1
|
Zhao Q, Li X, Jiao Y, Chen Y, Yan Y, Wang Y, Hamiaux C, Wang Y, Ma F, Atkinson RG, Li P. Identification of two key genes involved in flavonoid catabolism and their different roles in apple resistance to biotic stresses. THE NEW PHYTOLOGIST 2024; 242:1238-1256. [PMID: 38426393 DOI: 10.1111/nph.19644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Biosynthesis of flavonoid aglycones and glycosides is well established. However, key genes involved in their catabolism are poorly understood, even though the products of hydrolysis and oxidation play important roles in plant resistance to biotic stress. Here, we report on catabolism of dihydrochalcones (DHCs), the most abundant flavonoids in domesticated apple and wild Malus. Two key genes, BGLU13.1 and PPO05, were identified by activity-directed protein purification. BGLU13.1-A hydrolyzed phlorizin, (the most abundant DHC in domesticated apple) to produce phloretin which was then oxidized by PPO05. The process differed in some wild Malus, where trilobatin (a positional isomer of phlorizin) was mainly oxidized by PPO05. The effects of DHC catabolism on apple resistance to biotic stresses was investigated using transgenic plants. Either directly or indirectly, phlorizin hydrolysis affected resistance to the phytophagous pest two-spotted spider mite, while oxidation of trilobatin was involved in resistance to the biotrophic fungus Podosphaera leucotricha. DHC catabolism did not affect apple resistance to necrotrophic pathogens Valsa mali and Erwinia amylovara. These results suggest that different DHC catabolism pathways play different roles in apple resistance to biotic stresses. The role of DHC catabolism on apple resistance appeared closely related to the mode of invasion/damage used by pathogen/pest.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoning Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfang Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuzhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cyril Hamiaux
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Yule Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Schnicker NJ, Xu Z, Amir M, Gakhar L, Huang CL. Conformational landscape of soluble α-klotho revealed by cryogenic electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583144. [PMID: 38496408 PMCID: PMC10942382 DOI: 10.1101/2024.03.02.583144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
α-Klotho (KLA) is a type-1 membranous protein that can associate with fibroblast growth factor receptor (FGFR) to form co-receptor for FGF23. The ectodomain of unassociated KLA is shed as soluble KLA (sKLA) to exert FGFR/FGF23-independent pleiotropic functions. The previously determined X-ray crystal structure of the extracellular region of sKLA in complex with FGF23 and FGFR1c suggests that sKLA functions solely as an on-demand coreceptor for FGF23. To understand the FGFR/FGF23-independent pleiotropic functions of sKLA, we investigated biophysical properties and structure of apo-sKLA. Mass photometry revealed that sKLA can form a stable structure with FGFR and/or FGF23 as well as sKLA dimer in solution. Single particle cryogenic electron microscopy (cryo-EM) supported the dimeric structure of sKLA. Cryo-EM further revealed a 3.3Å resolution structure of apo-sKLA that overlays well with its counterpart in the ternary complex with several distinct features. Compared to the ternary complex, the KL2 domain of apo-sKLA is more flexible. 3D variability analysis revealed that apo-sKLA adopts conformations with different KL1-KL2 interdomain bending and rotational angles. The potential multiple forms and shapes of sKLA support its role as FGFR-independent hormone with pleiotropic functions. A comprehensive understanding of the sKLA conformational landscape will provide the foundation for developing klotho-related therapies for diseases.
Collapse
Affiliation(s)
- Nicholas J. Schnicker
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
| | - Mohammad Amir
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Chou-Long Huang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
| |
Collapse
|
3
|
Kaenying W, Tagami T, Suwan E, Pitsanuwong C, Chomngam S, Okuyama M, Kongsaeree P, Kimura A, Kongsaeree PT. Structural and mutational analysis of glycoside hydrolase family 1 Br2 β-glucosidase derived from bovine rumen metagenome. Heliyon 2023; 9:e21923. [PMID: 38034805 PMCID: PMC10685196 DOI: 10.1016/j.heliyon.2023.e21923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Ruminant animals rely on the activities of β-glucosidases from residential microbes to convert feed fibers into glucose for further metabolic uses. In this report, we determined the structures of Br2, which is a glycoside hydrolase family 1 β-glucosidase from the bovine rumen metagenome. Br2 folds into a classical (β/α)8-TIM barrel domain but displays unique structural features at loop β5→α5 and α-helix 5, resulting in different positive subsites from those of other GH1 enzymes. Br2 exhibited the highest specificity toward laminaritriose, suggesting its involvement in β-glucan hydrolysis in digested feed. We then substituted the residues at subsites +1 and + 2 of Br2 with those of Halothermothrix orenii β-glucosidase. The C170E and C221T mutations provided favorable interactions with glucooligosaccharide substrates at subsite +2, while the A219N mutation probably improved the substrate preference for cellobiose and gentiobiose relative to laminaribiose at subsite +1. The N407Y mutation increased the affinity toward cellooligosaccharides. These results give further insights into the molecular determinants responsible for substrate specificity in GH1 β-glucosidases and may provide a basis for future enzyme engineering applications.
Collapse
Affiliation(s)
- Wilaiwan Kaenying
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Eukote Suwan
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Chariwat Pitsanuwong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok 10300, Thailand
| | - Sinchai Chomngam
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Palangpon Kongsaeree
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | |
Collapse
|
4
|
Kotik M, Kulik N, Valentová K. Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14890-14910. [PMID: 37800688 PMCID: PMC10591481 DOI: 10.1021/acs.jafc.3c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Flavonoids and their glycosides are abundant in many plant-based foods. The (de)glycosylation of flavonoids by retaining glycoside hydrolases has recently attracted much interest in basic and applied research, including the possibility of altering the glycosylation pattern of flavonoids. Research in this area is driven by significant differences in physicochemical, organoleptic, and bioactive properties between flavonoid aglycones and their glycosylated counterparts. While many flavonoid glycosides are present in nature at low levels, some occur in substantial quantities, making them readily available low-cost glycosyl donors for transglycosylations. Retaining glycosidases can be used to synthesize natural and novel glycosides, which serve as standards for bioactivity experiments and analyses, using flavonoid glycosides as glycosyl donors. Engineered glycosidases also prove valuable for the synthesis of flavonoid glycosides using chemically synthesized activated glycosyl donors. This review outlines the bioactivities of flavonoids and their glycosides and highlights the applications of retaining glycosidases in the context of flavonoid glycosides, acting as substrates, products, or glycosyl donors in deglycosylation or transglycosylation reactions.
Collapse
Affiliation(s)
- Michael Kotik
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| | - Natalia Kulik
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| |
Collapse
|
5
|
Zhou Y, Liao KS, Chen TY, Hsieh YSY, Wong CH. Effective Organotin-Mediated Regioselective Functionalization of Unprotected Carbohydrates. J Org Chem 2023. [PMID: 37167441 DOI: 10.1021/acs.joc.3c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Regioselective functionalization of unprotected carbohydrates at a secondary OH group in the presence of primary OH groups based on the commonly used organotin-mediated reaction has been improved. We found that the preactivation of the dibutylstannylene acetal intermediate with tetrabutylammonium bromide in toluene is a key to the improved condition for the efficient, high-yielding, and regioselective tosylation, benzoylation, or benzylation of unprotected carbohydrates. The counteranion of tetrabutylammonium ion with a weak coordination ability plays a crucial role in the improved regioselective reactions. A convenient access to the intermediates of synthetic value is also demonstrated in the organotin-mediated regioselective tosylation of unprotected carbohydrates, followed by the nucleophilic inversion reaction to give sulfur-containing and azide-modified carbohydrates.
Collapse
Affiliation(s)
- Yixuan Zhou
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
| | - Tzu-Yin Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City 110, Taiwan
| | - Yves S Y Hsieh
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City 110, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Koudounas K, Thomopoulou M, Rigakou A, Angeli E, Melliou E, Magiatis P, Hatzopoulos P. Silencing of Oleuropein β-Glucosidase Abolishes the Biosynthetic Capacity of Secoiridoids in Olives. FRONTIERS IN PLANT SCIENCE 2021; 12:671487. [PMID: 34539687 PMCID: PMC8446429 DOI: 10.3389/fpls.2021.671487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Specialized metabolism is an evolutionary answer that fortifies plants against a wide spectrum of (a) biotic challenges. A plethora of diversified compounds can be found in the plant kingdom and often constitute the basis of human pharmacopeia. Olive trees (Olea europaea) produce an unusual type of secoiridoids known as oleosides with promising pharmaceutical activities. Here, we transiently silenced oleuropein β-glucosidase (OeGLU), an enzyme engaged in the biosynthetic pathway of secoiridoids in the olive trees. Reduction of OeGLU transcripts resulted in the absence of both upstream and downstream secoiridoids in planta, revealing a regulatory loop mechanism that bypasses the flux of precursor compounds toward the branch of secoiridoid biosynthesis. Our findings highlight that OeGLU could serve as a molecular target to regulate the bioactive secoiridoids in olive oils.
Collapse
Affiliation(s)
- Konstantinos Koudounas
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Margarita Thomopoulou
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Aimilia Rigakou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisavet Angeli
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Polydefkis Hatzopoulos
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
8
|
Carqueijeiro I, Koudounas K, Dugé de Bernonville T, Sepúlveda LJ, Mosquera A, Bomzan DP, Oudin A, Lanoue A, Besseau S, Lemos Cruz P, Kulagina N, Stander EA, Eymieux S, Burlaud-Gaillard J, Blanchard E, Clastre M, Atehortùa L, St-Pierre B, Giglioli-Guivarc’h N, Papon N, Nagegowda DA, O’Connor SE, Courdavault V. Alternative splicing creates a pseudo-strictosidine β-d-glucosidase modulating alkaloid synthesis in Catharanthus roseus. PLANT PHYSIOLOGY 2021; 185:836-856. [PMID: 33793899 PMCID: PMC8133614 DOI: 10.1093/plphys/kiaa075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/24/2020] [Indexed: 05/08/2023]
Abstract
Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by β-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine β-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins. By exploring C. roseus transcriptomic resources, we identified an alternative splicing event of the SGD gene leading to the formation of a shorter isoform of this enzyme (shSGD) that lacks the last 71-residues and whose transcript ratio with SGD ranges from 1.7% up to 42.8%, depending on organs and conditions. Whereas it completely lacks β-glucosidase activity, shSGD interacts with SGD and causes the disruption of SGD multimers. Such disorganization drastically inhibits SGD activity and impacts downstream MIA synthesis. In addition, shSGD disrupts the metabolic channeling of downstream biosynthetic steps by hampering the recruitment of tetrahydroalstonine synthase in cell nuclei. shSGD thus corresponds to a pseudo-enzyme acting as a regulator of MIA biosynthesis. These data shed light on a peculiar control mechanism of β-glucosidase multimerization, an organization common to many defensive GH1 members.
Collapse
Affiliation(s)
- Inês Carqueijeiro
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Konstantinos Koudounas
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | | | - Liuda Johana Sepúlveda
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Angela Mosquera
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
| | - Audrey Oudin
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Sébastien Besseau
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Pamela Lemos Cruz
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Natalja Kulagina
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Emily A Stander
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Sébastien Eymieux
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
| | - Julien Burlaud-Gaillard
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
- Centre Hospitalier Régional de Tours, 37170 Tours, France
| | - Marc Clastre
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Benoit St-Pierre
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | | | - Nicolas Papon
- EA3142 “Groupe d'Etude des Interactions Hôte-Pathogène,” Université d’Angers, 49035 Angers, France
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
| | - Sarah E O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Vincent Courdavault
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Author for communication:
| |
Collapse
|
9
|
Baiya S, Pengthaisong S, Kitjaruwankul S, Ketudat Cairns JR. Structural analysis of rice Os4BGlu18 monolignol β-glucosidase. PLoS One 2021; 16:e0241325. [PMID: 33471829 PMCID: PMC7817009 DOI: 10.1371/journal.pone.0241325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 01/07/2023] Open
Abstract
Monolignol glucosides are storage forms of monolignols, which are polymerized to lignin to strengthen plant cell walls. The conversion of monolignol glucosides to monolignols is catalyzed by monolignol β-glucosidases. Rice Os4BGlu18 β-glucosidase catalyzes hydrolysis of the monolignol glucosides, coniferin, syringin, and p-coumaryl alcohol glucoside more efficiently than other natural substrates. To understand more clearly the basis for substrate specificity of a monolignol β-glucosidase, the structure of Os4BGlu18 was determined by X-ray crystallography. Crystals of Os4BGlu18 and its complex with δ-gluconolactone diffracted to 1.7 and 2.1 Å resolution, respectively. Two protein molecules were found in the asymmetric unit of the P212121 space group of their isomorphous crystals. The Os4BGlu18 structure exhibited the typical (β/α)8 TIM barrel of glycoside hydrolase family 1 (GH1), but the four variable loops and two disulfide bonds appeared significantly different from other known structures of GH1 β-glucosidases. Molecular docking studies of the Os4BGlu18 structure with monolignol substrate ligands placed the glycone in a similar position to the δ-gluconolactone in the complex structure and revealed the interactions between protein and ligands. Molecular docking, multiple sequence alignment, and homology modeling identified amino acid residues at the aglycone-binding site involved in substrate specificity for monolignol β-glucosides. Thus, the structural basis of substrate recognition and hydrolysis by monolignol β-glucosidases was elucidated.
Collapse
Affiliation(s)
- Supaporn Baiya
- Faculty of Science at Sriracha, Kasetsart University, Sriracha Campus, Sriracha, Chonburi, Thailand
| | - Salila Pengthaisong
- School of Chemistry, Institute of Science and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Sunan Kitjaruwankul
- Faculty of Science at Sriracha, Kasetsart University, Sriracha Campus, Sriracha, Chonburi, Thailand
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| |
Collapse
|
10
|
Thenchartanan P, Wattana-Amorn P, Svasti J, Kongsaeree PT. Improved synthesis of long-chain alkyl glucosides catalyzed by an engineered β-glucosidase in organic solvents and ionic liquids. Biotechnol Lett 2020; 42:2379-2387. [PMID: 32654007 DOI: 10.1007/s10529-020-02960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To synthesize octyl β-D-glucopyranoside (OG) and decyl β-D-glucopyranoside (DG) in three non-aqueous reaction systems, namely organic solvents, ionic liquids and co-solvent mixtures, via reverse hydrolysis reactions catalyzed by the N189F dalcochinase mutant. RESULTS The highest yield of OG (67 mol%) was obtained in the reaction containing 0.5 M glucose, 3 unit ml-1 enzyme in 20% (v/v) octanol and 70% (v/v) [BMIm][PF6] at 30 °C. On the other hand, the highest yield of DG (64 mol%) was obtained in the reaction containing 0.5 M glucose, 3 unit ml-1 enzyme in 20% (v/v) decanol, 20% (v/v) acetone and 50% (v/v) [BMIm][PF6] at 30 °C. The identities of OG and DG products were confirmed by HRMS and NMR. CONCLUSION This is the first report of enzymatic synthesis of OG and DG via reverse hydrolysis reactions in ionic liquids and co-solvent mixtures. The N189F dalcochinase mutant and the non-aqueous reaction systems described here show great potential for future commercial production of long-chain alkyl glucosides.
Collapse
Affiliation(s)
- Pornpanna Thenchartanan
- Department of Biochemistry, Faculty of Science, and Center for Advanced Studies in Tropical Natural Resources, NRU-KU, Kasetsart University, Bangkok, Thailand
| | - Pakorn Wattana-Amorn
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Prachumporn T Kongsaeree
- Department of Biochemistry, Faculty of Science, and Center for Advanced Studies in Tropical Natural Resources, NRU-KU, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
11
|
Nutho B, Pengthaisong S, Tankrathok A, Lee VS, Ketudat Cairns JR, Rungrotmongkol T, Hannongbua S. Structural Basis of Specific Glucoimidazole and Mannoimidazole Binding by Os3BGlu7. Biomolecules 2020; 10:biom10060907. [PMID: 32549280 PMCID: PMC7356692 DOI: 10.3390/biom10060907] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023] Open
Abstract
β-Glucosidases and β-mannosidases hydrolyze substrates that differ only in the epimer of the nonreducing terminal sugar moiety, but most such enzymes show a strong preference for one activity or the other. Rice Os3BGlu7 and Os7BGlu26 β-glycosidases show a less strong preference, but Os3BGlu7 and Os7BGlu26 prefer glucosides and mannosides, respectively. Previous studies of crystal structures with glucoimidazole (GIm) and mannoimidazole (MIm) complexes and metadynamic simulations suggested that Os7BGlu26 hydrolyzes mannosides via the B2,5 transition state (TS) conformation preferred for mannosides and glucosides via their preferred 4H3/4E TS conformation. However, MIm is weakly bound by both enzymes. In the present study, we found that MIm was not bound in the active site of crystallized Os3BGlu7, but GIm was tightly bound in the -1 subsite in a 4H3/4E conformation via hydrogen bonds with the surrounding residues. One-microsecond molecular dynamics simulations showed that GIm was stably bound in the Os3BGlu7 active site and the glycone-binding site with little distortion. In contrast, MIm initialized in the B2,5 conformation rapidly relaxed to a E3/4H3 conformation and moved out into a position in the entrance of the active site, where it bound more stably despite making fewer interactions. The lack of MIm binding in the glycone site in protein crystals and simulations implies that the energy required to distort MIm to the B2,5 conformation for optimal active site residue interactions is sufficient to offset the energy of those interactions in Os3BGlu7. This balance between distortion and binding energy may also provide a rationale for glucosidase versus mannosidase specificity in plant β-glycosidases.
Collapse
Affiliation(s)
- Bodee Nutho
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Salila Pengthaisong
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (A.T.)
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anupong Tankrathok
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (A.T.)
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (A.T.)
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (J.R.K.C.); (T.R.); (S.H.); Tel.: +66-4422-4304 (J.R.K.C.); +66-2218-5426 (T.R.); +66-2218-7602 (S.H.)
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (J.R.K.C.); (T.R.); (S.H.); Tel.: +66-4422-4304 (J.R.K.C.); +66-2218-5426 (T.R.); +66-2218-7602 (S.H.)
| | - Supot Hannongbua
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: (J.R.K.C.); (T.R.); (S.H.); Tel.: +66-4422-4304 (J.R.K.C.); +66-2218-5426 (T.R.); +66-2218-7602 (S.H.)
| |
Collapse
|
12
|
Shen S, Zhang X, Li Z. Development of an engineered carbamoyl phosphate synthetase with released sensitivity to feedback inhibition by site-directed mutation and casting error-prone PCR. Enzyme Microb Technol 2019; 129:109354. [PMID: 31307577 DOI: 10.1016/j.enzmictec.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/26/2019] [Indexed: 12/26/2022]
Abstract
Carbamoyl phosphate synthetase (CPS) is a key enzyme in both pyrimidine and arginine biosynthesis. However, it is inhibited strongly by uridine monophosphate (UMP), which is an intermediate of the de-novo synthesis of pyrimidine nucleoside. In this study, the native carbamoyl phosphate synthetase, from Escherichia coli, was evolved by site-directed mutation and casting error-prone PCR. Compared with the wild-type, the variant N1015 F had released sensitivity to UMP and exhibited 100% of the initial activity in the presence of UMP. Variant K1006A exhibited 0.14-fold improvement in initial activity and kept above 65% of relative activity under the saturated concentration of inhibitor. Structure analysis of variants demonstrated that the reduced sensitivity to inhibitor was largely attributed to the decreased hydrogen bonds, which could reduce the binding affinity with UMP. Also, Phe with large side chain could narrow the binding pocket and generate more steric hindrance. Based on the results in this study, N1015F was an ideal alternative catalyst for the wild-type CPS for pyrimidine biosynthesis.
Collapse
Affiliation(s)
- Su Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
13
|
Wen Y, Jiang X, Yang C, Meng H, Wang B, Wu H, Zhang Z, Xu H. The linker length of glucose-fipronil conjugates has a major effect on the rate of bioactivation by β-glucosidase. PEST MANAGEMENT SCIENCE 2019; 75:708-717. [PMID: 30182531 DOI: 10.1002/ps.5170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Endogenous plant β-glucosidases can be utilized to hydrolyze pro-pesticides and release the bioactive pesticide. Two related glucose-fipronil conjugates with different linkers structure, N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazol-5-yl}-1-(2-triazolethyl-β-d-glucopyranoside)-1H-1,2,3-triazole-4-methanamine (GOTF) and N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl)-sulfinyl]-1H-pyrazol-5-yl}-2-aminoethyl-β-d-glucopyranoside (GOF), were deglucolysated by β-glucosidase both in vitro and in vivo at different rates. Here, the basis for these differences was investigated by revealing the kinetics of the reaction and by modeling molecular docking between enzyme and substrate. RESULTS Results from kinetic study showed that the reaction rate was the main reason for the poorer rate of GOF hydrolysis with respect to GOTF. Modeling of substrate docking indicated that the spacer arm of glucose-fipronil conjugates affects the strength of non-covalent bonds within the active site and the position of fipronil within the pocket. Four glucose-fipronil conjugates and four corresponding aglycones were synthesized, and the hydrolysis data confirmed that the increased tether length between the bulky aglycone and glycone would lead to faster hydrolysis rate. The bioassay results indicated that most glucose-fipronil conjugates displayed moderate to excellent insecticidal activities in vivo against Plutella xylostella larvae. CONCLUSION This study provides a potential strategy to optimize the substrate structure to enhance hydrolytic specificity in order to design appropriate phloem mobile pro-pesticides. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingjie Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Xunyuan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Chen Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Huayue Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Binfeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hanxiang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Zhixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Abstract
Tetrazole derivatives are a prime class of heterocycles, very important to medicinal chemistry and drug design due to not only their bioisosterism to carboxylic acid and amide moieties but also to their metabolic stability and other beneficial physicochemical properties. Although more than 20 FDA-approved drugs contain 1 H- or 2 H-tetrazole substituents, their exact binding mode, structural biology, 3D conformations, and in general their chemical behavior is not fully understood. Importantly, multicomponent reaction (MCR) chemistry offers convergent access to multiple tetrazole scaffolds providing the three important elements of novelty, diversity, and complexity, yet MCR pathways to tetrazoles are far from completely explored. Here, we review the use of multicomponent reactions for the preparation of substituted tetrazole derivatives. We highlight specific applications and general trends holding therein and discuss synthetic approaches and their value by analyzing scope and limitations, and also enlighten their receptor binding mode. Finally, we estimated the prospects of further research in this field.
Collapse
Affiliation(s)
- Constantinos G. Neochoritis
- Drug Design Group, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Ting Zhao
- Drug Design Group, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Alexander Dömling
- Drug Design Group, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| |
Collapse
|
15
|
Ando D, Fujisawa T, Katagi T. Metabolism of the Strobilurin Fungicide Mandestrobin in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10154-10162. [PMID: 30205687 DOI: 10.1021/acs.jafc.8b03639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The metabolic fate of a new fungicide, mandestrobin, labeled with 14C at the phenoxy or benzyl ring was examined in wheat after a single spray application at 300 g/ha. Mandestrobin penetrated into foliage over time, with both radiolabels showing similar 14C distribution in wheat, and 2.8-3.3% of the total radioactive residue remained on the surface of straw at the final harvest. In foliage, mandestrobin primarily underwent mono-oxidation at the phenoxy ring to produce 4-hydroxy or 2-/5-hydroxymethyl derivatives, followed by their subsequent formation of malonylglucose conjugates. In grain, the cleavage of its benzyl phenyl ether bond was the major metabolic reaction, releasing the corresponding alcohol derivative, while the counterpart 2,5-dimethylphenol was not detected. The constant RS enantiomeric ratio of mandestrobin showed its enantioselective metabolism to be unlikely on/in wheat.
Collapse
Affiliation(s)
- Daisuke Ando
- Environmental Health Science Laboratory , Sumitomo Chemical Co., Ltd. , 4-2-1, Takarazuka , Hyogo 665-8555 , Japan
| | - Takuo Fujisawa
- Environmental Health Science Laboratory , Sumitomo Chemical Co., Ltd. , 4-2-1, Takarazuka , Hyogo 665-8555 , Japan
| | - Toshiyuki Katagi
- Bioscience Research Laboratory , Sumitomo Chemical Co., Ltd. , 3-1-98, Kasugade-naka 3-chome, Konohana-ku , Osaka-city, Osaka 554-8558 , Japan
| |
Collapse
|
16
|
Behrens CJ, Krahe NK, Linke D, Berger RG. BadGluc, a β-glucosidase from Bjerkandera adusta with anthocyanase properties. Bioprocess Biosyst Eng 2018; 41:1391-1401. [PMID: 29948211 DOI: 10.1007/s00449-018-1966-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
Abstract
A glycosidase of the basidiomycete Bjerkandera adusta (BadGluc) was found in screenings to possess a strong decolorizing ability towards malvidin-3-galactoside, an anthocyanin abundant in various berry fruits. The BadGluc was purified from the culture supernatant via FPLC, and the corresponding gene was identified which showed low similarity to other characterized glucosidases. Scanning the primary sequence with PROSITE no active site motif was detected. Eventually, a specific 18 aa consensus pattern was identified manually. The active site motif possessed an undescribed sequence which was only found in a few hypothetical proteins. The corresponding gene was cloned and expressed in Pichia pastoris GS115 yielding activities up to 100 U/L using 4-nitrophenyl-β-d-glucopyranoside (pNPG) as substrate. The enzyme possessed a good temperature (70% after 1 h at 50°C) and pH stability (70% between pH 2 and 7.5), and preferably catalysed the hydrolysis of delphinidin-3-glucoside and cyanidin-3-glucoside, regardless of the position of the terminal Hexa-His tag. This novel glucosidase worked in aqueous solution as well as on pre-stained fabrics making it the first known candidate anthocyanase for applications in the detergent and food industries.
Collapse
Affiliation(s)
- Christoph J Behrens
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstraße 5, 30167, Hannover, Germany.
| | - Nina K Krahe
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstraße 5, 30167, Hannover, Germany
| | - Diana Linke
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstraße 5, 30167, Hannover, Germany
| | - Ralf G Berger
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstraße 5, 30167, Hannover, Germany
| |
Collapse
|
17
|
Zheng F, Tu T, Wang X, Wang Y, Ma R, Su X, Xie X, Yao B, Luo H. Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:76. [PMID: 29588661 PMCID: PMC5863444 DOI: 10.1186/s13068-018-1080-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 03/14/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cellulases of glycosyl hydrolase (GH) family 5 share a (β/α)8 TIM-barrel fold structure with eight βα loops surrounding the catalytic pocket. These loops exposed on the surface play a vital role in protein functions, primarily due to the interactions of some key amino acids with solvent and ligand molecules. It has been reported that motions of these loops facilitate substrate access and product release, and loops 6 and 7 located at the substrate entrance of the binding pocket promote proton transfer reaction at the catalytic site motions. However, the role of these flexible loops in catalysis of GH5 cellulase remains to be explored. RESULTS In the present study, an acidic, mesophilic GH5 cellulase (with optimal activity at pH 4.0 and 70 °C), GtCel5, was identified in Gloeophyllum trabeum CBS 900.73. The specific activities of GtCel5 toward CMC-Na, barley β-glucan, and lichenan were 1117 ± 43, 6257 ± 26 and 5318 ± 54 U/mg, respectively. Multiple sequence alignment indicates that one amino acid residue at position 233 on the loop 6 shows semi-conservativeness and might contribute to the great catalytic performance. Saturation mutagenesis at position 233 was then conducted to reveal the vital roles of this position in enzyme properties. In comparison to the wild type, variants N233A and N233G showed decreased optimal temperature (- 10 °C) but increased activities (27 and 70%) and catalytic efficiencies (kcat/Km; 45 and 52%), respectively. The similar roles of position 233 in catalytic performance were also verified in the other two GH5 homologs, TeEgl5A and PoCel5, by reverse mutation. Further molecular dynamics simulations suggested that the substitution of asparagine with alanine or glycine may introduce more hydrogen bonds, increase the flexibility of loop 6, enhance the interactions between enzyme and substrate, and thus improve the substrate affinity and catalytic efficiency. CONCLUSION This study proposed a novel cellulase with potentials for industrial application. A specific position was identified to play key roles in cellulase-substrate interactions and enzyme catalysis. It is of great importance for understanding the binding mechanism of GH5 cellulases, and provides an effective strategy to improve the catalytic performance of cellulases.
Collapse
Affiliation(s)
- Fei Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian, Beijing, 100081 People’s Republic of China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian, Beijing, 100081 People’s Republic of China
| | - Xiaoyu Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian, Beijing, 100081 People’s Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian, Beijing, 100081 People’s Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian, Beijing, 100081 People’s Republic of China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian, Beijing, 100081 People’s Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian, Beijing, 100081 People’s Republic of China
| |
Collapse
|
18
|
Lv B, Sun H, Huang S, Feng X, Jiang T, Li C. Structure-guided engineering of the substrate specificity of a fungal β-glucuronidase toward triterpenoid saponins. J Biol Chem 2017; 293:433-443. [PMID: 29146597 DOI: 10.1074/jbc.m117.801910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/06/2017] [Indexed: 01/20/2023] Open
Abstract
Glycoside hydrolases (GHs) have attracted special attention in research aimed at modifying natural products by partial removal of sugar moieties to manipulate their solubility and efficacy. However, these modifications are challenging to control because the low substrate specificity of most GHs often generates undesired by-products. We previously identified a GH2-type fungal β-glucuronidase from Aspergillus oryzae (PGUS) exhibiting promiscuous substrate specificity in hydrolysis of triterpenoid saponins. Here, we present the PGUS structure, representing the first structure of a fungal β-glucuronidase, and that of an inactive PGUS mutant in complex with the native substrate glycyrrhetic acid 3-O-mono-β-glucuronide (GAMG). PGUS displayed a homotetramer structure with each monomer comprising three distinct domains: a sugar-binding, an immunoglobulin-like β-sandwich, and a TIM barrel domain. Two catalytic residues, Glu414 and Glu505, acted as acid/base and nucleophile, respectively. Structural and mutational analyses indicated that the GAMG glycan moiety is recognized by polar interactions with nine residues (Asp162, His332, Asp414, Tyr469, Tyr473, Asp505, Arg563, Asn567, and Lys569) and that the aglycone moiety is recognized by aromatic stacking and by a π interaction with the four aromatic residues Tyr469, Phe470, Trp472, and Tyr473 Finally, structure-guided mutagenesis to precisely manipulate PGUS substrate specificity in the biotransformation of glycyrrhizin into GAMG revealed that two amino acids, Ala365 and Arg563, are critical for substrate specificity. Moreover, we obtained several mutants with dramatically improved GAMG yield (>95%). Structural analysis suggested that modulating the interaction of β-glucuronidase simultaneously toward glycan and aglycone moieties is critical for tuning its substrate specificity toward triterpenoid saponins.
Collapse
Affiliation(s)
- Bo Lv
- From the Department of Biochemical Engineering/Institute for Biotransformation and Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China and
| | - Hanli Sun
- Institute of Biophysics, Chinese Academy of Science, 100101 Beijing, China
| | - Shen Huang
- From the Department of Biochemical Engineering/Institute for Biotransformation and Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China and
| | - Xudong Feng
- From the Department of Biochemical Engineering/Institute for Biotransformation and Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China and
| | - Tao Jiang
- Institute of Biophysics, Chinese Academy of Science, 100101 Beijing, China
| | - Chun Li
- From the Department of Biochemical Engineering/Institute for Biotransformation and Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China and
| |
Collapse
|
19
|
Kar B, Verma P, Patel GK, Sharma AK. Molecular cloning, characterization and in silico analysis of a thermostable β-glucosidase enzyme from Putranjiva roxburghii with a significant activity for cellobiose. PHYTOCHEMISTRY 2017; 140:151-165. [PMID: 28500928 DOI: 10.1016/j.phytochem.2017.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The native Putranjiva roxburghii family 1 glycoside hydrolase enzyme showed β-D-fucosidase activity in addition to β-D-glucosidase and β-D-galactosidase activities reported in our previous study. A single step concanvalin A affinity chromatography for native PRGH1 improved the yield and reduced the purification time. The PRGH1 gene was cloned and overexpressed in E. coli. The full length gene contained an ORF of 1617 bp encoding a polypeptide of 538 amino acids. The amino acid sequence of PRGH1 showed maximum similarities to β-glucosidases and myrosinases. Both native and recombinant protein showed maximum hydrolytic activity for pNP-Fuc followed by pNP-Glc and pNP-Gal. Significant enzyme activity was also observed for cellobiose, however it decreased with increase in chain-length for glycan substrates. The enzyme showed significant resistant to D-glucose concentration up to 500 mM. Mutational studies confirmed the predicted catalytic acid/base Glu173 and nucleophile Glu389 as key residues for its activity. Moreover, Glu446 and Asn172 played essential role in substrate binding by interacting with the -1 subsite of substrates. Bioinformatic analysis suggested the possible reasons for the broad substrate specificity and other properties of the enzyme. PRGH1 had high sequence similarity towards S-glucosidase and may be involved in defence. The broad specificity, catalytic efficiency and thermostability make PRGH1 potentially an important industrial enzyme.
Collapse
Affiliation(s)
- Bibekananda Kar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Preeti Verma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Girijesh Kumar Patel
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India.
| |
Collapse
|
20
|
Dissecting Pistil Responses to Incompatible and Compatible Pollen in Self-Incompatibility Brassica oleracea Using Comparative Proteomics. Protein J 2017; 36:123-137. [PMID: 28299594 DOI: 10.1007/s10930-017-9697-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Angiosperms have developed self-incompatibility (SI) systems to reject self-pollen, thereby promoting outcrossing. The Brassicaceae belongs to typical sporophytic system, having a single S-locus controlled SI response, and was chosen as a model system to study SI-related intercellular signal transduction. In this regard, the downstream factor of EXO70A1 was unknown. Here, protein two-dimensional electrophoresis (2-DE) method and coupled with matrix-assisted laser desorption ionization/time of flight of flight mass spectrometry (MALDI-TOF -MS) and peptide mass fingerprinting (PMF) was used to further explore the mechanism of SI responses in Brassica oleracea L. var. capitata L. at protein level. To further confirm the time point of protein profile change, total proteins were collected from B. oleracea pistils at 0 min, 1 h, and 2 h after self-pollination. In total 902, 1088 and 1023 protein spots were separated in 0 min, 1 h and 2 h 2-DE maps, respectively. Our analyses of self-pollination profiles indicated that proteins mainly changed at 1 h post-pollination in B. oleracea. Moreover, 1077 protein spots were separated in cross-pollinated 1 h (CP) pistil 2-DE map. MALDI-TOF-MS and PMF successfully identified 34 differentially-expressed proteins (DEPs) in SP and CP 1 h 2-DE maps. Gene ontology and KEGG analysis revealed an array of proteins grouped in the following categories: stress and defense response (35%), protein metabolism (18%), carbohydrate and energy metabolism (12%), regulation of translation (9%), pollen tube development (12%), transport (9%) and cytoskeletal (6%). Sets of DEPs identified specifically in SP or only up-regulated expressed in CP pistils were chosen for funther investigating in floral organs and during the process of self- and cross-pollination. The function of these DEPs in terms of their potential involvement in SI in B. oleracea is discussed.
Collapse
|
21
|
Kulkarni TS, Khan S, Villagomez R, Mahmood T, Lindahl S, Logan DT, Linares-Pastén JA, Nordberg Karlsson E. Crystal structure of β-glucosidase 1A fromThermotoga neapolitanaand comparison of active site mutants for hydrolysis of flavonoid glucosides. Proteins 2017; 85:872-884. [DOI: 10.1002/prot.25256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Tejas S. Kulkarni
- Biotechnology, Department of Chemistry; Lund University; Lund SE-221 00 Sweden
| | - Samiullah Khan
- Biotechnology, Department of Chemistry; Lund University; Lund SE-221 00 Sweden
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Rodrigo Villagomez
- Centre for Analysis and Synthesis, Department of Chemistry; Lund University; Lund SE-221 00 Sweden
| | - Tahir Mahmood
- Biotechnology, Department of Chemistry; Lund University; Lund SE-221 00 Sweden
| | - Sofia Lindahl
- Centre for Analysis and Synthesis, Department of Chemistry; Lund University; Lund SE-221 00 Sweden
- Borregaard; Sarpsborg 1701 Norway
| | - Derek T. Logan
- Biochemistry and Structural Biology, Department of Chemistry; Lund University; Lund SE-221 00 Sweden
| | | | | |
Collapse
|
22
|
Morrison JM, Elshahed MS, Youssef N. A multifunctional GH39 glycoside hydrolase from the anaerobic gut fungus Orpinomyces sp. strain C1A. PeerJ 2016; 4:e2289. [PMID: 27547582 PMCID: PMC4975031 DOI: 10.7717/peerj.2289] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/05/2016] [Indexed: 01/05/2023] Open
Abstract
Background. The anaerobic gut fungi (phylum Neocallimastigomycota) represent a promising source of novel lignocellulolytic enzymes. Here, we report on the cloning, expression, and characterization of a glycoside hydrolase family 39 (GH39) enzyme (Bgxg1) that is highly transcribed by the anaerobic fungus Orpinomycessp. strain C1A under different growth conditions. This represents the first study of a GH39-family enzyme from the anaerobic fungi. Methods. Using enzyme activity assays, we performed a biochemical characterization of Bgxg1 on a variety of substrates over a wide range of pH and temperature values to identify the optimal enzyme conditions and the specificity of the enzyme. In addition, substrate competition studies and comparative modeling efforts were completed. Results. Contrary to the narrow range of activities (β-xylosidase or α-L-iduronidase) observed in previously characterized GH39 enzymes, Bgxg1 is unique in that it is multifunctional, exhibiting strong β-xylosidase, β-glucosidase, β-galactosidase activities (11.5 ± 1.2, 73.4 ± 7.15, and 54.6 ± 2.26 U/mg, respectively) and a weak xylanase activity (10.8 ± 1.25 U/mg), as compared to previously characterized enzymes. Further, Bgxg1 possesses extremely high affinity (as evident by the lowest K m values), compared to all previously characterized β-glucosidases, β-galactosidases, and xylanases. Physiological characterization revealed that Bgxg1 is active over a wide range of pH (3-8, optimum 6) and temperatures (25-60 °C, optimum 39 °C), and possesses excellent temperature and thermal stability. Substrate competition assays suggest that all observed activities occur at a single active site. Using comparative modeling and bioinformatics approaches, we putatively identified ten amino acid differences between Bgxg1 and previously biochemically characterized GH39 β-xylosidases that we speculate could impact active site architecture, size, charge, and/or polarity. Discussion. Collectively, the unique capabilities and multi-functionality of Bgxg1 render it an excellent candidate for inclusion in enzyme cocktails mediating cellulose and hemicellulose saccharification from lignocellulosic biomass.
Collapse
Affiliation(s)
- Jessica M Morrison
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater , OK , USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater , OK , USA
| | - Noha Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University , Stillwater , OK , USA
| |
Collapse
|
23
|
Singh G, Verma AK, Kumar V. Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 2016; 6:3. [PMID: 28330074 PMCID: PMC4697909 DOI: 10.1007/s13205-015-0328-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022] Open
Abstract
β-Glucosidases are diverse group of enzymes with great functional importance to biological systems. These are grouped in multiple glycoside hydrolase families based on their catalytic and sequence characteristics. Most studies carried out on β-glucosidases are focused on their industrial applications rather than their endogenous function in the target organisms. β-Glucosidases performed many functions in bacteria as they are components of large complexes called cellulosomes and are responsible for the hydrolysis of short chain oligosaccharides and cellobiose. In plants, β-glucosidases are involved in processes like formation of required intermediates for cell wall lignification, degradation of endosperm’s cell wall during germination and in plant defense against biotic stresses. Mammalian β-glucosidases are thought to play roles in metabolism of glycolipids and dietary glucosides, and signaling functions. These enzymes have diverse biotechnological applications in food, surfactant, biofuel, and agricultural industries. The search for novel and improved β-glucosidase is still continued to fulfills demand of an industrially suitable enzyme. In this review, a comprehensive overview on detailed functional roles of β-glucosidases in different organisms, their industrial applications, and recent cloning and expression studies with biochemical characterization of such enzymes is presented for the better understanding and efficient use of diverse β-glucosidases.
Collapse
Affiliation(s)
- Gopal Singh
- Institute of Himalayan Bioresource Technology, Palampur, 176062, India
| | - A K Verma
- Department of Biochemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, India
| | - Vinod Kumar
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, India.
| |
Collapse
|
24
|
Muramatsu W. Recent Advances in the Regioselective Functionalization of Carbohydrates Using Non-Enzymatic Catalysts. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1502.1j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Muramatsu W. Recent Advances in the Regioselective Functionalization of Carbohydrates Using Non-Enzymatic Catalysts. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1502.1e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Molecular Modeling of Myrosinase from Brassica oleracea: A Structural Investigation of Sinigrin Interaction. Genes (Basel) 2015; 6:1315-29. [PMID: 26703735 PMCID: PMC4690043 DOI: 10.3390/genes6041315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 11/16/2022] Open
Abstract
Myrosinase, which is present in cruciferous plant species, plays an important role in the hydrolysis of glycosides such as glucosinolates and is involved in plant defense. Brassicaceae myrosinases are diverse although they share common ancestry, and structural knowledge about myrosinases from cabbage (Brassica oleracea) was needed. To address this, we constructed a three-dimensional model structure of myrosinase based on Sinapis alba structures using Iterative Threading ASSEmbly Refinement server (I-TASSER) webserver, and refined model coordinates were evaluated with ProQ and Verify3D. The resulting model was predicted with β/α fold, ten conserved N-glycosylation sites, and three disulfide bridges. In addition, this model shared features with the known Sinapis alba myrosinase structure. To obtain a better understanding of myrosinase–sinigrin interaction, the refined model was docked using Autodock Vina with crucial key amino acids. The key nucleophile residues GLN207 and GLU427 were found to interact with sinigrin to form a hydrogen bond. Further, 20-ns molecular dynamics simulation was performed to examine myrosinase–sinigrin complex stability, revealing that residue GLU207 maintained its hydrogen bond stability throughout the entire simulation and structural orientation was similar to that of the docked state. This conceptual model should be useful for understanding the structural features of myrosinase and their binding orientation with sinigrin.
Collapse
|
27
|
Tankrathok A, Iglesias-Fernández J, Williams RJ, Pengthaisong S, Baiya S, Hakki Z, Robinson RC, Hrmova M, Rovira C, Williams SJ, Ketudat Cairns JR. A Single Glycosidase Harnesses Different Pyranoside Ring Transition State Conformations for Hydrolysis of Mannosides and Glucosides. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anupong Tankrathok
- School of Biochemistry, Institute of Science, and Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Department of Biotechnology, Faculty of Agro-Industrial
Technology, Rajamangala University of Technology, Isan, Kalasin Campus, Kalasin 46000, Thailand
| | - Javier Iglesias-Fernández
- Departament de Quı́mica
Orgànica/Institut de Quı́mica Teòrica i
Computacional (IQTCUB), Universitat de Barcelona, Martı́ i Franquès
1, 08028 Barcelona, Spain
| | - Rohan J. Williams
- School of Chemistry and Bio21 Molecular
Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Salila Pengthaisong
- School of Biochemistry, Institute of Science, and Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Supaporn Baiya
- School of Biochemistry, Institute of Science, and Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Zalihe Hakki
- School of Chemistry and Bio21 Molecular
Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robert C. Robinson
- Institute of Molecular
and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597
| | - Maria Hrmova
- School of Agriculture, Food and Wine, Australian
Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glenn
Osmond, Australia
| | - Carme Rovira
- Departament de Quı́mica
Orgànica/Institut de Quı́mica Teòrica i
Computacional (IQTCUB), Universitat de Barcelona, Martı́ i Franquès
1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluı́s Companys, 23, 08018 Barcelona, Spain
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular
Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James R. Ketudat Cairns
- School of Biochemistry, Institute of Science, and Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
28
|
In silico ligand binding studies of cyanogenic β-glucosidase, dhurrinase-2 from Sorghum bicolor. J Mol Model 2015; 21:184. [DOI: 10.1007/s00894-015-2730-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/08/2015] [Indexed: 11/25/2022]
|
29
|
Pentzold S, Zagrobelny M, Rook F, Bak S. How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation. Biol Rev Camb Philos Soc 2015; 89:531-51. [PMID: 25165798 DOI: 10.1111/brv.12066] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points, before and during feeding as well as during digestion, and at several levels such as the insects’ feeding behaviour, physiology and metabolism. Insect adaptations frequently circumvent or counteract the activity of the plant β-glucosidases, bioactivating enzymes that are a key element in the plant’s two-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists and specialists, and can act on different classes of defence compounds. We discuss how generalist and specialist insects appear to differ in their ability to use these different types of adaptations: in generalists, adaptations are often inducible, whereas in specialists they are often constitutive. Future studies are suggested to investigate in detail how insect adaptations act in combination to overcome plant chemical defences and to allow ecologically relevant conclusions.
Collapse
|
30
|
Koudounas K, Banilas G, Michaelidis C, Demoliou C, Rigas S, Hatzopoulos P. A defence-related Olea europaea β-glucosidase hydrolyses and activates oleuropein into a potent protein cross-linking agent. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2093-106. [PMID: 25697790 PMCID: PMC4669557 DOI: 10.1093/jxb/erv002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oleuropein, the major secoiridoid compound in olive, is involved in a sophisticated two-component defence system comprising a β-glucosidase enzyme that activates oleuropein into a toxic glutaraldehyde-like structure. Although oleuropein deglycosylation studies have been monitored extensively, an oleuropein β-glucosidase gene has not been characterized as yet. Here, we report the isolation of OeGLU cDNA from olive encoding a β-glucosidase belonging to the defence-related group of terpenoid-specific glucosidases. In planta recombinant protein expression assays showed that OeGLU deglycosylated and activated oleuropein into a strong protein cross-linker. Homology and docking modelling predicted that OeGLU has a characteristic (β/α)8 TIM barrel conformation and a typical construction of a pocket-shaped substrate recognition domain composed of conserved amino acids supporting the β-glucosidase activity and non-conserved residues associated with aglycon specificity. Transcriptional analysis in various olive organs revealed that the gene was developmentally regulated, with its transcript levels coinciding well with the spatiotemporal patterns of oleuropein degradation and aglycon accumulation in drupes. OeGLU upregulation in young organs reflects its prominent role in oleuropein-mediated defence system. High gene expression during drupe maturation implies an additional role in olive secondary metabolism, through the degradation of oleuropein and reutilization of hydrolysis products.
Collapse
Affiliation(s)
| | - Georgios Banilas
- Department of Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece Department of Oenology and Beverage Technology, Technological Educational Institute of Athens, 12210 Athens, Greece
| | - Christos Michaelidis
- Department of Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece University of Nicosia Research Foundation, University of Nicosia, 1700 Nicosia, Cyprus
| | - Catherine Demoliou
- University of Nicosia Research Foundation, University of Nicosia, 1700 Nicosia, Cyprus
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece
| | | |
Collapse
|
31
|
Rahfeld P, Haeger W, Kirsch R, Pauls G, Becker T, Schulze E, Wielsch N, Wang D, Groth M, Brandt W, Boland W, Burse A. Glandular β-glucosidases in juvenile Chrysomelina leaf beetles support the evolution of a host-plant-dependent chemical defense. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 58:28-38. [PMID: 25596091 DOI: 10.1016/j.ibmb.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
Plant-feeding insects are spread across the entire plant kingdom. Because they chew externally on leaves, leaf beetle of the subtribe Chrysomelina sensu stricto are constantly exposed to life-threatening predators and parasitoids. To counter these pressures, the juveniles repel their enemies by displaying glandular secretions that contain defensive compounds. These repellents can be produced either de novo (iridoids) or by using plant-derived precursors. The autonomous production of iridoids pre-dates the evolution of phytochemical-based defense strategies. Both strategies include hydrolysis of the secreted non-toxic glycosides in the defensive exudates. By combining in vitro as well as in vivo experiments, we show that iridoid de novo producing as well as sequestering species rely on secreted β-glucosidases to cleave the pre-toxins. Our phylogenetic analyses support a common origin of chrysomeline β-glucosidases. The kinetic parameters of these β-glucosidases demonstrated substrate selectivity which reflects the adaptation of Chrysomelina sensu stricto to the chemistry of their hosts during the course of evolution. However, the functional studies also showed that the broad substrate selectivity allows building a chemical defense, which is dependent on the host plant, but does not lead to an "evolutionary dead end".
Collapse
Affiliation(s)
- Peter Rahfeld
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wiebke Haeger
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany; Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Gerhard Pauls
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias Becker
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Eva Schulze
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ding Wang
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marco Groth
- Genome Analysis Group, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Antje Burse
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
32
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
33
|
Organocatalytic Site-Selective Acylation of Carbohydrates and Polyol Compounds. SITE-SELECTIVE CATALYSIS 2015; 372:203-32. [DOI: 10.1007/128_2015_662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Wang X, Liu Y, Wang C, Feng X, Li C. Properties and structures of β-glucuronidases with different transformation types of glycyrrhizin. RSC Adv 2015. [DOI: 10.1039/c5ra11484e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Substrate recognition mechanisms of three fungi β-glucuronidases with different types of GL hydrolysis were analyzed.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Chemical Engineering and Technology
- State Key Laboratory of System Bio-engineering of Ministry of Education
- Tianjin University
- Tianjin 300072
- China
| | - Yanli Liu
- School of Biomedicine
- Beijing City University
- Beijing 100081
- China
| | - Chao Wang
- School of Life Science
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Xudong Feng
- School of Life Science
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Chun Li
- School of Chemical Engineering and Technology
- State Key Laboratory of System Bio-engineering of Ministry of Education
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
35
|
Peng X, Meng XG, Mi C, Liao XH. Hydrolysis of cellobiose to monosaccharide catalyzed by functional Lanthanum(iii) metallomicelle. RSC Adv 2015. [DOI: 10.1039/c4ra14521f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cellobiose could be effectively hydrolyzed to monosaccharide (glucose, fructose and 1,6-anhydroglucose) by the catalysis of metallomicelle La(DMBO)2under mild conditions.
Collapse
Affiliation(s)
- Xiao Peng
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xiang-Guang Meng
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Chun Mi
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xiao-Hong Liao
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
36
|
Mageroy MH, Parent G, Germanos G, Giguère I, Delvas N, Maaroufi H, Bauce É, Bohlmann J, Mackay JJ. Expression of the β-glucosidase gene Pgβglu-1 underpins natural resistance of white spruce against spruce budworm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:68-80. [PMID: 25302566 PMCID: PMC4404995 DOI: 10.1111/tpj.12699] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 05/04/2023]
Abstract
Periodic outbreaks of spruce budworm (SBW) affect large areas of ecologically and economically important conifer forests in North America, causing tree mortality and reduced forest productivity. Host resistance against SBW has been linked to growth phenology and the chemical composition of foliage, but the underlying molecular mechanisms and population variation are largely unknown. Using a genomics approach, we discovered a β-glucosidase gene, Pgβglu-1, whose expression levels and function underpin natural resistance to SBW in mature white spruce (Picea glauca) trees. In phenotypically resistant trees, Pgβglu-1 transcripts were up to 1000 times more abundant than in non-resistant trees and were highly enriched in foliage. The encoded PgβGLU-1 enzyme catalysed the cleavage of acetophenone sugar conjugates to release the aglycons piceol and pungenol. These aglycons were previously shown to be active against SBW. Levels of Pgβglu-1 transcripts and biologically active acetophenone aglycons were substantially different between resistant and non-resistant trees over time, were positively correlated with each other and were highly variable in a natural white spruce population. These results suggest that expression of Pgβglu-1 and accumulation of acetophenone aglycons is a constitutive defence mechanism in white spruce. The progeny of resistant trees had higher Pgβglu-1 gene expression than non-resistant progeny, indicating that the trait is heritable. With reported increases in the intensity of SBW outbreaks, influenced by climate, variation of Pgβglu-1 transcript expression, PgβGLU-1 enzyme activity and acetophenone accumulation may serve as resistance markers to better predict impacts of SBW in both managed and wild spruce populations.
Collapse
Affiliation(s)
- Melissa H Mageroy
- Michael Smith Laboratories, University of British ColumbiaVancouver, BC, Canada, V6T 1Z4
| | - Geneviève Parent
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Gaby Germanos
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Isabelle Giguère
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Nathalie Delvas
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Éric Bauce
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British ColumbiaVancouver, BC, Canada, V6T 1Z4
| | - John J Mackay
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
- Department of Plant Sciences, University of OxfordOxford, OX1 3RB, UK
- *For correspondence (e-mail )
| |
Collapse
|
37
|
Baiya S, Hua Y, Ekkhara W, Ketudat Cairns JR. Expression and enzymatic properties of rice (Oryza sativa L.) monolignol β-glucosidases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 227:101-109. [PMID: 25219312 DOI: 10.1016/j.plantsci.2014.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/15/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Monolignol glucosides and their β-glucosidases are found in monocots, but their biological roles are unclear. Phylogenetic analysis of rice (Oryza sativa L.) glycoside hydrolase family GH1 β-glucosidases indicated that Os4BGlu14, Os4BGlu16, and Os4BGlu18 are closely related to known monolignol β-glucosidases. An optimized Os4BGlu16 cDNA and cloned Os4BGlu18 cDNA were used to express fusion proteins with His6 tags in Pichia pastoris and Escherichia coli, respectively. The secreted Os4BGlu16 fusion protein was purified from media by immobilized metal affinity chromatography (IMAC), while Os4BGlu18 was extracted from E. coli cells and purified by anion exchange chromatography, hydrophobic interaction chromatography and IMAC. Os4BGlu16 and Os4BGlu18 hydrolyzed the monolignol glucosides coniferin (kcat/KM, 21.6mM(-1)s(-1) for Os4BGlu16 and for Os4BGlu18) and syringin (kcat/KM, 22.8mM(-1)s(-1) for Os4BGlu16 and 24.0mM(-1)s(-1) for Os4BGlu18) with much higher catalytic efficiencies than other substrates. In quantitative RT-PCR, highest Os4BGlu14 mRNA levels were detected in endosperm, embryo, lemma, panicle and pollen. Os4BGlu16 was detected highest in leaf from 4 to 10 weeks, endosperm and lemma, while Os4BGlu18 mRNA was most abundant in vegetative stage from 1 week to 4 weeks, pollen and lemma. These data suggest a role for Os4BGlu16 and Os4BGlu18 monolignol β-glucosidases in both vegetative and reproductive rice tissues.
Collapse
Affiliation(s)
- Supaporn Baiya
- School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yanling Hua
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Watsamon Ekkhara
- School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - James R Ketudat Cairns
- School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| |
Collapse
|
38
|
Turek D, Klimeš P, Mazura P, Brzobohatý B. Combining rational and random strategies in β-glucosidase Zm-p60.1 protein library construction. PLoS One 2014; 9:e108292. [PMID: 25260034 PMCID: PMC4178128 DOI: 10.1371/journal.pone.0108292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022] Open
Abstract
Saturation mutagenesis is a cornerstone technique in protein engineering because of its utility (in conjunction with appropriate analytical techniques) for assessing effects of varying residues at selected positions on proteins’ structures and functions. Site-directed mutagenesis with degenerate primers is the simplest and most rapid saturation mutagenesis technique. Thus, it is highly appropriate for assessing whether or not variation at certain sites is permissible, but not necessarily the most time- and cost-effective technique for detailed assessment of variations’ effects. Thus, in the presented study we applied the technique to randomize position W373 in β-glucosidase Zm-p60.1, which is highly conserved among β-glucosidases. Unexpectedly, β-glucosidase activity screening of the generated variants showed that most variants were active, although they generally had significantly lower activity than the wild type enzyme. Further characterization of the library led us to conclude that a carefully selected combination of randomized codon-based saturation mutagenesis and site-directed mutagenesis may be most efficient, particularly when constructing and investigating randomized libraries with high fractions of positive hits.
Collapse
Affiliation(s)
- Dušan Turek
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. CEITEC – Central European Institute of Technology, Mendel University in Brno, Brno, Czech Republic
| | - Pavel Klimeš
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. CEITEC – Central European Institute of Technology, Mendel University in Brno, Brno, Czech Republic
| | - Pavel Mazura
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. CEITEC – Central European Institute of Technology, Mendel University in Brno, Brno, Czech Republic
- * E-mail:
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. CEITEC – Central European Institute of Technology, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
39
|
Chen T, Yang W, Guo Y, Yuan R, Xu L, Yan Y. Enhancing catalytic performance of β-glucosidase via immobilization on metal ions chelated magnetic nanoparticles. Enzyme Microb Technol 2014; 63:50-7. [DOI: 10.1016/j.enzmictec.2014.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/18/2014] [Accepted: 05/22/2014] [Indexed: 11/27/2022]
|
40
|
Lai D, Abou Hachem M, Robson F, Olsen CE, Wang TL, Møller BL, Takos AM, Rook F. The evolutionary appearance of non-cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β-glucosidases resulting from a crucial amino acid substitution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:299-311. [PMID: 24861854 DOI: 10.1111/tpj.12561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 05/14/2023]
Abstract
Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α-hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific β-glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the non-cyanogenic γ- and β-hydroxynitrile glucosides rhodiocyanoside A and D using a biosynthetic pathway that branches off from lotaustralin biosynthesis. We previously established that BGD2 is the only β-glucosidase responsible for cyanogenesis in leaves. Here we show that the paralogous BGD4 has the dominant physiological role in rhodiocyanoside degradation. Structural modelling, site-directed mutagenesis and activity assays establish that a glycine residue (G211) in the aglycone binding site of BGD2 is essential for its ability to hydrolyse the endogenous cyanogenic glucosides. The corresponding valine (V211) in BGD4 narrows the active site pocket, resulting in the exclusion of non-flat substrates such as lotaustralin and linamarin, but not of the more planar rhodiocyanosides. Rhodiocyanosides and the BGD4 gene only occur in L. japonicus and a few closely related species associated with the Lotus corniculatus clade within the Lotus genus. This suggests the evolutionary scenario that substrate specialization for rhodiocyanosides evolved from a promiscuous activity of a progenitor cyanogenic β-glucosidase, resembling BGD2, and required no more than a single amino acid substitution.
Collapse
Affiliation(s)
- Daniela Lai
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tamaki FK, Textor LC, Polikarpov I, Marana SR. Sets of covariant residues modulate the activity and thermal stability of GH1 β-glucosidases. PLoS One 2014; 9:e96627. [PMID: 24804841 PMCID: PMC4013033 DOI: 10.1371/journal.pone.0096627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
The statistical coupling analysis of 768 β-glucosidases from the GH1 family revealed 23 positions in which the amino acid frequencies are coupled. The roles of these covariant positions in terms of the properties of β-glucosidases were investigated by alanine-screening mutagenesis using the fall armyworm Spodoptera frugiperda β-glycosidase (Sfβgly) as a model. The effects of the mutations on the Sfβgly kinetic parameters (kcat/Km) for the hydrolysis of three different p-nitrophenyl β-glycosides and structural comparisons of several β-glucosidases showed that eleven covariant positions (54, 98, 143, 188, 195, 196, 203, 398, 451, 452 and 460 in Sfβgly numbering) form a layer surrounding the active site of the β-glucosidases, which modulates their catalytic activity and substrate specificity via direct contact with the active site residues. Moreover, the influence of the mutations on the transition temperature (Tm) of Sfβgly indicated that nine of the coupled positions (49, 62, 143, 188, 223, 278, 309, 452 and 460 in Sfβgly numbering) are related to thermal stability. In addition to being preferentially occupied by prolines, structural comparisons indicated that these positions are concentrated at loop segments of the β-glucosidases. Therefore, due to these common biochemical and structural properties, these nine covariant positions, even without physical contacts among them, seem to jointly modulate the thermal stability of β-glucosidases.
Collapse
Affiliation(s)
- Fábio K. Tamaki
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Sandro R. Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
42
|
Saino H, Shimizu T, Hiratake J, Nakatsu T, Kato H, Sakata K, Mizutani M. Crystal structures of β-primeverosidase in complex with disaccharide amidine inhibitors. J Biol Chem 2014; 289:16826-34. [PMID: 24753293 DOI: 10.1074/jbc.m114.553271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-Primeverosidase (PD) is a disaccharide-specific β-glycosidase in tea leaves. This enzyme is involved in aroma formation during the manufacturing process of oolong tea and black tea. PD hydrolyzes β-primeveroside (6-O-β-d-xylopyranosyl-β-d-glucopyranoside) at the β-glycosidic bond of primeverose to aglycone, and releases aromatic alcoholic volatiles of aglycones. PD only accepts primeverose as the glycone substrate, but broadly accepts various aglycones, including 2-phenylethanol, benzyl alcohol, linalool, and geraniol. We determined the crystal structure of PD complexes using highly specific disaccharide amidine inhibitors, N-β-primeverosylamidines, and revealed the architecture of the active site responsible for substrate specificity. We identified three subsites in the active site: subsite -2 specific for 6-O-β-d-xylopyranosyl, subsite -1 well conserved among β-glucosidases and specific for β-d-glucopyranosyl, and wide subsite +1 for hydrophobic aglycone. Glu-470, Ser-473, and Gln-477 act as the specific hydrogen bond donors for 6-O-β-d-xylopyranosyl in subsite -2. On the other hand, subsite +1 was a large hydrophobic cavity that accommodates various aromatic aglycones. Compared with aglycone-specific β-glucosidases of the glycoside hydrolase family 1, PD lacks the Trp crucial for aglycone recognition, and the resultant large cavity accepts aglycone and 6-O-β-d-xylopyranosyl together. PD recognizes the β-primeverosides in subsites -1 and -2 by hydrogen bonds, whereas the large subsite +1 loosely accommodates various aglycones. The glycone-specific activity of PD for broad aglycone substrates results in selective and multiple release of temporally stored alcoholic volatile aglycones of β-primeveroside.
Collapse
Affiliation(s)
- Hiromichi Saino
- From the College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa 252-5258,
| | - Tetsuya Shimizu
- the Faculty of Science, Okayama University, Okayama-shi, Okayama 700-8530
| | - Jun Hiratake
- the Institute for Chemical Research, Kyoto University, Uji-shi, Kyoto 611-0011
| | - Toru Nakatsu
- the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, and
| | - Hiroaki Kato
- the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, and
| | - Kanzo Sakata
- the Institute for Chemical Research, Kyoto University, Uji-shi, Kyoto 611-0011
| | - Masaharu Mizutani
- the Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
43
|
Krothapalli K, Buescher EM, Li X, Brown E, Chapple C, Dilkes BP, Tuinstra MR. Forward genetics by genome sequencing reveals that rapid cyanide release deters insect herbivory of Sorghum bicolor. Genetics 2013; 195:309-18. [PMID: 23893483 PMCID: PMC3781961 DOI: 10.1534/genetics.113.149567] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whole genome sequencing has allowed rapid progress in the application of forward genetics in model species. In this study, we demonstrated an application of next-generation sequencing for forward genetics in a complex crop genome. We sequenced an ethyl methanesulfonate-induced mutant of Sorghum bicolor defective in hydrogen cyanide release and identified the causal mutation. A workflow identified the causal polymorphism relative to the reference BTx623 genome by integrating data from single nucleotide polymorphism identification, prior information about candidate gene(s) implicated in cyanogenesis, mutation spectra, and polymorphisms likely to affect phenotypic changes. A point mutation resulting in a premature stop codon in the coding sequence of dhurrinase2, which encodes a protein involved in the dhurrin catabolic pathway, was responsible for the acyanogenic phenotype. Cyanogenic glucosides are not cyanogenic compounds but their cyanohydrins derivatives do release cyanide. The mutant accumulated the glucoside, dhurrin, but failed to efficiently release cyanide upon tissue disruption. Thus, we tested the effects of cyanide release on insect herbivory in a genetic background in which accumulation of cyanogenic glucoside is unchanged. Insect preference choice experiments and herbivory measurements demonstrate a deterrent effect of cyanide release capacity, even in the presence of wild-type levels of cyanogenic glucoside accumulation. Our gene cloning method substantiates the value of (1) a sequenced genome, (2) a strongly penetrant and easily measurable phenotype, and (3) a workflow to pinpoint a causal mutation in crop genomes and accelerate in the discovery of gene function in the postgenomic era.
Collapse
Affiliation(s)
| | - Elizabeth M. Buescher
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Xu Li
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Elliot Brown
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Brian P. Dilkes
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
44
|
Tankrathok A, Iglesias-Fernández J, Luang S, Robinson RC, Kimura A, Rovira C, Hrmova M, Ketudat Cairns JR. Structural analysis and insights into the glycon specificity of the rice GH1 Os7BGlu26 β-D-mannosidase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2124-35. [DOI: 10.1107/s0907444913020568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 07/24/2013] [Indexed: 11/10/2022]
Abstract
Rice Os7BGlu26 is a GH1 family glycoside hydrolase with a threefold higherkcat/Kmvalue for 4-nitrophenyl β-D-mannoside (4NPMan) compared with 4-nitrophenyl β-D-glucoside (4NPGlc). To investigate its selectivity for β-D-mannoside and β-D-glucoside substrates, the structures of apo Os7BGlu26 at a resolution of 2.20 Å and of Os7BGlu26 with mannose at a resolution of 2.45 Å were elucidated from isomorphous crystals in space groupP212121. The (β/α)8-barrel structure is similar to other GH1 family structures, but with a narrower active-site cleft. The Os7BGlu26 structure with D-mannose corresponds to a product complex, with β-D-mannose in the1S5skew-boat conformation. Docking of the1S3,1S5,2SOand3S1pyranose-ring conformations of 4NPMan and 4NPGlc substrates into the active site of Os7BGlu26 indicated that the lowest energies were in the1S5and1S3skew-boat conformations. Comparison of these docked conformers with other rice GH1 structures revealed differences in the residues interacting with the catalytic acid/base between enzymes with and without β-D-mannosidase activity. The mutation of Tyr134 to Trp in Os7BGlu26 resulted in similarkcat/Kmvalues for 4NPMan and 4NPGlc, while mutation of Tyr134 to Phe resulted in a 37-fold higherkcat/Kmfor 4NPMan than 4NPGlc. Mutation of Cys182 to Thr decreased both the activity and the selectivity for β-D-mannoside. It was concluded that interactions with the catalytic acid/base play a significant role in glycon selection.
Collapse
|
45
|
Grandits M, Michlmayr H, Sygmund C, Oostenbrink C. Calculation of substrate binding affinities for a bacterial GH78 rhamnosidase through molecular dynamics simulations. ACTA ACUST UNITED AC 2013; 92:34-43. [PMID: 23914137 PMCID: PMC3663046 DOI: 10.1016/j.molcatb.2013.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/21/2013] [Accepted: 03/22/2013] [Indexed: 11/28/2022]
Abstract
Structural model of rhamnosidase Ram2 of Pediococcus acidilactici. Calculated binding free energies of rutinose and p-NPR agree with experiments. Suggested binding poses of rutinose and p-NPR are distinctly different. Different binding poses of rutinose and p-NPR are supported by experiments. Active site residues are proposed for further mutagenesis studies
Ram2 from Pediococcus acidilactici is a rhamnosidase from the glycoside hydrolase family 78. It shows remarkable selectivity for rutinose rather than para-nitrophenyl-alpha-l-rhamnopyranoside (p-NPR). Molecular dynamics simulations were performed using a homology model of this enzyme, in complex with both substrates. Free energy calculations lead to predicted binding affinities of −34.4 and −30.6 kJ mol−1 respectively, agreeing well with an experimentally estimated relative free energy of 5.4 kJ mol−1. Further, the most relevant binding poses could be determined. While p-NPR preferably orients its rhamnose moiety toward the active site, rutinose interacts most strongly with its glucose moiety. A detailed hydrogen bond analysis confirms previously implicated residues in the active site (Asp217, Asp222, Trp226, Asp229 and Glu488) and quantifies the importance of individual residues for the binding. The most important amino acids are Asp229 and Phe339 which are involved in many interactions during the simulations. While Phe339 was observed in more simulations, Asp229 was involved in more persistent interactions (forming an average of at least 2 hydrogen bonds during the simulation). These analyses directly suggest mutations that could be used in a further experimental characterization of the enzyme. This study shows once more the strength of computer simulations to rationalize and guide experiments at an atomic level.
Collapse
Affiliation(s)
- Melanie Grandits
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | |
Collapse
|
46
|
Ratananikom K, Choengpanya K, Tongtubtim N, Charoenrat T, Withers SG, Kongsaeree PT. Mutational analysis in the glycone binding pocket of Dalbergia cochinchinensis β-glucosidase to increase catalytic efficiency toward mannosides. Carbohydr Res 2013; 373:35-41. [DOI: 10.1016/j.carres.2012.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/17/2012] [Accepted: 10/19/2012] [Indexed: 11/29/2022]
|
47
|
Improved transferase/hydrolase ratio through rational design of a family 1 β-glucosidase from Thermotoga neapolitana. Appl Environ Microbiol 2013; 79:3400-5. [PMID: 23524680 DOI: 10.1128/aem.00359-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alkyl glycosides are attractive surfactants because of their high surface activity and good biodegradability and can be produced from renewable resources. Through enzymatic catalysis, one can obtain well-defined alkyl glycosides, something that is very difficult to do using conventional chemistry. However, there is a need for better enzymes to get a commercially feasible process. A thermostable β-glucosidase from the well-studied glycoside hydrolase family 1 from Thermotoga neapolitana, TnBgl1A, was mutated in an attempt to improve its value for synthesis of alkyl glycosides. This was done by rational design using prior knowledge from structural homologues together with a recently generated model of the enzyme in question. Three out of four studied mutations increased the hydrolytic reaction rate in an aqueous environment, while none displayed this property in the presence of an alcohol acceptor. This shows that even if the enzyme resides in a separate aqueous phase, the presence of an organic solvent has a great influence. We could also show that a single amino acid replacement in a less studied part of the aglycone subsite, N220F, improves the specificity for transglycosylation 7-fold and thereby increases the potential yield of alkyl glycoside from 17% to 58%.
Collapse
|
48
|
Michalska K, Tan K, Li H, Hatzos-Skintges C, Bearden J, Babnigg G, Joachimiak A. GH1-family 6-P-β-glucosidases from human microbiome lactic acid bacteria. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:451-63. [PMID: 23519420 PMCID: PMC3605045 DOI: 10.1107/s0907444912049608] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/03/2012] [Indexed: 11/11/2022]
Abstract
In lactic acid bacteria and other bacteria, carbohydrate uptake is mostly governed by phosphoenolpyruvate-dependent phosphotransferase systems (PTSs). PTS-dependent translocation through the cell membrane is coupled with phosphorylation of the incoming sugar. After translocation through the bacterial membrane, the β-glycosidic bond in 6'-P-β-glucoside is cleaved, releasing 6-P-β-glucose and the respective aglycon. This reaction is catalyzed by 6-P-β-glucosidases, which belong to two glycoside hydrolase (GH) families: GH1 and GH4. Here, the high-resolution crystal structures of GH1 6-P-β-glucosidases from Lactobacillus plantarum (LpPbg1) and Streptococcus mutans (SmBgl) and their complexes with ligands are reported. Both enzymes show hydrolytic activity towards 6'-P-β-glucosides. The LpPbg1 structure has been determined in an apo form as well as in a complex with phosphate and a glucose molecule corresponding to the aglycon molecule. The S. mutans homolog contains a sulfate ion in the phosphate-dedicated subcavity. SmBgl was also crystallized in the presence of the reaction product 6-P-β-glucose. For a mutated variant of the S. mutans enzyme (E375Q), the structure of a 6'-P-salicin complex has also been determined. The presence of natural ligands enabled the definition of the structural elements that are responsible for substrate recognition during catalysis.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Wang C, Guo XX, Wang XY, Qi F, Feng SJ, Li C, Zhou XH. Isolation and characterization of three fungi with the potential of transforming glycyrrhizin. World J Microbiol Biotechnol 2012; 29:781-8. [PMID: 23247917 DOI: 10.1007/s11274-012-1233-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Three fungi with different types of transformation of glycyrrhizin (GL) were isolated from the soil samples of glycyrrhiza glabra planting area in China. According to their morphologies and 18 S rDNA gene sequence analysis, the three fungi were identified and named as Penicillium purpurogenum Li-3, Aspergillus terreus Li-20 and Aspergillus ustus Li-62. Transforming products analysis by TLC and HPLC-MS indicated that P. purpurogenum Li-3, A. terreus Li-20 and A. ustus Li-62 could stably transform GL into GAMG, GAMG and GA, and GA, respectively. P. purpurogenum Li-3 was especially valuable to directly prepare GAMG for applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Chao Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Badieyan S, Bevan DR, Zhang C. Probing the Active Site Chemistry of β-Glucosidases along the Hydrolysis Reaction Pathway. Biochemistry 2012; 51:8907-18. [DOI: 10.1021/bi300675x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Somayesadat Badieyan
- Department
of Biological Systems Engineering and ‡Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
24061, United States
| | - David R. Bevan
- Department
of Biological Systems Engineering and ‡Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
24061, United States
| | - Chenming Zhang
- Department
of Biological Systems Engineering and ‡Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
24061, United States
| |
Collapse
|