh F, Li XY, Saunders TL, Rowe RG, Weiss SJ. Secreted versus membrane-anchored collagenases: relative roles in fibroblast-dependent collagenolysis and invasion. J Biol Chem 2009; 284:23001-11. [PMID: 19542530 DOI: 10.1074/jbc.m109.002808] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fibroblasts degrade type I collagen, the major extracellular protein found in mammals, during events ranging from bulk tissue resorption to invasion through the three-dimensional extracellular matrix. Current evidence suggests that type I collagenolysis is mediated by secreted as well as membrane-anchored members of the matrix metalloproteinase (MMP) gene family. However, the roles played by these multiple and possibly redundant, degradative systems during fibroblast-mediated matrix remodeling is undefined. Herein, we use fibroblasts isolated from Mmp13(-/-), Mmp8(-/-), Mmp2(-/-), Mmp9(-/-), Mmp14(-/-) and Mmp16(-/-) mice to define the functional roles for secreted and membrane-anchored collagenases during collagen-resorptive versus collagen-invasive events. In the presence of a functional plasminogen activator-plasminogen axis, secreted collagenases arm cells with a redundant collagenolytic potential that allows fibroblasts harboring single deficiencies for either MMP-13, MMP-8, MMP-2, or MMP-9 to continue to degrade collagen comparably to wild-type fibroblasts. Likewise, Mmp14(-/-) or Mmp16(-/-) fibroblasts retain near-normal collagenolytic activity in the presence of plasminogen via the mobilization of secreted collagenases, but only Mmp14 (MT1-MMP) plays a required role in the collagenolytic processes that support fibroblast invasive activity. Furthermore, by artificially tethering a secreted collagenase to the surface of Mmp14(-/-) fibroblasts, we demonstrate that localized pericellular collagenolytic activity differentiates the collagen-invasive phenotype from bulk collagen degradation. Hence, whereas secreted collagenases arm fibroblasts with potent matrix-resorptive activity, only MT1-MMP confers the focal collagenolytic activity necessary for supporting the tissue-invasive phenotype.
Collapse
Affiliation(s)
- Farideh Sabeh
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
25
|
Wilkins-Port CE, Ye Q, Mazurkiewicz JE, Higgins PJ. TGF-beta1 + EGF-initiated invasive potential in transformed human keratinocytes is coupled to a plasmin/MMP-10/MMP-1-dependent collagen remodeling axis: role for PAI-1. Cancer Res 2009; 69:4081-91. [PMID: 19383899 DOI: 10.1158/0008-5472.can-09-0043] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The phenotypic switching called epithelial-to-mesenchymal transition is frequently associated with epithelial tumor cell progression from a comparatively benign to an aggressive, invasive malignancy. Coincident with the emergence of such cellular plasticity is an altered response to transforming growth factor-beta (TGF-beta) as well as epidermal growth factor (EGF) receptor amplification. TGF-beta in the tumor microenvironment promotes invasive traits largely through reprogramming gene expression, which paradoxically supports matrix-disruptive as well as stabilizing processes. ras-transformed HaCaT II-4 keratinocytes undergo phenotypic changes typical of epithelial-to-mesenchymal transition, acquire a collagenolytic phenotype, and effectively invade collagen type 1 gels as a consequence of TGF-beta1 + EGF stimulation in a three-dimensional physiologically relevant model system that monitors collagen remodeling. Enhanced collagen degradation was coupled to a significant increase in matrix metalloproteinase (MMP)-10 expression and involved a proteolytic axis composed of plasmin, MMP-10, and MMP-1. Neutralization of any one component in this cascade inhibited collagen gel lysis. Similarly, addition of plasminogen activator inhibitor type 1 (SERPINE1) blocked collagen degradation as well as the conversion of both proMMP-10 and proMMP-1 to their catalytically active forms. This study therefore identifies an important mechanism in TGF-beta1 + EGF-initiated collagen remodeling by transformed human keratinocytes and proposes a crucial upstream role for plasminogen activator inhibitor type 1-dependent regulation in this event.
Collapse
Affiliation(s)
- Cynthia E Wilkins-Port
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
26
|
Ingvarsen S, Madsen DH, Hillig T, Lund LR, Holmbeck K, Behrendt N, Engelholm LH. Dimerization of endogenous MT1-MMP is a regulatory step in the activation of the 72-kDa gelatinase MMP-2 on fibroblasts and fibrosarcoma cells. Biol Chem 2008; 389:943-53. [DOI: 10.1515/bc.2008.097] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The secreted gelatinase matrix metalloprotease-2 (MMP-2) and the membrane-anchored matrix metalloprotease MT1-MMP (MMP-14), are central players in pericellular proteolysis in extracellular matrix degradation. In addition to possessing a direct collagenolytic and gelatinolytic activity, these enzymes take part in a cascade pathway in which MT1-MMP activates the MMP-2 proenzyme. This reaction occurs in an interplay with the matrix metalloprotease inhibitor, TIMP-2, and the proposed mechanism involves two molecules of MT1-MMP in complex with one TIMP-2 molecule. We provide positive evidence that proMMP-2 activation is governed by dimerization of MT1-MMP on the surface of fibroblasts and fibrosarcoma cells. Even in the absence of transfection and overexpression, dimerization of MT1-MMP markedly stimulated the formation of active MMP-2 products. The effect demonstrated here was brought about by a monoclonal antibody that binds specifically to MT1-MMP as shown by immunofluorescence experiments. The antibody has no effect on the catalytic activity. The effect on proMMP-2 activation involves MT1-MMP dimerization because it requires the divalent monoclonal antibody, with no effect obtained with monovalent Fab fragments. Since only a negligible level of proMMP-2 activation was obtained with MT1-MMP-expressing cells in the absence of dimerization, our results identify the dimerization event as a critical level of proteolytic cascade regulation.
Collapse
|
27
|
Antalis TM, Shea-Donohue T, Vogel SN, Sears C, Fasano A. Mechanisms of disease: protease functions in intestinal mucosal pathobiology. ACTA ACUST UNITED AC 2007; 4:393-402. [PMID: 17607295 PMCID: PMC3049113 DOI: 10.1038/ncpgasthep0846] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 04/20/2007] [Indexed: 12/16/2022]
Abstract
Of all our organ systems, the gastrointestinal tract contains the highest levels of endogenous and exogenous proteases (also known as proteinases and peptidases); however, our understanding of their functions and interactions within the gastrointestinal tract is restricted largely to nutrient digestion. The gut epithelium is a sensor of the luminal environment, not only controlling digestive, absorptive and secretory functions, but also relaying information to the mucosal immune, vascular and nervous systems. These functions involve a complex array of cell types that elaborate growth factors, cytokines and extracellular matrix (ECM) proteins, the activity and availability of which are regulated by proteases. Proteolytic activity must be tightly regulated in the face of diverse environmental challenges, because unrestrained or excessive proteolysis leads to pathological gastrointestinal conditions. Moreover, enteric microbes and parasites can hijack proteolytic pathways through 'pathogen host mimicry'. Understanding how the protease balance is maintained and regulated in the intestinal epithelial cell microenvironment and how proteases contribute to physiological and pathological outcomes will undoubtedly contribute to the identification of new potential therapeutic targets for gastrointestinal diseases.
Collapse
Affiliation(s)
| | | | | | | | - Alessio Fasano
- Correspondence, Mucosal Biology Research Center, University of Maryland School of Medicine, Room S345, HSF II Building, 20 Penn Street, Baltimore, MD 21201, USA,
| |
Collapse
|
28
|
Madsen DH, Engelholm LH, Ingvarsen S, Hillig T, Wagenaar-Miller RA, Kjøller L, Gårdsvoll H, Høyer-Hansen G, Holmbeck K, Bugge TH, Behrendt N. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation. J Biol Chem 2007; 282:27037-27045. [PMID: 17623673 DOI: 10.1074/jbc.m701088200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular collagenolysis is not known. In this report, we demonstrate the existence of a new, composite collagen breakdown pathway. Thus, fibroblast-mediated collagen degradation proceeds preferentially as a sequential mechanism in which extracellular collagenolysis is followed by uPARAP/Endo180-mediated endocytosis of large collagen fragments. First, we show that collagen that has been pre-cleaved by a mammalian collagenase is taken up much more efficiently than intact, native collagen by uPARAP/Endo180-positive cells. Second, we demonstrate that this preference is governed by the acquisition of a gelatin-like structure by the collagen, occurring upon collagenase-mediated cleavage under native conditions. Third, we demonstrate that the growth of uPARAP/Endo180-deficient fibroblasts on a native collagen matrix leads to substantial extracellular accumulation of well defined collagen fragments, whereas, wild-type fibroblasts possess the ability to direct an organized and complete degradation sequence comprising both the initial cleavage, the endocytic uptake, and the intracellular breakdown of collagen.
Collapse
Affiliation(s)
- Daniel H Madsen
- Finsen Laboratory, Rigshospitalet, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Signe Ingvarsen
- Finsen Laboratory, Rigshospitalet, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Thore Hillig
- Finsen Laboratory, Rigshospitalet, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | | | - Lars Kjøller
- Finsen Laboratory, Rigshospitalet, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Gunilla Høyer-Hansen
- Finsen Laboratory, Rigshospitalet, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Kenn Holmbeck
- Craniofacial and Skeletal Diseases Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas H Bugge
- Oral & Pharyngeal Cancer Branch, Bethesda, Maryland 20892
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark.
| |
Collapse
|
29
|
Wang BG, Riemann I, Schubert H, Halbhuber KJ, Koenig K. In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses. Cell Tissue Res 2007; 328:515-20. [PMID: 17468893 DOI: 10.1007/s00441-006-0367-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 12/11/2006] [Indexed: 12/26/2022]
Abstract
Non-invasive intratissue ablation was performed in the cornea of living rabbits by using 80 MHz near-infrared intense nanojoule femtosecond laser pulses. The intratissue surgical effect was induced by multiphoton absorption at a wavelength of 800 nm and was ascertained by histological examination. Highly precise intratissue ablation was obtained with no detrimental effects to the overlying or underlying layers. Activated keratocytes in the laser-treated corneas were detected with two-photon imaging postoperatively. Intratissue femtosecond laser ablation thus has potential as a effective technique in refractive surgery for the treatment of visual disorders.
Collapse
Affiliation(s)
- Bao-Gui Wang
- Institute of Microscopic Anatomy (Anatomy II), University of Jena, Teichgraben 7, 07743, Jena, Germany
| | | | | | | | | |
Collapse
|
30
|
House AK, Catchpole B, Gregory SP. Matrix metalloproteinase mRNA expression in canine anal furunculosis lesions. Vet Immunol Immunopathol 2006; 115:68-75. [PMID: 17125846 DOI: 10.1016/j.vetimm.2006.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 10/05/2006] [Accepted: 10/17/2006] [Indexed: 11/22/2022]
Abstract
Although the aetiology of anal furunculosis (AF) in dogs is poorly understood, there is evidence for an underlying immune dysfunction. This is illustrated by the presence of a T helper type 1 cytokine mRNA profile in AF lesions and the clinical response to ciclosporin therapy. Expression of MMPs 2, 9 and 13 were evaluated in AF lesional biopsies by real-time quantitative RT-PCR. There was significantly increased expression of both MMP-9 and MMP-13 mRNA in AF biopsies compared to controls (p<0.001) but no significant difference in MMP-2 mRNA expression. Since MMP-9 and MMP-13 are primarily produced by macrophages, these data suggest that ulceration could be the result of aberrant activation of this cell type in the tissues. It is feasible that such pathological macrophage activity occurs in response to interferon-gamma secreted by T helper type 1 cells. This could explain why the lesions resolve following treatment with the immunosuppressive drug ciclosporin.
Collapse
Affiliation(s)
- A K House
- Department of Veterinary Clinical Sciences, Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, United Kingdom.
| | | | | |
Collapse
|
31
|
Lange F, Härtl S, Ungethuem U, Kuban RJ, Hammerschmidt S, Faber S, Morawietz L, Wirtz H, Emmrich F, Krenn V, Sack U. Anti-TNF Effects on Destructive Fibroblasts Depend on Mechanical Stress. Scand J Immunol 2006; 64:544-53. [PMID: 17032248 DOI: 10.1111/j.1365-3083.2006.01840.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Joint destruction in rheumatoid arthritis (RA) starts typically at sites of mechanically stressed inserts of the synovial membrane near the cartilage/bone border. In the therapy of RA, tumour necrosis factor (TNF) antagonists have rapidly emerged as a valuable class of anti-rheumatic agents that reduce joint destruction. The aim of this study was to investigate and profile genes involved in the interaction between articular movement and anti-TNF therapy in an in vitro model. Murine LS48 cells, an established substitute for invasive RA synovial fibroblasts, were cultured, stretched and/or treated with anti-TNF-alpha antibody for 24 h. RNA was isolated and gene transcript levels were determined using U74Av2 Affymetrix GeneChips to identify transcriptional events. Positive findings were verified by polymerase chain reaction (PCR). We identified 170 differentially regulated genes, including 44 of particular interest. Gene expression fell into different functional groups that can be explained by RA pathogenesis and experimental conditions. For 21 genes of the 44 of particular interest, regulation could be confirmed by real-time PCR. Remarkably, we found structural as well as functional genes differently regulated between stretched cells, anti-TNF-treated cells, and stretched cells treated with anti-TNF antibody. Additionally, we also found a large number of genes that are apparently not related to the experimental conditions. Mechanical exertion modulates gene expression and subsequently cellular response to anti-TNF therapy. Results in exerted cells correspond to current knowledge regarding RA pathogenesis and underline the relevance of our experimental approach. Finally, the central function of the interleukin-18 system in joint destruction could be confirmed by our findings.
Collapse
Affiliation(s)
- F Lange
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Philp D, Scheremeta B, Sibliss K, Zhou M, Fine EL, Nguyen M, Wahl L, Hoffman MP, Kleinman HK. Thymosin beta4 promotes matrix metalloproteinase expression during wound repair. J Cell Physiol 2006; 208:195-200. [PMID: 16607611 DOI: 10.1002/jcp.20650] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immobilized patients, diabetics, and the elderly suffer from impaired wound healing. The 43-amino acid angiogenic peptide thymosin beta4 (Tbeta4) has previously been found to accelerate dermal wound repair in rats, aged mice, and db/db diabetic mice. It also promotes corneal repair in both normal rats and mice. Because proteinases are important in wound repair, we hypothesized that Tbeta4 may regulate matrix metalloproteinase (MMP) expression in cells that are involved in wound repair. Analysis by RT-PCR of whole excised mouse dermal wounds on days 1, 2, and 3 after wounding showed that Tbeta4 increased several metalloproteinases, including MMP-2 and -9 expression by several-fold over control on day 2 after wounding. We further analyzed the metalloproteinases secreted in response to exogenous Tbeta4 by cells normally present in the wound. Western blot analysis of cultured keratinocytes, endothelial cells, and fibroblasts that were treated with increasing concentrations of Tbeta4 showed increases in the levels of MMP-1, -2, and -9 in a cell-specific manner. Tbeta4 also enhanced the secretion of MMP-1 and MMP-9 by activated monocytes. The central actin-binding domain, amino acids 17-23, had all of the activity for metalloproteinase induction. We conclude that part of the wound healing activity of Tbeta4 resides in its ability to increase proteinase activity via its central actin-binding domain. Thus, Tbeta4 may play a pivotal role in extracellular matrix remodeling during wound repair.
Collapse
Affiliation(s)
- Deborah Philp
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland 20892-4370, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gårdsvoll H, Gilquin B, Le Du MH, Ménèz A, Jørgensen TJD, Ploug M. Characterization of the Functional Epitope on the Urokinase Receptor. J Biol Chem 2006; 281:19260-72. [PMID: 16672229 DOI: 10.1074/jbc.m513583200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) represents one of the key regulatory steps in cell surface-associated plasminogen activation. On the basis on our crystal structure solved for uPAR in complex with a peptide antagonist, we recently proposed a model for the corresponding complex with the growth factor-like domain of uPA (Llinas et al. (2005) EMBO J. 24, 1655-1663). In the present study, we provide experimental evidence that consolidates and further develops this model using data from a comprehensive alanine scanning mutagenesis of uPAR combined with low resolution distance constraints defined within the complex using chemical cross-linkers as molecular rulers. The kinetic rate constants for the interaction between pro-uPA and 244 purified uPAR mutants with single-site replacements were determined by surface plasmon resonance. This complete alanine scanning of uPAR highlighted the involvement of 20 surface-exposed side chains in this interaction. Mutations causing delta deltaG > or = 1 kcal/mol for the uPA interaction are all located within or at the rim of the central cavity uniquely formed by the assembly of all three domains in uPAR, whereas none are found outside this crevice. Identification of specific cross-linking sites in uPAR and pro-uPA enabled us to build a model of the uPAR x uPA complex in which the kringle domain of uPA was positioned by the constraints established by the range of these cross-linkers. The nature of this interaction is predominantly hydrophobic and highly asymmetric, thus emphasizing the importance of the shape and size of the central cavity when designing low molecular mass antagonists of the uPAR/uPA interaction.
Collapse
Affiliation(s)
- Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
Mitsui N, Suzuki N, Koyama Y, Yanagisawa M, Otsuka K, Shimizu N, Maeno M. Effect of compressive force on the expression of MMPs, PAs, and their inhibitors in osteoblastic Saos-2 cells. Life Sci 2006; 79:575-83. [PMID: 16516240 DOI: 10.1016/j.lfs.2006.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 01/19/2006] [Accepted: 01/31/2006] [Indexed: 11/26/2022]
Abstract
Bone matrix turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), and plasminogen activator inhibitor type-1 (PAI-1). We previously demonstrated that 1.0g/cm(2) of compressive force was an optimal condition for inducing bone formation by osteoblastic Saos-2 cells. Here, we examined the effect of mechanical stress on the expression of MMPs, TIMPs, tPA, uPA, and PAI-1 in Saos-2 cells. The cells were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum and with or without continuously compressive force (0.5-3.0g/cm(2)) for up to 24h. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 gene expression were estimated by determining the mRNA levels using real-time PCR, and the protein levels were determined using ELISA. The expression levels of MMP-1, MMP-2, MMP-14, and TIMP-1 markedly exceeded the control levels at 1.0g/cm(2) of compressive force, whereas the expression levels of MMP-3, MMP-13, TIMP-2, TIMP-3, TIMP-4, tPA, uPA, and PAI-1 markedly exceeded the control levels at 3.0g/cm(2). These results suggest that mechanical stress stimulates bone matrix turnover by increasing these proteinases and inhibitors, and that the mechanism for the proteolytic degradation of bone matrix proteins differs with the strength of the mechanical stress.
Collapse
Affiliation(s)
- Narihiro Mitsui
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda, Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Salamone M, Siragusa M, Nasca M, Pitarresi L, Vittorelli ML, Chen WT, Ghersi G. Type-II transmembrane prolyl dipeptidases and matrix metalloproteinases in membrane vesicles of active endothelial cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 575:207-12. [PMID: 16700524 DOI: 10.1007/0-387-32824-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Monica Salamone
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, viale delle Scienze 90128 Palermo Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Hobson JP, Liu S, Rønø B, Leppla SH, Bugge TH. Imaging specific cell-surface proteolytic activity in single living cells. Nat Methods 2006; 3:259-61. [PMID: 16554829 DOI: 10.1038/nmeth862] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 02/07/2006] [Indexed: 11/09/2022]
Abstract
We describe a simple, sensitive and noninvasive assay that uses nontoxic, reengineered anthrax toxin-beta-lactamase fusion proteins with altered protease cleavage specificity to visualize specific cell-surface proteolytic activity in single living cells. The assay could be used to specifically image endogenous cell-surface furin, urokinase plasminogen activator and metalloprotease activity. We have adapted the assay for fluorescence microscopy, flow cytometry and fluorescent plate reader formats, and it is amenable for automation and high-throughput analysis.
Collapse
Affiliation(s)
- John P Hobson
- Proteases and Tissue Remodeling Unit, National Institute of Dental and Craniofacial Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 30 Convent Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
37
|
Fujisaki K, Tanabe N, Suzuki N, Mitsui N, Oka H, Ito K, Maeno M. The effect of IL-1α on the expression of matrix metalloproteinases, plasminogen activators, and their inhibitors in osteoblastic ROS 17/2.8 cells. Life Sci 2006; 78:1975-82. [PMID: 16313928 DOI: 10.1016/j.lfs.2005.08.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Interleukin-1 (IL-1) plays key roles in altering bone matrix turnover. This turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) , and plasminogen activator inhibitor type-1 (PAI-1). In this study, we examined the effect of IL-1alpha on the expression of the MMPs, TIMPs, tPA, uPA, and PAI-1 genes in osteoblasts derived from the rat osteosarcoma cell line ROS 17/2.8. The cells were cultured in alpha-minimum essential medium containing 10% fetal bovine serum with 0 or 100 U/ml of IL-1alpha for up to 14 days. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 expression were estimated by determining the mRNA levels using real-time RT-PCR and by determining protein levels using ELISA. In IL-1alpha cultures, the expression levels of MMP-1, -2, -3, -13, and -14 exceeded that of the control through day 14 of culture, and the expression of MMPs increased markedly from the proliferative to the later stages of culture. The TIMP-1, -2, and -3 expression levels increased from the initial to the proliferative stages of culture. The expression of tPA increased greatly during the proliferative stage of culture, and uPA expression increased throughout the culture period, increasing markedly from the proliferative to the later stages of culture. In contrast, PAI-1 expression decreased in the presence of IL-1alpha through day 14. These results suggest that IL-1alpha stimulate bone matrix turnover by increasing MMPs, tPA, and uPA production and decreasing PAI-1 production by osteoblasts, and incline the turnover to the resolution.
Collapse
|
38
|
Szabo R, Netzel-Arnett S, Hobson J, Antalis T, Bugge T. Matriptase-3 is a novel phylogenetically preserved membrane-anchored serine protease with broad serpin reactivity. Biochem J 2005; 390:231-42. [PMID: 15853774 PMCID: PMC1188268 DOI: 10.1042/bj20050299] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report in the present study the bioinformatic identification, molecular cloning and biological characterization of matriptase-3, a novel membrane-anchored serine protease that is phylogenetically preserved in fish, birds, rodents, canines and primates. The gene encoding matriptase-3 is located on syntenic regions of human chromosome 3q13.2, mouse chromosome 16B5, rat chromosome 11q21 and chicken chromosome 1. Bioinformatic analysis combined with cDNA cloning predicts a functional TTSP (type II transmembrane serine protease) with 31% amino acid identity with both matriptase/MT-SP1 and matriptase-2. This novel protease is composed of a short N-terminal cytoplasmic region followed by a transmembrane domain, a stem region with one SEA, two CUB and three LDLRa (low-density lipoprotein receptor domain class A) domains and a C-terminal catalytic serine protease domain. Transcript analysis revealed restricted, species-conserved expression of matriptase-3, with the highest mRNA levels in brain, skin, reproductive and oropharyngeal tissues. The full-length matriptase-3 cDNA directed the expression of a 90 kDa N-glycosylated protein that localized to the cell surface, as assessed by cell-surface biotin labelling. The purified activated matriptase-3 serine protease domain expressed in insect cells hydrolysed synthetic peptide substrates, with a strong preference for Arg at position P(1), and showed proteolytic activity towards several macromolecular substrates, including gelatin, casein and albumin. Interestingly, activated matriptase-3 formed stable inhibitor complexes with an array of serpins, including plasminogen activator inhibitor-1, protein C inhibitor, alpha1-proteinase inhibitor, alpha2-antiplasmin and antithrombin III. Our study identifies matriptase-3 as a novel biologically active TTSP of the matriptase subfamily having a unique expression pattern and post-translational regulation.
Collapse
Affiliation(s)
- Roman Szabo
- *Proteases and Tissue Remodeling Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, U.S.A
| | - Sarah Netzel-Arnett
- †Departments of Physiology and Surgery, University of Maryland School of Medicine, Rockville, MD 20855, U.S.A
| | - John P. Hobson
- *Proteases and Tissue Remodeling Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, U.S.A
| | - Toni M. Antalis
- †Departments of Physiology and Surgery, University of Maryland School of Medicine, Rockville, MD 20855, U.S.A
| | - Thomas H. Bugge
- *Proteases and Tissue Remodeling Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
39
|
Vayalil PK, Olman M, Murphy-Ullrich JE, Postlethwait EM, Liu RM. Glutathione restores collagen degradation in TGF-beta-treated fibroblasts by blocking plasminogen activator inhibitor-1 expression and activating plasminogen. Am J Physiol Lung Cell Mol Physiol 2005; 289:L937-45. [PMID: 16258002 DOI: 10.1152/ajplung.00150.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor (TGF)-beta plays an important role in tissue fibrogenesis. We previously demonstrated that reduced glutathione (GSH) supplementation blocked collagen accumulation induced by TGF-beta in NIH-3T3 cells. In the present study, we show that supplementation of GSH restores the collagen degradation rate in TGF-beta-treated NIH-3T3 cells. Restoration of collagen degradation by GSH is associated with a reduction of type I plasminogen activator inhibitor (PAI)-1 expression/activity as well as recovery of the activities of cell/extracellular matrix-associated tissue-type plasminogen activator and plasmin. Furthermore, we find that NIH-3T3 cells constitutively express plasminogen mRNA and possess plasmin activity. Blockade of cell surface binding of plasminogen/plasminogen activation with tranexamic acid (TXA) or inhibition of plasmin activity with aprotinin significantly reduces the basal level of collagen degradation both in the presence or absence of exogenous plasminogen. Most importantly, addition of TXA or active PAI-1 almost completely eliminates the restorative effects of GSH on collagen degradation in TGF-beta treated cells. Together, our results suggest that the major mechanism by which GSH restores collagen degradation in TGF-beta-treated cells is through blocking PAI-1 expression, leading to increased PA/plasmin activity and consequent proteolytic degradation of collagens. This study provides mechanistic evidence for GSH's putative therapeutic effect in the treatment of fibrotic disorders.
Collapse
Affiliation(s)
- Praveen K Vayalil
- Dept. of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | |
Collapse
|
40
|
List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T, Burke B, Nielsen BS, Gutkind JS, Bugge TH. Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 2005; 19:1934-50. [PMID: 16103220 PMCID: PMC1186192 DOI: 10.1101/gad.1300705] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Overexpression of the type II transmembrane serine protease matriptase is a highly consistent feature of human epithelial tumors. Here we show that matriptase possesses a strong oncogenic potential when unopposed by its endogenous inhibitor, HAI-1. Modest orthotopic overexpression of matriptase in the skin of transgenic mice caused spontaneous squamous cell carcinoma and dramatically potentiated carcinogen-induced tumor formation. Matriptase-induced malignant conversion was preceded by progressive interfollicular hyperplasia, dysplasia, follicular transdifferentiation, fibrosis, and dermal inflammation. Furthermore, matriptase induced activation of the pro-tumorigenic PI3K-Akt signaling pathway. This activation was frequently accompanied by H-ras or K-ras mutations in carcinogen-induced tumors, whereas matriptase-induced spontaneous carcinoma formation occurred independently of ras activation. Increasing epidermal HAI-1 expression completely negated the oncogenic effects of matriptase. The data implicate dysregulated matriptase expression in malignant epithelial transformation.
Collapse
Affiliation(s)
- Karin List
- Proteases and Tissue Remodeling Unit, Molecular Carcinogenesis Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lin Y, Xie WF, Chen YX, Zhang X, Zeng X, Qiang H, Chen WZ, Yang XJ, Han ZG, Zhang ZB. Treatment of experimental hepatic fibrosis by combinational delivery of urokinase-type plasminogen activator and hepatocyte growth factor genes. Liver Int 2005; 25:796-807. [PMID: 15998431 DOI: 10.1111/j.1478-3231.2005.01098.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE To investigate the effect of combinational delivery of urokinase-type plasminogen activator (uPA) and hepatocyte growth factor (HGF) genes on hepatic fibrosis. METHODS Replication-deficient adenoviral vectors expressing either human HGF (AdHGF) or uPA (AduPA) were generated. HGF gene was transferred into primary cultured hepatocytes and uPA gene to hepatic stellate cell (HSC) to investigate the effect on the biological character of cells. Combinational adenoviruses were infused into hepatic fibrosis rats. Serum markers as well as histological and immunohistochemical examination were carried out to test the reversal of hepatic fibrosis. RESULTS Transfection of exogenous HGF gene induced expression of c-met/HGF receptor and stimulated hepatocyte proliferation. uPA gene delivered into HSC decreased the amount of collagen types I and III accompanied with the increased expression of matrix metalloproteinase-2. In vivo, the area of extracellular matrix in the fibrotic liver decreased to 72% in AdHGF-treated rats (P<0.01), 64% in the AduPA-treated group (P<0.01), and 51% in bi-genes transfection (P<0.01), compared with that of the controls. Moreover, immunohistochemical staining of collagen types I and III revealed that combinational genes delivery exerted more effect on reversal of hepatic fibrosis than mono-gene transfection. CONCLUSIONS Our study indicated that simultaneous delivery of two antifibrotic genes could confer synergistic effect on hepatic fibrosis.
Collapse
Affiliation(s)
- Yong Lin
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Saunders WB, Bayless KJ, Davis GE. MMP-1 activation by serine proteases and MMP-10 induces human capillary tubular network collapse and regression in 3D collagen matrices. J Cell Sci 2005; 118:2325-40. [PMID: 15870107 DOI: 10.1242/jcs.02360] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previous work has shown that endothelial cell (EC)-derived matrix metalloproteinases (MMPs) regulate regression of capillary tubes in vitro in a plasmin- and MMP-1 dependent manner. Here we report that a number of serine proteases can activate MMP-1 and cause capillary tube regression; namely plasma kallikrein, trypsin, neutrophil elastase, cathepsin G, tryptase and chymase. Plasma prekallikrein failed to induce regression without coactivators such as high molecular weight kininogen (HMWK) or coagulation Factor XII. The addition of trypsin, the neutrophil serine proteases (neutrophil elastase and cathepsin G) and the mast cell serine proteases (tryptase and chymase) each caused MMP-1 activation and collagen type I proteolysis, capillary tubular network collapse, regression and EC apoptosis. Capillary tube collapse is accompanied by collagen gel contraction, which is strongly related to the wound contraction that occurs during regression of granulation tissue in vivo. We also report that proMMP-10 protein expression is markedly induced in ECs undergoing capillary tube morphogenesis. Addition of each of the serine proteases described above led to activation of proMMP-10, which also correlated with MMP-1 activation and capillary tube regression. Treatment of ECs with MMP-1 or MMP-10 siRNA markedly delayed capillary tube regression, whereas gelatinase A (MMP-2), gelatinase B (MMP-9) and stromelysin-1 (MMP-3) siRNA-treated cells behaved in a similar manner to controls and regressed normally. Increased expression of MMP-1 or MMP-10 in ECs using recombinant adenoviral delivery markedly accelerated serine protease-induced capillary tube regression. ECs expressing increased levels of MMP-10 activated MMP-1 to a greater degree than control ECs. Thus, MMP-10-induced activation of MMP-1 correlated with tube regression and gel contraction. In summary, our work demonstrates that MMP-1 zymogen activation is mediated by multiple serine proteases and MMP-10, and that these events are central to EC-mediated collagen degradation and capillary tube regression in 3D collagen matrices.
Collapse
Affiliation(s)
- W Brian Saunders
- Department of Pathology and Laboratory Medicine, Texas A&M University System Health Science Center, 208 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | | | |
Collapse
|
43
|
Weckroth M, Vaheri A, Virolainen S, Saarialho-Kere U, Jahkola T, Sirén V. Epithelial tissue-type plasminogen activator expression, unlike that of urokinase, its receptor, and plasminogen activator inhibitor-1, is increased in chronic venous ulcers. Br J Dermatol 2005; 151:1189-96. [PMID: 15606514 DOI: 10.1111/j.1365-2133.2004.06261.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The plasminogen activation system represents a potent mechanism of extracellular proteolysis and is an essential component of normal wound healing. It has also been implicated in the pathogenesis of chronic, nonhealing ulcers. Traditionally, urokinase-type plasminogen activator (uPA) has been associated with pericellular proteolytic activity involved in tissue remodelling processes, and tissue-type plasminogen activator (tPA) mainly with intravascular fibrinolysis. OBJECTIVES The present study was conducted to characterize the spatial distribution of the various plasminogen activation system components in chronic ulcers and acute, well-granulating wounds. METHODS The expression of uPA, tPA, urokinase receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1), and vitronectin was investigated by immunohistochemical staining, in addition to uPA, tPA and PAI-1 expression by in-situ hybridization, in samples from eight chronic venous ulcers, five decubitus ulcers, five well-granulating acute wounds and five normal skin samples. RESULTS In chronic venous leg ulcers tPA mRNA was detected in basal and suprabasal keratinocytes at the leading wound edge, while in well-granulating wounds and in decubitus ulcers tPA mRNA was expressed only in a few keratinocytes. However, tPA was widely expressed in fibroblast- and macrophage-like cells in the stroma of well-granulating wounds, while less tPA was detected in the granulation tissue of chronic ulcers. tPA mRNA and protein were localized in the superficial granular layers in normal skin. Although no qualitative differences in expression of uPA, PAI-1 or uPAR in the wound edge keratinocytes in chronic ulcers vs. normally granulating wounds were found, their expressions were more pronounced in the granulation tissue of well-granulating wounds. CONCLUSIONS These results suggest that in poorly healing venous leg ulcers, the pattern of tPA expression is altered in keratinocytes at the leading edge of the wound, and the patterns of tPA, uPA and PAI-1 expression are altered in the granulation tissue.
Collapse
Affiliation(s)
- M Weckroth
- Department of Virology, Haartman Institute, P.O. 21, FI-00014, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
44
|
Curino A, Patel V, Nielsen BS, Iskander AJ, Ensley JF, Yoo GH, Holsinger FC, Myers JN, El-Nagaar A, Kellman RM, Shillitoe EJ, Molinolo AA, Gutkind JS, Bugge TH. Detection of plasminogen activators in oral cancer by laser capture microdissection combined with zymography. Oral Oncol 2005; 40:1026-32. [PMID: 15509494 DOI: 10.1016/j.oraloncology.2004.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 05/15/2004] [Indexed: 01/22/2023]
Abstract
Plasminogen activation is believed to be critical to the progression of oral squamous cell carcinoma by facilitating matrix degradation during invasion and metastasis, and high levels of urokinase plasminogen activator (uPA) and plasminogen activator (PA) inhibitor-1 (PAI-1) in tumors predict poor disease outcome. We describe the development of a novel method for studying PA in oral cancer that combines the sensitivity and specificity of zymography with the spatial resolution of immunohistochemistry. Laser capture microdissection (LCM) was combined with plasminogen-casein zymography to analyze uPA, tissue PA (tPA), uPA-PAI-1 complexes, and tPA-PAI-1 complexes in 11 tumors and adjacent non-malignant epithelium from squamous cell carcinomas of the tongue, floor of mouth, larynx, and vocal cord. uPA was detectable in all tumor samples analyzed, uPA-PAI-1 complexes in three samples, and tPA in nine. PA was detectable in as little as 0.5 microg protein lysate from microdissected tumors. In all specimens, uPA expression was highly increased in tumor tissue compared to adjacent non-malignant tissue. In conclusion, LCM combined with zymography may be excellently suited for analyzing the prognostic significance and causal involvement of the plasminogen activation system in oral cancer.
Collapse
Affiliation(s)
- Alejandro Curino
- Proteases and Tissue Remodeling Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Morgan H, Hill PA. Human breast cancer cell-mediated bone collagen degradation requires plasminogen activation and matrix metalloproteinase activity. Cancer Cell Int 2005; 5:1. [PMID: 15701164 PMCID: PMC548674 DOI: 10.1186/1475-2867-5-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 02/08/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: Breast cancer cells frequently metastasize to the skeleton and induce extensive bone destruction. Cancer cells produce proteinases, including matrix metalloproteinases (MMPs) and the plasminogen activator system (PAS) which promote invasion of extracellular matrices, but whether these proteinases degrade bone matrix is unclear. To characterize the role that breast cancer cell proteinases play in bone degradation we compared the effects of three human breast cancer cell lines, MDA-MB-231, ZR-75-1 and MCF-7 with those of a normal breast epithelial cell line, HME. The cell lines were cultured atop radiolabelled matrices of either mineralized or non-mineralized bone or type I collagen, the principal organic constituent of bone. RESULTS: The 3 breast cancer cell lines all produced significant degradation of the 3 collagenous extracellular matrices (ECMs) whilst the normal breast cell line was without effect. Breast cancer cells displayed an absolute requirement for serum to dissolve collagen. Degradation of collagen was abolished in plasminogen-depleted serum and could be restored by the addition of exogenous plasminogen. Localization of plasmin activity to the cell surface was critical for the degradation process as aprotinin, but not alpha2 antiplasmin, prevented collagen dissolution. During ECM degradation breast cancer cell lines expressed urokinase-type plasminogen activator (u-PA) and uPA receptor, and MMPs-1, -3, -9,-13, and -14. The normal breast epithelial cell line expressed low levels of MMPs-1, and -3, uPA and uPA receptor. Inhibitors of both the PAS (aprotinin and PA inhibitor-1) and MMPs (CT1166 and tisue inhibitor of metalloproteinase) blocked collagen degradation, demonstrating the requirement of both plasminogen activation and MMP activity for degradation. The activation of MMP-13 in human breast cancer cells was prevented by plasminogen activator inhibitor-1 but not by tissue inhibitor of metalloproteinase-1, suggesting that plasmin activates MMP-13 directly. CONCLUSIONS: These data demonstrate that breast cancer cells dissolve type I collagen and that there is an absolute requirement for plasminogen activation and MMP activity in the degradation process.
Collapse
Affiliation(s)
- Hayley Morgan
- Department of Craniofacial Biology and Orthodontics, King's College London, Floor 22, Guy's Tower, Guy's Hospital, London, SE1 9RT UK
| | - Peter A Hill
- Department of Craniofacial Biology and Orthodontics, King's College London, Floor 22, Guy's Tower, Guy's Hospital, London, SE1 9RT UK
| |
Collapse
|
46
|
Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P, Balbin M, Lopez-Otin C, Shapiro S, Inada M, Krane S, Allen E, Chung D, Weiss SJ. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. ACTA ACUST UNITED AC 2005; 167:769-81. [PMID: 15557125 PMCID: PMC2172570 DOI: 10.1083/jcb.200408028] [Citation(s) in RCA: 456] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As cancer cells traverse collagen-rich extracellular matrix (ECM) barriers and intravasate, they adopt a fibroblast-like phenotype and engage undefined proteolytic cascades that mediate invasive activity. Herein, we find that fibroblasts and cancer cells express an indistinguishable pericellular collagenolytic activity that allows them to traverse the ECM. Using fibroblasts isolated from gene-targeted mice, a matrix metalloproteinase (MMP)–dependent activity is identified that drives invasion independently of plasminogen, the gelatinase A/TIMP-2 axis, gelatinase B, collagenase-3, collagenase-2, or stromelysin-1. In contrast, deleting or suppressing expression of the membrane-tethered MMP, MT1-MMP, in fibroblasts or tumor cells results in a loss of collagenolytic and invasive activity in vitro or in vivo. Thus, MT1-MMP serves as the major cell-associated proteinase necessary to confer normal or neoplastic cells with invasive activity.
Collapse
Affiliation(s)
- Farideh Sabeh
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Samarakoon R, Higgins CE, Higgins SP, Kutz SM, Higgins PJ. Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-β1-stimulated smooth muscle cells is pp60c-src/MEK-dependent. J Cell Physiol 2005; 204:236-46. [PMID: 15622520 DOI: 10.1002/jcp.20279] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) stimulates expression of plasminogen activator inhibitor type-1 (PAI-1), a serine protease inhibitor (SERPIN) important in the control of stromal barrier proteolysis and cell-to-matrix adhesion. Pharmacologic agents that target MEK (PD98059, U0126) or src family (PP1) kinases attenuated TGF-beta1-dependent PAI-1 transcription in R22 aortic smooth muscle cells. Pretreatment with PP1 at concentrations that inhibited TGF-beta1-dependent PAI-1 expression also blocked ERK1/2 activation/nuclear accumulation suggesting that the required src kinase activity is upstream of ERK1/2 in the TGF-beta1-initiated signaling cascade. The IC(50) of the PP1-sensitive kinase, furthermore, specifically implied involvement of pp60(c-src) in PAI-1 induction. Indeed, addition of TGF-beta1 to quiescent R22 cells resulted in a 3-fold increase in pp60(c-src) autophosphorylation and kinase activity. Transfection of a dominant-negative pp60(c-src) construct, moreover, reduced TGF-beta1-induced PAI-1 expression levels to that of unstimulated controls or PP1-pretreated cells. A >/=170 kDa protein that co-immunoprecipitated with TGF-beta1-activated pp60(c-src) was also phosphorylated transiently in response to TGF-beta1. TGF-beta1 is known to transactivate the 170 kDa EGF receptor (EGFR) by autocrine HB-EGF or TGF-alpha mechanisms suggesting involvement of EGFR activation in certain TGF-beta1-initiated responses. Incubation of quiescent R22 cells with the EGFR-specific inhibitor AG1478 prior to growth factor (EGF or TGF-beta1) addition effectively blocked EGFR activation as determined by direct visualization of receptor internalization. AG1478 suppressed (in a dose-dependent fashion) EGF-induced PAI-1 protein levels and, at a final concentration of 2.5 muM, virtually eliminated EGF-dependent PAI-1 synthesis. More importantly, AG1478 similarly repressed inducible PAI-1 levels in TGF-beta1-stimulated R22 cultures. PP1, PD98059, and U0126 also inhibited TGF-beta1-dependent cell motility at concentrations that significantly attenuated PAI-1 expression. Consistent with the AG1478-associated reductions in EGF- and TGF-beta1-stimulated PAI-1 expression, pretreatment of R22 cell cultures with AG1478 effectively suppressed growth factor-stimulated cell motility. These data indicate that two major phenotypic characteristics of TGF-beta1-exposure (i.e., transcription of specific target genes [e.g., PAI-1], increased cell motility) are linked in the R22 vascular smooth muscle cell system, require pp60(c-src) kinase activity and MEK signaling and involve activation of an AG1478-sensitive (likely EGFR-dependent) pathway.
Collapse
Affiliation(s)
- Rohan Samarakoon
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, USA
| | | | | | | | | |
Collapse
|
48
|
Feng HC, Tsao SW, Ngan HYS, Xue WC, Chiu PM, Cheung ANY. Differential expression of insulin-like growth factor binding protein 1 and ferritin light polypeptide in gestational trophoblastic neoplasia. Cancer 2005; 104:2409-16. [PMID: 16222695 DOI: 10.1002/cncr.21483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hydatidiform mole (HM), the most common type of gestational trophoblastic diseases, can be considered as placenta with abnormal chromosome composition with potential of malignant transformation. Few biologic markers can predict subsequent development of persistent gestational trophoblastic neoplasia (GTN) requiring chemotherapy. METHODS Suppression subtractive hybridization (SSH) combined with cDNA microarray was used to compare the differential expression pattern of HM that spontaneously regressed and that subsequently developed metastatic GTN. Tissue-specific chips were constructed from the subtracted cDNA libraries, followed by cDNA microarray analysis. Verification by quantitative RNA analysis by real-time polymerase chain reaction (PCR) and immunohistochemical analysis was performed in 23 genotyped complete HM. RESULTS Sixteen differentially expressed transcripts were identified. Quantitative RNA analysis confirmed down-regulation of ferritin light polypeptide (FTL) (P = 0.037) and insulin-like growth factor binding protein 1 (IGFBP1) (P = 0.037) in HM that subsequently developed GTN when compared with those HM that regressed. Immunohistochemical analysis further confirmed reduced IGFBP1 protein (P = 0.03) expression in HM that developed GTN. CONCLUSIONS Findings showed that reduced expression of genes related to cell invasion and immunosuppression, especially FTL and IGFBP1, were associated with development of GTN, and this finding may provide a better understanding of the pathogenesis of GTN. The potential application of FTL and IGFBP1 in management of patients with HM should be explored.
Collapse
Affiliation(s)
- Hui-Chen Feng
- Department of Anatomy, The University of Hong Kong, Pokfulam, Queen Mary Hospital, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
49
|
Väisänen MR, Väisänen T, Pihlajaniemi T. The shed ectodomain of type XIII collagen affects cell behaviour in a matrix-dependent manner. Biochem J 2004; 380:685-93. [PMID: 15005656 PMCID: PMC1224210 DOI: 10.1042/bj20031974] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/26/2004] [Accepted: 03/09/2004] [Indexed: 11/17/2022]
Abstract
Transmembrane type XIII collagen resides in adhesive structures of cells and tissues, and has therefore been implicated in cell adhesion and in adhesion-dependent cell functions. This collagen also exists as a soluble protein in the pericellular matrix, as the ectodomain is released from the plasma membrane by proteolytic cleavage. Analysis with various protease inhibitors led to confirmation of the furin family of proprotein convertases as the protease group responsible for the shedding of the ectodomain, cleaving at a site conforming to the consensus sequence for the proprotein convertases at the stem of the ectodomain. Both the trans -Golgi network and the plasma membrane were used as cleavage locations. Mammalian cells employed various intracellular mechanisms to modulate shedding of the ectodomain, all resulting in a similar cleavage event. Cell detachment from the underlying substratum was also found to augment the excision. The released ectodomain rendered the pericellular surroundings less supportive of cell adhesion, migration and proliferation, as seen specifically on a vitronectin substratum. Type XIII collagen ectodomain shedding thus resulted in the formation of a soluble, biologically active molecule, which eventually modulated cell behaviour in a reciprocal and substratum-specific manner. The dual existence of membrane-bound and soluble variants widens our biological understanding of type XIII collagen.
Collapse
Affiliation(s)
- Marja-Riitta Väisänen
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | | | | |
Collapse
|
50
|
Law B, Curino A, Bugge TH, Weissleder R, Tung CH. Design, synthesis, and characterization of urokinase plasminogen-activator-sensitive near-infrared reporter. ACTA ACUST UNITED AC 2004; 11:99-106. [PMID: 15112999 DOI: 10.1016/j.chembiol.2003.12.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 10/30/2003] [Accepted: 11/03/2003] [Indexed: 10/21/2022]
Abstract
The urokinase-type plasminogen activator (uPA) plays a critical role in malignancies, and its overexpression has been linked to poor clinical prognosis in breast cancer. The ability to noninvasively and serially map uPA expression as a biomarker would thus have significant potential in improving novel cancer therapies. Here, we describe the development of a selective uPA activatable near-infrared (NIR) fluorescent imaging probe. The probe consists of multiple peptide motifs, GGSGRSANAKC-NH2, terminally capped with different NIR fluorochromes (Cy5.5 or Cy7) and a pegylated poly-L-lysine graft copolymer. Upon addition of recombinant human uPA to the probe, significant fluorescence amplification was observed, up to 680% with the optimized preparation. No activation with negative control compounds and uPA inhibitors could be measured. These data indicate that the optimized preparation should be useful for imaging uPA in cancer.
Collapse
Affiliation(s)
- Benedict Law
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|