1
|
Su GM, Guo QW, Shen YL, Cai JJ, Chen X, Lin J, Fang DZ. Association between PEMT rs7946 and blood pressure levels in Chinese adolescents. Blood Press Monit 2024; 29:180-187. [PMID: 38502043 DOI: 10.1097/mbp.0000000000000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
OBJECTIVES This study was to explore blood pressure levels in Chinese adolescents with different genotypes of phosphatidylethanolamine N-methyltransferase (PEMT) gene ( PEMT ) rs7946, as well as effects of dietary intake on blood pressure levels with different genders and different genotypes of PEMT rs7946. METHODS PEMT rs7946 genotypes were identified by PCR-restriction fragment length polymorphism and verified by DNA sequencing. Blood pressure was measured using a standard mercury sphygmomanometer. Dietary intakes were analyzed based on a 3-day diet diary, and dietary components were calculated using computer software. RESULTS A total of 721 high school students (314 males and 407 females) at the age of 16.86 ± 0.59 years were included. The A allele carriers of PEMT rs7946 had increased levels of SBP, DBP, mean arterial pressure (MAP) and pulse pressure (PP) than the GG homozygotes in the female subjects. There were significant interactions between PEMT rs7946 and gender on SBP and MAP levels, regardless of whether an unadjusted or adjusted model was used. When dietary intake was taken into account, fat intake was positively associated with SBP and PP in the male GG homozygotes, while protein intake was positively associated with PP in the female A allele carriers of PEMT rs7946. CONCLUSION This study suggests that PEMT rs7946 is significantly associated with blood pressure levels in human being. There might be interactions among PEMT rs7946, gender, and dietary intake on blood pressure levels in the adolescent population.
Collapse
Affiliation(s)
- Guo Ming Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
2
|
Popov J, Despot T, Avelar Rodriguez D, Khan I, Mech E, Khan M, Bojadzija M, Pai N. Implications of Microbiota and Immune System in Development and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:1668. [PMID: 38892602 PMCID: PMC11175128 DOI: 10.3390/nu16111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent type of liver disease worldwide. The exact pathophysiology behind MASLD remains unclear; however, it is thought that a combination of factors or "hits" act as precipitants for disease onset and progression. Abundant evidence supports the roles of diet, genes, metabolic dysregulation, and the intestinal microbiome in influencing the accumulation of lipids in hepatocytes and subsequent progression to inflammation and fibrosis. Currently, there is no cure for MASLD, but lifestyle changes have been the prevailing cornerstones of management. Research is now focusing on the intestinal microbiome as a potential therapeutic target for MASLD, with the spotlight shifting to probiotics, antibiotics, and fecal microbiota transplantation. In this review, we provide an overview of how intestinal microbiota interact with the immune system to contribute to the pathogenesis of MASLD and metabolic dysfunction-associated steatohepatitis (MASH). We also summarize key microbial taxa implicated in the disease and discuss evidence supporting microbial-targeted therapies in its management.
Collapse
Affiliation(s)
- Jelena Popov
- Boston Combined Residency Program, Boston Children’s Hospital & Boston Medical Center, Boston, MA 02115, USA;
| | - Tijana Despot
- College of Medicine and Health, University College Cork, T12 YN60 Cork, Ireland; (T.D.); (I.K.)
| | - David Avelar Rodriguez
- Department of Pediatric Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada;
| | - Irfan Khan
- College of Medicine and Health, University College Cork, T12 YN60 Cork, Ireland; (T.D.); (I.K.)
| | - Eugene Mech
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Mahrukh Khan
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Medical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Milan Bojadzija
- Department of Internal Medicine, Subotica General Hospital, 24000 Subotica, Serbia;
| | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Division of Gastroenterology, Hepatology and Nutrition, McMaster Children’s Hospital, Hamilton, ON L8S 4L8, Canada
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Zhou Z, Yao Y, Sun Y, Wang X, Huang S, Hou J, Wang L, Wei F. Serum betaine and dimethylglycine in mid-pregnancy and the risk of gestational diabetes mellitus: a case-control study. Endocrine 2024:10.1007/s12020-024-03732-4. [PMID: 38448678 DOI: 10.1007/s12020-024-03732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/04/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE To investigate the associations of choline, betaine, dimethylglycine (DMG), L-carnitine, and Trimethylamine-N-oxide (TMAO) with the risk of Gestational diabetes mellitus (GDM) as well as the markers of glucose homeostasis. METHODS We performed a case-control study including 200 diagnosed GDM cases and 200 controls matched by maternal age (±2 years) and gestational age (±2 weeks). Concentrations of serum metabolites were measured by the high-performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS). RESULTS Compared to the control group, GDM group had significantly lower serum betaine concentration and betaine/choline ratio, and higher DMG concentration. Furthermore, decreased betaine concentration and betaine/choline ratio, increased DMG concentration showed significant association with the risk of GDM. In addition, serum betaine concentrations were negatively associated with blood glucose levels at 1-h post-glucose load (OGTT-1h), and both betaine and L-carnitine concentrations were positively associated with 1,5-anhydroglucitol levels. Betaine/choline ratio was negatively associated with OGTT-1h and blood glucose levels at 2-h post-glucose load (OGTT-2h) and serum choline concentrations were negatively associated with fasting blood glucose and positively associated with OGTT-2h. CONCLUSION Decreased serum betaine concentrations and betaine/choline ratio, and elevated DMG concentrations could be significant risk factors for GDM. Furthermore, betaine may be associated with blood glucose regulation and short-term glycemic fluctuations.
Collapse
Affiliation(s)
- Ziqing Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
| | - Yao Yao
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
| | - Yanan Sun
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
- Medical Insurance Office of Shenzhen Longgang Central Hospital, Shenzhen, Guangdong Province, China
| | - Xin Wang
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
- Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Shang Huang
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
- Shenzhen Children's Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Jianli Hou
- Department of Gynecology and Obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
| | - Lijun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.
| | - Fengxiang Wei
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China.
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China.
| |
Collapse
|
4
|
Wen Y, Luo Y, Qiu H, Chen B, Huang J, Lv S, Wang Y, Li J, Tao L, Yang B, Li K, He L, He M, Yang Q, Yu Z, Xiao W, Zhao M, Zou X, Lu R, Gu C. Gut microbiota affects obesity susceptibility in mice through gut metabolites. Front Microbiol 2024; 15:1343511. [PMID: 38450171 PMCID: PMC10916699 DOI: 10.3389/fmicb.2024.1343511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction It is well-known that different populations and animals, even experimental animals with the same rearing conditions, differ in their susceptibility to obesity. The disparity in gut microbiota could potentially account for the variation in susceptibility to obesity. However, the precise impact of gut microbiota on gut metabolites and its subsequent influence on susceptibility to obesity remains uncertain. Methods In this study, we established obesity-prone (OP) and obesity-resistant (OR) mouse models by High Fat Diet (HFD). Fecal contents of cecum were examined using 16S rDNA sequencing and untargeted metabolomics. Correlation analysis and MIMOSA2 analysis were used to explore the association between gut microbiota and intestinal metabolites. Results After a HFD, gut microbiota and gut metabolic profiles were significantly different between OP and OR mice. Gut microbiota after a HFD may lead to changes in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), a variety of branched fatty acid esters of hydroxy fatty acids (FAHFAs) and a variety of phospholipids to promote obesity. The bacteria g_Akkermansia (Greengene ID: 175696) may contribute to the difference in obesity susceptibility through the synthesis of glycerophosphoryl diester phosphodiesterase (glpQ) to promote choline production and the synthesis of valyl-tRNA synthetase (VARS) which promotes L-Valine degradation. In addition, gut microbiota may affect obesity and obesity susceptibility through histidine metabolism, linoleic acid metabolism and protein digestion and absorption pathways.
Collapse
Affiliation(s)
- Yuhang Wen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yadan Luo
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Hao Qiu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Baoting Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Jingrong Huang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Shuya Lv
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yan Wang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Jiabi Li
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lingling Tao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Bailin Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Ke Li
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Wudian Xiao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Mingde Zhao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Xiaoxia Zou
- Suining First People's Hospital, Suining, China
| | - Ruilin Lu
- Suining First People's Hospital, Suining, China
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| |
Collapse
|
5
|
Sánchez V, Baumann A, Brandt A, Wodak MF, Staltner R, Bergheim I. Oral Supplementation of Phosphatidylcholine Attenuates the Onset of a Diet-Induced Metabolic Dysfunction-Associated Steatohepatitis in Female C57BL/6J Mice. Cell Mol Gastroenterol Hepatol 2024; 17:785-800. [PMID: 38262589 PMCID: PMC10966192 DOI: 10.1016/j.jcmgh.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND & AIMS Changes in phosphatidylcholine levels in the liver have been associated with the development of metabolic dysfunction-associated steatotic liver disease. Here, the effects of supplementing phosphatidylcholine on the development of early signs of metabolic dysfunction-associated steatohepatitis were assessed. METHODS Male and female C57BL/6J mice were fed a liquid control or a fructose-, fat-, and/or cholesterol-rich diet for 7 or 8 weeks. The diets of female mice were fortified ± phosphatidylcholine (12.5 mg/g diet). In liver tissue and portal blood, indices of liver damage, inflammation, and bacterial endotoxemia were measured. J774A.1 cells and human monocytes preincubated with phosphatidylcholine (0.38 mmol/L) were challenged with lipopolysaccharide (50-100 ng/mL) ± the peroxisome proliferator-activated receptor γ (PPARγ) activator pioglitazone (10 μmol/L) or ± a liver receptor homolog 1 (LRH-1) antagonist 1-(3'-[1-(2-[4-morpholinyl]ethyl)-1H-pyrazol-3-yl]-3-biphenylyl)ethanon (1-10 μmol/L). RESULTS In fructose-, fat-, and/or cholesterol-rich diet-fed mice the development of fatty liver and the beginning of inflammation were associated with significantly lower hepatic phosphatidylcholine levels when compared with controls. Supplementing phosphatidylcholine significantly attenuated the development of fatty liver and inflammation, being associated with protection against the induction of PPARγ2, and activation of nuclear factor of κ light polypeptide gene enhancer in B-cell inhibitor α whereas Lrh1 expression was unchanged. The protective effects of phosphatidylcholine on the lipopolysaccharide-induced activation of J774A.1 cells and human monocytes were attenuated significantly by the PPARγ activator pioglitazone and the LRH-1 antagonist. CONCLUSIONS Our data suggest that phosphatidylcholine levels in the liver are lower in early metabolic dysfunction-associated steatohepatitis in mice and that supplementation of phosphatidylcholine can diminish the development of metabolic dysfunction-associated steatotic liver disease through mechanisms involving LRH-1/PPARγ2/ nuclear factor κ-light-chain enhancer of activated B-cell signaling.
Collapse
Affiliation(s)
- Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Maximilian F Wodak
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Norris AC, Yazlovitskaya EM, Zhu L, Rose BS, May JC, Gibson-Corley KN, McLean JA, Stafford JM, Graham TR. Deficiency of the lipid flippase ATP10A causes diet-induced dyslipidemia in female mice. Sci Rep 2024; 14:343. [PMID: 38172157 PMCID: PMC10764864 DOI: 10.1038/s41598-023-50360-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Genetic association studies have linked ATP10A and closely related type IV P-type ATPases (P4-ATPases) to insulin resistance and vascular complications, such as atherosclerosis. ATP10A translocates phosphatidylcholine and glucosylceramide across cell membranes, and these lipids or their metabolites play important roles in signal transduction pathways regulating metabolism. However, the influence of ATP10A on lipid metabolism in mice has not been explored. Here, we generated gene-specific Atp10A knockout mice and show that Atp10A-/- mice fed a high-fat diet did not gain excess weight relative to wild-type littermates. However, Atp10A-/- mice displayed female-specific dyslipidemia characterized by elevated plasma triglycerides, free fatty acids and cholesterol, as well as altered VLDL and HDL properties. We also observed increased circulating levels of several sphingolipid species along with reduced levels of eicosanoids and bile acids. The Atp10A-/- mice also displayed hepatic insulin resistance without perturbations to whole-body glucose homeostasis. Thus, ATP10A has a sex-specific role in regulating plasma lipid composition and maintaining hepatic liver insulin sensitivity in mice.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, 465 21St Ave S, Nashville, TN, 37212, USA
| | - Eugenia M Yazlovitskaya
- Department of Biological Sciences, Vanderbilt University, 465 21St Ave S, Nashville, TN, 37212, USA
| | - Lin Zhu
- Division of Endocrinology, Diabetes and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bailey S Rose
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Katherine N Gibson-Corley
- Division of Comparative Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - John M Stafford
- Division of Endocrinology, Diabetes and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, 465 21St Ave S, Nashville, TN, 37212, USA.
| |
Collapse
|
7
|
Wu MY, Fan JG. Gut microbiome and nonalcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 2023; 22:444-451. [PMID: 37308360 DOI: 10.1016/j.hbpd.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease globally and imposed a heavy economic burden on society and individuals. To date, the pathological process of NAFLD is not yet fully elucidated. Compelling evidences have demonstrated the pivotal role of gut microbiota in the pathogenesis of NAFLD, and gut dysbiosis has been commonly observed in patients with NAFLD. Gut dysbiosis impairs gut permeability, allowing the translocation of bacterial products such as lipopolysaccharides (LPS), short-chain fatty acids (SCFAs), and ethanol to the liver via portal blood flow. This review aimed to shed light on the underlying mechanisms by which gut microbiota influences the development and progression of NAFLD. In addition, the potential application of gut microbiome as a non-invasive diagnostic tool and a novel therapeutical target was reviewed.
Collapse
Affiliation(s)
- Meng-Yuan Wu
- Xiangya School of Medicine, Central South University, Changsha 410013, China; Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China.
| |
Collapse
|
8
|
Li J, Xin Y, Li J, Chen H, Li H. Phosphatidylethanolamine N-methyltransferase: from Functions to Diseases. Aging Dis 2023; 14:879-891. [PMID: 37191416 PMCID: PMC10187709 DOI: 10.14336/ad.2022.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Locating on endoplasmic reticulum and mitochondria associated membrane, Phosphatidylethanolamine N-methyltransferase (PEMT), catalyzes phosphatidylethanolamine methylation to phosphatidylcholine. As the only endogenous pathway for choline biosynthesis in mammals, the dysregulation of PEMT can lead to imbalance of phospholipid metabolism. Dysregulation of phospholipid metabolism in the liver or heart can lead to deposition of toxic lipid species that adversely result in dysfunction of hepatocyte/cardiomyocyte. Studies have shown that PEMT-/- mice increased susceptibility of diet-induced fatty liver and steatohepatitis. However, knockout of PEMT protects against diet-induced atherosclerosis, diet-induced obesity, and insulin resistance. Thus, novel insights to the function of PEMT in various organs should be summarized. Here, we reviewed the structural and functional properties of PEMT, highlighting its role in the pathogenesis of obesity, liver diseases, cardiovascular diseases, and other conditions.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hui Chen
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China.
| |
Collapse
|
9
|
Munteanu C, Schwartz B. The Effect of Bioactive Aliment Compounds and Micronutrients on Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12040903. [PMID: 37107278 PMCID: PMC10136128 DOI: 10.3390/antiox12040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/28/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
In the current review, we focused on identifying aliment compounds and micronutrients, as well as addressed promising bioactive nutrients that may interfere with NAFLD advance and ultimately affect this disease progress. In this regard, we targeted: 1. Potential bioactive nutrients that may interfere with NAFLD, specifically dark chocolate, cocoa butter, and peanut butter which may be involved in decreasing cholesterol concentrations. 2. The role of sweeteners used in coffee and other frequent beverages; in this sense, stevia has proven to be adequate for improving carbohydrate metabolism, liver steatosis, and liver fibrosis. 3. Additional compounds were shown to exert a beneficial action on NAFLD, namely glutathione, soy lecithin, silymarin, Aquamin, and cannabinoids which were shown to lower the serum concentration of triglycerides. 4. The effects of micronutrients, especially vitamins, on NAFLD. Even if most studies demonstrate the beneficial role of vitamins in this pathology, there are exceptions. 5. We provide information regarding the modulation of the activity of some enzymes related to NAFLD and their effect on this disease. We conclude that NAFLD can be prevented or improved by different factors through their involvement in the signaling, genetic, and biochemical pathways that underlie NAFLD. Therefore, exposing this vast knowledge to the public is particularly important.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
10
|
Lu J, Ling X, Liu L, Jiang A, Ren C, Lu C, Yu Z. Emerging hallmarks of endometriosis metabolism: A promising target for the treatment of endometriosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119381. [PMID: 36265657 DOI: 10.1016/j.bbamcr.2022.119381] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022]
Abstract
Endometriosis, characterized by ectopic endometrium growth in the extrauterine environment, is one of the most notable diseases of the female reproductive system. Worldwide, endometriosis affects nearly 10 % of women in their reproductive years and causes a significant decline in quality of life. Despite extensive investigations of endometriosis over the past years, the mechanisms of endometriosis pathogenesis remain unclear. In recent years, metabolic factors have increasingly been considered factors in endometriosis. There is compelling evidence regarding the progress of endometriosis in the context of severe metabolic dysfunction. Hence, the curative strategies and ongoing attempts to conquer endometriosis might start with metabolic pathways. This review focuses on metabolic mechanisms and summarizes current research progress. These findings provide valuable information for the non-intrusive diagnosis of the disease and may contribute to the understanding of the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Jiayi Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Xi Ling
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Lu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Aifang Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China.
| |
Collapse
|
11
|
Stachowska E, Maciejewska-Markiewicz D, Palma J, Mielko KA, Qasem B, Kozłowska-Petriczko K, Ufnal M, Sokolowska KE, Hawryłkowicz V, Załęska P, Jakubczyk K, Wunsch E, Ryterska K, Skonieczna-Żydecka K, Młynarz P. Precision Nutrition in NAFLD: Effects of a High-Fiber Intervention on the Serum Metabolome of NAFD Patients-A Pilot Study. Nutrients 2022; 14:nu14245355. [PMID: 36558512 PMCID: PMC9787857 DOI: 10.3390/nu14245355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with dysfunction of the intestinal microbiota and its metabolites. We aimed to assess whether replacing bread with high-fiber buns beneficially changes the metabolome in NAFLD patients. This study involved 27 adult patients with NAFLD validated by FibroScan® (CAP ≥ 234 dB/m). Patients were asked to replace their existing bread for two meals with high-fiber buns. In this way, the patients ate two rolls every day for 2 months. The following parameters were analysed (at the beginning and after 2 months): the anthropometric data (BIA), eating habits (24 h food recalls), gut barrier markers (lipopolysaccharide S and liposaccharide binding protein (LPS, LBP)), serum short-chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) by GC/MS chromatography, as well as serum metabolites (by 1H NMR spectroscopy). After 2 months of high-fiber roll consumption, the reduction of liver steatosis was observed (change Fibroscan CAP values from 309-277 dB/m). In serum propionate, acetate, isovaleric, and 2-methylbutyric decrease was observed. Proline, choline and one unknown molecule had higher relative concentration in serum at endpoint. A fiber-targeted dietary approach may be helpful in the treatment of patients with NAFLD, by changing the serum microbiota metabolome.
Collapse
Affiliation(s)
- Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Faculty of Health Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Faculty of Health Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Science, Faculty of Health Science, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Karolina Anna Mielko
- Department Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Badr Qasem
- Department Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | | | - Marcin Ufnal
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Faculty of Medicine and Dentistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Katarzyna Ewa Sokolowska
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Victoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Faculty of Health Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Patrycja Załęska
- Department of Human Nutrition and Metabolomics, Faculty of Health Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Faculty of Health Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ewa Wunsch
- Department of Translational Medicine, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Karina Ryterska
- Department of Human Nutrition and Metabolomics, Faculty of Health Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Faculty of Health Science, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
- Correspondence: (K.S.-Ż.); (P.M.)
| | - Piotr Młynarz
- Department Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (K.S.-Ż.); (P.M.)
| |
Collapse
|
12
|
Petkevicius K, Palmgren H, Glover MS, Ahnmark A, Andréasson AC, Madeyski-Bengtson K, Kawana H, Allman EL, Kaper D, Uhrbom M, Andersson L, Aasehaug L, Forsström J, Wallin S, Ahlstedt I, Leke R, Karlsson D, González-King H, Löfgren L, Nilsson R, Pellegrini G, Kono N, Aoki J, Hess S, Sienski G, Pilon M, Bohlooly-Y M, Maresca M, Peng XR. TLCD1 and TLCD2 regulate cellular phosphatidylethanolamine composition and promote the progression of non-alcoholic steatohepatitis. Nat Commun 2022; 13:6020. [PMID: 36241646 PMCID: PMC9568529 DOI: 10.1038/s41467-022-33735-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
The fatty acid composition of phosphatidylethanolamine (PE) determines cellular metabolism, oxidative stress, and inflammation. However, our understanding of how cells regulate PE composition is limited. Here, we identify a genetic locus on mouse chromosome 11, containing two poorly characterized genes Tlcd1 and Tlcd2, that strongly influences PE composition. We generated Tlcd1/2 double-knockout (DKO) mice and found that they have reduced levels of hepatic monounsaturated fatty acid (MUFA)-containing PE species. Mechanistically, TLCD1/2 proteins act cell intrinsically to promote the incorporation of MUFAs into PEs. Furthermore, TLCD1/2 interact with the mitochondria in an evolutionarily conserved manner and regulate mitochondrial PE composition. Lastly, we demonstrate the biological relevance of our findings in dietary models of metabolic disease, where Tlcd1/2 DKO mice display attenuated development of non-alcoholic steatohepatitis compared to controls. Overall, we identify TLCD1/2 proteins as key regulators of cellular PE composition, with our findings having broad implications in understanding and treating disease. The regulation of cellular phosphatidylethanolamine (PE) acyl chain composition is poorly understood. Here, the authors show that TLCD1 and TLCD2 proteins mediate the formation of monounsaturated fatty acid-containing PE species and promote the progression of non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Kasparas Petkevicius
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden. .,Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Henrik Palmgren
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Matthew S Glover
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Andrea Ahnmark
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anne-Christine Andréasson
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Advanced Research & Development Programs for Medical Innovation (AMED-LEAP), Tokyo, Japan
| | - Erik L Allman
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Delaney Kaper
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Martin Uhrbom
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Liselotte Andersson
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Leif Aasehaug
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Forsström
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Simonetta Wallin
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Ahlstedt
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Renata Leke
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Karlsson
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hernán González-King
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lars Löfgren
- Translational Science and Experimental Medicine, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ralf Nilsson
- Translational Science and Experimental Medicine, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Giovanni Pellegrini
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Advanced Research & Development Programs for Medical Innovation (AMED-LEAP), Tokyo, Japan
| | - Sonja Hess
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Grzegorz Sienski
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Marcello Maresca
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
13
|
Carpi RZ, Barbalho SM, Sloan KP, Laurindo LF, Gonzaga HF, Grippa PC, Zutin TLM, Girio RJS, Repetti CSF, Detregiachi CRP, Bueno PCS, Mazuqueli Pereira EDSB, Goulart RDA, Haber JFDS. The Effects of Probiotics, Prebiotics and Synbiotics in Non-Alcoholic Fat Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH): A Systematic Review. Int J Mol Sci 2022; 23:8805. [PMID: 35955942 PMCID: PMC9369010 DOI: 10.3390/ijms23158805] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/11/2022] Open
Abstract
Modifications in the microbiota caused by environmental and genetic reasons can unbalance the intestinal homeostasis, deregulating the host's metabolism and immune system, intensifying the risk factors for the development and aggravation of non-alcoholic fat liver disease (NAFLD). The use of probiotics, prebiotics and synbiotics have been considered a potential and promising strategy to regulate the gut microbiota and produce beneficial effects in patients with liver conditions. For this reason, this review aimed to evaluate the effectiveness of probiotics, prebiotics, and symbiotics in patients with NAFLD and NASH. Pubmed, Embase, and Cochrane databases were consulted, and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines were followed. The clinical trials used in this study demonstrated that gut microbiota interventions could improve a wide range of markers of inflammation, glycemia, insulin resistance, dyslipidemia, obesity, liver injury (decrease of hepatic enzymes and steatosis and fibrosis). Although microbiota modulators do not play a healing role, they can work as an important adjunct therapy in pathological processes involving NAFLD and its spectrums, either by improving the intestinal barrier or by preventing the formation of toxic metabolites for the liver or by acting on the immune system.
Collapse
Affiliation(s)
- Rodrigo Zamignan Carpi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Sandra M. Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
- School of Food and Technology of Marilia (FATEC), Marilia 17506-000, SP, Brazil
| | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Heron Fernando Gonzaga
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Paulo Cesar Grippa
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Tereza L. Menegucci Zutin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Raul J. S. Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Cláudia Sampaio Fonseca Repetti
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Patrícia C. Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
- Department of Biochemistry, School of Dentistry, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Jesselina Francisco dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| |
Collapse
|
14
|
Han YH, Choi H, Kim HJ, Lee MO. Chemotactic cytokines secreted from Kupffer cells contribute to the sex-dependent susceptibility to non-alcoholic fatty liver diseases in mice. Life Sci 2022; 306:120846. [PMID: 35914587 DOI: 10.1016/j.lfs.2022.120846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022]
Abstract
AIMS The global prevalence of non-alcoholic fatty liver disease (NAFLD) has rapidly increased over the last decade due to an elevated occurrence of metabolic syndromes. Importantly, the prevalence and severity of NAFLD is higher in men than in women. Therefore, in the present study we endeavored to identify the mechanistic disparity between male and female mice. MAIN METHODS Global gene transcriptomics analysis was done with the high-fat diet (HFD)-induced NAFLD model of male, female, and ovariectomized (OVX) female mice. The expression of CCL2, CXCL2, and CXCL10 in mRNA level and serum protein level was done by qPCR and ELISA each. Immunohistochemistry staining was used to observe hepatic immune cell infiltration. To analyzing portion of immune cells, flow cytometry was done with isolated liver cells from HFD-fed male and female mice. Primary mouse liver cells were isolated from male and female mice for in vitro studies. KEY FINDINGS We identified sex differences in inflammatory chemokines, CCL2, CXCL2, and CXCL10, with the expression of these chemokines enhanced in male and OVX, but not in female, mice after HFD feeding. Resident Kupffer cells (KCs) were identified as the major source of production of CCL2, CXCL2, and CXCL10 in the mouse NAFLD model. Notably, KCs obtained from male mice expressed higher levels of chemokines than those from female mice, indicating that KCs may mediate the sex discrepancy in NAFLD progression. SIGNIFICANCE Our findings offer new insights into the pathology of sex-specific differences in NAFLD, involving chemokines and KCs.
Collapse
Affiliation(s)
- Yong-Hyun Han
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea.
| | - Haena Choi
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Bio-MAX institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Slightly different metabolomic profiles are associated with high or low weight duck foie gras. PLoS One 2022; 17:e0255707. [PMID: 35763459 PMCID: PMC9239462 DOI: 10.1371/journal.pone.0255707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Understanding the evolution of fatty liver metabolism of ducks is a recurrent issue for researchers and industry. Indeed, the increase in weight during the overfeeding period leads to an important change in the liver metabolism. However, liver weight is highly variable at the end of overfeeding within a batch of animals reared, force-fed and slaughtered in the same way. For this study, we performed a proton nuclear magnetic resonance (1H-NMR) analysis on two classes of fatty liver samples, called low-weight liver (weights between 550 and 599 g) and high-weight liver (weights above 700 g). The aim of this study was to identify the differences in metabolism between two classes of liver weight (low and high). Firstly, the results suggested that increased liver weight is associated with higher glucose uptake leading to greater lipid synthesis. Secondly, this increase is probably also due to a decline in the level of export of triglycerides from the liver by maintaining them at high hepatic concentration levels, but also of hepatic cholesterol. Finally, the increase in liver weight could lead to a significant decrease in the efficiency of aerobic energy metabolism associated with a significant increase in the level of oxidative stress. However, all these hypotheses will have to be confirmed in the future, by studies on plasma levels and specific assays to validate these results.
Collapse
|
16
|
Mostofa MG, Tran M, Gilling S, Lee G, Fraher O, Jin L, Kang H, Park YK, Lee JY, Wang L, Shin DJ. MicroRNA-200c coordinates HNF1 homeobox B and apolipoprotein O functions to modulate lipid homeostasis in alcoholic fatty liver disease. J Biol Chem 2022; 298:101966. [PMID: 35460694 PMCID: PMC9127369 DOI: 10.1016/j.jbc.2022.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatic steatosis is an initial manifestation of alcoholic liver disease. An imbalance of hepatic lipid processes including fatty acid uptake, esterification, oxidation, and triglyceride secretion leads to alcoholic fatty liver (AFL). However, the precise molecular mechanisms underlying the pathogenesis of AFL remain elusive. Here, we show that mice deficient in microRNAs (miRs)-141 and -200c display resistance to the development of AFL. We found that miR-200c directly targets HNF1 homeobox B (Hnf1b), a transcriptional activator for microsomal triglyceride transfer protein (Mttp), as well as apolipoprotein O (ApoO), an integral component of the mitochondrial contact site and cristae organizing system complex. We show that expression of these miRs is significantly induced by chronic ethanol exposure, which is accompanied by reduced HNF1B and APOO levels. Furthermore, miR-141/200c deficiency normalizes ethanol-mediated impairment of triglyceride secretion, which can be attributed to the restored levels of HNF1B and MTTP, as well as phosphatidylcholine abundance. Moreover, we demonstrate that miR-141/200c deficiency restores ethanol-mediated inhibition of APOO expression and mitochondrial dysfunction, improving mitochondrial antioxidant defense capacity and fatty acid oxidation. Taken together, these results suggest that miR-200c contributes to the modulation of lipid homeostasis in AFL disease by cooperatively regulating Hnf1b and ApoO functions.
Collapse
Affiliation(s)
- Md Golam Mostofa
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Melanie Tran
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Shaynian Gilling
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Grace Lee
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Ondine Fraher
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Lei Jin
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Dong-Ju Shin
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
17
|
Characterization and Roles of Membrane Lipids in Fatty Liver Disease. MEMBRANES 2022; 12:membranes12040410. [PMID: 35448380 PMCID: PMC9025760 DOI: 10.3390/membranes12040410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Obesity has reached global epidemic proportions and it affects the development of insulin resistance, type 2 diabetes, fatty liver disease and other metabolic diseases. Membrane lipids are important structural and signaling components of the cell membrane. Recent studies highlight their importance in lipid homeostasis and are implicated in the pathogenesis of fatty liver disease. Here, we discuss the numerous membrane lipid species and their metabolites including, phospholipids, sphingolipids and cholesterol, and how dysregulation of their composition and physiology contribute to the development of fatty liver disease. The development of new genetic and pharmacological mouse models has shed light on the role of lipid species on various mechanisms/pathways; these lipids impact many aspects of the pathophysiology of fatty liver disease and could potentially be targeted for the treatment of fatty liver disease.
Collapse
|
18
|
Wei Z, Li F, Pi G. Association Between Gut Microbiota and Osteoarthritis: A Review of Evidence for Potential Mechanisms and Therapeutics. Front Cell Infect Microbiol 2022; 12:812596. [PMID: 35372125 PMCID: PMC8966131 DOI: 10.3389/fcimb.2022.812596] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by degeneration of articular cartilage, which leads to joints pain, disability and reduced quality of life in patients with OA. Interpreting the potential mechanisms underlying OA pathogenesis is crucial to the development of new disease modifying treatments. Although multiple factors contribute to the initiation and progression of OA, gut microbiota has gradually been regarded as an important pathogenic factor in the development of OA. Gut microbiota can be regarded as a multifunctional “organ”, closely related to a series of immune, metabolic and neurological functions. This review summarized research evidences supporting the correlation between gut microbiota and OA, and interpreted the potential mechanisms underlying the correlation from four aspects: immune system, metabolism, gut-brain axis and gut microbiota modulation. Future research should focus on whether there are specific gut microbiota composition or even specific pathogens and the corresponding signaling pathways that contribute to the initiation and progression of OA, and validate the potential of targeting gut microbiota for the treatment of patients with OA.
Collapse
Affiliation(s)
| | - Feng Li
- *Correspondence: Feng Li, ; Guofu Pi,
| | - Guofu Pi
- *Correspondence: Feng Li, ; Guofu Pi,
| |
Collapse
|
19
|
Lower plasma glutathione, choline, and betaine concentrations are associated with fatty liver in postmenopausal women. Nutr Res 2022; 101:23-30. [PMID: 35364359 DOI: 10.1016/j.nutres.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
|
20
|
Xu Y, Miller PC, Phoon CK, Ren M, Nargis T, Rajan S, Hussain MM, Schlame M. LPGAT1 controls the stearate/palmitate ratio of phosphatidylethanolamine and phosphatidylcholine in sn-1 specific remodeling. J Biol Chem 2022; 298:101685. [PMID: 35131264 PMCID: PMC8892159 DOI: 10.1016/j.jbc.2022.101685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/18/2023] Open
Abstract
Most mammalian phospholipids contain a saturated fatty acid at the sn-1 carbon atom and an unsaturated fatty acid at the sn-2 carbon atom of the glycerol backbone group. While the sn-2 linked chains undergo extensive remodeling by deacylation and reacylation (Lands cycle), it is not known how the composition of saturated fatty acids is controlled at the sn-1 position. Here, we demonstrate that lysophosphatidylglycerol acyltransferase 1 (LPGAT1) is an sn-1 specific acyltransferase that controls the stearate/palmitate ratio of phosphatidylethanolamine (PE) and phosphatidylcholine. Bacterially expressed murine LPGAT1 transferred saturated acyl-CoAs specifically into the sn-1 position of lysophosphatidylethanolamine (LPE) rather than lysophosphatidylglycerol and preferred stearoyl-CoA over palmitoyl-CoA as the substrate. In addition, genetic ablation of LPGAT1 in mice abolished 1-LPE:stearoyl-CoA acyltransferase activity and caused a shift from stearate to palmitate species in PE, dimethyl-PE, and phosphatidylcholine. Lysophosphatidylglycerol acyltransferase 1 KO mice were leaner and had a shorter life span than their littermate controls. Finally, we show that total lipid synthesis was reduced in isolated hepatocytes of LPGAT1 knockout mice. Thus, we conclude that LPGAT1 is an sn-1 specific LPE acyltransferase that controls the stearate/palmitate homeostasis of PE and the metabolites of the PE methylation pathway and that LPGAT1 plays a central role in the regulation of lipid biosynthesis with implications for body fat content and longevity.
Collapse
|
21
|
Lee C, Kim J, Han J, Oh D, Kim M, Jeong H, Kim TJ, Kim SW, Kim JN, Seo YS, Suzuki A, Kim JH, Jung Y. Formyl peptide receptor 2 determines sex-specific differences in the progression of nonalcoholic fatty liver disease and steatohepatitis. Nat Commun 2022; 13:578. [PMID: 35102146 PMCID: PMC8803937 DOI: 10.1038/s41467-022-28138-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/12/2022] [Indexed: 12/21/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an important health concern worldwide and progresses into nonalcoholic steatohepatitis (NASH). Although prevalence and severity of NAFLD/NASH are higher in men than premenopausal women, it remains unclear how sex affects NAFLD/NASH pathophysiology. Formyl peptide receptor 2 (FPR2) modulates inflammatory responses in several organs; however, its role in the liver is unknown. Here we show that FPR2 mediates sex-specific responses to diet-induced NAFLD/NASH. NASH-like liver injury was induced in both sexes during choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) feeding, but compared with females, male mice had more severe hepatic damage. Fpr2 was more highly expressed in hepatocytes and healthy livers from females than males, and FPR2 deletion exacerbated liver damage in CDAHFD-fed female mice. Estradiol induced Fpr2 expression, which protected hepatocytes and the liver from damage. In conclusion, our results demonstrate that FPR2 mediates sex-specific responses to diet-induced NAFLD/NASH, suggesting a novel therapeutic target for NAFLD/NASH.
Collapse
Affiliation(s)
- Chanbin Lee
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jieun Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Dayoung Oh
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Minju Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Hayeong Jeong
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jeong Nam Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Ayako Suzuki
- Division of Gastroenterology and Hepatology, Duke University, Durham, NC, USA
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
22
|
Chamorro-García R, Poupin N, Tremblay-Franco M, Canlet C, Egusquiza R, Gautier R, Jouanin I, Shoucri BM, Blumberg B, Zalko D. Transgenerational metabolomic fingerprints in mice ancestrally exposed to the obesogen TBT. ENVIRONMENT INTERNATIONAL 2021; 157:106822. [PMID: 34455191 PMCID: PMC8919592 DOI: 10.1016/j.envint.2021.106822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) contribute to the etiology of metabolic disorders such as obesity, insulin resistance and hepatic dysfunction. Concern is growing about the consequences of perinatal EDC exposure on disease predisposition later in life. Metabolomics are promising approaches for studying long-term consequences of early life EDC exposure. These approaches allow for the identification and characterization of biomarkers of direct or ancestral exposures that could be diagnostic for individual susceptibility to disease and help to understand mechanisms through which EDCs act. OBJECTIVES We sought to identify metabolomic fingerprints in mice ancestrally exposed to the model obesogen tributyltin (TBT), to assess whether metabolomics could discriminate potential trans-generational susceptibility to obesity and recognize metabolic pathways modulated by ancestral TBT exposure. METHODS We used non-targeted 1H NMR metabolomic analyses of plasma and liver samples collected from male and female mice ancestrally exposed to TBT in two independent transgenerational experiments in which F3 and F4 males became obese when challenged with increased dietary fat. RESULTS Metabolomics confirmed transgenerational obesogenic effects of environmentally relevant doses of TBT in F3 and F4 males, in two independent studies. Although females never became obese, their specific metabolomic fingerprint evidenced distinct transgenerational effects of TBT in female mice consistent with impaired capacity for liver biotransformation. DISCUSSION This study is the first application of metabolomics to unveil the transgenerational effects of EDC exposure. Very early, significant changes in the plasma metabolome were observed in animals ancestrally exposed to TBT. These changes preceded the onset of obesogenic effects elicited by increased dietary fat in the TBT groups, and which ultimately resulted in significant changes in the liver metabolome. Development of metabolomic fingerprints could facilitate the identification of individuals carrying the signature of ancestral obesogen exposure that might increase their susceptibility to other risk factor such as increased dietary fat.
Collapse
Affiliation(s)
- Raquel Chamorro-García
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine 92697-2300, USA
| | - Nathalie Poupin
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Riann Egusquiza
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| | - Roselyne Gautier
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Isabelle Jouanin
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Bassem M Shoucri
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine 92697-2300, USA; Department of Pharmaceutical Sciences, University of California, Irvine, USA; Department of Biomedical Engineering, University of California, Irvine, USA.
| | - Daniel Zalko
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France.
| |
Collapse
|
23
|
Bortz J, Klatt KC, Wallace TC. Perspective: Estrogen and the Risk of Cognitive Decline: A Missing Choline(rgic) Link? Adv Nutr 2021; 13:S2161-8313(22)00068-0. [PMID: 34849527 PMCID: PMC8970832 DOI: 10.1093/advances/nmab145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Factors that influence the risk of neurocognitive decline and Alzheimer's disease (AD) may provide insight into therapies for both disease treatment and prevention. While age is the most striking risk factor for AD, it is notable that the prevalence of AD is higher in women, representing two-thirds of cases. To explore potential underlying biological underpinnings of this observation, the intent of this article is to explore the interplay between cognitive aging and sex hormones, the cholinergic system, and novel hypotheses related to the essential nutrient, choline. Mechanistic evidence points toward estrogen's neuroprotective effects being strongly dependent on its interactions with the cholinergic system, a modulator of attentional functioning, learning, and memory. Estrogen has been shown to attenuate anticholinergic-induced impairments in verbal memory and normalize patterns of frontal and occipital cortex activation, resulting in a more "young adult" phenotype. However, similar to estrogen replacement's effect in cardiovascular diseases, its putative protective effects may be restricted to early postmenopausal women only, supportive of the "critical window hypothesis." Estrogen's impact on the cholinergic system may act both locally in the brain but also through peripheral tissues. Estrogen is critical for inducing endogenous choline synthesis via the phosphatidylethanolamine N-methyltransferase (PEMT) pathway of phosphatidylcholine (PC) synthesis. PEMT is dramatically induced in response to estrogen, producing not only a PC molecule and source of choline for the brain but also a key source of the long-chain omega-3 fatty acid, DHA. Herein, we highlight novel hypotheses related to hormone replacement therapy and nutrient metabolism aimed at directing future preclinical and clinical investigation.
Collapse
|
24
|
Ding H, Zhang Q, Yu X, Chen L, Wang Z, Feng J. Lipidomics reveals perturbations in the liver lipid profile of iron-overloaded mice. Metallomics 2021; 13:6375437. [PMID: 34562083 DOI: 10.1093/mtomcs/mfab057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Iron overload is an important contributor to disease. The liver, the major site of iron storage in the body, is a key organ impacted by iron overload. While several studies have reported perturbations in liver lipids in iron overload, it is not clear, on a global scale, how individual liver lipid ions are altered. Here, we used lipidomics to study the changes in hepatic lipid ions in iron-overloaded mice. Iron overload was induced by daily intraperitoneal injections of 100 mg/kg body weight iron dextran for 1 week. Iron overload was verified by serum markers of iron status, liver iron quantitation, and Perls stain. Compared with the control group, the serum of iron-overload mice exhibited low levels of urea nitrogen and high-density lipoprotein (HDL), and high concentrations of total bile acid, low-density lipoprotein (LDL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), suggestive of liver injury. Moreover, iron overload disrupted liver morphology, induced reactive oxygen species (ROS) production, reduced superoxide dismutase (SOD) activity, caused lipid peroxidation, and led to DNA fragmentation. Iron overload altered the overall composition of lipid ions in the liver, with significant changes in over 100 unique lipid ions. Notably, iron overload selectively increased the overall abundance of glycerolipids and changed the composition of glycerophospholipids and sphingolipids. This study, one of the first to report iron-overload induced lipid alterations on a global lipidomics scale, provides early insight into lipid ions that may be involved in iron overload-induced pathology.
Collapse
Affiliation(s)
- Haoxuan Ding
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Qian Zhang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Xiaonan Yu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Lingjun Chen
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Zhonghang Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Jie Feng
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
25
|
Lee SH, Tseng WC, Du ZY, Lin WY, Chen MH, Lin CC, Lien GW, Liang HJ, Wen HJ, Guo YL, Chen PC, Lin CY. Lipid responses to environmental perfluoroalkyl substance exposure in a Taiwanese Child cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117007. [PMID: 33845286 DOI: 10.1016/j.envpol.2021.117007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/03/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Although recent epidemiologic studies have focused on some of the health effects of perfluoroalkyl substance (PFASs) exposure in humans, the associations between PFASs exposure and the lipidome in children are still unclear. The purpose of this study was to assess lipid changes in children to understand possible molecular events of environmental PFASs exposure and suggest potential health effects. A total of 290 Taiwanese children (8-10 years old) were included in this study. Thirteen PFASs were analyzed in their serum by high-performance liquid chromatography-tandem mass spectrometry (LC-MS). MS-based lipidomic approaches were applied to examine lipid patterns in the serum of children exposed to different levels of PFASs. LC coupling with triple quadrupole MS technology was conducted to analyze phosphorylcholine-containing lipids. Multivariate analyses, such as partial least squares analysis along with univariate analyses, including multiple linear regression, were used to analyze associations between s exposure and unique lipid patterns. Our results showed that different lipid patterns were discovered in children exposed to different levels of specific PFASs, such as PFTrDA, PFOS, and PFDA. These changes in lipid levels may be involved in hepatic lipid metabolism, metabolic disorders, and PFASs-membrane interactions. This study showed that lipidomics is a powerful approach to identify critical PFASs that cause metabolite perturbation in the serum of children and suggest possible adverse health effects of these chemicals in children.
Collapse
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Tseng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Zhi-Yi Du
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Guang-Wen Lien
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yue-Leon Guo
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Office of Occupational Safety and Health, National Taiwan University Hospital, Taipei, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
26
|
Gao J, Zhang M, Niu R, Gu X, Hao E, Hou X, Deng J, Bai G. The combination of cinnamaldehyde and kaempferol ameliorates glucose and lipid metabolism disorders by enhancing lipid metabolism via AMPK activation. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Obesity as the 21st Century's major disease: The role of probiotics and prebiotics in prevention and treatment. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Kocyigit D, Tokgozoglu L, Gurses KM, Stahlman M, Boren J, Soyal MFT, Canpınar H, Guc D, Saglam Ayhan A, Hazirolan T, Ozer N. Association of dietary and gut microbiota-related metabolites with calcific aortic stenosis. Acta Cardiol 2021; 76:544-552. [PMID: 33334254 DOI: 10.1080/00015385.2020.1853968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Histopathological changes in calcific aortic stenosis (CAS) resemble changes in coronary atherosclerosis. Concerning recent evidence on dietary and gut microbiota-related metabolites representing players in atherosclerosis, we aimed to investigate the link between dietary and gut microbiota-derived metabolites and CAS. METHODS We consecutively recruited eligible subjects with moderate-severe CAS (n = 60), aortic sclerosis (ASc) (n = 49) and age and gender-matched control subjects (n = 48) in May 2016-December 2016. Plasma dietary and gut microbiota-related metabolite levels, namely choline, betaine, and trimethylamine N-oxide (TMAO), were measured using ultra-performance liquid chromatography-tandem mass spectroscopy method. Histopathological examinations were performed in patients that underwent aortic valve surgery. RESULTS Prevalence of traditional cardiovascular risk factors or co-morbidities did not differ among groups (all p > 0.05). CAS patients had higher plasma choline levels compared to both control (p < 0.001) and ASc (p = 0.006). Plasma betaine and TMAO levels were similar (both p > 0.05). Compared to the lowest quartile choline levels (<11.15 μM), patients with the highest quartile choline levels (≥14.98 μM) had higher aortic valvular (p < 0.001) and mitral annular (p = 0.013) calcification scores. Plasma choline levels were independently associated with aortic peak flow velocity (B ± SE:0.165 ± 0.060, p = 0.009). Choline levels were elevated in subjects who had aortic valves with denser lymphocyte infiltration (p < 0.001), neovascularization (p = 0.011), osseous metaplasia (p = 0.004), more severe tissue remodelling (p = 0.002) and calcification (p = 0.002). CONCLUSION We found a significant association between choline levels and CAS presence and severity depicted on imaging modalities and histopathological examinations. Our study may open new horizons for prevention of CAS.
Collapse
Affiliation(s)
- Duygu Kocyigit
- Faculty of Medicine, Department of Cardiology, Hacettepe University, Ankara, Turkey
| | - Lale Tokgozoglu
- Faculty of Medicine, Department of Cardiology, Hacettepe University, Ankara, Turkey
| | - Kadri M. Gurses
- Faculty of Medicine, Department of Basic Medical Sciences, Adnan Menderes University, Aydin, Turkey
| | - Marcus Stahlman
- Department of Molecular and Clinical Medicine, University of Gothenburg Institute of Medicine, Göteborg, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg Institute of Medicine, Göteborg, Sweden
| | - Mehmet F. T. Soyal
- Department of Cardiovascular Surgery, Medicana International Ankara Hospital, Ankara, Turkey
| | - Hande Canpınar
- Department of Basic Oncology, Institute of Oncology, Hacettepe University, Ankara, Turkey
| | - Dicle Guc
- Department of Basic Oncology, Institute of Oncology, Hacettepe University, Ankara, Turkey
| | - Arzu Saglam Ayhan
- Faculty of Medicine, Department of Medical Pathology, Hacettepe University, Ankara, Turkey
| | - Tuncay Hazirolan
- Faculty of Medicine, Department of Radiology, Hacettepe University, Ankara, Turkey
| | - Necla Ozer
- Faculty of Medicine, Department of Cardiology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
29
|
Horita DA, Hwang S, Stegall JM, Friday WB, Kirchner DR, Zeisel SH. Two methods for assessment of choline status in a randomized crossover study with varying dietary choline intake in people: isotope dilution MS of plasma and in vivo single-voxel magnetic resonance spectroscopy of liver. Am J Clin Nutr 2021; 113:1670-1678. [PMID: 33668062 PMCID: PMC8168360 DOI: 10.1093/ajcn/nqaa439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Choline deficiency has numerous negative health consequences; although the preponderance of the US population consumes less than the recommended Adequate Intake (AI), clinical assessment of choline status is difficult. Further, several pathways involved in primary metabolism of choline are estrogen-sensitive and the AI for premenopausal women is lower than that for men. OBJECTIVES We sought to determine whether in vivo magnetic resonance spectroscopy (MRS) of liver and/or isotope-dilution MS of plasma could identify biomarkers reflective of choline intake (preregistered primary outcomes 1 and 2, secondary outcome 1). Determination of whether biomarker concentrations showed sex dependence was a post hoc outcome. This substudy is a component of a larger project to identify a clinically useful biomarker panel for assessment of choline status. METHODS In a double-blind, randomized, crossover trial, people consumed 3 diets, representative of ∼100%, ∼50%, and ∼25% of the choline AI, for 2-wk periods. We measured the concentrations of choline and several metabolites using 1H single-voxel MRS of liver in vivo and using 2H-labeled isotope dilution MS of several choline metabolites in extracted plasma. RESULTS Plasma concentrations of 2H9-choline, unlabeled betaine, and 2H9-betaine, and the isotopic enrichment ratio (IER) of betaine showed highly significant between-diet effects (q < 0.0001), with unlabeled betaine concentration decreasing 32% from highest to lowest choline intake. Phosphatidylcholine IER was marginally significant (q = 0.03). Unlabeled phosphatidylcholine plasma concentrations did not show between-diet effects (q = 0.34). 2H9 (trimethyl)-phosphatidylcholine plasma concentrations (q = 0.07) and MRS-measured total soluble choline species liver concentrations (q = 0.07) showed evidence of between-diet effects but this was not statistically significant. CONCLUSIONS Although MRS is a more direct measure of choline status, variable spectral quality limited interpretation. MS analysis of plasma showed clear correlation of plasma betaine concentration, but not plasma phosphatidylcholine concentration, with dietary choline intake. Plasma betaine concentrations also correlate with sex status (premenopausal women, postmenopausal women, men).This trial was registered at clinicaltrials.gov as NCT03726671.
Collapse
Affiliation(s)
- David A Horita
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Sunil Hwang
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Julie M Stegall
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Walter B Friday
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - David R Kirchner
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Steven H Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA.,Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Yang S, Huang Y, Li C, Jin L, Deng W, Zhao S, Wu D, He Y, Li B, Yu Z, Li T, Zhang Z, Pan X, Zhang H, Zou L. The Fecal and Serum Metabolomics of Giant Pandas Based on Untargeted Metabolomics. Zoolog Sci 2021; 38:179-186. [PMID: 33812357 DOI: 10.2108/zs200106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
Little is comprehensively known or understood about giant panda fecal and serum metabolites, which could serve as important indicators of the physiological metabolism of giant pandas. Therefore, we determined the contents of fecal and serum metabolites of giant pandas based on an untargeted metabolome. Four hundred and 955 metabolites were detected in the feces and serum of giant panda, respectively. Glycerophospholipid and choline metabolism were the main metabolic pathways in feces and serum. A significant correlation between the gut microbiota and fecal metabolites was found (P < 0.01). Fecal metabolites were not greatly affected by the age or gender of giant pandas, but serum metabolites were significantly affected by age and gender. The majority of different metabolites caused by age were higher in serum of younger giant pandas, including fatty acids, lipids, metabolites of bile acids, and intermediate products of vitamin D3. The majority of different metabolites caused by gender included fatty acids, phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylethanolamine (PE). A separate feeding diet should be considered according to different ages and genders of giant panda. Therefore, our results could provide helpful suggestions to further protect captive giant pandas.
Collapse
Affiliation(s)
- Shengzhi Yang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Huang
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Dujiangyan, Sichuan 611830, China
| | - Caiwu Li
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Dujiangyan, Sichuan 611830, China
| | - Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wenwen Deng
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Dujiangyan, Sichuan 611830, China
| | - Siyue Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daifu Wu
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Dujiangyan, Sichuan 611830, China
| | - Yongguo He
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Dujiangyan, Sichuan 611830, China
| | - Bei Li
- Dujiangyan Campus, Sichuan Agricultural University, Dujiangyan, Sichuan 611830, China
| | - Zhongliang Yu
- College of Tourism and Town and Country Planning, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Ti Li
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Dujiangyan, Sichuan 611830, China
| | - Zhizhong Zhang
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Dujiangyan, Sichuan 611830, China
| | - Xin Pan
- College of Tourism and Town and Country Planning, Chengdu University of Technology, Chengdu, Sichuan 610059, China,
| | - Hemin Zhang
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Dujiangyan, Sichuan 611830, China,
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China,
| |
Collapse
|
31
|
Ashtary-Larky D, Bagheri R, Ghanavati M, Asbaghi O, Tinsley GM, Mombaini D, Kooti W, Kashkooli S, Wong A. Effects of betaine supplementation on cardiovascular markers: A systematic review and Meta-analysis. Crit Rev Food Sci Nutr 2021; 62:6516-6533. [PMID: 33764214 DOI: 10.1080/10408398.2021.1902938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Controversy regarding the effects of betaine supplementation on cardiovascular markers has persisted for decades. This systematic review and meta-analysis compared the effects of betaine supplementation on cardiovascular disease (CVD) markers. Studies examining betaine supplementation on CVD markers published up to February 2021 were identified through PubMed, the Cochrane Library, Web of Science, Embase, and SCOPUS. Betaine supplementation had a significant effect on concentrations of betaine (MD: 82.14 μmol/L, 95% CI: 67.09 to 97.20), total cholesterol (TC) (MD: 14.12 mg/dl, 95% CI%: 9.23 to 19.02), low-density lipoprotein (LDL) (MD: 10.26 mg/dl, 95% CI: 6.14 to 14.38)], homocysteine (WMD: -1.30 micromol/L, 95% CI: -1.61 to -0.98), dimethylglycine (DMG) (MD: 21.33 micromol/L, 95% CI: 13.87 to 28.80), and methionine (MD: 2.06 micromol/L, 95% CI: 0.23 to 3.88). Moreover, our analysis indicated that betaine supplementation did not affect serum concentrations of triglyceride (TG), high-density lipoprotein (HDL), fasting blood glucose (FBG), C-reactive protein (CRP), liver enzymes [alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT)], and blood pressure. Our subgroup analysis suggested that a maximum dose of 4 g/d might have homocysteine-lowering effects without any adverse effect on lipid profiles reported with doses of ≥4 g/d. In conclusion, the present systematic review and meta-analysis supports the advantage of a lower dose of betaine supplementation (<4 g/d) on homocysteine concentrations without the lipid-augmenting effect observed with a higher dosage.
Collapse
Affiliation(s)
- Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Matin Ghanavati
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Grant M Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Delsa Mombaini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Wesam Kooti
- Lung Diseases & Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sara Kashkooli
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, Texas, USA
| |
Collapse
|
32
|
Alashmali S, Walchuk C, Cadonic C, Albensi BC, Aliani M, Suh M. The effect of choline availability from gestation to early development on brain and retina functions and phospholipid composition in a male mouse model. Nutr Neurosci 2021; 25:1594-1608. [PMID: 33641632 DOI: 10.1080/1028415x.2021.1885229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Although choline is essential for brain development and neural function, the effect of choline on retina function is not well understood. This study examined the effects of choline on neural tissues of brain and retina, and membrane phospholipid (PL) composition during fetal development. METHODS Pregnant C57BL/6 mice were fed one of 4 choline modified diets: i) control (Cont, 2.5g/kg), ii) choline deficient (Def, 0g/kg), iii) supplemented with choline chloride (Cho, 10g/kg) and iv) supplemented with egg phosphatidylcholine (PC, 10g/kg). At postnatal day (PD) 21, pups were weaned onto their mothers' respective diets until PD 45. Spatial memory was measured using the Morris Water Maze; retina function by electroretinogram (ERG); and PL composition with nuclear magnetic resonance spectroscopy. RESULTS Cho and PC supplementation enhanced cued learning and spatial memory abilities, respectively (p Def > PC > Cho, with no statistically significant alterations in cone-driven responses. There were no differences in the composition of major PLs in the brain and retina. In the brain, subclasses of ether PL, alkyl acyl- phosphatidylethanolamine (PEaa) and phosphatidylcholine (PCaa) were significantly greater among the PC supplemented group in comparison to the Def group. DISCUSSION These results indicate that while choline supplementation during gestation to an early developmental period is beneficial for spatial memory, contributions to retina function are minor. Assessment with a larger sample size of retinas could warrant the essentiality of choline for retina development.
Collapse
Affiliation(s)
- Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdul Aziz University, Jeddah, Saudi Arabia.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada.,Division of Neurodegenerative Disorders, Department of Food and Human Nutritional Sciences, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Chelsey Walchuk
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada.,Division of Neurodegenerative Disorders, Department of Food and Human Nutritional Sciences, St. Boniface Hospital Research Centre, Winnipeg, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Canada
| | - Chris Cadonic
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada.,Division of Neurodegenerative Disorders, Department of Food and Human Nutritional Sciences, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Benedict C Albensi
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada.,Division of Neurodegenerative Disorders, Department of Food and Human Nutritional Sciences, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada.,Division of Neurodegenerative Disorders, Department of Food and Human Nutritional Sciences, St. Boniface Hospital Research Centre, Winnipeg, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada.,Division of Neurodegenerative Disorders, Department of Food and Human Nutritional Sciences, St. Boniface Hospital Research Centre, Winnipeg, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Canada
| |
Collapse
|
33
|
da Silva MT, Mujica-Coopman MF, Figueiredo ACC, Hampel D, Vieira LS, Farias DR, Shahab-Ferdows S, Allen LH, Brito A, Lamers Y, Kac G, S Vaz J. Maternal plasma folate concentration is positively associated with serum total cholesterol and low-density lipoprotein across the three trimesters of pregnancy. Sci Rep 2020; 10:20141. [PMID: 33214613 PMCID: PMC7677547 DOI: 10.1038/s41598-020-77231-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Increased first-trimester low-density lipoprotein (LDL-C) concentration has been associated with adverse pregnancy outcomes, such as gestational diabetes. The B vitamins folate, B-6, and total B-12 are key for the methyl group-dependent endogenous synthesis of phosphatidylcholine, which is needed for lipoprotein synthesis, e.g., very low-density lipoprotein (VLDL), the precursor of circulating LDL-C. Maternal B-vitamin concentration usually declines across trimesters. Whether changes in maternal B-vitamin concentrations are associated with total cholesterol (TC), triglycerides (TG), and lipoprotein concentrations is unknown. Therefore, we explored the association between plasma folate, vitamin B-6 in the form of pyridoxal 5′-phosphate (PLP), and total B-12 with serum TC, LDL-C, HDL-C, and TG concentrations across trimesters. This secondary analysis used data of a prospective pregnancy cohort study included apparently healthy adult women (n = 179) from Rio de Janeiro, Brazil. The biomarkers were measured in fasting blood samples collected at 5–13, 20–26, and 30–36 weeks of gestation. The associations between B vitamins and lipid concentrations across trimesters were explored using linear mixed-effect models. Among B vitamins, only plasma folate was positively associated with TC (β = 0.244, 95% CI 0.034–0.454) and LDL-C (β = 0.193, 95% CI 0.028–0.357) concentrations. The positive relationship of maternal folate and TC and LDL-C concentrations may indicate the importance of folate as a methyl donor for lipoprotein synthesis during pregnancy.
Collapse
Affiliation(s)
- Manoela T da Silva
- Graduate Program in Food and Nutrition, Faculty of Nutrition, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Maria F Mujica-Coopman
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Amanda C C Figueiredo
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Department of Social and Applied Nutrition, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Daniela Hampel
- USDA-ARS Western Human Nutrition Research Center, Department of Nutrition, University of California, Davis, CA, USA
| | - Luna S Vieira
- Graduate Program in Epidemiology, Department of Social Medicine, Federal University of Pelotas, Pelotas, Brazil
| | - Dayana R Farias
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Department of Social and Applied Nutrition, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Setareh Shahab-Ferdows
- USDA-ARS Western Human Nutrition Research Center, Department of Nutrition, University of California, Davis, CA, USA
| | - Lindsay H Allen
- USDA-ARS Western Human Nutrition Research Center, Department of Nutrition, University of California, Davis, CA, USA
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Population Health, Nutrition and Health Research Group, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Yvonne Lamers
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Gilberto Kac
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Department of Social and Applied Nutrition, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Juliana S Vaz
- Graduate Program in Food and Nutrition, Faculty of Nutrition, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil. .,Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Department of Social and Applied Nutrition, Rio de Janeiro Federal University, Rio de Janeiro, Brazil. .,Graduate Program in Epidemiology, Department of Social Medicine, Federal University of Pelotas, Pelotas, Brazil.
| |
Collapse
|
34
|
Seeßle J, Gan-Schreier H, Kirchner M, Stremmel W, Chamulitrat W, Merle U. Plasma Lipidome, PNPLA3 polymorphism and hepatic steatosis in hereditary hemochromatosis. BMC Gastroenterol 2020; 20:230. [PMID: 32680469 PMCID: PMC7368730 DOI: 10.1186/s12876-020-01282-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background Hereditary hemochromatosis (HH) is an autosomal recessive genetic disorder with increased intestinal iron absorption and therefore iron Overload. iron overload leads to increased levels of toxic non-transferrin bound iron which results in oxidative stress and lipid peroxidation. The impact of iron on lipid metabolism is so far not fully understood. The aim of this study was to investigate lipid metabolism including lipoproteins (HDL, LDL), neutral (triglycerides, cholesterol) and polar lipids (sphingo- and phospholipids), and PNPLA3 polymorphism (rs738409/I148M) in HH. Methods We conducted a cohort study of 54 subjects with HH and 20 healthy subjects. Patients were analyzed for their iron status including iron, ferritin, transferrin and transferrin saturation and serum lipid profile on a routine follow-up examination. Results HH group showed significantly lower serum phosphatidylcholine (PC) and significantly higher phosphatidylethanolamine (PE) compared to healthy control group. The ratio of PC/PE was clearly lower in HH group indicating a shift from PC to PE. Triglycerides were significantly higher in HH group. No differences were seen for HDL, LDL and cholesterol. Hepatic steatosis was significantly more frequent in HH. PNPLA3 polymorphism (CC vs. CG/GG) did not reveal any significant correlation with iron and lipid parameters including neutral and polar lipids, grade of steatosis and fibrosis. Conclusion Our study strengthens the hypothesis of altered lipid metabolism in HH and susceptibility to nonalcoholic fatty liver disease. Disturbed phospholipid metabolism may represent an important factor in pathogenesis of hepatic steatosis in HH.
Collapse
Affiliation(s)
- Jessica Seeßle
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Hongying Gan-Schreier
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Marietta Kirchner
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Uta Merle
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
35
|
Sowton AP, Padmanabhan N, Tunster SJ, McNally BD, Murgia A, Yusuf A, Griffin JL, Murray AJ, Watson ED. Mtrr hypomorphic mutation alters liver morphology, metabolism and fuel storage in mice. Mol Genet Metab Rep 2020; 23:100580. [PMID: 32257815 PMCID: PMC7109458 DOI: 10.1016/j.ymgmr.2020.100580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with dietary folate deficiency and mutations in genes required for one‑carbon metabolism. However, the mechanism through which this occurs is unclear. To improve our understanding of this link, we investigated liver morphology, metabolism and fuel storage in adult mice with a hypomorphic mutation in the gene methionine synthase reductase (Mtrr gt ). MTRR enzyme is a key regulator of the methionine and folate cycles. The Mtrr gt mutation in mice was previously shown to disrupt one‑carbon metabolism and cause a wide-spectrum of developmental phenotypes and late adult-onset macrocytic anaemia. Here, we showed that livers of Mtrr gt/gt female mice were enlarged compared to control C57Bl/6J livers. Histological analysis of these livers revealed eosinophilic hepatocytes with decreased glycogen content, which was associated with down-regulation of genes involved in glycogen synthesis (e.g., Ugp2 and Gsk3a genes). While female Mtrr gt/gt livers showed evidence of reduced β-oxidation of fatty acids, there were no other associated changes in the lipidome in female or male Mtrr gt/gt livers compared with controls. Defects in glycogen storage and lipid metabolism often associate with disruption of mitochondrial electron transfer system activity. However, defects in mitochondrial function were not detected in Mtrr gt/gt livers as determined by high-resolution respirometry analysis. Overall, we demonstrated that adult Mtrr gt/gt female mice showed abnormal liver morphology that differed from the NAFLD phenotype and that was accompanied by subtle changes in their hepatic metabolism and fuel storage.
Collapse
Key Words
- 5-methyl-THF, 5-methyltetrahydofolate
- Agl, amylo-alpha-1,6-glucosidase,4-alpha-glucanotransferase gene
- BCA, bicinchoninic acid
- Bhmt, betaine-homocysteine S-methyltransferase gene
- CE, cholesteryl-ester
- Cebpa, CCAAT/enhancer binding protein (C/EBP), alpha gene
- Cer, ceramide
- DAG, diacylglycerol
- Ddit3, DNA damage inducible transcript 3 gene
- ETS, electron transport system
- FCCP, p-trifluoromethoxyphenyl hydrazine
- FFA, free fatty acid
- G6pc, glucose 6-phophastase gene
- Gbe1, glycogen branching enzyme 1 gene
- Glycogen
- Gsk3, glycogen synthase kinase gene
- Gyg, glycogenin gene
- Gys2, glycogen synthase 2 gene
- HOAD, 3-hydoxyacyl-CoA dehydrogenase
- Hepatic fuel storage
- Isca1, iron‑sulfur cluster assembly 1 gene
- JO2, oxygen flux
- LC-MS, liquid chromatography-mass spectrometry
- LPC, lysophosphatidylcholine
- Lipidomics
- Liver metabolism
- Mitochondrial function
- Mthfr, methylenetetrahydrofolate reductase gene
- Mtr, methionine synthase gene (also MS)
- Mtrr, methionine synthase reductase gene (also MSR)
- Myc, myelocytomatosis oncogene
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- Ndufs, NADH:ubiquinone oxidoreductase core subunit (ETS complex I) gene
- OXPHOS, oxidative phosphorylation
- One‑carbon metabolism
- PA, phosphatidic acid
- PAS, periodic acid Schiff
- PC, phosphatidylcholine
- PE, phosphatidylethanolamine
- PG, phosphatidylglycerol
- PI, phosphatidylinositol
- PIP, phosphatidylinositol phosphate(s)
- PL, phospholipid
- PS, phosphatidylserine
- RIPA, Radioimmunoprecipitation assay
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SM, sphingomyelin
- TAG, triacylglycerol
- Ugp2, UDP-glucose pyrophophorylase 2 gene
- gt, gene-trap
Collapse
Affiliation(s)
- Alice P. Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Nisha Padmanabhan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Simon J. Tunster
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Ben D. McNally
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Antonio Murgia
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Aisha Yusuf
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Erica D. Watson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
36
|
da Silva RP, Eudy BJ, Deminice R. One-Carbon Metabolism in Fatty Liver Disease and Fibrosis: One-Carbon to Rule Them All. J Nutr 2020; 150:994-1003. [PMID: 32119738 DOI: 10.1093/jn/nxaa032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/14/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a term used to characterize a range of disease states that involve the accumulation of fat in the liver but are not associated with excessive alcohol consumption. NAFLD is a prevalent disease that can progress to organ damage like liver cirrhosis and hepatocellular carcinoma. Many animal models have demonstrated that one-carbon metabolism is strongly associated with NAFLD. Phosphatidylcholine is an important phospholipid that affects hepatic lipid homeostasis and de novo synthesis of this phospholipid is associated with NAFLD. However, one-carbon metabolism serves to support all cellular methylation reactions and catabolism of methionine, serine, glycine, choline, betaine, tryptophan, and histidine. Several different pathways within one-carbon metabolism that play important roles in regulating energy metabolism and immune function have received less attention in the study of fatty liver disease and fibrosis. This review examines what we have learned about hepatic lipid metabolism and liver damage from the study of one-carbon metabolism thus far and highlights unexplored opportunities for future research.
Collapse
Affiliation(s)
- Robin P da Silva
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Brandon J Eudy
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
37
|
Cӑtoi AF, Vodnar DC, Corina A, Nikolic D, Citarrella R, Pérez-Martínez P, Rizzo M. Gut Microbiota, Obesity and Bariatric Surgery: Current Knowledge and Future Perspectives. Curr Pharm Des 2020; 25:2038-2050. [PMID: 31298152 DOI: 10.2174/1381612825666190708190437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is an urgent need for a better understanding and management of obesity and obesity- associated diseases. It is known that obesity is associated with structural and functional changes in the microbiome. METHODS The purpose of this review is to present current evidence from animal and human studies, demonstrating the effects and the potential efficacy of microbiota modulation in improving obesity and associated metabolic dysfunctions. RESULTS This review discusses possible mechanisms linking gut microbiota dysbiosis and obesity, since there is a dual interaction between the two of them. Furthermore, comments on bariatric surgery, as a favourable model to understand the underlying metabolic and inflammatory effects, as well as its association with changes in the composition of the gut microbiota, are included. Also, a possible impact of anti-obesity drugs and the novel antidiabetic drugs on the gut microbiota has been briefly discussed. CONCLUSION More research is needed to better understand here discussed the association between microbiota modulation and obesity. It is expected that research in this field, in the following years, will lead to a personalized therapeutic approach considering the patient's microbiome, and also give rise to the discovery of new drugs and/or the combination therapies for the management of obesity and obesity-related co-morbidities.
Collapse
Affiliation(s)
- Adriana Florinela Cӑtoi
- Pathophysiology Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Andreea Corina
- Lipids and Atherosclerosis Research Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Dragana Nikolic
- PROMISE Department, University of Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | | | - Pablo Pérez-Martínez
- Lipids and Atherosclerosis Research Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | | |
Collapse
|
38
|
Choi S, Dong B, Lin CCJ, Heo MJ, Ho Kim K, Sun Z, Wagner M, Suh JM, Wang MC, Moore DD, Moore DD. Methyl-Sensing Nuclear Receptor Liver Receptor Homolog-1 Regulates Mitochondrial Function in Mouse Hepatocytes. Hepatology 2020; 71:1055-1069. [PMID: 31355949 PMCID: PMC6987012 DOI: 10.1002/hep.30884] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Liver receptor homolog-1 (LRH-1; NR5A2) is a nuclear receptor that regulates metabolic homeostasis in the liver. Previous studies identified phosphatidylcholines as potential endogenous agonist ligands for LRH-1. In the liver, distinct subsets of phosphatidylcholine species are generated by two different pathways: choline addition to phosphatidic acid through the Kennedy pathway and trimethylation of phosphatidylethanolamine through phosphatidylethanolamine N-methyl transferase (PEMT). APPROACH AND RESULTS Here, we report that a PEMT-LRH-1 pathway specifically couples methyl metabolism and mitochondrial activities in hepatocytes. We show that the loss of Lrh-1 reduces mitochondrial number, basal respiration, beta-oxidation, and adenosine triphosphate production in hepatocytes and decreases expression of mitochondrial biogenesis and beta-oxidation genes. In contrast, activation of LRH-1 by its phosphatidylcholine agonists exerts opposite effects. While disruption of the Kennedy pathway does not affect the LRH-1-mediated regulation of mitochondrial activities, genetic or pharmaceutical inhibition of the PEMT pathway recapitulates the effects of Lrh-1 knockdown on mitochondria. Furthermore, we show that S-adenosyl methionine, a cofactor required for PEMT, is sufficient to induce Lrh-1 transactivation and consequently mitochondrial biogenesis. CONCLUSIONS A PEMT-LRH-1 axis regulates mitochondrial biogenesis and beta-oxidation in hepatocytes.
Collapse
Affiliation(s)
- Sungwoo Choi
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Chun Janet Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mi Jeong Heo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zhen Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Martin Wagner
- Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Meng C. Wang
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA;,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA;,Correspondence: David D. Moore, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA, Phone: 713-798-3313, Fax: 713-798-3017, , Meng C. Wang, Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA, Phone: 713-798-1566,
| | - David D. Moore
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA;,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA;,Correspondence: David D. Moore, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA, Phone: 713-798-3313, Fax: 713-798-3017, , Meng C. Wang, Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA, Phone: 713-798-1566,
| | - David D. Moore
- Program in Developmental Biology Baylor College of Medicine Houston TX
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| |
Collapse
|
39
|
Laino A, Cunningham M, Garcia F, Trabalon M. Residual vitellus and energetic state of wolf spiderlings Pardosa saltans after emergence from egg-sac until first predation. J Comp Physiol B 2020; 190:261-274. [PMID: 32078039 DOI: 10.1007/s00360-020-01265-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022]
Abstract
The aim of this study was to evaluate energetic source used by juveniles of a terrestrial oviparous invertebrate during the earliest periods of their life. Growth, behavioural activities and energy contents of Pardosa saltans spiderlings' residual vitellus were monitored during 8 days after their emergence from their egg-sac until they disperse autonomously. The life-cycle of juvenile after emergence can be divided into three periods: a gregarious while juveniles are aggregated on their mother, dismounting off their mother's back and dispersion. We present the first biochemical study of residual vitellus and energy expenditure during these three periods. At emergence, the mean weight of juveniles was 0.59 mg and energy stock from residual vitellus averaged 51 cal/g wet mass. During gregarious period, the weight of the juveniles aggregated on their mother did not vary significantly and juveniles utilized only 1 cal/day from their residual vitellus. During the period from dismounting until their first exogenous feed, juveniles lost weight and used 30% of their residual vitellus stock. Proteins from the residual vitellus contributed principally to their energy expenditure during this period: 1.5 µg protein/day. Juveniles' first exogenous feeding was observed 7-8 days after emergence, when 70% of residual vitellus energy had been utilized. Juveniles dispersed after eating, reconstituting an energy stock comparable to that observed at emergence from egg-sac (50 cal/g wet mass). This new energy stock contains mainly lipids unlike the energy stock from the residual vitellus.
Collapse
Affiliation(s)
- A Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), CCT-La Plata CONICET-UNLP, La Plata, Argentina
| | - M Cunningham
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), CCT-La Plata CONICET-UNLP, La Plata, Argentina
| | - F Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), CCT-La Plata CONICET-UNLP, La Plata, Argentina
| | - M Trabalon
- Université de Rennes 1, UMR-6552 CNRS EthoS, Campus de Beaulieu, 263 avenue du Général Leclerc, CS 74205, 35042, Rennes Cedex, France.
| |
Collapse
|
40
|
Gore E, Bigaeva E, Oldenburger A, Jansen YJM, Schuppan D, Boersema M, Rippmann JF, Broermann A, Olinga P. Investigating fibrosis and inflammation in an ex vivo NASH murine model. Am J Physiol Gastrointest Liver Physiol 2020; 318:G336-G351. [PMID: 31905025 DOI: 10.1152/ajpgi.00209.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease, characterized by excess fat accumulation (steatosis). Nonalcoholic steatohepatitis (NASH) develops in 15-20% of NAFLD patients and frequently progresses to liver fibrosis and cirrhosis. We aimed to develop an ex vivo model of inflammation and fibrosis in steatotic murine precision-cut liver slices (PCLS). NASH was induced in C57Bl/6 mice on an amylin and choline-deficient l-amino acid-defined (CDAA) diet. PCLS were prepared from steatohepatitic (sPCLS) and control (cPCLS) livers and cultured for 48 h with LPS, TGFβ1, or elafibranor. Additionally, C57Bl/6 mice were placed on CDAA diet for 12 wk to receive elafibranor or vehicle from weeks 7 to 12. Effects were assessed by transcriptome analysis and procollagen Iα1 protein production. The diets induced features of human NASH. Upon culture, all PCLS showed an increased gene expression of fibrosis- and inflammation-related markers but decreased lipid metabolism markers. LPS and TGFβ1 affected sPCLS more pronouncedly than cPCLS. TGFβ1 increased procollagen Iα1 solely in cPCLS. Elafibranor ameliorated fibrosis and inflammation in vivo but not ex vivo, where it only increased the expression of genes modulated by PPARα. sPCLS culture induced inflammation-, fibrosis-, and lipid metabolism-related transcripts, explained by spontaneous activation. sPCLS remained responsive to proinflammatory and profibrotic stimuli on gene expression. We consider that PCLS represent a useful tool to reproducibly study NASH progression. sPCLS can be used to evaluate potential treatments for NASH, as demonstrated in our elafibranor study, and serves as a model to bridge results from rodent studies to the human system.NEW & NOTEWORTHY This study showed that nonalcoholic steatohepatitis can be studied ex vivo in precision-cut liver slices obtained from murine diet-induced fatty livers. Liver slices develop a spontaneous inflammatory and fibrogenic response during culture that can be augmented with specific modulators. Additionally, the model can be used to test the efficacy of pharmaceutical compounds (as shown in this investigation with elafibranor) and could be a tool for preclinical assessment of potential therapies.
Collapse
Affiliation(s)
- Emilia Gore
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Emilia Bigaeva
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Anouk Oldenburger
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Yvette J M Jansen
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Miriam Boersema
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Jörg F Rippmann
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Andre Broermann
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Peter Olinga
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Simoes IC, Janikiewicz J, Bauer J, Karkucinska-Wieckowska A, Kalinowski P, Dobrzyń A, Wolski A, Pronicki M, Zieniewicz K, Dobrzyń P, Krawczyk M, Zischka H, Wieckowski MR, Potes Y. Fat and Sugar-A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients 2019; 11:E2871. [PMID: 31771244 PMCID: PMC6950566 DOI: 10.3390/nu11122871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disease in Western society and ranges from steatosis to steatohepatitis to end-stage liver disease such as cirrhosis and hepatocellular carcinoma. The molecular mechanisms that are involved in the progression of steatosis to more severe liver damage in patients are not fully understood. A deeper investigation of NAFLD pathogenesis is possible due to the many different animal models developed recently. In this review, we present a comparative overview of the most common dietary NAFLD rodent models with respect to their metabolic phenotype and morphological manifestation. Moreover, we describe similarities and controversies concerning the effect of NAFLD-inducing diets on mitochondria as well as mitochondria-derived oxidative stress in the progression of NAFLD.
Collapse
Affiliation(s)
- Ines C.M. Simoes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Justyna Janikiewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Judith Bauer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
| | | | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Andrzej Wolski
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Maciej Pronicki
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (M.P.)
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Paweł Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mariusz R. Wieckowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Yaiza Potes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| |
Collapse
|
42
|
Role of Bile Acids in Dysbiosis and Treatment of Nonalcoholic Fatty Liver Disease. Mediators Inflamm 2019; 2019:7659509. [PMID: 31341422 PMCID: PMC6613006 DOI: 10.1155/2019/7659509] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health threat around the world and is characterized by dysbiosis. Primary bile acids are synthesized in the liver and converted into secondary bile acids by gut microbiota. Recent studies support the role of bile acids in modulating dysbiosis and NAFLD, while the mechanisms are not well elucidated. Dysbiosis may alter the size and the composition of the bile acid pool, resulting in reduced signaling of bile acid receptors such as farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). These receptors are essential in lipid and glucose metabolism, and impaired bile acid signaling may cause NAFLD. Bile acids also reciprocally regulate the gut microbiota directly via antibacterial activity and indirectly via FXR. Therefore, bile acid signaling is closely linked to dysbiosis and NAFLD. During the past decade, stimulation of bile acid receptors with their agonists has been extensively explored for the treatment of NAFLD in both animal models and clinical trials. Early evidence has suggested the potential of bile acid receptor agonists in NAFLD management, but their long-term safety and effectiveness need further clarification.
Collapse
|
43
|
Xue Y, Guo C, Hu F, Zhu W, Mao S. Maternal undernutrition induces fetal hepatic lipid metabolism disorder and affects the development of fetal liver in a sheep model. FASEB J 2019; 33:9990-10004. [PMID: 31167079 DOI: 10.1096/fj.201900406r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Undernutrition accelerates body fat mobilization to alleviate negative energy balance, which disrupts homeostasis of lipid metabolism in maternal liver. However, little is known about its effect on fetal metabolism and development. Here, a sheep model was used to explore whether maternal undernutrition induces fetal lipid metabolism disorder and further inhibits fetal hepatic development. Twenty pregnant ewes were either fed normally or restricted to 30% level for 15 d, after which fetal hepatic samples were collected to conduct transcriptome, metabolome, histomorphology, and biochemical analysis. Results showed that maternal undernutrition altered the general transcriptome profile and metabolic mode in fetal liver. Fatty acid oxidation and ketogenesis were enhanced in fetal livers of undernourished ewes, which might be promoted by the activated peroxisome proliferator-activated receptor α signaling pathway, whereas cholesterol, steroid, and fatty acid synthesis were repressed. Maternal undernutrition increased triglyceride synthesis, decreased triglyceride degradation, and inhibited phospholipid degradation and synthesis in fetal liver. In addition, our data revealed that maternal undernutrition extremely inhibited DNA replication, cell cycle progression, and antiapoptosis and broke the balance between cell proliferation and apoptosis in fetal liver, indicating that maternal undernutrition affects the growth and development of fetal liver. Generally, these findings provide evidence that maternal undernutrition during pregnancy disturbs fetal lipid metabolism and inhibits fetal hepatic development in sheep, which greatly contribute to the further study of fetal metabolism and development in human beings.-Xue, Y., Guo, C., Hu, F., Zhu, W., Mao, S. Maternal undernutrition induces fetal hepatic lipid metabolism disorder and affects the development of fetal liver in a sheep model.
Collapse
Affiliation(s)
- Yanfeng Xue
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Changzheng Guo
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Fan Hu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Law SH, Chan ML, Marathe GK, Parveen F, Chen CH, Ke LY. An Updated Review of Lysophosphatidylcholine Metabolism in Human Diseases. Int J Mol Sci 2019; 20:ijms20051149. [PMID: 30845751 PMCID: PMC6429061 DOI: 10.3390/ijms20051149] [Citation(s) in RCA: 461] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidylcholine (LPC) is increasingly recognized as a key marker/factor positively associated with cardiovascular and neurodegenerative diseases. However, findings from recent clinical lipidomic studies of LPC have been controversial. A key issue is the complexity of the enzymatic cascade involved in LPC metabolism. Here, we address the coordination of these enzymes and the derangement that may disrupt LPC homeostasis, leading to metabolic disorders. LPC is mainly derived from the turnover of phosphatidylcholine (PC) in the circulation by phospholipase A2 (PLA2). In the presence of Acyl-CoA, lysophosphatidylcholine acyltransferase (LPCAT) converts LPC to PC, which rapidly gets recycled by the Lands cycle. However, overexpression or enhanced activity of PLA2 increases the LPC content in modified low-density lipoprotein (LDL) and oxidized LDL, which play significant roles in the development of atherosclerotic plaques and endothelial dysfunction. The intracellular enzyme LPCAT cannot directly remove LPC from circulation. Hydrolysis of LPC by autotaxin, an enzyme with lysophospholipase D activity, generates lysophosphatidic acid, which is highly associated with cancers. Although enzymes with lysophospholipase A1 activity could theoretically degrade LPC into harmless metabolites, they have not been found in the circulation. In conclusion, understanding enzyme kinetics and LPC metabolism may help identify novel therapeutic targets in LPC-associated diseases.
Collapse
Affiliation(s)
- Shi-Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Mei-Lin Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, MacKay Medical College, Taipei 10449, Taiwan.
| | - Gopal K Marathe
- Department of Studies in Biochemistry, Manasagangothri, University of Mysore, Mysore-570006, India.
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chu-Huang Chen
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
45
|
Kitagawa E, Ota Y, Hasegawa M, Nakagawa T, Hayakawa T. Accumulation of Liver Lipids Induced by Vitamin B 6 Deficiency Was Effectively Ameliorated by Choline and, to a Lesser Extent, Betaine. J Nutr Sci Vitaminol (Tokyo) 2019; 65:94-101. [PMID: 30814419 DOI: 10.3177/jnsv.65.94] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite previous studies suggesting that choline and betaine ameliorate lipid accumulation in rat livers, the relative effectiveness of the two nutrients is unclear. We examined the efficacy of dietary supplementation with choline or betaine in ameliorating lipid accumulation induced by vitamin B6 (B6) deficiency in the rat liver. Male Wistar rats were fed control, B6-deficient, choline-supplemented B6-deficient, betaine-supplemented B6-deficient, or both choline and betaine-supplemented B6-deficient diets (all containing 9 g of l-methionine (Met)/kg) for 35 d. Two experiments were performed, i.e., one using 17 mmol/kg diet choline bitartrate, betaine anhydrous, and the combination and another using 8.5 mmol/kg diet. Rats fed a B6-deficient diet developed lipid accumulation in the liver with a reduction of plasma lipids induced by the disruption of Met metabolism. However, the addition of 17 mmol/kg diet choline or betaine was sufficient to ameliorate the disruptions of lipid and Met metabolism. Additionally, 8.5 mmol/kg diet choline ameliorated liver lipid deposition, while the same amount of betaine had no significant effects on liver or plasma lipid profiles. Supplementation with choline resulted in a higher liver betaine than that found using the same amount of betaine alone, although the overall liver betaine content was reduced in B6-deficient rats. Our findings indicate that choline is more effective than betaine in ameliorating B6 deficiency-related disruptions in Met metabolism and liver lipid accumulation by increasing liver betaine levels.
Collapse
Affiliation(s)
- Erina Kitagawa
- The United Graduate School of Agricultural Science, Gifu University.,Faculty of Health and Human Life, Nagoya Bunri University
| | - Yuki Ota
- The Graduate School of Applied Biological Sciences, Gifu University
| | - Maki Hasegawa
- Faculty of Applied Biological Sciences, Gifu University
| | - Tomoyuki Nakagawa
- The United Graduate School of Agricultural Science, Gifu University.,The Graduate School of Applied Biological Sciences, Gifu University.,Faculty of Applied Biological Sciences, Gifu University
| | - Takashi Hayakawa
- The United Graduate School of Agricultural Science, Gifu University.,The Graduate School of Applied Biological Sciences, Gifu University.,Faculty of Applied Biological Sciences, Gifu University
| |
Collapse
|
46
|
Taesuwan S, Vermeylen F, Caudill MA, Cassano PA. Relation of choline intake with blood pressure in the National Health and Nutrition Examination Survey 2007-2010. Am J Clin Nutr 2019; 109:648-655. [PMID: 30831597 DOI: 10.1093/ajcn/nqy330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/24/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Dietary choline is a precursor of trimethylamine N-oxide (TMAO), a metabolite that has been associated with an increased risk of cardiovascular disease. The mechanism underlying this association is unknown, but may include TMAO effects on blood pressure (BP). OBJECTIVES This study assessed the association of choline intake with hypertension and BP in US adults through the use of NHANES 2007-2010 data. METHODS This cross-sectional study was conducted in nonpregnant individuals aged ≥20 y. Choline intake was assessed with the use of two 24-h recalls. Outcomes were BP and hypertension status, which was assessed through the use of questionnaires and BP measurements. Modifying factors (e.g., sex, race/ethnicity) and dietary compared with supplemental sources of choline intake were also investigated. RESULTS The associations of total (dietary + supplemental) and dietary choline intake with the prevalence odds of hypertension differed by sex (n = 9227; P-interaction = 0.04 and 0.03, respectively). In women, both total and dietary choline intake tended to be inversely associated with hypertension (n = 4748; prevalence OR per 100 mg of choline intake: 0.89; 95% CI: 0.77, 1.02; P < 0.10 for both total and dietary choline). No association was observed in men (n = 4479; P = 0.54 and 0.49 for total choline and dietary choline, respectively). Use of choline supplements was inversely associated with hypertension in both sexes (user compared with nonuser; OR: 0.68; 95% CI: 0.49, 0.92; P = 0.01). There was little to no association of total, dietary, or supplemental choline intake with systolic or diastolic BP (n = 6,554; the mean ± SEM change in BP associated with a 100-mg difference in total choline was -0.26 ± 0.22 mm Hg for systolic BP and -0.29 ± 0.19 mm Hg for diastolic BP). CONCLUSIONS Cross-sectional NHANES data do not support the hypothesis of a positive association between choline intake and BP.
Collapse
Affiliation(s)
- Siraphat Taesuwan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY.,Agro-Industry Faculty, Chiang Mai University, Chiang Mai, Thailand
| | | | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY.,Weill Cornell Medical College, New York City, NY
| |
Collapse
|
47
|
González-Granillo M, Helguero LA, Alves E, Archer A, Savva C, Pedrelli M, Ahmed O, Li X, Domingues MR, Parini P, Gustafsson JÅ, Korach-André M. Sex-specific lipid molecular signatures in obesity-associated metabolic dysfunctions revealed by lipidomic characterization in ob/ob mouse. Biol Sex Differ 2019; 10:11. [PMID: 30808418 PMCID: PMC6390380 DOI: 10.1186/s13293-019-0225-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/07/2019] [Indexed: 02/06/2023] Open
Abstract
The response to overfeeding is sex dependent, and metabolic syndrome is more likely associated to obesity in men or postmenopausal women than in young fertile women. We hypothesized that obesity-induced metabolic syndrome is sex dependent due to a sex-specific regulation of the fatty acid (FA) synthesis pathways in liver and white adipose depots. We aimed to identify distinctive molecular signatures between sexes using a lipidomics approach to characterize lipid species in liver, perigonadal adipose tissue, and inguinal adipose tissue and correlate them to the physiopathological responses observed. Males had less total fat but lower subcutaneous on visceral fat ratio together with higher liver weight and higher liver and serum triglyceride (TG) levels. Males were insulin resistant compared to females. Fatty acid (FA) and TG profiles differed between sexes in both fat pads, with longer chain FAs and TGs in males compared to that in females. Remarkably, hepatic phospholipid composition was sex dependent with more abundant lipotoxic FAs in males than in females. This may contribute to the sexual dimorphism in response to obesity towards more metaflammation in males. Our work presents an exhaustive novel description of a sex-specific lipid signature in the pathophysiology of metabolic disorders associated with obesity in ob/ob mice. These data could settle the basis for future pharmacological treatment in obesity.
Collapse
Affiliation(s)
- Marcela González-Granillo
- Department of Medicine, Metabolism and Molecular Nutrition Unit, Center for Endocrinology, Metabolism and Diabetes, Karolinska Institutet, S-141 86, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Center, Karolinska Institutet at Karolinska University Hospital Huddinge, C2-94, S-141 86, Stockholm, Sweden
| | - Luisa A Helguero
- Department of Medical Sciences, Institute for Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Eliana Alves
- Mass spectrometry Centre, Department of Chemistry (QOPNA, CESAM & ECOMARE), University of Aveiro, Aveiro, Portugal
| | - Amena Archer
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.,Department of Proteomics, Science for Life Laboratory, School of Biotechnology, KTH, Stockholm, Sweden
| | - Christina Savva
- Department of Medicine, Metabolism and Molecular Nutrition Unit, Center for Endocrinology, Metabolism and Diabetes, Karolinska Institutet, S-141 86, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Center, Karolinska Institutet at Karolinska University Hospital Huddinge, C2-94, S-141 86, Stockholm, Sweden
| | - Matteo Pedrelli
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Osman Ahmed
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Xidan Li
- Department of Medicine, Metabolism and Molecular Nutrition Unit, Center for Endocrinology, Metabolism and Diabetes, Karolinska Institutet, S-141 86, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Center, Karolinska Institutet at Karolinska University Hospital Huddinge, C2-94, S-141 86, Stockholm, Sweden
| | - Maria Rosário Domingues
- Mass spectrometry Centre, Department of Chemistry (QOPNA, CESAM & ECOMARE), University of Aveiro, Aveiro, Portugal
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.,Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA
| | - Marion Korach-André
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden. .,Department of Medicine, Metabolism and Molecular Nutrition Unit, Center for Endocrinology, Metabolism and Diabetes, Karolinska Institutet, S-141 86, Stockholm, Sweden. .,Department of Medicine, Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Center, Karolinska Institutet at Karolinska University Hospital Huddinge, C2-94, S-141 86, Stockholm, Sweden.
| |
Collapse
|
48
|
Barrea L, Annunziata G, Muscogiuri G, Di Somma C, Laudisio D, Maisto M, de Alteriis G, Tenore GC, Colao A, Savastano S. Trimethylamine-N-oxide (TMAO) as Novel Potential Biomarker of Early Predictors of Metabolic Syndrome. Nutrients 2018; 10:E1971. [PMID: 30551613 PMCID: PMC6316855 DOI: 10.3390/nu10121971] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
There is a mechanistic link between the gut-derived metabolite trimethylamine-N-oxide (TMAO) and obesity-related diseases, suggesting that the TMAO pathway may also be linked to the pathogenesis of obesity. The Visceral Adiposity Index (VAI), a gender-specific indicator of adipose dysfunction, and the Fatty Liver Index (FLI), a predictor of non-alcoholic fatty liver disease (NAFLD), are early predictors of metabolic syndrome (MetS). In this cross-sectional observational study, we investigated TMAO levels in adults stratified according to Body Mass Index (BMI) and the association of TMAO with VAI and FLI. One hundred and thirty-seven adult subjects (59 males; 21⁻56 years) were enrolled. TMAO levels were detected using HPLC/MS analysis. Homeostatic Model Assessment of Insulin Resistance (HoMA-IR), VAI and FLI were included as cardio-metabolic indices. TMAO levels increased along with BMI and were positively associated with VAI and FLI, independently, on common potential covariates. The most sensitive and specific cut-offs for circulating levels of TMAO to predict the presence of NAFLD-FLI and MetS were ≥8.02 µM and ≥8.74 µM, respectively. These findings allow us to hypothesize a role of TMAO as an early biomarker of adipose dysfunction and NAFLD-FLI in all borderline conditions in which overt MetS is not present, and suggest that a specific cut-off of TMAO might help in identifying subjects at high risk of NAFLD.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Giuseppe Annunziata
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy.
| | | | - Daniela Laudisio
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Maria Maisto
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Giulia de Alteriis
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
49
|
Abstract
Phospholipids are major constituents of biological membranes. The fatty acyl chain composition of phospholipids determines the biophysical properties of membranes and thereby affects their impact on biological processes. The composition of fatty acyl chains is also actively regulated through a deacylation and reacylation pathway called Lands' cycle. Recent studies of mouse genetic models have demonstrated that lysophosphatidylcholine acyltransferases (LPCATs), which catalyze the incorporation of fatty acyl chains into the sn-2 site of phosphatidylcholine, play important roles in pathophysiology. Two LPCAT family members, LPCAT1 and LPCAT3, have been particularly well studied. LPCAT1 is crucial for proper lung function due to its role in pulmonary surfactant biosynthesis. LPCAT3 maintains systemic lipid homeostasis by regulating lipid absorption in intestine, lipoprotein secretion, and de novo lipogenesis in liver. Mounting evidence also suggests that changes in LPCAT activity may be potentially involved in pathological conditions, including nonalcoholic fatty liver disease, atherosclerosis, viral infections, and cancer. Pharmacological manipulation of LPCAT activity and membrane phospholipid composition may provide new therapeutic options for these conditions.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90272, USA;
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90272, USA;
| |
Collapse
|
50
|
Chen H, Cade BE, Gleason KJ, Bjonnes AC, Stilp AM, Sofer T, Conomos MP, Ancoli-Israel S, Arens R, Azarbarzin A, Bell GI, Below JE, Chun S, Evans DS, Ewert R, Frazier-Wood AC, Gharib SA, Haba-Rubio J, Hagen EW, Heinzer R, Hillman DR, Johnson WC, Kutalik Z, Lane JM, Larkin EK, Lee SK, Liang J, Loredo JS, Mukherjee S, Palmer LJ, Papanicolaou GJ, Penzel T, Peppard PE, Post WS, Ramos AR, Rice K, Rotter JI, Sands SA, Shah NA, Shin C, Stone KL, Stubbe B, Sul JH, Tafti M, Taylor KD, Teumer A, Thornton TA, Tranah GJ, Wang C, Wang H, Warby SC, Wellman DA, Zee PC, Hanis CL, Laurie CC, Gottlieb DJ, Patel SR, Zhu X, Sunyaev SR, Saxena R, Lin X, Redline S. Multiethnic Meta-Analysis Identifies RAI1 as a Possible Obstructive Sleep Apnea-related Quantitative Trait Locus in Men. Am J Respir Cell Mol Biol 2018; 58:391-401. [PMID: 29077507 PMCID: PMC5854957 DOI: 10.1165/rcmb.2017-0237oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common heritable disorder displaying marked sexual dimorphism in disease prevalence and progression. Previous genetic association studies have identified a few genetic loci associated with OSA and related quantitative traits, but they have only focused on single ethnic groups, and a large proportion of the heritability remains unexplained. The apnea-hypopnea index (AHI) is a commonly used quantitative measure characterizing OSA severity. Because OSA differs by sex, and the pathophysiology of obstructive events differ in rapid eye movement (REM) and non-REM (NREM) sleep, we hypothesized that additional genetic association signals would be identified by analyzing the NREM/REM-specific AHI and by conducting sex-specific analyses in multiethnic samples. We performed genome-wide association tests for up to 19,733 participants of African, Asian, European, and Hispanic/Latino American ancestry in 7 studies. We identified rs12936587 on chromosome 17 as a possible quantitative trait locus for NREM AHI in men (N = 6,737; P = 1.7 × 10-8) but not in women (P = 0.77). The association with NREM AHI was replicated in a physiological research study (N = 67; P = 0.047). This locus overlapping the RAI1 gene and encompassing genes PEMT1, SREBF1, and RASD1 was previously reported to be associated with coronary artery disease, lipid metabolism, and implicated in Potocki-Lupski syndrome and Smith-Magenis syndrome, which are characterized by abnormal sleep phenotypes. We also identified gene-by-sex interactions in suggestive association regions, suggesting that genetic variants for AHI appear to vary by sex, consistent with the clinical observations of strong sexual dimorphism.
Collapse
Affiliation(s)
- Han Chen
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health and
- Center for Precision Health, School of Public Health & School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Brian E. Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kevin J. Gleason
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Andrew C. Bjonnes
- Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts
- Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Adrienne M. Stilp
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Matthew P. Conomos
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Sonia Ancoli-Israel
- Departments of Medicine and Psychiatry, University of California, San Diego, California
| | - Raanan Arens
- the Children’s Hospital at Montefiore, Division of Respiratory and Sleep Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Ali Azarbarzin
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Graeme I. Bell
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, the University of Chicago, Chicago, Illinois
| | - Jennifer E. Below
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health and
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sung Chun
- Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Ralf Ewert
- Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | | | - Sina A. Gharib
- Computational Medicine Core, Center for Lung Biology, University of Washington Medicine Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington
| | - José Haba-Rubio
- Center of Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Erika W. Hagen
- Department of Population Health Sciences, University of Wisconsin, Madison, Wisconsin
| | - Raphael Heinzer
- Center of Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - David R. Hillman
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Zoltan Kutalik
- Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jacqueline M. Lane
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
- Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Emma K. Larkin
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Seung Ku Lee
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Jeokgum-ro, Danwon-gu, Ansan-si, Gyeonggi-Do, Republic of Korea
| | - Jingjing Liang
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jose S. Loredo
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Sutapa Mukherjee
- Adelaide Institute for Sleep Health, Flinders Centre of Research Excellence, Flinders University, Adelaide, South Australia, Australia
| | - Lyle J. Palmer
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - George J. Papanicolaou
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Thomas Penzel
- University Hospital Charité Berlin, Sleep Center, Berlin, Germany
| | - Paul E. Peppard
- Department of Population Health Sciences, University of Wisconsin, Madison, Wisconsin
| | - Wendy S. Post
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland
| | - Alberto R. Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute and Department of Pediatrics at Harbor–University of California Los Angeles Medical Center, Torrance, California
| | - Scott A. Sands
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Neomi A. Shah
- Division of Pulmonary, Critical Care, and Sleep, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chol Shin
- Department of Pulmonary, Sleep, and Critical Care Medicine, College of Medicine, Korea University Ansan Hospital, Jeokgum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Beate Stubbe
- Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Jae Hoon Sul
- Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - Mehdi Tafti
- Center of Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute and Department of Pediatrics at Harbor–University of California Los Angeles Medical Center, Torrance, California
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Chaolong Wang
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Simon C. Warby
- Department of Psychiatry, University of Montreal, Montreal, Quebec, Canada
| | - D. Andrew Wellman
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Phyllis C. Zee
- Department of Neurology and Sleep Medicine Center, Northwestern University, Chicago, Illinois
| | - Craig L. Hanis
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health and
| | - Cathy C. Laurie
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Daniel J. Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Sanjay R. Patel
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Shamil R. Sunyaev
- Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts; and
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
- Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Xihong Lin
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|