1
|
Wood JPM, Chidlow G, Wall GM, Casson RJ. N-acetylcysteine amide and di- N-acetylcysteine amide protect retinal cells in culture via an antioxidant action. Exp Eye Res 2024; 248:110074. [PMID: 39251120 DOI: 10.1016/j.exer.2024.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Reactive oxygen species (ROS) play a significant role in toxicity to the retina in a variety of diseases. N-acetylcysteine (NAC), N-acetylcysteine amide (NACA) and the dimeric di-N-acetylcysteine amide (diNACA) were evaluated in terms of protecting retinal cells, in vitro, in a variety of stress models. Three types of rat retinal cell cultures were utilized in the study: macroglial-only cell cultures, neuron-only retinal ganglion cell (RGC) cultures, and mixed cultures containing retinal glia and neurons. Ability of test agents to attenuate oxidative stress in all cultures was ascertained. In addition, capability of agents to protect against a variety of alternate clinically-relevant stressors, including excitotoxins and mitochondrial electron transport chain inhibitors, was also evaluated. Capacity of test agents to elevate cellular levels of reduced glutathione under normal and compromised conditions was also determined. NAC, NACA and diNACA demonstrated concentration-dependent cytoprotection against oxidative stress in all cultures. These three compounds, however, had differing effects against a variety of alternate insults to retinal cells. The most protective agent was NACA, which was most potent against the most stressors (including oxidative stress, mitochondrial impairment by antimycin A and azide, and glutamate-induced excitotoxicity). Similar to NAC, NACA increased glutathione levels in non-injured cells, although diNACA did not, suggesting a different, unknown mechanism of antioxidant activity for the latter. In support of this, diNACA was the only agent to attenuate rotenone-induced toxicity in mitochondria. NAC, NACA and diNACA exhibited varying degrees of antioxidant activity, i.e., protected cultured rat retinal cells from a variety of stressors which were designed to mimic aspects of the pathology of different retinal diseases. A general rank order of activity was observed: NACA ≥ diNACA > NAC. These results warrant further exploration of NACA and diNACA as antioxidant therapeutics for the treatment of retinal diseases, particularly those involving oxidative stress. Furthermore, we have defined the battery of tests carried out as the "Wood, Chidlow, Wall and Casson (WCWC) Retinal Antioxidant Indices"; we believe that these are of great value for screening molecules for potential to reduce retinal oxidative stress in a range of retinal diseases.
Collapse
Affiliation(s)
- John P M Wood
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia.
| | - Glyn Chidlow
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia
| | | | - Robert J Casson
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia
| |
Collapse
|
2
|
Horonyova P, Durisova I, Cermakova P, Babelova L, Buckova B, Sofrankova L, Valachovic M, Hsu YHH, Balazova M. The subtherapeutic dose of valproic acid induces the activity of cardiolipin-dependent proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149501. [PMID: 39079622 DOI: 10.1016/j.bbabio.2024.149501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
A mood-stabilizing anticonvulsant valproic acid (VPA) is a drug with a pleiotropic effect on cells. Here, we describe the impact of VPA on the metabolic function of human HAP1 cells. We show that VPA altered the biosynthetic pathway of cardiolipin (CL) and affected the activities of mitochondrial enzymes such as pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and NADH dehydrogenase. We demonstrate that a therapeutic dose of VPA (0.6 mM) has a harmful effect on cell growth and increases the production of reactive oxygen species and superoxides. On the contrary, less concentrated VPA (0.06 mM) increased the activities of CL-dependent enzymes leading to an increased level of oxidative phosphorylation and ATP production. The effect of VPA was also tested on the Barth syndrome model, which is characterized by a reduced amount of CL and an increased level of monolyso-CL. In this model, VPA treatment slightly attenuated the mitochondrial defects by altering the activities of CL-dependent enzymes. However, the presence of CL was essential for the increase in ATP production by VPA. Our findings highlight the potential therapeutic role of VPA in normalizing mitochondrial function in BTHS and shed light on the intricate interplay between lipid metabolism and mitochondrial physiology in health and disease. SUMMARY: This study investigates the dose-dependent effect of valproate, a mood-stabilizing drug, on mitochondrial function. The therapeutic concentration reduced overall cellular metabolic activity, while a subtherapeutic concentration notably improved the function of cardiolipin-dependent proteins within mitochondria. These findings shed light on novel aspects of valproate's effect and suggest potential practical applications for its use. By elucidating the differential effects of valproate doses on mitochondrial activity, this research underscores the drug's multifaceted role in cellular metabolism and highlights avenues for further exploration in therapeutic interventions.
Collapse
Affiliation(s)
- Paulina Horonyova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivana Durisova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Cermakova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lenka Babelova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Buckova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lucia Sofrankova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Slovakia
| | - Martin Valachovic
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Maria Balazova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
3
|
Kamel AG, Sabet S, El-Shibiny A. Potential mitochondrial ROS-mediated damage induced by chitosan nanoparticles bee venom-loaded on cancer cell lines. Int J Biol Macromol 2024; 279:135362. [PMID: 39245116 DOI: 10.1016/j.ijbiomac.2024.135362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Recently, numerous studies have confirmed the importance of chitosan nanoparticles (CNP) as a viable drug delivery carrier for increasing the efficacy of anticancer drugs in cancer treatment. It is a macromolecule and natural biopolymer compound, more stable and safer in use than metal nanoparticles. Bee venom (BV), a form of defense venom, has been shown to have anti-tumor, neuroprotective, anti-inflammatory, analgesic, and anti-infectivity properties. Moreover, the regulation of cell death has been linked to reactive oxygen species (ROS)-mediated cell apoptosis, which induces mitochondrial damage and ER stress through oxidative stress events. Therefore, this study aimed to illustrate the ROS-mediated effect on the cancer cells treatment with CNP-loaded BV (CNP-BV) and explained the adverse effects of ROS generation on Mitochondria and ER. We have found that the targeted CNP-BV were high in cytotoxicity against MCF-7 (IC50 437.2 μg/mL) and HepG2 (IC50 109.5 μg/mL) through the induction of massive generation of ROS, which in turn results in activating the mitochondrial cascade and ER stress. These results highlighted the role of ROS generation in inducing apoptosis in cancer cells.
Collapse
Affiliation(s)
- Azza G Kamel
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt.
| |
Collapse
|
4
|
Gurhan H, Barnes F. Frequency-Dependent Antioxidant Responses in HT-1080 Human Fibrosarcoma Cells Exposed to Weak Radio Frequency Fields. Antioxidants (Basel) 2024; 13:1237. [PMID: 39456490 PMCID: PMC11504554 DOI: 10.3390/antiox13101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study explores the complex relationship between radio frequency (RF) exposure and cancer cells, focusing on the HT-1080 human fibrosarcoma cell line. We investigated the modulation of reactive oxygen species (ROS) and key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase, and glutathione (GSH), as well as mitochondrial superoxide levels and cell viability. Exposure to RF fields in the 2-5 MHz range at very weak intensities (20 nT) over 4 days resulted in distinct, frequency-specific cellular effects. Significant increases in SOD and GSH levels were observed at 4 and 4.5 MHz, accompanied by reduced mitochondrial superoxide levels and enhanced cell viability, suggesting improved mitochondrial function. In contrast, lower frequencies like 2.5 MHz induced oxidative stress, evidenced by GSH depletion and increased mitochondrial superoxide levels. The findings demonstrate that cancer cells exhibit frequency-specific sensitivity to RF fields even at intensities significantly below current safety standards, highlighting the need to reassess exposure limits. Additionally, our analysis of the radical pair mechanism (RPM) offers deeper insight into RF-induced cellular responses. The modulation of ROS and antioxidant enzyme activities is significant for cancer treatment and has broader implications for age-related diseases, where oxidative stress is a central factor in cellular degeneration. The findings propose that RF fields may serve as a therapeutic tool to selectively modulate oxidative stress and mitochondrial function in cancer cells, with antioxidants playing a key role in mitigating potential adverse effects.
Collapse
Affiliation(s)
- Hakki Gurhan
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| | - Frank Barnes
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| |
Collapse
|
5
|
Soler-Agesta R, Moreno-Loshuertos R, Yim CY, Congenie MT, Ames TD, Johnson HL, Stossi F, Mancini MG, Mancini MA, Ripollés-Yuba C, Marco-Brualla J, Junquera C, Martínez-De-Mena R, Enríquez JA, Price MR, Jimeno J, Anel A. Cancer cell-selective induction of mitochondrial stress and immunogenic cell death by PT-112 in human prostate cell lines. J Transl Med 2024; 22:927. [PMID: 39394618 PMCID: PMC11470694 DOI: 10.1186/s12967-024-05739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
PT-112 is a novel immunogenic cell death (ICD)-inducing small molecule currently under Phase 2 clinical development, including in metastatic castration-resistant prostate cancer (mCRPC), an immunologically cold and heterogeneous disease state in need of novel therapeutic approaches. PT-112 has been shown to cause ribosome biogenesis inhibition and organelle stress followed by ICD in cancer cells, culminating in anticancer immunity. In addition, clinical evidence of PT-112-driven immune effects has been observed in patient immunoprofiling. Given the unmet need for immune-based therapies in prostate cancer, along with a Phase I study (NCT#02266745) showing PT-112 activity in mCRPC patients, we investigated PT-112 effects in a panel of human prostate cancer cell lines. PT-112 demonstrated cancer cell selectivity, inhibiting cell growth and leading to cell death in prostate cancer cells without affecting the non-tumorigenic epithelial prostate cell line RWPE-1 at the concentrations tested. PT-112 also caused caspase-3 activation, as well as stress features in mitochondria including ROS generation, compromised membrane integrity, altered respiration, and morphological changes. Moreover, PT-112 induced damage-associated molecular pattern (DAMP) release, the first demonstration of ICD in human cancer cell lines, in addition to autophagy initiation across the panel. Taken together, PT-112 caused selective stress, growth inhibition and death in human prostate cancer cell lines. Our data provide additional insight into mitochondrial stress and ICD in response to PT-112. PT-112 anticancer immunogenicity could have clinical applications and is currently under investigation in a Phase 2 mCRPC study.
Collapse
Affiliation(s)
- R Soler-Agesta
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
| | - R Moreno-Loshuertos
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain.
| | - C Y Yim
- Promontory Therapeutics Inc, New York, NY, USA
| | | | - T D Ames
- Promontory Therapeutics Inc, New York, NY, USA
| | - H L Johnson
- Department of Molecular and Cellular Biology, Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - F Stossi
- Department of Molecular and Cellular Biology, Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - M G Mancini
- Department of Molecular and Cellular Biology, Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - M A Mancini
- Department of Molecular and Cellular Biology, Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - C Ripollés-Yuba
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
| | - J Marco-Brualla
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
| | - C Junquera
- Anatomy and Human Histology Department, Faculty of Medicine, University of Zaragoza/IIS-Aragón, Zaragoza, Spain
| | | | - J A Enríquez
- Carlos III National Center for Cardiovascular Research, Madrid, Spain
| | - M R Price
- Promontory Therapeutics Inc, New York, NY, USA
| | - J Jimeno
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
- Promontory Therapeutics Inc, New York, NY, USA
| | - A Anel
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
6
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
7
|
Tam S, Umashankar B, Rahman MK, Choucair H, Rawling T, Murray M. The Novel Anticancer Aryl-Ureido Fatty Acid CTU Increases Reactive Oxygen Species Production That Impairs Mitochondrial Fusion Mechanisms and Promotes MDA-MB-231 Cell Death. Int J Mol Sci 2024; 25:10577. [PMID: 39408906 PMCID: PMC11476390 DOI: 10.3390/ijms251910577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer cell mitochondria are functionally different from those in normal cells and could be targeted to develop novel anticancer agents. The aryl-ureido fatty acid CTU (16({[4-chloro-3-(trifluoromethyl)phenyl]-carbamoyl}amino)hexadecanoic acid) is the prototype of a new class of targeted agents that enhance the production of reactive oxygen species (ROS) that disrupt the outer mitochondrial membrane (OMM) and kill cancer cells. However, the mechanism by which CTU disrupts the inner mitochondrial membrane (IMM) and activates apoptosis is not clear. Here, we show that CTU-mediated ROS selectively dysregulated the OMA1/OPA1 fusion regulatory system located in the IMM. The essential role of ROS was confirmed in experiments with the lipid peroxyl scavenger α-tocopherol, which prevented the dysregulation of OMA1/OPA1 and CTU-mediated MDA-MB-231 cell killing. The disruption of OMA1/OPA1 and IMM fusion by CTU-mediated ROS accounted for the release of cytochrome c from the mitochondria and the activation of apoptosis. Taken together, these findings demonstrate that CTU depolarises the mitochondrial membrane, activates ROS production, and disrupts both the IMM and OMM, which releases cytochrome c and activates apoptosis. Mitochondrial-targeting agents like CTU offer a novel approach to the development of new therapeutics with anticancer activity.
Collapse
Affiliation(s)
- Stanton Tam
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| | - Balasubrahmanyam Umashankar
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| | - Md Khalilur Rahman
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| | - Hassan Choucair
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Michael Murray
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| |
Collapse
|
8
|
Wang M, Hou C, Jia F, Zhong C, Xue C, Li J. Aging-associated atrial fibrillation: A comprehensive review focusing on the potential mechanisms. Aging Cell 2024; 23:e14309. [PMID: 39135295 PMCID: PMC11464128 DOI: 10.1111/acel.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 10/11/2024] Open
Abstract
Atrial fibrillation (AF) has been receiving a lot of attention from scientists and clinicians because it is an extremely common clinical condition. Due to its special hemodynamic changes, AF has a high rate of disability and mortality. So far, although AF has some therapeutic means, it is still an incurable disease because of its complex risk factors and pathophysiologic mechanisms, which is a difficult problem for global public health. Age is an important independent risk factor for AF, and the incidence of AF increases with age. To date, there is no comprehensive review on aging-associated AF. In this review, we systematically discuss the pathophysiologic evidence for aging-associated AF, and in particular explore the pathophysiologic mechanisms of mitochondrial dysfunction, telomere attrition, cellular senescence, disabled macroautophagy, and gut dysbiosis involved in recent studies with aging-associated AF. We hope that by exploring the various dimensions of aging-associated AF, we can better understand the specific relationship between age and AF, which may be crucial for innovative treatments of aging-associated AF.
Collapse
Affiliation(s)
- Meng‐Fei Wang
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Can Hou
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Fang Jia
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cheng‐Hao Zhong
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cong Xue
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Jian‐Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
9
|
Bahety D, Böke E, Rodríguez-Nuevo A. Mitochondrial morphology, distribution and activity during oocyte development. Trends Endocrinol Metab 2024; 35:902-917. [PMID: 38599901 DOI: 10.1016/j.tem.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Mitochondria have a crucial role in cellular function and exhibit remarkable plasticity, adjusting both their structure and activity to meet the changing energy demands of a cell. Oocytes, female germ cells that become eggs, undergo unique transformations: the extended dormancy period, followed by substantial increase in cell size and subsequent maturation involving the segregation of genetic material for the next generation, present distinct metabolic challenges necessitating varied mitochondrial adaptations. Recent findings in dormant oocytes challenged the established respiratory complex hierarchies and underscored the extent of mitochondrial plasticity in long-lived oocytes. In this review, we discuss mitochondrial adaptations observed during oocyte development across three vertebrate species (Xenopus, mouse, and human), emphasising current knowledge, acknowledging limitations, and outlining future research directions.
Collapse
Affiliation(s)
- Devesh Bahety
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Aida Rodríguez-Nuevo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
10
|
Liu X, Chen S, Luo W, Yu C, Yan S, Lei L, Qiu S, Lin X, Feng T, Shi J, Zhang Q, Liang H, Liu X, Lee APW, Zheng L, Zhang X, Xiu J. LncRNA MFRL regulates the phenotypic switch of vascular smooth muscle cells to attenuate arterial remodeling by encoding a novel micropeptide MFRLP. Transl Res 2024; 272:54-67. [PMID: 38838852 DOI: 10.1016/j.trsl.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Arterial remodeling is a common pathophysiological change in the pathogenesis of cardiovascular diseases in which the phenotypic switch of vascular smooth muscle cells (VSMC) plays an important role. Recently, an increasing number of long non-coding RNAs(lncRNAs) have been shown to encode micropeptides that play biological roles and have great clinical transformation potential. However, the role of micropeptides encoded by lncRNAs in arterial remodeling has not been well studied and requires further exploration. METHODS AND RESULTS Through bioinformatic analysis and experimental verification, we found that a new lncRNA, the mitochondrial function-related lncRNA (MFRL), encodes a 64-amino acid micropeptide, MFRLP. MFRL and MFRLP play important roles in the phenotypic switch of VSMC. Further experiments showed that MFRLP interacts with mitochondrial cytochrome b to reduce accumulation of reactive oxygen species, suppress mitophagy and inhibit the VSMC switch from contractile to synthetic phenotype. CONCLUSIONS LncRNA MFRL encodes the micropeptide MFRLP, which interacts with mitochondrial cytochrome b to inhibit the VSMC switch from contractile to synthetic phenotype and improve arterial remodeling.
Collapse
Affiliation(s)
- Xiaocong Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Siyu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Wei Luo
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Chen Yu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Shaohua Yan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Li Lei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Shifeng Qiu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Xinxin Lin
- Department of Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, PR China
| | - Ting Feng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jinglin Shi
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Qiuxia Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Hongbin Liang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Xuewei Liu
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China
| | - Alex Pui-Wai Lee
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, PR China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Xinlu Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | - Jiancheng Xiu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
11
|
Fan T, Zhu N, Li M, Wang Z, Lin X. CTRP6-mediated cardiac protection in heart failure via the AMPK/SIRT1/PGC-1α signalling pathway. Exp Physiol 2024. [PMID: 39325807 DOI: 10.1113/ep092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Heart failure (HF) remains a significant global health concern with limited effective treatments available. C1q/TNF-related protein 6 (CTRP6) is a member of the CTRP family analogous to adiponectin and its role in HF pathogenesis remains unclear. Here, we investigated the impact of CTRP6 on HF progression. To mimic heart failure with reduced ejection fraction (HFrEF), we used isoproterenol injection in mice and administered adenovirus vectors expressing CTRP6 (Ad-CTRP6) via tail vein injection. We assessed cardiac function through echocardiography and histology. CTRP6's effects on hypertrophy, fibrosis, apoptosis, oxidative stress and mitochondrial function were analysed. Downstream pathways (phosphorylated AMP-activated protein kinase (p-AMPK), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) were studied in heart tissues. In vitro, isoproterenol-stimulated H9c2 cardiomyocytes were treated with CTRP6 to examine viability, apoptosis, F-actin and signalling proteins. Compound C was used to assess AMPK involvement. CTRP6 expression was lower in the plasma of HF patients. In an isoproterenol-induced HFrEF mouse model, adenovirus-mediated overexpression of CTRP6 ameliorated cardiac dysfunction and reduced cardiomyocyte apoptosis, oxidative stress, inflammation and myocardial injury markers. Mechanistically, CTRP6 activation of the AMPK/SIRT1/PGC-1α signalling pathway restored mitochondrial homeostasis, evidenced by reduced mitochondrial reactive oxygen species levels, increased ATP content, and enhanced mitochondrial complex I/III activities in cardiac tissues. In vitro studies using isoproterenol-stimulated H9c2 cardiomyocytes corroborated these findings, demonstrating that CTRP6 upregulation attenuated hypertrophy, apoptosis, oxidative stress and mitochondrial dysfunction. Furthermore, these effects were partially reversed by the AMPK inhibitor Compound C, implicating the involvement of the AMPK pathway in CTRP6-mediated cardioprotection. CTRP6 alleviates HF progression through the AMPK/SIRT1/PGC-1α signalling pathway.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ningjun Zhu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengli Li
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
12
|
Kuretu A, Mothibe M, Ngubane P, Sibiya N. Elucidating the effect of drug-induced mitochondrial dysfunction on insulin signaling and glucose handling in skeletal muscle cell line (C2C12) in vitro. PLoS One 2024; 19:e0310406. [PMID: 39288128 PMCID: PMC11407670 DOI: 10.1371/journal.pone.0310406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Efavirenz, tenofovir, rifampicin, simvastatin, lamotrigine and clarithromycin are known potential mitochondrial toxicants. Mitochondrial toxicity has been reported to disrupt the chain of events in the insulin signalling pathway. Considering the upward trajectory of diabetes mellitus prevalence, studies which seek to uncover probable risk factors for developing diabetes should be encouraged. This study aimed to evaluate the intracellular mechanisms leading to the development of insulin resistance in the presence of various conventional pharmacological agents reported as potential mitochondrial toxicants in skeletal muscle cell line. Differentiated C2C12 preparations were exposed to multiple concentrations of efavirenz, tenofovir, rifampicin, simvastatin, lamotrigine, and clarithromycin, separately. Glucose handling was evaluated by observing the changes in insulin-stimulated glucose uptake and assessing the changes in GLUT4 translocation, GLUT4 expression and Akt expression. The changes in mitochondrial function were evaluated by assessing mitochondrial membrane integrity, cellular ATP production, generation of intracellular reactive oxygen species, expression of tafazzin and quantification of medium malonaldehyde. Insulin stimulated glucose uptake was perturbed in C2C12 pre-treated with potential mitotoxicants. Additionally, ATP synthesis, alterations in mitochondrial membrane potential, excessive accumulation of ROS and malonaldehyde were observed in the presence of potential mitotoxicants. Particularly, we observed suppression of proteins involved in the insulin signalling pathway and maintenance of mitochondrial function namely GLUT4, Akt and tafazzin. Mitochondrial toxicants can potentially induce insulin resistance emanating from mitochondrial dysfunction. These new findings will contribute to the understanding of underlying mechanisms involved in the development of insulin resistance linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Auxiliare Kuretu
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Phikelelani Ngubane
- School of Medical Sciences and Laboratory Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| |
Collapse
|
13
|
Kim HJ, Norton CE, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Acute Metabolic Stress Induces Lymphatic Dysfunction Through KATP Channel Activation. FUNCTION 2024; 5:zqae033. [PMID: 39075985 PMCID: PMC11384908 DOI: 10.1093/function/zqae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
Lymphatic dysfunction is an underlying component of multiple metabolic diseases, including diabetes, obesity, and metabolic syndrome. We investigated the roles of KATP channels in lymphatic contractile dysfunction in response to acute metabolic stress induced by inhibition of the mitochondrial electron transport chain. Ex vivo popliteal lymphatic vessels from mice were exposed to the electron transport chain inhibitors antimycin A and rotenone, or the oxidative phosphorylation inhibitor/protonophore, CCCP. Each inhibitor led to a significant reduction in the frequency of spontaneous lymphatic contractions and calculated pump flow, without a significant change in contraction amplitude. Contraction frequency was restored by the KATP channel inhibitor, glibenclamide. Lymphatic vessels from mice with global Kir6.1 deficiency or expressing a smooth muscle-specific dominant negative Kir6.1 channel were resistant to inhibition. Antimycin A inhibited the spontaneous action potentials generated in lymphatic muscle and this effect was reversed by glibenclamide, confirming the role of KATP channels. Antimycin A, but not rotenone or CCCP, increased dihydrorhodamine fluorescence in lymphatic muscle, indicating ROS production. Pretreatment with tiron or catalase prevented the effect of antimycin A on wild-type lymphatic vessels, consistent with its action being mediated by ROS. Our results support the conclusion that KATP channels in lymphatic muscle can be directly activated by reduced mitochondrial ATP production or ROS generation, consequent to acute metabolic stress, leading to contractile dysfunction through inhibition of the ionic pacemaker controlling spontaneous lymphatic contractions. We propose that a similar activation of KATP channels contributes to lymphatic dysfunction in metabolic disease.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Charles E Norton
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| | | | - Michael J Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
14
|
Di Bona M, Chen Y, Agustinus AS, Mazzagatti A, Duran MA, Deyell M, Bronder D, Hickling J, Hong C, Scipioni L, Tedeschi G, Martin S, Li J, Ruzgaitė A, Riaz N, Shah P, D'Souza EK, Brodtman DZ, Sidoli S, Diplas B, Jalan M, Lee NY, Ordureau A, Izar B, Laughney AM, Powell S, Gratton E, Santaguida S, Maciejowski J, Ly P, Jeitner TM, Bakhoum SF. Micronuclear collapse from oxidative damage. Science 2024; 385:eadj8691. [PMID: 39208110 DOI: 10.1126/science.adj8691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Chromosome-containing micronuclei are a hallmark of aggressive cancers. Micronuclei frequently undergo irreversible collapse, exposing their enclosed chromatin to the cytosol. Micronuclear rupture catalyzes chromosomal rearrangements, epigenetic abnormalities, and inflammation, yet mechanisms safeguarding micronuclear integrity are poorly understood. In this study, we found that mitochondria-derived reactive oxygen species (ROS) disrupt micronuclei by promoting a noncanonical function of charged multivesicular body protein 7 (CHMP7), a scaffolding protein for the membrane repair complex known as endosomal sorting complex required for transport III (ESCRT-III). ROS retained CHMP7 in micronuclei while disrupting its interaction with other ESCRT-III components. ROS-induced cysteine oxidation stimulated CHMP7 oligomerization and binding to the nuclear membrane protein LEMD2, disrupting micronuclear envelopes. Furthermore, this ROS-CHMP7 pathological axis engendered chromosome shattering known to result from micronuclear rupture. It also mediated micronuclear disintegrity under hypoxic conditions, linking tumor hypoxia with downstream processes driving cancer progression.
Collapse
Affiliation(s)
- Melody Di Bona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyang Chen
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Albert S Agustinus
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mercedes A Duran
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Deyell
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel Bronder
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James Hickling
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christy Hong
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lorenzo Scipioni
- School of Engineering, University of California, Irvine, CA 92697, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92617, USA
| | - Giulia Tedeschi
- School of Engineering, University of California, Irvine, CA 92697, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92617, USA
| | - Sara Martin
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aušrinė Ruzgaitė
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Parin Shah
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - Edridge K D'Souza
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - D Zack Brodtman
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bill Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Benjamin Izar
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - Ashley M Laughney
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Simon Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Enrico Gratton
- School of Engineering, University of California, Irvine, CA 92697, USA
| | - Stefano Santaguida
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - John Maciejowski
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas M Jeitner
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
15
|
O’Brien JT, Jalilvand SP, Suji NA, Jupelly RK, Phensy A, Mwirigi JM, Elahi H, Price TJ, Kroener S. Elevations in the Mitochondrial Matrix Protein Cyclophilin D Correlate With Reduced Parvalbumin Expression in the Prefrontal Cortex of Patients With Schizophrenia. Schizophr Bull 2024; 50:1197-1207. [PMID: 38412332 PMCID: PMC11349014 DOI: 10.1093/schbul/sbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive deficits in schizophrenia are linked to dysfunctions of the dorsolateral prefrontal cortex (DLPFC), including alterations in parvalbumin (PV)-expressing interneurons (PVIs). Redox dysregulation and oxidative stress may represent convergence points in the pathology of schizophrenia, causing dysfunction of GABAergic interneurons and loss of PV. Here, we show that the mitochondrial matrix protein cyclophilin D (CypD), a critical initiator of the mitochondrial permeability transition pore (mPTP) and modulator of the intracellular redox state, is altered in PVIs in schizophrenia. STUDY DESIGN Western blotting was used to measure CypD protein levels in postmortem DLPFC specimens of schizophrenic patients (n = 27) and matched comparison subjects with no known history of psychiatric or neurological disorders (n = 26). In a subset of this cohort, multilabel immunofluorescent confocal microscopy with unbiased stereological sampling methods were used to quantify (1) numbers of PVI across the cortical mantle (20 unaffected comparison, 14 schizophrenia) and (2) PV and CypD protein levels from PVIs in the cortical layers 2-4 (23 unaffected comparison, 18 schizophrenia). STUDY RESULTS In schizophrenic patients, the overall number of PVIs in the DLPFC was not significantly altered, but in individual PVIs of layers 2-4 PV protein levels decreased along a superficial-to-deep gradient when compared to unaffected comparison subjects. These laminar-specific PVI alterations were reciprocally linked to significant CypD elevations both in PVIs and total DLPFC gray matter. CONCLUSIONS Our findings support previously reported PVI anomalies in schizophrenia and suggest that CypD-mediated mPTP formation could be a potential contributor to PVI dysfunction in schizophrenia.
Collapse
Affiliation(s)
- John T O’Brien
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sophia P Jalilvand
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Neha A Suji
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Rohan K Jupelly
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Aarron Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Juliet M Mwirigi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Hajira Elahi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
16
|
Nossar LF, Lopes JA, Pereira-Acácio A, Costa-Sarmento G, Rachid R, Wendt CHC, Miranda K, Galina A, Rodrigues-Ferreira C, Muzi-Filho H, Vieyra A. Chronic undernutrition impairs renal mitochondrial respiration accompanied by intense ultrastructural damage in juvenile rats. Biochem Biophys Res Commun 2024; 739:150583. [PMID: 39182354 DOI: 10.1016/j.bbrc.2024.150583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
This study investigated whether chronic undernutrition alters the mitochondrial structure and function in renal proximal tubule cells, thus impairing fluid transport and homeostasis. We previously showed that chronic undernutrition downregulates the renal proximal tubules (Na++K+)ATPase, the main molecular machine responsible for fluid transport and ATP consumption. Male rats received a multifactorial deficient diet, the so-called Regional Basic Diet (RBD), mimicking those used in impoverished regions worldwide, from weaning to a juvenile age (3 months). The diet has a low content (8 %) of poor-quality proteins, low lipids, and no vitamins compared to control (CTR). We investigated citrate synthase activity, mitochondrial respiration (oxygraphy) in phosphorylating and non-phosphorylating conditions with different substrates/inhibitors, potential across the internal membrane (Δψ), and anion superoxide/H2O2 formation. The data were correlated with ultrastructural alterations evaluated using transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM). Citrate synthase activity decreased (∼50 %) in RBD rats, accompanied by a similar reduction in respiration in non-phosphorylating conditions, maximum respiratory capacity, and ATP synthesis. The Δψ generation and its dissipation after carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone remained unmodified in the survival mitochondria. H2O2 production increased (∼100 %) after Complex II energization. TEM demonstrated intense matrix vacuolization and disruption of cristae junctions in a subpopulation of RBD mitochondria, which was also demonstrated in the 3D analysis of FIB-SEM tomography. In conclusion, chronic undernutrition impairs mitochondrial functions in renal proximal tubules, with profound alterations in the matrix and internal membrane ultrastructure that culminate with the compromise of ATP supply for transport processes.
Collapse
Affiliation(s)
- Luiz F Nossar
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jarlene A Lopes
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Amaury Pereira-Acácio
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil
| | - Glória Costa-Sarmento
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Rachel Rachid
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Camila H C Wendt
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Kildare Miranda
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Antonio Galina
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Clara Rodrigues-Ferreira
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Humberto Muzi-Filho
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Adalberto Vieyra
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil; National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
17
|
Zaher A, Petronek MS, Allen BG, Mapuskar KA. Balanced Duality: H 2O 2-Based Therapy in Cancer and Its Protective Effects on Non-Malignant Tissues. Int J Mol Sci 2024; 25:8885. [PMID: 39201571 PMCID: PMC11354297 DOI: 10.3390/ijms25168885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Conventional cancer therapy strategies, although centered around killing tumor cells, often lead to severe side effects on surrounding normal tissues, thus compromising the chronic quality of life in cancer survivors. Hydrogen peroxide (H2O2) is a secondary signaling molecule that has an array of functions in both tumor and normal cells, including the promotion of cell survival pathways and immune cell modulation in the tumor microenvironment. H2O2 is a reactive oxygen species (ROS) crucial in cellular homeostasis and signaling (at concentrations maintained under nM levels), with increased steady-state levels in tumors relative to their normal tissue counterparts. Increased steady-state levels of H2O2 in tumor cells, make them vulnerable to oxidative stress and ultimately, cell death. Recently, H2O2-producing therapies-namely, pharmacological ascorbate and superoxide dismutase mimetics-have emerged as compelling complementary treatment strategies in cancer. Both pharmacological ascorbate and superoxide dismutase mimetics can generate excess H2O2 to overwhelm the impaired H2O2 removal capacity of cancer cells. This review presents an overview of H2O2 metabolism in the physiological and malignant states, in addition to discussing the anti-tumor and normal tissue-sparing mechanism(s) of, and clinical evidence for, two H2O2-based therapies, pharmacological ascorbate and superoxide dismutase mimetics.
Collapse
Affiliation(s)
| | | | | | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (M.S.P.); (B.G.A.)
| |
Collapse
|
18
|
Singh S, Chauhan K. Pharmacological approach using doxycycline and tocopherol in rotenone induced oxidative stress, neuroinflammation and Parkinson's like symptoms. Int J Neurosci 2024; 134:866-881. [PMID: 36453937 DOI: 10.1080/00207454.2022.2154670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a second most common neurodegenerative disorder characterized by the selective and progressive degeneration of dopaminergic neurons in substantia nigra pars compacta. Rotenone is a neurotoxin which selectively degenerate dopaminergic neurons in striatum, leading to cause PD like symptoms. METHOD Rotenone was administered at a dose of 1.5 mg/kg, i.p. from day 1 to day 40. Treatment with doxycycline (50 and 100 mg/kg, p.o), tocopherol (5 mg and 10 mg/kg, p.o) alone, doxycycline (50 mg/kg, p.o) in combination with tocopherol (10 mg/kg, p.o), and ropinirole (0.5 mg/kg, i.p.) was given for 40 days 1 h prior to administration of rotenone. All behavioral parameters were analyzed on weekly basis. On day 41, animals were sacrificed and the striatum region was isolated for neurotransmitters estimation (dopamine, serotonin, norepinephrine, GABA and glutamate), biochemical analysis (GSH, nitrite, LPO, mitochondrial complexes I and IV), inflammatory markers estimation (IL-6, IL-1β and TNF-α) and activity of MAO-A, MAO-B. RESULT Doxycycline and tocopherol in combination significantly attenuated behavioral, neurotransmitters and biochemical alterations induced by rotenone in experimental rats as compared to alone treatment with DOX and TOCO. Similarly, DOX and TOCO combination significantly reduced the level of inflammatory markers, prevented the biochemical changes, decreased MAO-A and MAO-B and improved complex-I, complex-IV, cAMP levels significantly. CONCLUSION The current study revealed that a combination of doxycycline with tocopherol contributed to the prevention of PD like symptoms in rats by antioxidant, anti-inflammatory, MAO inhibitory and neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Kanupriya Chauhan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
19
|
Ahn J, Lee JW, Nam SM, Kim DK, Cho SK, Choi HK. Integrative multi-omics analysis reveals ortho-topolin riboside exhibits anticancer activity by regulating metabolic pathways in radio-resistant triple negative breast cancer cells. Chem Biol Interact 2024; 398:111089. [PMID: 38823535 DOI: 10.1016/j.cbi.2024.111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Radio-resistant triple negative breast cancer (TNBC) is resistant to conventional drugs and radiation therapy. ortho-topolin riboside (oTR) has been evaluated for its anticancer activity in several types of cancer cells. However, its anti-proliferative activity in radio-resistant TNBC cells has not yet been reported. Therefore, we investigated the anti-proliferative activity of oTR in radio-resistant TNBC cells, and performed metabolome, lipidome, transcriptome, and proteome profiling to reveal the mechanisms of the anticancer activity of oTR. oTR showed cytotoxicity against radio-resistant TNBC cells with an inhibitory concentration (IC50) value of 7.78 μM. Significantly decreased (p value < 0.05) basal and compensatory glycolysis were observed in the oTR-treated group than untreated group. Mitochondrial spare respiratory capacity, which is relevant to cell fitness and flexibility, was significantly decreased (p value < 0.05) in the oTR-treated group. The major metabolic pathways significantly altered by oTR according to metabolome, transcriptome, and proteome profiles were the glycerolipid/glycerophospholipid pathway (log2(FC) of MGLL = -0.13, log2(FC) of acylglycerol lipase = -1.35, log2(FC) of glycerol = -0.81), glycolysis (log2(FC) of EGLN1 = 0.16, log2(FC) of EGLN1 = 0.62, log2(FC) of glucose = -0.76, log2(FC) of lactate = -0.81), and kynurenine pathway (log2(FC) of KYNU = 0.29, log2(FC) of kynureninase = 0.55, log2(FC) of alanine = 0.72). Additionally, proline metabolism (log2(FC) of PYCR1 = -0.17, log2(FC) of proline = -0.73) was significantly altered in the metabolomic and transcriptomic profiles. The MAPK signaling pathway (log2(FC) of CCN1 = -0.15, log2(FC) of CCN family member 1 = -1.02) and Rap 1 signaling pathway (log2(FC) of PARD6B = -0.28, log2(FC) of PAR6B = -3.13) were also significantly altered in transcriptomic and proteomic profiles. The findings of this study revealed that oTR has anticancer activity in radio-resistant TNBC cells by affecting various metabolic pathways, suggesting the potential of oTR as a novel anticancer agent for radio-resistant TNBC patients.
Collapse
Affiliation(s)
- Junyoung Ahn
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji Won Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Min Nam
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dae Kyeong Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
20
|
Robichaud K, Duffy B, Staples JF, Craig PM. Mitochondrial microRNA profiles are altered in thirteen-lined ground squirrels ( Ictidomys tridecemlineatus) during hibernation. Physiol Genomics 2024; 56:555-566. [PMID: 38881427 DOI: 10.1152/physiolgenomics.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
Thirteen-lined ground squirrels (TLGSs) are obligate hibernators that cycle between torpor (low metabolic rate and body temperature) and interbout euthermia (IBE; typical euthermic body temperature and metabolism) from late autumn to spring. Many physiological changes occur throughout hibernation, including a reduction in liver mitochondrial metabolism during torpor, which is reversed during arousal to interbout euthermia. Nuclear-encoded microRNA (miRNA, small posttranscriptional regulator molecules) differ in abundance throughout TLGS hibernation and have been shown to regulate mitochondrial gene expression in mammalian cell culture (where they are referred to as mitomiRs). This study characterized differences in mitomiR profiles from TLGS liver mitochondria isolated during summer, torpor, and IBE, and predicted their mitochondrial targets. Using small RNA sequencing, differentially abundant mitomiRs were identified between hibernation states, and using quantitative PCR analysis, we quantified the expression of predicted mitochondrial mRNA targets. Most differences in mitomiR abundances were seasonal (i.e., between summer and winter) with only one mitomiR differentially abundant between IBE and torpor. Multiple factor analysis (MFA) revealed three clusters divided by hibernation states, where clustering was predominantly driven by mitomiR abundances. Nine of these differentially abundant mitomiRs had predicted mitochondrial RNA targets, including subunits of electron transfer system complexes I and IV, 12S rRNA, and two tRNAs. Overall, mitomiRs were predicted to suppress the expression of their mitochondrial targets and may have some involvement in regulating protein translation in mitochondria. This study found differences in mitomiR abundances between seasons and hibernation states of TLGS and suggests potential mechanisms for regulating the mitochondrial electron transfer system.NEW & NOTEWORTHY During the hibernation season, thirteen-lined ground squirrels periodically increase metabolism remarkably between torpor and interbout euthermia (IBE). This process involves rapid reactivation of mitochondrial respiration. We predicted that mitochondrial microRNA (mitomiRs) might be altered during this response. We found that the abundance of 38 liver mitomiRs differs based on hibernation state (summer, IBE, and torpor). Small RNA sequencing identified mitomiR profiles, including some mitomiRs that are predicted to bind to mitochondrial RNAs.
Collapse
Affiliation(s)
- Karyn Robichaud
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Brynne Duffy
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
21
|
Köse SG, Güleç Taşkıran AE. Mechanisms of drug resistance in nutrient-depleted colorectal cancer cells: insights into lysosomal and mitochondrial drug sequestration. Biol Open 2024; 13:bio060448. [PMID: 39445740 DOI: 10.1242/bio.060448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
This Review delves into the mechanisms behind drug resistance in colorectal cancer (CRC), particularly examining the role of nutrient depletion and its contribution to multidrug resistance (MDR). The study highlights metabolic adaptations of cancer cells as well as metabolic adaptations of cancer cells under low nutrient availability, including shifts in glycolysis and lipid metabolism. It emphasizes the significance of MDR1 and its encoded efflux transporter, P-glycoprotein (P-gp/B1), in mediating drug resistance and how pathways such as HIF1α, AKT, and mTOR influence the expression of P-gp/B1 under limited nutrient availability. Additionally, the Review explores the dual roles of autophagy in drug sensitivity and resistance under nutrient limited conditions. It further investigates the involvement of lysosomes and mitochondria, focusing on their roles in drug sequestration and the challenges posed by lysosomal entrapment facilitated by non-enzymatic processes and ABC transporters like P-gp/B1. Finally, the Review underscores the importance of understanding the interplay between drug sequestration, lysosomal functions, nutrient depletion, and MDR1 gene modulation. It suggests innovative strategies, including structural modifications and nanotechnology, as promising approaches to overcoming drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Serra Gülse Köse
- Molecular Biology and Genetics Department, Baskent University, Ankara 06790, Turkey
| | | |
Collapse
|
22
|
Wibisono P, Liu Y, Roberts KP, Baluya D, Sun J. Neuronal GPCR NMUR-1 regulates energy homeostasis in response to pathogen infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602733. [PMID: 39026696 PMCID: PMC11257582 DOI: 10.1101/2024.07.09.602733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A key question in current immunology is how the innate immune system generates high levels of specificity. Our previous study in Caenorhabditis elegans revealed that NMUR-1, a neuronal G protein-coupled receptor homologous to mammalian receptors for the neuropeptide neuromedin U (NMU), regulates distinct innate immune responses to different bacterial pathogens. Here, by using quantitative proteomics and functional assays, we discovered that NMUR-1 regulates F1FO ATP synthase and ATP production in response to pathogen infection, and that such regulation contributes to NMUR-1-mediated specificity of innate immunity. We further demonstrated that ATP biosynthesis and its contribution to defense is neurally controlled by the NMUR-1 ligand CAPA-1 and its expressing neurons ASG. These findings indicate that NMUR-1 neural signaling regulates the specificity of innate immunity by controlling energy homeostasis as part of defense against pathogens. Our study provides mechanistic insights into the emerging roles of NMU signaling in immunity across animal phyla.
Collapse
Affiliation(s)
- Phillip Wibisono
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Yiyong Liu
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
- Genomics Core, Washington State University, Spokane, WA, USA
| | - Kenneth P Roberts
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Dodge Baluya
- Tissue Imaging, Metabolomics and Proteomics Laboratory, Washington State University, Pullman, WA, USA
| | - Jingru Sun
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
23
|
Zhang T, Chen H, Shi Y, Jin Y, Zhang Y, An S, Chen Y. Mitochondrial biological function and risk of atrial fibrillation and atrial flutter: A 2-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38631. [PMID: 38968504 PMCID: PMC11224829 DOI: 10.1097/md.0000000000038631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024] Open
Abstract
Current research suggests that mitochondrial dysfunction can be a contributing factor in the development of cardiac arrhythmias. In pursuit of elucidating the causal link between the biological functions of mitochondria and the occurrence of atrial fibrillation/flutter, we conducted a 2-sample Mendelian randomization (MR) study. Mitochondrial proteins were selected for exposure in this study. To enhance the accuracy of our study, we selected data on AF/AFL from the FinnGen study and the UK Biobank for MR analysis, respectively. The inverse variance-weighted method was utilized as the primary analysis technique for MR. In addition, we performed a series of sensitivity analyses to detect heterogeneity and horizontal pleiotropy. MR results indicated a significant positive association between NAD-dependent protein deacylase sirtuin-5 and AF/AFL (odds ratio = 1.084, 95% confidence interval: 1.037-1.133, P = 3.679 × 10-4, Adjusted P = .024), with consistent outcomes observed in replication analysis (odds ratio = 1.002, 95% confidence interval: 1.001-1.003, P = 4.808 × 10-4, Adjusted P = .032). NAD-dependent protein deacylase sirtuin-5 can significantly promote the occurrence of AF/AFL, and its specific mechanisms warrant further investigation.
Collapse
Affiliation(s)
- Tianyang Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hailong Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanyu Shi
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ying Jin
- Department of Chronic Disease Clinic, Changchun NanGuan District Hospital, Changchun, Jilin, China
| | - Yuan Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Shan An
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ying Chen
- Department of Cardiology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
24
|
Bell G, Thoma A, Hargreaves IP, Lightfoot AP. The Role of Mitochondria in Statin-Induced Myopathy. Drug Saf 2024; 47:643-653. [PMID: 38492173 DOI: 10.1007/s40264-024-01413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
Statins represent the primary therapy for combatting hypercholesterolemia and reducing mortality from cardiovascular events. Despite their pleiotropic effects in lowering cholesterol synthesis, circulating cholesterol, as well as reducing the risk of other systemic diseases, statins have adverse events in a small, but significant, population of treated patients. The most prominent of these adverse effects is statin-induced myopathy, which lacks precise definition but is characterised by elevations in the muscle enzyme creatine kinase alongside musculoskeletal complaints, including pain, weakness and fatigue. The exact aetiology of statin-induced myopathy remains to be elucidated, although impaired mitochondrial function is thought to be an important underlying cause. This may result from or be the consequence of several factors including statin-induced inhibition of coenzyme Q10 (CoQ10) biosynthesis, impaired Ca2+ signalling and modified reactive oxygen species (ROS) generation. The purpose of this review article is to provide an update on the information available linking statin therapy with mitochondrial dysfunction and to outline any mechanistic insights, which may be beneficial in the future treatment of myopathic adverse events.
Collapse
Affiliation(s)
- Gavin Bell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Anastasia Thoma
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Adam P Lightfoot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
25
|
Azevedo RDSD, Falcão KVG, Almeida SMVD, Araújo MC, Silva-Filho RC, Souza Maia MBD, Amaral IPGD, Leite ACR, de Souza Bezerra R. The tissue-specific nature of physiological zebrafish mitochondrial bioenergetics. Mitochondrion 2024; 77:101901. [PMID: 38777222 DOI: 10.1016/j.mito.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Zebrafish are a powerful tool to study a myriad of experimental conditions, including mitochondrial bioenergetics. Considering that mitochondria are different in many aspects depending on the tissue evaluated, in the zebrafish model there is still a lack of this investigation. Especially for juvenile zebrafish. In the present study, we examined whether different tissues from zebrafish juveniles show mitochondrial density- and tissue-specificity comparing brain, liver, heart, and skeletal muscle (SM). The liver and brain complex IV showed the highest O2 consumption of all ETC in all tissues (10x when compared to other respiratory complexes). The liver showed a higher potential for ROS generation. In this way, the brain and liver showed more susceptibility to O2- generation when compared to other tissues. Regarding Ca2+ transport, the brain showed greater capacity for Ca2+ uptake and the liver presented low Ca2+ uptake capacity. The liver and brain were more susceptible to producing NO. The enzymes SOD and Catalase showed high activity in the brain, whereas GPx showed higher activity in the liver and CS in the SM. TEM reveals, as expected, a physiological diverse mitochondrial morphology. The essential differences between zebrafish tissues investigated probably reflect how the mitochondria play a diverse role in systemic homeostasis. This feature may not be limited to normal metabolic functions but also to stress conditions. In summary, mitochondrial bioenergetics in zebrafish juvenile permeabilized tissues showed a tissue-specificity and a useful tool to investigate conditions of redox system imbalance, mainly in the liver and brain.
Collapse
Affiliation(s)
- Rafael David Souto de Azevedo
- Laboratório de Biologia Celular e Molecular, Universidade de Pernambuco - UPE, Campus Garanhuns, Garanhuns, PE, Brazil.
| | - Kivia Vanessa Gomes Falcão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | - Marlyete Chagas Araújo
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | | | | | | | - Ranilson de Souza Bezerra
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
26
|
Laird M, Ku JC, Raiten J, Sriram S, Moore M, Li Y. Mitochondrial metabolism regulation and epigenetics in hypoxia. Front Physiol 2024; 15:1393232. [PMID: 38915781 PMCID: PMC11194441 DOI: 10.3389/fphys.2024.1393232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
The complex and dynamic interaction between cellular energy control and gene expression modulation is shown by the intersection between mitochondrial metabolism and epigenetics in hypoxic environments. Poor oxygen delivery to tissues, or hypoxia, is a basic physiological stressor that sets off a series of reactions in cells to adapt and endure oxygen-starved environments. Often called the "powerhouse of the cell," mitochondria are essential to cellular metabolism, especially regarding producing energy through oxidative phosphorylation. The cellular response to hypoxia entails a change in mitochondrial metabolism to improve survival, including epigenetic modifications that control gene expression without altering the underlying genome. By altering the expression of genes involved in angiogenesis, cell survival, and metabolism, these epigenetic modifications help cells adapt to hypoxia. The sophisticated interplay between mitochondrial metabolism and epigenetics in hypoxia is highlighted by several important points, which have been summarized in the current article. Deciphering the relationship between mitochondrial metabolism and epigenetics during hypoxia is essential to understanding the molecular processes that regulate cellular adaptation to reduced oxygen concentrations.
Collapse
Affiliation(s)
- Madison Laird
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jacob Raiten
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Sashwat Sriram
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Megan Moore
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Department of Orthopaedic Surgery, Biomedical Engineering, Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
27
|
Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res 2024; 203:107180. [PMID: 38599468 DOI: 10.1016/j.phrs.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Colleen S Deane
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nathaniel J Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom; Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, Greece
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK.
| |
Collapse
|
28
|
Yao X, Lu Q, Wu Y, Liu J, Liu N, Huang X, Xu C. Effect of Elamipretide on the Vitrification of Mouse Ovarian Tissue by Freezing. Biopreserv Biobank 2024. [PMID: 38648553 DOI: 10.1089/bio.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The importance of ovarian cortical cryopreservation in fertility preservation is receiving increasing attention from reproductive specialists, and mitochondrial dysfunction is an important cause of reduced ovarian tissue cryopreservation. Elamipretide (SS-31) is a novel mitochondria-targeted antioxidant. However, whether it has a protective effect on mouse ovarian tissue cryopreservation remains to be studied. In this study, we examined follicular morphology and viability, mitochondrial function and oxidative stress levels, apoptosis, and culture in vitro after vitrification cryoresuscitation operation by treating ovarian tissues with SS-31 in cryoprotectant resuscitation solution. At the end of the experiment, the addition of 100 μmol/L SS-31 significantly improved follicle quality and oocyte maturation rate in vitro (p < 0.05) and significantly reduced apoptosis (p < 0.05) and oxidative stress levels (superoxide dismutase, catalase, malondialdehyde, p < 0.05). Meanwhile, mitochondrial respiratory chain complex enzyme activity, mtDNA copy number (p < 0.05), and adenosine triphosphate (p < 0.05) content were significantly increased in the 100 μmol/L SS-31-treated group. In addition, the mRNA expression levels of mitochondrial energy metabolism- and biosynthesis-related genes (STRT1, PGC-1a, PPAR-a, TFAM, p < 0.05) were markedly upregulated (p < 0.05) in the 100 μmol/L SS-31 group. In conclusion, SS-31 improved the cryopreservation of ovarian tissues, and 100 μmol/L SS-31 was found to be the most effective.
Collapse
Affiliation(s)
- Xingfeng Yao
- Medical College, Guangxi University, Nanning, China
| | - Qingfang Lu
- Medical College, Guangxi University, Nanning, China
| | - Yuyin Wu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Juan Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Niang Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiling Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Changlong Xu
- Reproductive Medical Center of Nanning Second People's Hospital, Nanning, China
| |
Collapse
|
29
|
Whitcomb LA, Cao X, Thomas D, Wiese C, Pessin AS, Zhang R, Wu JC, Weil MM, Chicco AJ. Mitochondrial reactive oxygen species impact human fibroblast responses to protracted γ-ray exposures. Int J Radiat Biol 2024; 100:890-902. [PMID: 38631047 PMCID: PMC11471570 DOI: 10.1080/09553002.2024.2338518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Purpose: Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. Methods and Materials: To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.1 Gy delivered at 0.16 mGy/min continuously over 5 days) on mitochondrial function, gene expression, and the protein secretome of human HCA2-hTERT fibroblasts in the presence and absence of a mitochondria-specific antioxidant mitoTEMPO (MT; 5 µM). Results: IR increased fibroblast mitochondrial oxygen consumption (JO2) and H2O2 release rates (JH2O2) under energized conditions, which corresponded to higher protein expression of NADPH Oxidase (NOX) 1, NOX4, and nuclear DNA-encoded subunits of respiratory chain Complexes I and III, but depleted mtDNA transcripts encoding subunits of the same complexes. This was associated with activation of gene programs related to DNA repair, oxidative stress, and protein ubiquination, all of which were attenuated by MT treatment along with radiation-induced increases in JO2 and JH2O2. IR also increased secreted levels of interleukin-8 and Type I collagens, while decreasing Type VI collagens and enzymes that coordinate assembly and remodeling of the extracellular matrix. MT treatment attenuated many of these effects while augmenting others, revealing complex effects of mtROS in fibroblast responses to IR. Conclusion: These results implicate mtROS production in fibroblast responses to protracted radiation exposure, and suggest potentially protective effects of mitochondrial-targeted antioxidants against radiogenic tissue injury in vivo.
Collapse
Affiliation(s)
- Luke A. Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Alissa S. Pessin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert Zhang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Michael M. Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
30
|
Lewandowska J, Kalenik B, Wrzosek A, Szewczyk A. Redox Regulation of Mitochondrial Potassium Channels Activity. Antioxidants (Basel) 2024; 13:434. [PMID: 38671882 PMCID: PMC11047711 DOI: 10.3390/antiox13040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Redox reactions exert a profound influence on numerous cellular functions with mitochondria playing a central role in orchestrating these processes. This pivotal involvement arises from three primary factors: (1) the synthesis of reactive oxygen species (ROS) by mitochondria, (2) the presence of a substantial array of redox enzymes such as respiratory chain, and (3) the responsiveness of mitochondria to the cellular redox state. Within the inner mitochondrial membrane, a group of potassium channels, including ATP-regulated, large conductance calcium-activated, and voltage-regulated channels, is present. These channels play a crucial role in conditions such as cytoprotection, ischemia/reperfusion injury, and inflammation. Notably, the activity of mitochondrial potassium channels is intricately governed by redox reactions. Furthermore, the regulatory influence extends to other proteins, such as kinases, which undergo redox modifications. This review aims to offer a comprehensive exploration of the modulation of mitochondrial potassium channels through diverse redox reactions with a specific focus on the involvement of ROS.
Collapse
Affiliation(s)
| | | | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (J.L.); (B.K.); (A.W.)
| |
Collapse
|
31
|
Bravo Iniguez A, Du M, Zhu MJ. α-Ketoglutarate for Preventing and Managing Intestinal Epithelial Dysfunction. Adv Nutr 2024; 15:100200. [PMID: 38438107 PMCID: PMC11016550 DOI: 10.1016/j.advnut.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
The epithelium lining the intestinal tract serves a multifaceted role. It plays a crucial role in nutrient absorption and immune regulation and also acts as a protective barrier, separating underlying tissues from the gut lumen content. Disruptions in the delicate balance of the gut epithelium trigger inflammatory responses, aggravate conditions such as inflammatory bowel disease, and potentially lead to more severe complications such as colorectal cancer. Maintaining intestinal epithelial homeostasis is vital for overall health, and there is growing interest in identifying nutraceuticals that can strengthen the intestinal epithelium. α-Ketoglutarate, a metabolite of the tricarboxylic acid cycle, displays a variety of bioactive effects, including functioning as an antioxidant, a necessary cofactor for epigenetic modification, and exerting anti-inflammatory effects. This article presents a comprehensive overview of studies investigating the potential of α-ketoglutarate supplementation in preventing dysfunction of the intestinal epithelium.
Collapse
Affiliation(s)
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States.
| |
Collapse
|
32
|
Liu X, Wu L, Si Y, Zhai Y, Niu M, Han M, Su T. Regulating Effect of Exogenous α-Ketoglutarate on Ammonium Assimilation in Poplar. Molecules 2024; 29:1425. [PMID: 38611705 PMCID: PMC11012726 DOI: 10.3390/molecules29071425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Extensive industrial activities and anthropogenic agricultural practices have led to substantial ammonia release to the environment. Although croplands can act as ammonia sinks, reduced crop production under high concentrations of ammonium has been documented. Alpha-ketoglutarate (AKG) is a critical carbon source, displaying pleiotropic physiological functions. The objective of the present study is to disclose the potential of AKG to enhance ammonium assimilation in poplars. It showed that AKG application substantially boosted the height, biomass, and photosynthesis activity of poplars exposed to excessive ammonium. AKG also enhanced the activities of key enzymes involved in nitrogen assimilation: glutamine synthetase (GS) and glutamate synthase (GOGAT), elevating the content of amino acids, sucrose, and the tricarboxylic acid cycle (TCA) metabolites. Furthermore, AKG positively modulated key genes tied to glucose metabolism and ATP synthesis, while suppressing ATP-depleting genes. Correspondingly, both H+-ATPase activity and ATP content increased. These findings demonstrate that exogenously applying AKG improves poplar growth under a high level of ammonium treatment. AKG might function through sufficient carbon investment, which enhances the carbon-nitrogen balance and energy stability in poplars, promoting ammonium assimilation at high doses of ammonium. Our study provides novel insight into AKG's role in improving poplar growth in response to excess ammonia exposure.
Collapse
Affiliation(s)
- Xiaoning Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Liangdan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Yujia Si
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Yujie Zhai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Mingyi Niu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
33
|
Rahane D, Dhingra T, Chalavady G, Datta A, Ghosh B, Rana N, Borah A, Saraf S, Bhattacharya P. Hypoxia and its effect on the cellular system. Cell Biochem Funct 2024; 42:e3940. [PMID: 38379257 DOI: 10.1002/cbf.3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Eukaryotic cells utilize oxygen for different functions of cell organelles owing to cellular survival. A balanced oxygen homeostasis is an essential requirement to maintain the regulation of normal cellular systems. Any changes in the oxygen level are stressful and can alter the expression of different homeostasis regulatory genes and proteins. Lack of oxygen or hypoxia results in oxidative stress and formation of hypoxia inducible factors (HIF) and reactive oxygen species (ROS). Substantial cellular damages due to hypoxia have been reported to play a major role in various pathological conditions. There are different studies which demonstrated that the functions of cellular system are disrupted by hypoxia. Currently, study on cellular effects following hypoxia is an important field of research as it not only helps to decipher different signaling pathway modulation, but also helps to explore novel therapeutic strategies. On the basis of the beneficial effect of hypoxia preconditioning of cellular organelles, many therapeutic investigations are ongoing as a promising disease management strategy in near future. Hence, the present review discusses about the effects of hypoxia on different cellular organelles, mechanisms and their involvement in the progression of different diseases.
Collapse
Affiliation(s)
- Dipali Rahane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Tannu Dhingra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Guruswami Chalavady
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Nikita Rana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Shailendra Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
34
|
Gupta N, Curcic M, Srivastava SK. Proguanil Suppresses Breast Tumor Growth In Vitro and In Vivo by Inducing Apoptosis via Mitochondrial Dysfunction. Cancers (Basel) 2024; 16:872. [PMID: 38473234 DOI: 10.3390/cancers16050872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer, ranking as the second leading cause of female cancer-related deaths in the U.S., demands the exploration of innovative treatments. Repurposing FDA-approved drugs emerges as an expedited and cost-effective strategy. Our study centered on proguanil, an antimalarial drug, reveals notable anti-proliferative effects on diverse breast cancer cell lines, including those derived from patients. Proguanil-induced apoptosis was associated with a substantial increase in reactive oxygen species (ROS) production, leading to reduced mitochondrial membrane potential, respiration, and ATP production. Proguanil treatment upregulated apoptotic markers (Bax, p-H2AX, cleaved-caspase 3, 9, cleaved PARP) and downregulated anti-apoptotic proteins (bcl-2, survivin) in breast cancer cell lines. In female Balb/c mice implanted with 4T1 breast tumors, daily oral administration of 20 mg/kg proguanil suppressed tumor enlargement by 55%. Western blot analyses of proguanil-treated tumors supported the in vitro findings, demonstrating increased levels of p-H2AX, Bax, c-PARP, and c-caspase3 as compared to controls. Our results collectively highlight proguanil's anticancer efficacy in vitro and in vivo in breast cancer, prompting further consideration for clinical investigations.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Marina Curcic
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601, USA
| |
Collapse
|
35
|
Edzeamey FJ, Ramchunder Z, Pourzand C, Anjomani Virmouni S. Emerging antioxidant therapies in Friedreich's ataxia. Front Pharmacol 2024; 15:1359618. [PMID: 38379897 PMCID: PMC10876797 DOI: 10.3389/fphar.2024.1359618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a rare childhood neurologic disorder, affecting 1 in 50,000 Caucasians. The disease is caused by the abnormal expansion of the GAA repeat sequence in intron 1 of the FXN gene, leading to the reduced expression of the mitochondrial protein frataxin. The disease is characterised by progressive neurodegeneration, hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. The reduced expression of frataxin has been suggested to result in the downregulation of endogenous antioxidant defence mechanisms and mitochondrial bioenergetics, and the increase in mitochondrial iron accumulation thereby leading to oxidative stress. The confirmation of oxidative stress as one of the pathological signatures of FRDA led to the search for antioxidants which can be used as therapeutic modality. Based on this observation, antioxidants with different mechanisms of action have been explored for FRDA therapy since the last two decades. In this review, we bring forth all antioxidants which have been investigated for FRDA therapy and have been signed off for clinical trials. We summarise their various target points in FRDA disease pathway, their performances during clinical trials and possible factors which might have accounted for their failure or otherwise during clinical trials. We also discuss the limitation of the studies completed and propose possible strategies for combinatorial therapy of antioxidants to generate synergistic effect in FRDA patients.
Collapse
Affiliation(s)
- Fred Jonathan Edzeamey
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| | - Zenouska Ramchunder
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Sara Anjomani Virmouni
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
36
|
Liu J, Gao Z, Liu X. Mitochondrial dysfunction and therapeutic perspectives in osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1325317. [PMID: 38370357 PMCID: PMC10870151 DOI: 10.3389/fendo.2024.1325317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disorder characterized by reduced bone mass and structural deterioration of bone tissue, resulting in heightened vulnerability to fractures due to increased bone fragility. This condition primarily arises from an imbalance between the processes of bone resorption and formation. Mitochondrial dysfunction has been reported to potentially constitute one of the most crucial mechanisms influencing the pathogenesis of osteoporosis. In essence, mitochondria play a crucial role in maintaining the delicate equilibrium between bone formation and resorption, thereby ensuring optimal skeletal health. Nevertheless, disruption of this delicate balance can arise as a consequence of mitochondrial dysfunction. In dysfunctional mitochondria, the mitochondrial electron transport chain (ETC) becomes uncoupled, resulting in reduced ATP synthesis and increased generation of reactive oxygen species (ROS). Reinforcement of mitochondrial dysfunction is further exacerbated by the accumulation of aberrant mitochondria. In this review, we investigated and analyzed the correlation between mitochondrial dysfunction, encompassing mitochondrial DNA (mtDNA) alterations, oxidative phosphorylation (OXPHOS) impairment, mitophagy dysregulation, defects in mitochondrial biogenesis and dynamics, as well as excessive ROS accumulation, with regards to OP (Figure 1). Furthermore, we explore prospective strategies currently available for modulating mitochondria to ameliorate osteoporosis. Undoubtedly, certain therapeutic strategies still require further investigation to ensure their safety and efficacy as clinical treatments. However, from a mitochondrial perspective, the potential for establishing effective and safe therapeutic approaches for osteoporosis appears promising.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- School of Medicine, Ezhou Vocational University, Ezhou, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Ongari G, Ghezzi C, Di Martino D, Pisani A, Terzaghi M, Avenali M, Valente EM, Cerri S, Blandini F. Impaired Mitochondrial Respiration in REM-Sleep Behavior Disorder: A Biomarker of Parkinson's Disease? Mov Disord 2024; 39:294-304. [PMID: 38006292 DOI: 10.1002/mds.29643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is associated with prodromal Parkinson's disease (PD), but the mechanisms linking phenoconversion of iRBD to PD have not yet been clarified. Considering the association between mitochondrial dysfunction and sleep disturbances in PD, we explored mitochondrial activity in fibroblasts derived from iRBD patients to identify a biochemical profile that could mark the presence of impending neurodegeneration. METHODS The study involved 28 participants, divided into three groups: patients diagnosed with iRBD, PD patients converted from iRBD (RBD-PD), and healthy controls. We performed a comprehensive assessment of mitochondrial function, including an examination of mitochondrial morphology, analysis of mitochondrial protein expression levels by western blot, and measurement of mitochondrial respiration using the Seahorse XFe24 analyzer. RESULTS In basal conditions, mitochondrial respiration did not differ between iRBD and control fibroblasts, but when cells were challenged with a higher energy demand, iRBD fibroblasts exhibited a significant (P = 0.006) drop in maximal and spare respiration compared to controls. Interestingly, RBD-PD patients showed the same alterations with a further significant reduction in oxygen consumption linked to adenosine triphosphate production (P = 0.032). Moreover, RBD-PD patients exhibited a significant decrease in protein levels of complexes III (P = 0.02) and V (P = 0.002) compared to controls, along with fragmentation of the mitochondrial network. iRBD patients showed similar, but milder alterations. CONCLUSIONS Altogether, these findings suggest that mitochondrial dysfunctions in individuals with iRBD might predispose to worsening of the bioenergetic profile observed in RBD-PD patients, highlighting these alterations as potential predictors of phenoconversion to PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gerardo Ongari
- Section of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Ghezzi
- Section of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Deborah Di Martino
- Section of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Movement Disorders, IRCCS Mondino Foundation, Pavia, Italy
| | - Michele Terzaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Section of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Cerri
- Section of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
38
|
Ismaeel A, McDermott MM, Joshi JK, Sturgis JC, Zhang D, Ho KJ, Sufit R, Ferrucci L, Peterson CA, Kosmac K. Cocoa flavanols, Nrf2 activation, and oxidative stress in peripheral artery disease: mechanistic findings in muscle based on outcomes from a randomized trial. Am J Physiol Cell Physiol 2024; 326:C589-C605. [PMID: 38189132 PMCID: PMC11193455 DOI: 10.1152/ajpcell.00573.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
The pathophysiology of muscle damage in peripheral artery disease (PAD) includes increased oxidant production and impaired antioxidant defenses. Epicatechin (EPI), a naturally occurring flavanol, has antioxidant properties that may mediate the beneficial effects of natural products such as cocoa. In a phase II randomized trial, a cocoa-flavanol-rich beverage significantly improved walking performance compared with a placebo in people with PAD. In the present work, the molecular mechanisms underlying the therapeutic effect of cocoa flavanols were investigated by analyzing baseline and follow-up muscle biopsies from participants. Increases in nuclear factor erythroid 2-related factor 2 (Nrf2) target antioxidants heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1) in the cocoa group were significantly associated with reduced accumulation of central nuclei, a myopathy indicator, in type II muscle fibers (P = 0.017 and P = 0.023, respectively). Protein levels of the mitochondrial respiratory complex III subunit, cytochrome b-c1 complex subunit 2 (UQCRC2), were significantly higher in the cocoa group than in the placebo group (P = 0.032), and increases in UQCRC2 were significantly associated with increased levels of Nrf2 target antioxidants HO-1 and NQO1 (P = 0.001 and P = 0.035, respectively). Exposure of non-PAD human myotubes to ex vivo serum from patients with PAD reduced Nrf2 phosphorylation, an indicator of activation, increased hydrogen peroxide production and oxidative stress, and reduced mitochondrial respiration. Treatment of myotubes with EPI in the presence of serum from patients with PAD increased Nrf2 phosphorylation and protected against PAD serum-induced oxidative stress and mitochondrial dysfunction. Overall, these findings suggest that cocoa flavanols may enhance antioxidant capacity in PAD via Nrf2 activation.NEW & NOTEWORTHY The current study supports the hypothesis that in people with PAD, cocoa flavanols activate Nrf2, thereby increasing antioxidant protein levels, protecting against skeletal muscle damage, and increasing mitochondrial protein abundance. These results suggest that Nrf2 activation may be an important therapeutic target for improving walking performance in people with PAD.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Deparment of Physiology, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Mary M McDermott
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Jai K Joshi
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky, United States
| | - Jada C Sturgis
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky, United States
| | - Dongxue Zhang
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Karen J Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Robert Sufit
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Luigi Ferrucci
- National Institute on Aging, Intramural Research Program, Baltimore, Maryland, United States
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky, United States
| | - Kate Kosmac
- Department of Physical Therapy, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
39
|
Bennett NK, Lee M, Orr AL, Nakamura K. Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production. Proc Natl Acad Sci U S A 2024; 121:e2307904121. [PMID: 38207075 PMCID: PMC10801874 DOI: 10.1073/pnas.2307904121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS-based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III, and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP, and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.
Collapse
Affiliation(s)
- Neal K. Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
| | - Megan Lee
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Adam L. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10021
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Graduate Program in Biomedical Sciences, University of California, San Francisco, CA94143
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, University of California, San Francisco, CA94158
| |
Collapse
|
40
|
Abedi H, Shahpiri A. Functional characterization of a manganese superoxide dismutase from Avicennia marina: insights into its role in salt, hydrogen peroxide, and heavy metal tolerance. Sci Rep 2024; 14:406. [PMID: 38172216 PMCID: PMC10764323 DOI: 10.1038/s41598-023-50851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Avicennia marina is a salt-tolerance plant with high antioxidant and antibacterial potential. In the present work, a gene encoding MnSOD from Avicennia marina (AmSOD2) was cloned in the expression vectors pET28a. The resulting constructs were transformed into Escherichia coli strains Rosetta (DE3). Following the induction with Isopropyl β-D-1-thiogalactopyranoside, the protein His-AmSOD2 was expressed but dominantly found in the insoluble fraction of strain R-AmSOD2. Due to detection of mitochondrial transit peptide in the amino acid sequence of AmSOD2, the transit peptide was removed and AmSOD2 without transit peptide (tAmSOD2) was expressed in E. coli and dominantly found in the soluble fraction. The enzyme His-tAmSOD2 exhibited a molecular mass of 116 kDa in native condition. Nevertheless, in reducing conditions the molecular mass is 28 kDa indicating the enzyme His-tAmSOD2 is a tetramer protein. As shown by ICP analysis there is one mole Mn2+ in each monomer. The Pure His-tAmSOD2 was highly active in vitro, however the activity was almost three-fold lower than His-AmSOD1. Whereas the high stability of the recombinant His-AmSOD1was previously shown after incubation in a broad range pH and high temperature, His-tAmSOD2 was stable up to 50 °C and pH 6 for 1 h. The gene expression analysis showed that the gene encoding AmSOD2 is expressed in root, shoot and leaves of A. marina. In addition, the results show that the expression in the leaves was enhanced after treatment of plant with NaCl, H2O2, Cd2+ and Ni2+ indicating the important role of MnSOD in the resistant mechanism of mangroves.
Collapse
Affiliation(s)
- Hamid Abedi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
41
|
Moreira R, Martins AD, Ferreira R, Alves MG, Pereira MDL, Oliveira PF. Impact of Chromium Picolinate on Leydig Cell Steroidogenesis and Antioxidant Balance Using an In Vitro Insulin Resistance Model. Antioxidants (Basel) 2023; 13:40. [PMID: 38247463 PMCID: PMC10812815 DOI: 10.3390/antiox13010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Leydig cells (LCs) play a pivotal role in male fertility, producing testosterone. Chromium (III) picolinate (CrPic3), a contentious supplement with antidiabetic and antioxidant properties, raises concerns regarding male fertility. Using a rodent LC line, we investigated the cytotoxicity of increasing CrPic3 doses. An insulin resistance (IR) model was established using palmitate (PA), and LCs were further exposed to CrPic3 to assess its antioxidant/antidiabetic activities. An exometabolome analysis was performed using 1H-NMR. Mitochondrial function and oxidative stress were evaluated via immunoblot. Steroidogenesis was assessed by quantifying androstenedione through ELISA. Our results uncover the toxic effects of CrPic3 on LCs even at low doses under IR conditions. Furthermore, even under these IR conditions, CrPic3 fails to enhance glucose consumption but restores the expression of mitochondrial complexes CII and CIII, alleviating oxidative stress in LCs. While baseline androgen production remained unaffected, CrPic3 promoted androstenedione production in LCs in the presence of PA, suggesting that it promotes cholesterol conversion into androgenic intermediates in this context. This study highlights the need for caution with CrPic3 even at lower doses. It provides valuable insights into the intricate factors influencing LCs metabolism and antioxidant defenses, shedding light on potential benefits and risks of CrPic3, particularly in IR conditions.
Collapse
Affiliation(s)
- Rúben Moreira
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.M.); (A.D.M.); (R.F.)
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana D. Martins
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.M.); (A.D.M.); (R.F.)
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Ferreira
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.M.); (A.D.M.); (R.F.)
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F. Oliveira
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.M.); (A.D.M.); (R.F.)
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
42
|
Shi Y, Jiang Y, Qiu H, Hu D, Song X. Mitochondrial dysfunction induced by bedaquiline as an anti-Toxoplasma alternative. Vet Res 2023; 54:123. [PMID: 38115043 PMCID: PMC10731829 DOI: 10.1186/s13567-023-01252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/29/2023] [Indexed: 12/21/2023] Open
Abstract
Toxoplasma gondii is a zoonotic parasite that infects one-third of the world's population and nearly all warm-blooded animals. Due to the complexity of T. gondii's life cycle, available treatment options have limited efficacy. Thus, there is an urgent need to develop new compounds or repurpose existing drugs with potent anti-Toxoplasma activity. This study demonstrates that bedaquiline (BDQ), an FDA-approved diarylquinoline antimycobacterial drug for the treatment of tuberculosis, potently inhibits the tachyzoites of T. gondii. At a safe concentration, BDQ displayed a dose-dependent inhibition on T. gondii growth with a half-maximal effective concentration (EC50) of 4.95 μM. Treatment with BDQ significantly suppressed the proliferation of T. gondii tachyzoites in the host cell, while the invasion ability of the parasite was not affected. BDQ incubation shrunk the mitochondrial structure and decreased the mitochondrial membrane potential and ATP level of T. gondii parasites. In addition, BDQ induced elevated ROS and led to autophagy in the parasite. By transcriptomic analysis, we found that oxidative phosphorylation pathway genes were significantly disturbed by BDQ-treated parasites. More importantly, BDQ significantly reduces brain cysts for the chronically infected mice. These results suggest that BDQ has potent anti-T. gondii activity and may impair its mitochondrial function by affecting proton transport. This study provides bedaquiline as a potential alternative drug for the treatment of toxoplasmosis, and our findings may facilitate the development of new effective drugs for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Yuehong Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yucong Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Haolong Qiu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China.
| |
Collapse
|
43
|
Dumitrescu A, Maxim C, Badea M, Rostas AM, Ciorîță A, Tirsoaga A, Olar R. Decavanadate-Bearing Guanidine Derivatives Developed as Antimicrobial and Antitumor Species. Int J Mol Sci 2023; 24:17137. [PMID: 38138964 PMCID: PMC10742724 DOI: 10.3390/ijms242417137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
To obtain biologically active species, a series of decavanadates (Hpbg)4[H2V10O28]·6H2O (1) (Htbg)4[H2V10O28]·6H2O; (2) (Hgnd)2(Hgnu)4[V10O28]; (3) (Hgnu)6[V10O28]·2H2O; and (4) (pbg = 1-phenyl biguanide, tbg = 1-(o-tolyl)biguanide, gnd = guanidine, and gnu = guanylurea) were synthesized and characterized by several spectroscopic techniques (IR, UV-Vis, and EPR) as well as by single crystal X-ray diffraction. Compound (1) crystallizes in space group P-1 while (3) and (4) adopt the same centrosymmetric space group P21/n. The unusual signal identified by EPR spectroscopy was assigned to a charge-transfer π(O)→d(V) process. Both stability in solution and reactivity towards reactive oxygen species (O2- and OH·) were screened through EPR signal modification. All compounds inhibited the development of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis bacterial strains in a planktonic state at a micromolar level, the most active being compound (3). However, the experiments conducted at a minimal inhibitory concentration (MIC) indicated that the compounds do not disrupt the biofilm produced by these bacterial strains. The cytotoxicity assayed against A375 human melanoma cells and BJ human fibroblasts by testing the viability, lactate dehydrogenase, and nitric oxide levels indicated compound (1) as the most active in tumor cells.
Collapse
Affiliation(s)
- Andreea Dumitrescu
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania; (A.D.); (C.M.); (M.B.)
| | - Catalin Maxim
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania; (A.D.); (C.M.); (M.B.)
| | - Mihaela Badea
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania; (A.D.); (C.M.); (M.B.)
| | - Arpad Mihai Rostas
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania;
| | - Alexandra Ciorîță
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400001 Cluj-Napoca, Romania
| | - Alina Tirsoaga
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania;
| | - Rodica Olar
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania; (A.D.); (C.M.); (M.B.)
| |
Collapse
|
44
|
Kolar D, Krajcovic B, Kleteckova L, Kuncicka D, Vales K, Brozka H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr Bull 2023; 49:1637-1653. [PMID: 37379469 PMCID: PMC10686339 DOI: 10.1093/schbul/sbad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic
| | - Branislav Krajcovic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Daniela Kuncicka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Hana Brozka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
45
|
Potes Y, Díaz-Luis A, Bermejo-Millo JC, Pérez-Martínez Z, de Luxán-Delgado B, Rubio-González A, Menéndez-Valle I, Gutiérrez-Rodríguez J, Solano JJ, Caballero B, Vega-Naredo I, Coto-Montes A. Melatonin Alleviates the Impairment of Muscle Bioenergetics and Protein Quality Control Systems in Leptin-Deficiency-Induced Obesity. Antioxidants (Basel) 2023; 12:1962. [PMID: 38001815 PMCID: PMC10669624 DOI: 10.3390/antiox12111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Leptin is critically compromised in the major common forms of obesity. Skeletal muscle is the main effector tissue for energy modification that occurs as a result of the effect of endocrine axes, such as leptin signaling. Our study was carried out using skeletal muscle from a leptin-deficient animal model, in order to ascertain the importance of this hormone and to identify the major skeletal muscle mechanisms affected. We also examined the therapeutic role of melatonin against leptin-induced muscle wasting. Here, we report that leptin deficiency stimulates fatty acid β-oxidation, which results in mitochondrial uncoupling and the suppression of mitochondrial oxidative damage; however, it increases cytosolic oxidative damage. Thus, different nutrient-sensing pathways are disrupted, impairing proteostasis and promoting lipid anabolism, which induces myofiber degeneration and drives oxidative type I fiber conversion. Melatonin treatment plays a significant role in reducing cellular oxidative damage and regulating energy homeostasis and fuel utilization. Melatonin is able to improve both glucose and mitochondrial metabolism and partially restore proteostasis. Taken together, our study demonstrates melatonin to be a decisive mitochondrial function-fate regulator in skeletal muscle, with implications for resembling physiological energy requirements and targeting glycolytic type II fiber recovery.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Andrea Díaz-Luis
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Juan C. Bermejo-Millo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Zulema Pérez-Martínez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Microbiology Service, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Beatriz de Luxán-Delgado
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Adrian Rubio-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Iván Menéndez-Valle
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
- Immunology Service, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - Juan J. Solano
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| |
Collapse
|
46
|
Li AL, Lian L, Chen XN, Cai WH, Fan XB, Fan YJ, Li TT, Xie YY, Zhang JP. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics. Free Radic Biol Med 2023; 208:236-251. [PMID: 37567516 DOI: 10.1016/j.freeradbiomed.2023.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Myocardial damage is the most serious pathological consequence of cardiovascular diseases and an important reason for their high mortality. In recent years, because of the high prevalence of systemic energy metabolism disorders (e.g., obesity, diabetes mellitus, and metabolic syndrome), complications of myocardial damage caused by these disorders have attracted widespread attention. Energy metabolism disorders are independent of traditional injury-related risk factors, such as ischemia, hypoxia, trauma, and infection. An imbalance of myocardial metabolic flexibility and myocardial energy depletion are usually the initial changes of myocardial injury caused by energy metabolism disorders, and abnormal morphology and functional destruction of the mitochondria are their important features. Specifically, mitochondria are the centers of energy metabolism, and recent evidence has shown that decreased mitochondrial function, caused by an imbalance in mitochondrial quality control, may play a key role in myocardial injury caused by energy metabolism disorders. Under chronic energy stress, mitochondria undergo pathological fission, while mitophagy, mitochondrial fusion, and biogenesis are inhibited, and mitochondrial protein balance and transfer are disturbed, resulting in the accumulation of nonfunctional and damaged mitochondria. Consequently, damaged mitochondria lead to myocardial energy depletion and the accumulation of large amounts of reactive oxygen species, further aggravating the imbalance in mitochondrial quality control and forming a vicious cycle. In addition, impaired mitochondria coordinate calcium homeostasis imbalance, and epigenetic alterations participate in the pathogenesis of myocardial damage. These pathological changes induce rapid progression of myocardial damage, eventually leading to heart failure or sudden cardiac death. To intervene more specifically in the myocardial damage caused by metabolic disorders, we need to understand the specific role of mitochondria in this context in detail. Accordingly, promising therapeutic strategies have been proposed. We also summarize the existing therapeutic strategies to provide a reference for clinical treatment and developing new therapies.
Collapse
Affiliation(s)
- Ao-Lin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin-Nong Chen
- Department of Traditional Chinese Medicine, Tianjin First Central Hospital, Tianjin, 300190, China
| | - Wen-Hui Cai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin-Biao Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ya-Jie Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ting-Ting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ying-Yu Xie
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China.
| |
Collapse
|
47
|
Borowiec BG, McDonald AE, Wilkie MP. Upstream migrant sea lamprey (Petromyzon marinus) show signs of increasing oxidative stress but maintain aerobic capacity with age. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111503. [PMID: 37586606 DOI: 10.1016/j.cbpa.2023.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Following the parasitic juvenile phase of their life cycle, sea lamprey (Petromyzon marinus) mature into a reproductive but rapidly aging and deteriorating adult, and typically die shortly after spawning in May or June. However, pre-spawning upstream migrant sea lamprey can be maintained for several months beyond their natural lifespan when held in cold water (∼4-8 °C) under laboratory conditions. We exploited this feature to investigate the interactions between senescence, oxidative stress, and metabolic function in this phylogenetically ancient fish. We investigated how life history traits and mitochondria condition, as indicated by markers of oxidative stress (catalase activity, lipid peroxidation) and aerobic capacity (citrate synthase activity), changed in adult sea lamprey from June to December after capture during their upstream spawning migration. Body mass but not liver mass declined with age, resulting in an increase in hepatosomatic index. Both effects were most pronounced in males, which also tended to have larger livers than females. Lamprey experienced greater oxidative stress with age, as reflected by increasing activity of the antioxidant enzyme catalase and increasing levels of lipid peroxidation in liver mitochondrial isolates over time. Surprisingly, the activity of citrate synthase also increased with age in both sexes. These observations implicate mitochondrial dysfunction and oxidative stress in the senescence of sea lamprey. Due to their unique evolutionary position and the technical advantage of easily delaying the onset of senescence in lampreys using cold water, these animals could represent an evolutionary unique and tractable model to investigate senescence in vertebrates.
Collapse
Affiliation(s)
| | - Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada. https://twitter.com/AEMcDonaldWLU
| | - Michael P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
48
|
Bennett NK, Lee M, Orr AL, Nakamura K. Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562276. [PMID: 37904938 PMCID: PMC10614765 DOI: 10.1101/2023.10.14.562276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS- based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.
Collapse
Affiliation(s)
- Neal K. Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Megan Lee
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Adam L. Orr
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Graduate Programs in Neuroscience and Biomedical Sciences, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, 94158, USA
| |
Collapse
|
49
|
Sahadevan R, Binoy A, Shajan I, Sadhukhan S. Mitochondria-targeting EGCG derivatives protect H9c2 cardiomyocytes from H 2O 2-induced apoptosis: design, synthesis and biological evaluation. RSC Adv 2023; 13:29477-29488. [PMID: 37818277 PMCID: PMC10561634 DOI: 10.1039/d3ra04527g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Pathologies related to cardiovascular diseases mostly emerge as a result of oxidative stress buildup in cardiomyocytes. The heavy load of mitochondrial oxidative phosphorylation in cardiac tissues corresponds to a surge in oxidative stress leading to mitochondrial dysfunction and cellular apoptosis. Thus, scavenging the reactive oxygen species (ROS) linked to mitochondria can significantly improve cardio-protection. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea has been extensively studied for its profound health-beneficial activities. Herein, we designed and synthesized a series of mitochondrial-targeting EGCG derivatives, namely MitoEGCGn (n = 4, 6, 8) by incorporating triphenylphosphonium ion onto it using different linkers. MitoEGCGn were found to be non-toxic to H9c2 rat cardiomyocyte cells even at higher doses in comparison to its parent molecule EGCG. Interestingly, MitoEGCG4 and MitoEGCG6 protected the H9c2 cardiomyocyte cells from the oxidative damage induced by H2O2 whereas EGCG was found to be toxic and ineffective in protecting the cells from H2O2 damage. MitoEGCG4 and MitoEGCG6 also protected the cells from the H2O2-induced disruption of mitochondrial membrane potential as well as activation of apoptosis as revealed by pro-caspase 3 expression profile, DNA fragmentation assay, and AO/EtBr staining. Taken together, our study shows that the mitochondria targeting EGCG derivatives were able to effectively combat the H2O2-induced oxidative stress in H9c2 cardiomyocytes. They eventually augmented the mitochondrial health of cardiomyocytes by maintaining the mitochondrial function and attenuating apoptosis. Overall, MitoEGCG4 and MitoEGCG6 could provision a cardioprotective role to H9c2 cardiomyocytes at the time of oxidative insults related to mitochondrial dysfunction-associated injuries.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| | - Irene Shajan
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
- Physical & Chemical Biology Laboratory, Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad Kerala 678 623 India
| |
Collapse
|
50
|
Ferrara F, Pecorelli A, Valacchi G. Redox Regulation of Nucleotide-Binding and Oligomerization Domain-Like Receptors Inflammasome. Antioxid Redox Signal 2023; 39:744-770. [PMID: 37440315 DOI: 10.1089/ars.2022.0180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Significance: Inflammasomes are multimeric complexes that, as part of the innate immune response, sense a wide range of pathogenic and sterile stimuli. They consist of three components, namely a sensor protein, an adaptor, and procaspase-1, which once activated result in secretion of proinflammatory interleukin (IL)-1β and IL-18 and, eventually, in a gasdermin D-dependent lytic cell death called pyroptosis. Recent Advances: Since their discovery 20 years ago, the molecular mechanisms underlying the regulation of inflammasomes have been extensively studied. Oxidative stress appears as a major contributor to modulate inflammasomes, especially NLRP3 as well as NLRP1, NLRP6, and NLRC4. Growing evidence supports the idea that the positive feedback between redox imbalance and inflammasome-driven inflammation fuels an OxInflammatory state in a variety of human pathologies. Critical Issues: The current knowledge about the redox signaling pathways involved in inflammasomes activation and functions are here highlighted. In addition, we discuss the role of this complex molecular network interaction in the onset and progression of pathological conditions including neurological and metabolic diseases as well as skin disorders, also with an insight on COVID-19-related pathology. Finally, the therapeutic strategies able to mitigate the redox-mediated inflammasome activation with synthetic and natural compounds as well as by acting on inflammasome-related post-translational modifications and microRNAs are also addressed. Future Directions: Further investigations leading to a deeper understanding of the reciprocal interaction between inflammasomes and reactive oxygen species will help identify other molecular targets for modulating their hyperactivated state, and to design novel therapeutics for chronic OxInflammatory conditions. Antioxid. Redox Signal. 39, 744-770.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|