1
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
2
|
Li W, Quigley K. Bone morphogenetic protein signalling in pulmonary arterial hypertension: revisiting the BMPRII connection. Biochem Soc Trans 2024; 52:1515-1528. [PMID: 38716930 PMCID: PMC11346422 DOI: 10.1042/bst20231547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and life-threatening vascular disorder, characterised by abnormal remodelling of the pulmonary vessels and elevated pulmonary artery pressure, leading to right ventricular hypertrophy and right-sided heart failure. The importance of bone morphogenetic protein (BMP) signalling in the pathogenesis of PAH is demonstrated by human genetic studies. Many PAH risk genes are involved in the BMP signalling pathway and are highly expressed or preferentially act on vascular endothelial cells. Endothelial dysfunction is recognised as an initial trigger for PAH, and endothelial BMP signalling plays a crucial role in the maintenance of endothelial integrity. BMPR2 is the most prevalent PAH gene, found in over 80% of heritable cases. As BMPRII protein is the major type II receptor for a large family of BMP ligands and expressed ubiquitously in many tissues, dysregulated BMP signalling in other cells may also contribute to PAH pathobiology. Sotatercept, which contains the extracellular domain of another transforming growth factor-β family type II receptor ActRIIA fused to immunoglobin Fc domain, was recently approved by the FDA as a treatment for PAH. Neither its target cells nor its mechanism of action is fully understood. This review will revisit BMPRII function and its extracellular regulation, summarise how dysregulated BMP signalling in endothelial cells and smooth muscle cells may contribute to PAH pathogenesis, and discuss how novel therapeutics targeting the extracellular regulation of BMP signalling, such as BMP9 and Sotatercept, can be related to restoring BMPRII function.
Collapse
Affiliation(s)
- Wei Li
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| | - Kate Quigley
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| |
Collapse
|
3
|
Stempel M, Maier O, Mhlekude B, Drakesmith H, Brinkmann MM. Novel role of bone morphogenetic protein 9 in innate host responses to HCMV infection. EMBO Rep 2024; 25:1106-1129. [PMID: 38308064 PMCID: PMC10933439 DOI: 10.1038/s44319-024-00072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
Herpesviruses modulate immune control to secure lifelong infection. The mechanisms Human Cytomegalovirus (HCMV) employs in this regard can reveal unanticipated aspects of cellular signaling involved in antiviral immunity. Here, we describe a novel relationship between the TGF-β family cytokine BMP9 and HCMV infection. We identify a cross-talk between BMP9-induced and IFN receptor-mediated signaling, showing that BMP9 boosts the transcriptional response to and antiviral activity of IFNβ, thereby enhancing viral restriction. We also show that BMP9 is secreted by human fibroblasts upon HCMV infection. However, HCMV infection impairs BMP9-induced enhancement of the IFNβ response, indicating that this signaling role of BMP9 is actively targeted by HCMV. Indeed, transmembrane proteins US18 and US20, which downregulate type I BMP receptors, are necessary and sufficient to cause inhibition of BMP9-mediated boosting of the antiviral response to IFNβ. HCMV lacking US18 and US20 is more sensitive to IFNβ. Thus, HCMV has a mutually antagonistic relationship with BMP9, which extends the growing body of evidence that BMP signaling is an underappreciated modulator of innate immunity in response to viral infection.
Collapse
Affiliation(s)
- Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Oliver Maier
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Baxolele Mhlekude
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Melanie M Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
4
|
Ruffenach G, Medzikovic L, Sun W, Hong J, Eghbali M. Functions of RNA-Binding Proteins in Cardiovascular Disease. Cells 2023; 12:2794. [PMID: 38132114 PMCID: PMC10742114 DOI: 10.3390/cells12242794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Gene expression is under tight regulation from the chromatin structure that regulates gene accessibility by the transcription machinery to protein degradation. At the transcript level, this regulation falls on RNA-binding proteins (RBPs). RBPs are a large and diverse class of proteins involved in all aspects of a transcript's lifecycle: splicing and maturation, localization, stability, and translation. In the past few years, our understanding of the role of RBPs in cardiovascular diseases has expanded. Here, we discuss the general structure and function of RBPs and the latest discoveries of their role in pulmonary and systemic cardiovascular diseases.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| | - Lejla Medzikovic
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| | - Wasila Sun
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| | - Jason Hong
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| |
Collapse
|
5
|
Feng X, Deng J, Li X, Zhang H, Wei X, Ma T, Tang S, Zhang J. RNA Sequencing and Related Differential Gene Expression Analysis in a Mouse Model of Emphysema Induced by Tobacco Smoke Combined with Elastin Peptides. Int J Chron Obstruct Pulmon Dis 2023; 18:2147-2161. [PMID: 37810372 PMCID: PMC10559798 DOI: 10.2147/copd.s397400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/30/2023] [Indexed: 10/10/2023] Open
Abstract
Objective To establish a model of emphysema induced by tobacco smoke combined with elastin peptides (EP), explore the biochemical metabolic processes and signal transduction pathways related to emphysema occurrence and development at the transcriptional level, and identify new targets and signaling pathways for emphysema prevention and treatment. Methods Mice were randomly divided into the air pseudoexposure group (NORMAL group) and the tobacco smoke + EP group (EP group). The differentially expressed genes (DEGs) in lung tissue between the two groups were identified by RNA-seq, and functional annotation and Gene Ontology (GO)/ Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. The differential expression of the selected genes were verified using qRT‒PCR and immunohistochemistry (IHC). Results EP group mice showed emphysema-like changes. The expression levels of 1159 genes in the EP group differed significantly (529 up-regulated and 630 down-regulated) from those in the NORMAL group. GO enrichment analysis showed that the DEGs were significantly enriched in the terms immune system, adaptive immune response, and phosphorylation, while KEGG pathway enrichment analysis showed that the DEGs were enriched mainly in the pathways cytokine‒cytokine receptor interaction, T-cell receptor signaling pathway, MAPK signaling pathway, Rap1 signaling pathway, endocytosis, chemokine signaling pathway, Th17 cell differentiation, and Th1 and Th2 cell differentiation. The differential expression of the selected DEGs were verified by qRT‒PCR and IHC, and the expression trends of these genes were consistent with those identified by RNA-seq. Conclusion Emphysema may be related to the inflammatory response, immune response, immune regulation, oxidative stress injury, and other biological processes. The Bmp4-Smad-Hoxa5/Acvr2a signaling pathway may be involved in COPD/ emphysema occurrence and development.
Collapse
Affiliation(s)
- Xin Feng
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, People’s Republic of China
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jiehua Deng
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, People’s Republic of China
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaofeng Li
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Hui Zhang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xuan Wei
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Tingting Ma
- Department of Respiratory and Critical Medicine, Zhuhai People’s Hospital, Zhuhai, Guangdong, 519099, People’s Republic of China
| | - Shudan Tang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jianquan Zhang
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, People’s Republic of China
| |
Collapse
|
6
|
Liu C, Guo H, Shi C, Sun H. BMP signaling in the development and regeneration of tooth roots: from mechanisms to applications. Front Cell Dev Biol 2023; 11:1272201. [PMID: 37779895 PMCID: PMC10540449 DOI: 10.3389/fcell.2023.1272201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Short root anomaly (SRA), along with caries, periodontitis, and trauma, can cause tooth loss, affecting the physical and mental health of patients. Dental implants have become widely utilized for tooth restoration; however, they exhibit certain limitations compared to natural tooth roots. Tissue engineering-mediated root regeneration offers a strategy to sustain a tooth with a physiologically more natural function by regenerating the bioengineered tooth root (bio-root) based on the bionic principle. While the process of tooth root development has been reported in previous studies, the specific molecular mechanisms remain unclear. The Bone Morphogenetic Proteins (BMPs) family is an essential factor regulating cellular activities and is involved in almost all tissue development. Recent studies have focused on exploring the mechanism of BMP signaling in tooth root development by using transgenic animal models and developing better tissue engineering strategies for bio-root regeneration. This article reviews the unique roles of BMP signaling in tooth root development and regeneration.
Collapse
Affiliation(s)
- Cangwei Liu
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
7
|
Allen RS, Jones WD, Hale M, Warder BN, Shore EM, Mullins MC. Reduced GS Domain Serine/Threonine Requirements of Fibrodysplasia Ossificans Progressiva Mutant Type I BMP Receptor ACVR1 in the Zebrafish. J Bone Miner Res 2023; 38:1364-1385. [PMID: 37329499 PMCID: PMC11472394 DOI: 10.1002/jbmr.4869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/29/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic condition characterized by altered skeletal development and extraskeletal bone formation. All cases of FOP are caused by mutations in the type I bone morphogenetic protein (BMP) receptor gene ACVR1 that result in overactivation of the BMP signaling pathway. Activation of the wild-type ACVR1 kinase requires assembly of a tetrameric type I and II BMP receptor complex followed by phosphorylation of the ACVR1 GS domain by type II BMP receptors. Previous studies showed that the FOP-mutant ACVR1-R206H required type II BMP receptors and presumptive glycine/serine-rich (GS) domain phosphorylation for overactive signaling. Structural modeling of the ACVR1-R206H mutant kinase domain supports the idea that FOP mutations alter the conformation of the GS domain, but it is unclear how this leads to overactive signaling. Here we show, using a developing zebrafish embryo BMP signaling assay, that the FOP-mutant receptors ACVR1-R206H and -G328R have reduced requirements for GS domain phosphorylatable sites to signal compared to wild-type ACVR1. Further, ligand-independent and ligand-dependent signaling through the FOP-mutant ACVR1 receptors have distinct GS domain phosphorylatable site requirements. ACVR1-G328R showed increased GS domain serine/threonine requirements for ligand-independent signaling compared to ACVR1-R206H, whereas it exhibited reduced serine/threonine requirements for ligand-dependent signaling. Remarkably, while ACVR1-R206H does not require the type I BMP receptor partner, Bmpr1, to signal, a ligand-dependent GS domain mutant of ACVR1-R206H could signal independently of Bmpr1 only when Bmp7 ligand was overexpressed. Of note, unlike human ACVR1-R206H, the zebrafish paralog Acvr1l-R203H does not show increased signaling activity. However, in domain-swapping studies, the human kinase domain, but not the human GS domain, was sufficient to confer overactive signaling to the Acvr1l-R203H receptor. Together these results reflect the importance of GS domain activation and kinase domain functions in regulating ACVR1 signaling and identify mechanisms of reduced regulatory constraints conferred by FOP mutations. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Robyn S Allen
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - William D Jones
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Maya Hale
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Bailey N Warder
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Upton PD, Dunmore BJ, Li W, Morrell NW. An emerging class of new therapeutics targeting TGF, Activin, and BMP ligands in pulmonary arterial hypertension. Dev Dyn 2023; 252:327-342. [PMID: 35434863 PMCID: PMC10952790 DOI: 10.1002/dvdy.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an often fatal condition, the primary pathology of which involves loss of pulmonary vascular perfusion due to progressive aberrant vessel remodeling. The reduced capacity of the pulmonary circulation places increasing strain on the right ventricle of the heart, leading to death by heart failure. Currently, licensed therapies are primarily vasodilators, which have increased the median post-diagnosis life expectancy from 2.8 to 7 years. Although this represents a substantial improvement, the search continues for transformative therapeutics that reverse established disease. The genetics of human PAH heavily implicates reduced endothelial bone morphogenetic protein (BMP) signaling as a causal role for the disease pathobiology. Recent approaches have focused on directly enhancing BMP signaling or removing the inhibitory influence of pathways that repress BMP signaling. In this critical commentary, we review the evidence underpinning the development of two approaches: BMP-based agonists and inhibition of activin/GDF signaling. We also address the key considerations and questions that remain regarding these approaches.
Collapse
Affiliation(s)
- Paul D. Upton
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Benjamin J. Dunmore
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Wei Li
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Nicholas W. Morrell
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| |
Collapse
|
9
|
Jiang Y, Guo Y, Feng X, Yang P, Liu Y, Dai X, Zhao F, Lei D, Li X, Liu Y, Li Y. Iron metabolism disorder regulated by BMP signaling in hypoxic pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166589. [PMID: 36343841 DOI: 10.1016/j.bbadis.2022.166589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUNDS AND AIMS Unexplained iron deficiency is associated with poorer survival in patients with pulmonary hypertension (PH). Bone morphogenetic protein (BMP) signaling and BMP protein type II receptor (BMPR2) expression are important in the pathogenesis of PH. BMP6 in hepatocytes is a central transcriptional regulator of the iron hormone hepcidin that controls systemic iron balance. This study aimed to investigate the effects of BMP signaling on iron metabolism and its implication in hypoxia-induced PH. METHODS AND RESULTS PH was induced in Sprague-Dawley Rats under hypoxia for 4 weeks. Compared with the control group, right ventricular systolic pressure and right ventricle hypertrophy index were both markedly increased, and serum iron level was significantly decreased with iron metabolic disorder in the hypoxia group. In cultured human pulmonary artery endothelial cells (HPAECs), hypoxia increased oxidative stress and apoptosis, which were reversed by supplementation with Fe agent. Meanwhile, iron chelator deferoxamine triggered oxidative stress and apoptosis in HPAECs, and treatment with antioxidant alleviated iron-deficiency-induced apoptosis by reducing reactive oxygen species production. Expression of hepcidin, BMP6 and hypoxia-inducible factor (HIF)-1α were significantly upregulated, while expression of BMPR2 was downregulated in hepatocytes in the hypoxia group, both in vivo and in vitro. Expression of hepcidin and HIF-1α were significantly increased by BMP6, while pretreatment with siRNA-BMPR2 augmented the enhanced expression of hepcidin and HIF-1α induced by BMP6. CONCLUSIONS Iron deficiency promoted oxidative stress and apoptosis in HPAECs in hypoxia-induced PH, and enhanced expression of hepcidin regulated by BMP6/BMPR2 signaling may contribute to iron metabolic disorder.
Collapse
Affiliation(s)
- Yujie Jiang
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yingfan Guo
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xuexiang Feng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Pingting Yang
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yi Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xuejing Dai
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Feilong Zhao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Dongyu Lei
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yuan Liu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
10
|
Quist-Løkken I, Andersson-Rusch C, Kastnes MH, Kolos JM, Jatzlau J, Hella H, Olsen OE, Sundan A, Knaus P, Hausch F, Holien T. FKBP12 is a major regulator of ALK2 activity in multiple myeloma cells. Cell Commun Signal 2023; 21:25. [PMID: 36717825 PMCID: PMC9885706 DOI: 10.1186/s12964-022-01033-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/28/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The immunophilin FKBP12 binds to TGF-β family type I receptors, including the BMP type I receptor ALK2. FKBP12 keeps the type I receptor in an inactive state and controls signaling activity. Removal of FKBP12 with drugs such as the FKBP-ligand FK506 enhances BMP activity in various cell types. In multiple myeloma cells, activation of SMAD1/5/8 leads to apoptosis. We hypothesized that removing FKBP12 from ALK2 in myeloma cells would potentiate BMP-induced ALK2-SMAD1/5/8 activity and in consequence cell death. METHODS Multiple myeloma cell lines were treated with FK506, or other FKBP-binding compounds, combined with different BMPs before analyzing SMAD1/5/8 activity and cell viability. SMAD1/5/8 activity was also investigated using a reporter cell line, INA-6 BRE-luc. To characterize the functional signaling receptor complex, we genetically manipulated receptor expression by siRNA, shRNA and CRISPR/Cas9 technology. RESULTS FK506 potentiated BMP-induced SMAD1/5/8 activation and apoptosis in multiple myeloma cell lines. By using FKBP-binding compounds with different affinity profiles, and siRNA targeting FKBP12, we show that the FK506 effect is mediated by binding to FKBP12. Ligands that typically signal via ALK3 in myeloma cells, BMP2, BMP4, and BMP10, did not induce apoptosis in cells lacking ALK3. Notably, BMP10 competed with BMP6 and BMP9 and antagonized their activity via ALK2. However, upon addition of FK506, we saw a surprising shift in specificity, as the ALK3 ligands gained the ability to signal via ALK2 and induce apoptosis. This indicates that the receptor complex can switch from an inactive non-signaling complex (NSC) to an active one by adding FK506. This gain of activity was also seen in other cell types, indicating that the observed effects have broader relevance. BMP2, BMP4 and BMP10 depended on BMPR2 as type II receptor to signal, which contrasts with BMP6 and BMP9, that activate ALK2 more potently when BMPR2 is knocked down. CONCLUSIONS In summary, our data suggest that FKBP12 is a major regulator of ALK2 activity in multiple myeloma cells, partly by switching an NSC into an active signaling complex. FKBP12 targeting compounds devoid of immunosuppressing activity could have potential in novel treatment strategies aiming at reducing multiple myeloma tumor load. Video Abstract.
Collapse
Affiliation(s)
- Ingrid Quist-Løkken
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Clara Andersson-Rusch
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Martin Haugrud Kastnes
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Centre of Molecular Inflammation Research, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Jürgen Markus Kolos
- grid.6546.10000 0001 0940 1669Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jerome Jatzlau
- grid.14095.390000 0000 9116 4836Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Hanne Hella
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Oddrun Elise Olsen
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Anders Sundan
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Centre of Molecular Inflammation Research, Norwegian University of Science and Technology - NTNU, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
| | - Petra Knaus
- grid.14095.390000 0000 9116 4836Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Felix Hausch
- grid.6546.10000 0001 0940 1669Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Toril Holien
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology - NTNU, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Biomedical Laboratory Science, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| |
Collapse
|
11
|
Ye D, Liu Y, Pan H, Feng Y, Lu X, Gan L, Wan J, Ye J. Insights into bone morphogenetic proteins in cardiovascular diseases. Front Pharmacol 2023; 14:1125642. [PMID: 36909186 PMCID: PMC9996008 DOI: 10.3389/fphar.2023.1125642] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secretory proteins belonging to the transforming growth factor-β (TGF-β) superfamily. These proteins play important roles in embryogenesis, bone morphogenesis, blood vessel remodeling and the development of various organs. In recent years, as research has progressed, BMPs have been found to be closely related to cardiovascular diseases, especially atherosclerosis, vascular calcification, cardiac remodeling, pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT). In this review, we summarized the potential roles and related mechanisms of the BMP family in the cardiovascular system and focused on atherosclerosis and PAH.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
12
|
Devendran A, Kar S, Bailey R, Trivieri MG. The Role of Bone Morphogenetic Protein Receptor Type 2 ( BMPR2) and the Prospects of Utilizing Induced Pluripotent Stem Cells (iPSCs) in Pulmonary Arterial Hypertension Disease Modeling. Cells 2022; 11:3823. [PMID: 36497082 PMCID: PMC9741276 DOI: 10.3390/cells11233823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary vascular resistance (PVR), causing right ventricular hypertrophy and ultimately death from right heart failure. Heterozygous mutations in the bone morphogenetic protein receptor type 2 (BMPR2) are linked to approximately 80% of hereditary, and 20% of idiopathic PAH cases, respectively. While patients carrying a BMPR2 gene mutation are more prone to develop PAH than non-carriers, only 20% will develop the disease, whereas the majority will remain asymptomatic. PAH is characterized by extreme vascular remodeling that causes pulmonary arterial endothelial cell (PAEC) dysfunction, impaired apoptosis, and uncontrolled proliferation of the pulmonary arterial smooth muscle cells (PASMCs). To date, progress in understanding the pathophysiology of PAH has been hampered by limited access to human tissue samples and inadequacy of animal models to accurately mimic the pathogenesis of human disease. Along with the advent of induced pluripotent stem cell (iPSC) technology, there has been an increasing interest in using this tool to develop patient-specific cellular models that precisely replicate the pathogenesis of PAH. In this review, we summarize the currently available approaches in iPSC-based PAH disease modeling and explore how this technology could be harnessed for drug discovery and to widen our understanding of the pathophysiology of PAH.
Collapse
Affiliation(s)
- Anichavezhi Devendran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumanta Kar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasheed Bailey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Giovanna Trivieri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Cardiology Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Ganjoo S, Puebla-Osorio N, Nanez S, Hsu E, Voss T, Barsoumian H, Duong LK, Welsh JW, Cortez MA. Bone morphogenetic proteins, activins, and growth and differentiation factors in tumor immunology and immunotherapy resistance. Front Immunol 2022; 13:1033642. [PMID: 36353620 PMCID: PMC9638036 DOI: 10.3389/fimmu.2022.1033642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2024] Open
Abstract
The TGF-β superfamily is a group of secreted polypeptides with key roles in exerting and regulating a variety of physiologic effects, especially those related to cell signaling, growth, development, and differentiation. Although its central member, TGF-β, has been extensively reviewed, other members of the family-namely bone morphogenetic proteins (BMPs), activins, and growth and differentiation factors (GDFs)-have not been as thoroughly investigated. Moreover, although the specific roles of TGF-β signaling in cancer immunology and immunotherapy resistance have been extensively reported, little is known of the roles of BMPs, activins, and GDFs in these domains. This review focuses on how these superfamily members influence key immune cells in cancer progression and resistance to treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
14
|
Erewele EO, Castellon M, Loya O, Marshboom G, Schwartz A, Yerlioglu K, Callahan C, Chen J, Minshall RD, Oliveira SD. Hypoxia-induced pulmonary hypertension upregulates eNOS and TGF-β contributing to sex-linked differences in BMPR2 +/R899X mutant mice. Pulm Circ 2022; 12:e12163. [PMID: 36484056 PMCID: PMC9722973 DOI: 10.1002/pul2.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Dysfunctional bone morphogenetic protein receptor 2 (BMPR2) and endothelial nitric oxide synthase (eNOS) have been largely implicated in the pathogenesis of pulmonary arterial hypertension (PAH); a life-threatening cardiopulmonary disease. Although the incident of PAH is about three times higher in females, males with PAH usually have a worse prognosis, which seems to be dependent on estrogen-associated cardiac and vascular protection. Here, we evaluated whether hypoxia-induced pulmonary hypertension (PH) in humanized BMPR2+/R899X loss-of-function mutant mice contributes to sex-associated differences observed in PAH by altering eNOS expression and inducing expansion of hyperactivated TGF-β-producing pulmonary myofibroblasts. To test this hypothesis, male and female wild-type (WT) and BMPR2+/R899X mutant mice were kept under hypoxic or normoxic conditions for 4 weeks, and then right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH) were measured. Chronic hypoxia exposure elevated RVSP, inducing RVH in both groups, with a greater effect in BMPR2+/R899X female mice. Lung histology revealed no differences in vessel thickness/area between sexes, suggesting RVSP differences in this model are unlikely to be in response to sex-dependent vascular narrowing. On the other hand, hypoxia exposure increased vascular collagen deposition, the number of TGF-β-associated α-SMA-positive microvessels, and eNOS expression, whereas it also reduced caveolin-1 expression in the lungs of BMPR2+/R899X females compared to males. Taken together, this brief report reveals elevated myofibroblast-derived TGF-β and eNOS-derived oxidants contribute to pulmonary microvascular muscularization and sex-linked differences in incidence, severity, and outcome of PAH.
Collapse
Affiliation(s)
- Ejehi O Erewele
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Maricela Castellon
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Cardiovascular Research Center, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Omar Loya
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Glenn Marshboom
- Department of Pharmacology and Regenerative Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Andrew Schwartz
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Kayla Yerlioglu
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Christopher Callahan
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Jiwang Chen
- Cardiovascular Research Center, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Richard D Minshall
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Pharmacology and Regenerative Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Suellen D Oliveira
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Physiology & Biophysics, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
15
|
Wu CK, Wei MT, Wu HC, Wu CL, Wu CJ, Liaw H, Su WP. BMP2 promotes lung adenocarcinoma metastasis through BMP receptor 2-mediated SMAD1/5 activation. Sci Rep 2022; 12:16310. [PMID: 36175474 PMCID: PMC9522928 DOI: 10.1038/s41598-022-20788-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) is highly overexpressed in human non-small cell lung cancer (NSCLC) and correlates with tumor stage and metastatic burden. Although several lines of evidence suggest that BMP2 promotes cell migration and invasiveness in vitro, the in vivo role of BMP2 in the metastasis of lung adenocarcinoma cells remains less well understood. Here, we revealed that BMP2 is highly overexpressed in lung adenocarcinoma patients with lymph node metastasis compared with patients without lymph node metastasis. Using an in vivo orthotopic mouse model, we clearly demonstrated that BMP2 promotes lung adenocarcinoma metastasis. The depletion of BMP2 or its receptor BMPR2 significantly reduced cell migration and invasiveness. We further identified that BMP2/BMPR2-mediated cell migration involves the activation of the SMAD1/5/8 signaling pathway, independent of the KRAS signaling pathway. Significantly, the depletion of SMAD1/5/8 or the inhibition of SMAD1/5/8 by LDN193189 inhibitor significantly reduced cell migration. These findings show that BMP2 promotes NSCLC metastasis, indicating that targeting the BMP2 signaling pathway may represent a potential therapeutic strategy for treating patients with metastatic NSCLC.
Collapse
Affiliation(s)
- Cheng-Kuei Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan, 704, Taiwan
| | - Man-Ting Wei
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan, 704, Taiwan
| | - Hung-Chang Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Cheng-Lin Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan, 704, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Ju Wu
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, Tainan City, 701, Taiwan.
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan, 704, Taiwan. .,Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Molecular Characterization of TGF-Beta Gene Family in Buffalo to Identify Gene Duplication and Functional Mutations. Genes (Basel) 2022; 13:genes13081302. [PMID: 35893038 PMCID: PMC9331672 DOI: 10.3390/genes13081302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
The TGF-β superfamily is ubiquitously distributed from invertebrates to vertebrates with diverse cellular functioning such as cell adhesion, motility, proliferation, apoptosis, and differentiation. The present study aimed to characterize the TGF-β gene superfamily in buffalo through evolutionary, structural, and single nucleotide polymorphism (SNPs) analyses to find the functional effect of SNPs in selected genes. We detected 32 TGF-β genes in buffalo genome and all TGF-β proteins exhibited basic nature except INHA, INHBC, MSTN, BMP10, and GDF2, which showed acidic properties. According to aliphatic index, TGF-β proteins were thermostable but unstable in nature. Except for GDF1 and AMH, TGF-β proteins depicted hydrophilic nature. Moreover, all the detected buffalo TGF-β genes showed evolutionary conserved nature. We also identified eight segmental and one tandem duplication event TGF-β gene family in buffalo, and the ratio of Ka/Ks demonstrated that all the duplicated gene pairs were under selective pressure. Comparative amino acid analysis demonstrated higher variation in buffalo TGF-β gene family, as a total of 160 amino acid variations in all the buffalo TGF-β proteins were detected. Mutation analysis revealed that 13 mutations had an overall damaging effect that might have functional consequences on buffalo growth, folliculogenesis, or embryogenesis.
Collapse
|
17
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
18
|
Type II BMP and activin receptors BMPR2 and ACVR2A share a conserved mode of growth factor recognition. J Biol Chem 2022; 298:102076. [PMID: 35643319 PMCID: PMC9234707 DOI: 10.1016/j.jbc.2022.102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
BMPR2 is a type II Transforming Growth Factor (TGF)-β family receptor that is fundamentally associated with pulmonary arterial hypertension (PAH) in humans. BMPR2 shares functional similarities with the type II activin receptors ACVR2A and ACVR2B, as it interacts with an overlapping group of TGF-β family growth factors (GFs). However, how BMPR2 recognizes GFs remains poorly understood. Here, we solved crystal structures of BMPR2 in complex with the GF activin B and of ACVR2A in complex with the related GF activin A. We show that both BMPR2 and ACVR2A bind GFs with nearly identical geometry using a conserved hydrophobic hot spot, while differences in contacting residues are predominantly found in loop areas. Upon further exploration of the GF-binding spectrum of the two receptors, we found that although many GFs bind both receptors, the high-affinity BMPR2 GFs comprise BMP15, BMP10, and Nodal, whereas those of ACVR2A are activin A, activin B, and GDF11. Lastly, we evaluated GF-binding domain BMPR2 variants found in human PAH patients. We demonstrate that mutations within the GF-binding interface resulted in loss of GF binding, while mutations in loop areas allowed BMPR2 to retain the ability to bind cognate GFs with high affinity. In conclusion, the in vitro activities of BMPR2 variants and the crystal structures reported here indicate biochemically relevant complexes that explain how some GF-binding domain variants can lead to PAH.
Collapse
|
19
|
Klumpe HE, Langley MA, Linton JM, Su CJ, Antebi YE, Elowitz MB. The context-dependent, combinatorial logic of BMP signaling. Cell Syst 2022; 13:388-407.e10. [PMID: 35421361 PMCID: PMC9127470 DOI: 10.1016/j.cels.2022.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/23/2021] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Cell-cell communication systems typically comprise families of ligand and receptor variants that function together in combinations. Pathway activation depends on the complex way in which ligands are presented extracellularly and receptors are expressed by the signal-receiving cell. To understand the combinatorial logic of such a system, we systematically measured pairwise bone morphogenetic protein (BMP) ligand interactions in cells with varying receptor expression. Ligands could be classified into equivalence groups based on their profile of positive and negative synergies with other ligands. These groups varied with receptor expression, explaining how ligands can functionally replace each other in one context but not another. Context-dependent combinatorial interactions could be explained by a biochemical model based on the competitive formation of alternative signaling complexes with distinct activities. Together, these results provide insights into the roles of BMP combinations in developmental and therapeutic contexts and establish a framework for analyzing other combinatorial, context-dependent signaling systems.
Collapse
Affiliation(s)
- Heidi E Klumpe
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matthew A Langley
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James M Linton
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christina J Su
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yaron E Antebi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Michael B Elowitz
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
20
|
Shu DY, Lovicu FJ. Insights into Bone Morphogenetic Protein-(BMP-) Signaling in Ocular Lens Biology and Pathology. Cells 2021; 10:cells10102604. [PMID: 34685584 PMCID: PMC8533954 DOI: 10.3390/cells10102604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to the transforming growth factor-beta (TGFβ) superfamily. Although originally discovered to possess osteogenic properties, BMPs have since been identified as critical regulators of many biological processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental developmental processes such as induction of lens morphogenesis, and specialized differentiation of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as abrogate pathological processes such as TGFβ-induced epithelial-mesenchymal transition (EMT) and apoptosis. In this review, we summarize recent insights in this topic and discuss the complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. By understanding the molecular mechanisms underlying BMP activity, we can advance their potential therapeutic role in cataract prevention and lens regeneration.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Correspondence: ; Tel.: +61-2-9351-5170
| |
Collapse
|
21
|
Ongaro L, Zhou X, Cui Y, Boehm U, Bernard DJ. Gonadotrope-specific deletion of the BMP type 2 receptor does not affect reproductive physiology in mice†‡. Biol Reprod 2021; 102:639-646. [PMID: 31724029 DOI: 10.1093/biolre/ioz206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Activins selectively stimulate follicle-stimulating hormone (FSH) secretion by pituitary gonadotrope cells. More recently, other members of the TGFbeta superfamily, the bone morphogenetic proteins (BMPs), were reported to regulate FSH synthesis. Activins and BMPs independently and synergistically stimulate transcription of the FSHbeta subunit (Fshb) gene in immortalized gonadotrope-like cells. Both ligands can signal via the activin receptor type IIA (ACVR2A) to regulate FSH synthesis in vitro. In vivo, global Acvr2a knockout mice exhibit a 60% reduction in circulating FSH relative to wild-type animals, suggesting that activins, BMPs, or related ligands might signal through additional type II receptors to regulate FSH in vivo. Although the leading candidates are ACVR2B and the BMP type II receptor (BMPR2), only the latter mediates activin or BMP2 induction of Fshb transcription in vitro. Here, we generated mice carrying a loss of function mutation in Bmpr2 specifically in gonadotropes. Puberty onset, estrous cyclicity, and reproductive organ weights were similar between control and conditional knockout females. Serum FSH and luteinizing hormone (LH) and pituitary expression of Fshb and the LHbeta subunit (Lhb) were similarly unaffected by the gene deletion in both sexes. These results suggest that BMPR2 might not play a necessary role in FSH synthesis or secretion in vivo or that another type II receptor, such as ACVR2A, can fully compensate for its absence. These data also further contribute to the emerging concept that BMPs may not be physiological regulators of FSH in vivo.
Collapse
Affiliation(s)
- Luisina Ongaro
- Department of Pharmacology and Therapeutics.,Centre for Research in Reproduction and Development, McGill University, Montreal, QC, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics.,Centre for Research in Reproduction and Development, McGill University, Montreal, QC, Canada
| | - Yiming Cui
- Department of Pharmacology and Therapeutics.,Centre for Research in Reproduction and Development, McGill University, Montreal, QC, Canada
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, Saarland University School of Medicine, Homburg, Germany
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics.,Centre for Research in Reproduction and Development, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Lechartier B, Berrebeh N, Huertas A, Humbert M, Guignabert C, Tu L. Phenotypic Diversity of Vascular Smooth Muscle Cells in Pulmonary Arterial Hypertension: Implications for Therapy. Chest 2021; 161:219-231. [PMID: 34391758 DOI: 10.1016/j.chest.2021.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive incurable condition that is characterized by extensive remodelling of the pulmonary circulation, leading to severe right heart failure and death. Similar to other vascular contractile cells, pulmonary arterial smooth muscle cells (PA-SMCs) play central roles in physiological and pathological vascular remodelling due to their remarkable ability to dynamically modulate their phenotype to ensure contractile and synthetic functions. The dysfunction and molecular mechanisms underlying their contribution to the various pulmonary vascular lesions associated with PAH have been a major focus of research. The aim of this review is to describe the medial and non-medial origins of contractile cells in the pulmonary vascular wall and present evidence of how they contribute to the onset and progression of PAH. We also highlight specific potential target molecules and discuss future directions that are being explored to widen the therapeutic options for the treatment of PAH.
Collapse
Affiliation(s)
- Benoit Lechartier
- Pulmonary Division, Lausanne University Hospital, Lausanne, Switzerland; Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Nihel Berrebeh
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Alice Huertas
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Ly Tu
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| |
Collapse
|
23
|
Ion channels as convergence points in the pathology of pulmonary arterial hypertension. Biochem Soc Trans 2021; 49:1855-1865. [PMID: 34346486 PMCID: PMC8421048 DOI: 10.1042/bst20210538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease of the cardiopulmonary system that lacks curative treatments. The main pathological event in PAH is elevated vascular resistance in the pulmonary circulation, caused by abnormal vasoconstriction and vascular remodelling. Ion channels are key determinants of vascular smooth muscle tone and homeostasis, and four PAH channelopathies (KCNK3, ABCC8, KCNA5, TRPC6) have been identified so far. However, the contribution of ion channels in other forms of PAH, which account for the majority of PAH patients, has been less well characterised. Here we reason that a variety of triggers of PAH (e.g. BMPR2 mutations, hypoxia, anorectic drugs) that impact channel function may contribute to the onset of the disease. We review the molecular mechanisms by which these ‘extrinsic’ factors converge on ion channels and provoke their dysregulation to promote the development of PAH. Ion channels of the pulmonary vasculature are therefore promising therapeutic targets because of the modulation they provide to both vasomotor tone and proliferation of arterial smooth muscle cells.
Collapse
|
24
|
A Cyclic BMP-2 Peptide Upregulates BMP-2 Protein-Induced Cell Signaling in Myogenic Cells. Polymers (Basel) 2021; 13:polym13152549. [PMID: 34372154 PMCID: PMC8347162 DOI: 10.3390/polym13152549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
In the current study, we designed four cyclic peptide analogues by incorporating two cysteine residues in a BMP-2 linear knuckle epitope in such a way that the active region of the peptide could be either inside or outside the cyclic ring. Bone morphogenetic protein receptor BMPRII was immobilized on the chip surface, and the interaction of the linear and cyclic peptide analogues was studied using surface plasmon resonance (SPR). From the affinity data, the peptides with an active region inside the cyclic ring had a higher binding affinity in comparison to the other peptides. To confirm that our affinity data are in line in vitro, we studied the expression levels of RUNX2 (runt-related transcription factor) and conducted an osteogenic marker alkaline phosphatase (ALP) assay and staining. Based on the affinity data and the in vitro experiments, peptide P-05 could be a suitable candidate for osteogenesis, with higher binding affinity and increased RUNX2 and ALP expression in comparison to the linear peptides.
Collapse
|
25
|
Yung LM, Yang P, Joshi S, Augur ZM, Kim SSJ, Bocobo GA, Dinter T, Troncone L, Chen PS, McNeil ME, Southwood M, Poli de Frias S, Knopf J, Rosas IO, Sako D, Pearsall RS, Quisel JD, Li G, Kumar R, Yu PB. ACTRIIA-Fc rebalances activin/GDF versus BMP signaling in pulmonary hypertension. Sci Transl Med 2021; 12:12/543/eaaz5660. [PMID: 32404506 DOI: 10.1126/scitranslmed.aaz5660] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/22/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
Human genetics, biomarker, and animal studies implicate loss of function in bone morphogenetic protein (BMP) signaling and maladaptive transforming growth factor-β (TGFβ) signaling as drivers of pulmonary arterial hypertension (PAH). Although sharing common receptors and effectors with BMP/TGFβ, the function of activin and growth and differentiation factor (GDF) ligands in PAH are less well defined. Increased expression of GDF8, GDF11, and activin A was detected in lung lesions from humans with PAH and experimental rodent models of pulmonary hypertension (PH). ACTRIIA-Fc, a potent GDF8/11 and activin ligand trap, was used to test the roles of these ligands in animal and cellular models of PH. By blocking GDF8/11- and activin-mediated SMAD2/3 activation in vascular cells, ACTRIIA-Fc attenuated proliferation of pulmonary arterial smooth muscle cells and pulmonary microvascular endothelial cells. In several experimental models of PH, prophylactic administration of ACTRIIA-Fc markedly improved hemodynamics, right ventricular (RV) hypertrophy, RV function, and arteriolar remodeling. When administered after the establishment of hemodynamically severe PH in a vasculoproliferative model, ACTRIIA-Fc was more effective than vasodilator in attenuating PH and arteriolar remodeling. Potent antiremodeling effects of ACTRIIA-Fc were associated with inhibition of SMAD2/3 activation and downstream transcriptional activity, inhibition of proliferation, and enhancement of apoptosis in the vascular wall. ACTRIIA-Fc reveals an unexpectedly prominent role of GDF8, GDF11, and activin as drivers of pulmonary vascular disease and represents a therapeutic strategy for restoring the balance between SMAD1/5/9 and SMAD2/3 signaling in PAH.
Collapse
Affiliation(s)
- Lai-Ming Yung
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Zachary M Augur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie S J Kim
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Geoffrey A Bocobo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Teresa Dinter
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luca Troncone
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Po-Sheng Chen
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan City 704, Taiwan
| | - Megan E McNeil
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Southwood
- Department of Pathology, Royal Papworth Hospital, Cambridge CB2 0AY, UK
| | - Sergio Poli de Frias
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Knopf
- Acceleron Pharma Inc., Cambridge, MA 02139, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dianne Sako
- Acceleron Pharma Inc., Cambridge, MA 02139, USA
| | | | | | - Gang Li
- Acceleron Pharma Inc., Cambridge, MA 02139, USA
| | | | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Elmasry K, Habib S, Moustafa M, Al-Shabrawey M. Bone Morphogenetic Proteins and Diabetic Retinopathy. Biomolecules 2021; 11:biom11040593. [PMID: 33919531 PMCID: PMC8073699 DOI: 10.3390/biom11040593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) play an important role in bone formation and repair. Recent studies underscored their essential role in the normal development of several organs and vascular homeostasis in health and diseases. Elevated levels of BMPs have been linked to the development of cardiovascular complications of diabetes mellitus. However, their particular role in the pathogenesis of microvascular dysfunction associated with diabetic retinopathy (DR) is still under-investigated. Accumulated evidence from our and others’ studies suggests the involvement of BMP signaling in retinal inflammation, hyperpermeability and pathological neovascularization in DR and age-related macular degeneration (AMD). Therefore, targeting BMP signaling in diabetes is proposed as a potential therapeutic strategy to halt the development of microvascular dysfunction in retinal diseases, particularly in DR. The goal of this review article is to discuss the biological functions of BMPs, their underlying mechanisms and their potential role in the pathogenesis of DR in particular.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Dakahlia Governorate 35516, Egypt
| | - Samar Habib
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Dakahlia Governorate 35516, Egypt;
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Moustafa
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Al-Shabrawey
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-(706)721-4278 or +1-(706)721-4279
| |
Collapse
|
27
|
Iron Deficiency in Pulmonary Arterial Hypertension: A Deep Dive into the Mechanisms. Cells 2021; 10:cells10020477. [PMID: 33672218 PMCID: PMC7926484 DOI: 10.3390/cells10020477] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiovascular disease that is caused by the progressive occlusion of the distal pulmonary arteries, eventually leading to right heart failure and death. Almost 40% of patients with PAH are iron deficient. Although widely studied, the mechanisms linking between PAH and iron deficiency remain unclear. Here we review the mechanisms regulating iron homeostasis and the preclinical and clinical data available on iron deficiency in PAH. Then we discuss the potential implications of iron deficiency on the development and management of PAH.
Collapse
|
28
|
Wang L, Rice M, Swist S, Kubin T, Wu F, Wang S, Kraut S, Weissmann N, Böttger T, Wheeler M, Schneider A, Braun T. BMP9 and BMP10 Act Directly on Vascular Smooth Muscle Cells for Generation and Maintenance of the Contractile State. Circulation 2020; 143:1394-1410. [PMID: 33334130 DOI: 10.1161/circulationaha.120.047375] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Vascular smooth muscle cells (VSMCs) show a remarkable phenotypic plasticity, allowing acquisition of contractile or synthetic states, but critical information is missing about the physiologic signals, promoting formation, and maintenance of contractile VSMCs in vivo. BMP9 and BMP10 (bone morphogenetic protein) are known to regulate endothelial quiescence after secretion from the liver and right atrium, whereas a direct role in the regulation of VSMCs was not investigated. We studied the role of BMP9 and BMP10 for controlling formation of contractile VSMCs. METHODS We generated several cell type-specific loss- and gain-of-function transgenic mouse models to investigate the physiologic role of BMP9, BMP10, ALK1 (activin receptor-like kinase 1), and SMAD7 in vivo. Morphometric assessments, expression analysis, blood pressure measurements, and single molecule fluorescence in situ hybridization were performed together with analysis of isolated pulmonary VSMCs to unravel phenotypic and transcriptomic changes in response to absence or presence of BMP9 and BMP10. RESULTS Concomitant genetic inactivation of Bmp9 in the germ line and Bmp10 in the right atrium led to dramatic changes in vascular tone and diminution of the VSMC layer with attenuated contractility and decreased systemic as well as right ventricular systolic pressure. On the contrary, overexpression of Bmp10 in endothelial cells of adult mice dramatically enhanced formation of contractile VSMCs and increased systemic blood pressure as well as right ventricular systolic pressure. Likewise, BMP9/10 treatment induced an ALK1-dependent phenotypic switch from synthetic to contractile in pulmonary VSMCs. Smooth muscle cell-specific overexpression of Smad7 completely suppressed differentiation and proliferation of VSMCs and reiterated defects observed in adult Bmp9/10 double mutants. Deletion of Alk1 in VSMCs recapitulated the Bmp9/10 phenotype in pulmonary but not in aortic and coronary arteries. Bulk expression analysis and single molecule RNA-fluorescence in situ hybridization uncovered vessel bed-specific, heterogeneous expression of BMP type 1 receptors, explaining phenotypic differences in different Alk1 mutant vessel beds. CONCLUSIONS Our study demonstrates that BMP9 and BMP10 act directly on VSMCs for induction and maintenance of their contractile state. The effects of BMP9/10 in VSMCs are mediated by different combinations of BMP type 1 receptors in a vessel bed-specific manner, offering new opportunities to manipulate blood pressure in the pulmonary circulation.
Collapse
Affiliation(s)
- Lei Wang
- Departments of Cardiac Development and Remodeling (L.W., M.R., S.S., F.W., T.B., M.W., A.S., T.B.)
| | - Megan Rice
- Departments of Cardiac Development and Remodeling (L.W., M.R., S.S., F.W., T.B., M.W., A.S., T.B.)
| | - Sandra Swist
- Departments of Cardiac Development and Remodeling (L.W., M.R., S.S., F.W., T.B., M.W., A.S., T.B.)
| | | | - Fan Wu
- Departments of Cardiac Development and Remodeling (L.W., M.R., S.S., F.W., T.B., M.W., A.S., T.B.)
| | - Shengpeng Wang
- Cardiac Surgery (S.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Simone Kraut
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (S.K., N.W.)
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany (S.K., N.W.).,German Centre for Lung Research (DZL), Partner site Giessen, Germany (N.W.)
| | - Thomas Böttger
- Departments of Cardiac Development and Remodeling (L.W., M.R., S.S., F.W., T.B., M.W., A.S., T.B.)
| | - Matthew Wheeler
- Departments of Cardiac Development and Remodeling (L.W., M.R., S.S., F.W., T.B., M.W., A.S., T.B.)
| | - Andre Schneider
- Departments of Cardiac Development and Remodeling (L.W., M.R., S.S., F.W., T.B., M.W., A.S., T.B.)
| | - Thomas Braun
- Departments of Cardiac Development and Remodeling (L.W., M.R., S.S., F.W., T.B., M.W., A.S., T.B.).,German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (T.B.)
| |
Collapse
|
29
|
Zabala M, Lobo NA, Antony J, Heitink LS, Gulati GS, Lam J, Parashurama N, Sanchez K, Adorno M, Sikandar SS, Kuo AH, Qian D, Kalisky T, Sim S, Li L, Dirbas FM, Somlo G, Newman A, Quake SR, Clarke MF. LEFTY1 Is a Dual-SMAD Inhibitor that Promotes Mammary Progenitor Growth and Tumorigenesis. Cell Stem Cell 2020; 27:284-299.e8. [DOI: 10.1016/j.stem.2020.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 03/25/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
|
30
|
Bridgewater HE, Date KL, O’Neil JD, Hu C, Arrand JR, Dawson CW, Young LS. The Epstein-Barr Virus-Encoded EBNA1 Protein Activates the Bone Morphogenic Protein (BMP) Signalling Pathway to Promote Carcinoma Cell Migration. Pathogens 2020; 9:pathogens9070594. [PMID: 32708289 PMCID: PMC7400503 DOI: 10.3390/pathogens9070594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) protein is expressed in all virus-associated malignancies, where it performs an essential role in the maintenance, replication and transcription of the EBV genome. In recent years, it has become apparent that EBNA1 can also influence cellular gene transcription. Here, we demonstrate that EBNA1 is able to stimulate the expression of the Transforming growth factor-beta (TGFβ) superfamily member, bone morphogenic protein 2 (BMP2), with consequential activation of the BMP signalling pathway in carcinoma cell lines. We show that BMP pathway activation is associated with an increase in the migratory capacity of carcinoma cells, an effect that can be ablated by the BMP antagonist, Noggin. Gene expression profiling of authentic EBV-positive nasopharyngeal carcinoma (NPC) tumours revealed the consistent presence of BMP ligands, established BMP pathway effectors and putative target genes, constituting a prominent BMP “signature” in this virus-associated cancer. Our findings show that EBNA1 is the major viral-encoded protein responsible for activating the BMP signalling pathway in carcinoma cells and supports a role for this pathway in promoting cell migration and possibly, metastatic spread.
Collapse
Affiliation(s)
- Hannah E. Bridgewater
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK; (H.E.B.); (C.W.D.)
| | - Kathryn L. Date
- Institute for Cancer & Genomic Sciences, College of Medicine & Dentistry, University of Birmingham, Birmingham B15 2TT, UK; (K.L.D.); (J.D.O.); (C.H.); (J.R.A.)
| | - John D. O’Neil
- Institute for Cancer & Genomic Sciences, College of Medicine & Dentistry, University of Birmingham, Birmingham B15 2TT, UK; (K.L.D.); (J.D.O.); (C.H.); (J.R.A.)
| | - Chunfang Hu
- Institute for Cancer & Genomic Sciences, College of Medicine & Dentistry, University of Birmingham, Birmingham B15 2TT, UK; (K.L.D.); (J.D.O.); (C.H.); (J.R.A.)
| | - John R. Arrand
- Institute for Cancer & Genomic Sciences, College of Medicine & Dentistry, University of Birmingham, Birmingham B15 2TT, UK; (K.L.D.); (J.D.O.); (C.H.); (J.R.A.)
| | - Christopher W. Dawson
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK; (H.E.B.); (C.W.D.)
| | - Lawrence S. Young
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK; (H.E.B.); (C.W.D.)
- Correspondence: ; Tel.: +44-2476-752-38
| |
Collapse
|
31
|
Abstract
The bone morphogenetic protein (BMP) pathway is essential for the morphogenesis of multiple organs in the digestive system. Abnormal BMP signaling has also been associated with disease initiation and progression in the gastrointestinal (GI) tract and associated organs. Recent studies using animal models, tissue organoids, and human pluripotent stem cells have significantly expanded our understanding of the roles played by BMPs in the development and homeostasis of GI organs. It is clear that BMP signaling regulates GI function and disease progression that involve stem/progenitor cells and inflammation in a tissue-specific manner. In this review we discuss these new findings with a focus on the esophagus, stomach, and intestine.
Collapse
Affiliation(s)
- Yongchun Zhang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; .,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; .,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
32
|
Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, Cuellar Camacho JL, Haag R, Ruppert C, Sengle G, Cavalcanti-Adam EA, Blank KG, Knaus P. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol 2019; 17:e3000557. [PMID: 31826007 PMCID: PMC6927666 DOI: 10.1371/journal.pbio.3000557] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 12/23/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Balanced transforming growth factor-beta (TGFβ)/bone morphogenetic protein (BMP)-signaling is essential for tissue formation and homeostasis. While gain in TGFβ signaling is often found in diseases, the underlying cellular mechanisms remain poorly defined. Here we show that the receptor BMP type 2 (BMPR2) serves as a central gatekeeper of this balance, highlighted by its deregulation in diseases such as pulmonary arterial hypertension (PAH). We show that BMPR2 deficiency in endothelial cells (ECs) does not abolish pan-BMP-SMAD1/5 responses but instead favors the formation of mixed-heteromeric receptor complexes comprising BMPR1/TGFβR1/TGFβR2 that enable enhanced cellular responses toward TGFβ. These include canonical TGFβ-SMAD2/3 and lateral TGFβ-SMAD1/5 signaling as well as formation of mixed SMAD complexes. Moreover, BMPR2-deficient cells express genes indicative of altered biophysical properties, including up-regulation of extracellular matrix (ECM) proteins such as fibrillin-1 (FBN1) and of integrins. As such, we identified accumulation of ectopic FBN1 fibers remodeled with fibronectin (FN) in junctions of BMPR2-deficient ECs. Ectopic FBN1 deposits were also found in proximity to contractile intimal cells in pulmonary artery lesions of BMPR2-deficient heritable PAH (HPAH) patients. In BMPR2-deficient cells, we show that ectopic FBN1 is accompanied by active β1-integrin highly abundant in integrin-linked kinase (ILK) mechano-complexes at cell junctions. Increased integrin-dependent adhesion, spreading, and actomyosin-dependent contractility facilitates the retrieval of active TGFβ from its latent fibrillin-bound depots. We propose that loss of BMPR2 favors endothelial-to-mesenchymal transition (EndMT) allowing cells of myo-fibroblastic character to create a vicious feed-forward process leading to hyperactivated TGFβ signaling. In summary, our findings highlight a crucial role for BMPR2 as a gatekeeper of endothelial homeostasis protecting cells from increased TGFβ responses and integrin-mediated mechano-transduction.
Collapse
Affiliation(s)
- Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Jerome Jatzlau
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Germany
| | - Susanne Hildebrandt
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Germany
| | - Branka Kampfrath
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Melis Goktas
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Potsdam, Germany
| | - Arunima Murgai
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Rainer Haag
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC), Medical Clinic II, Justus Liebig University, Giessen, Germany
| | - Gerhard Sengle
- University of Cologne, Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | | | - Kerstin G. Blank
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Potsdam, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| |
Collapse
|
33
|
Monocrotaline pyrrole enhanced bone morphogenetic protein 7 signaling transduced by alternative activin A receptor type 2A in pulmonary arterial smooth muscle cells. Eur J Pharmacol 2019; 863:172679. [PMID: 31542483 DOI: 10.1016/j.ejphar.2019.172679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Increased expression levels of bone morphogenetic protein 7 (BMP7) are associated with poor prognosis in pulmonary hypertension patients. However, whether BMP7 signaling conspire to involve in the proliferation of pulmonary artery smooth muscle cells (PASMC) underlying monocrotaline (MCT) induced pulmonary arterial hypertension (PAH) remain unclear. METHODS AND RESULTS Western blot experiments found BMP7 was increased in pulmonary arteries isolated from MCT-PAH rat. In addition, monocrotaline pyrrole (MCTP), the putative toxic metabolite of the MCT, increases the expression of BMP7, proliferating cell nuclear antigen (PCNA) and activin A receptor type 2A, but decreases bone morphogenetic protein receptor type 2 in cultured pulmonary artery smooth muscle cells (PASMC). In PASMCs, exogenous BMP7 leads to the decreasing expression of activin A receptor type 2, increasing phosphorylation of p38MAPK and elevation of P21. However, BMP7 treatment results in the increasing expression of activin A receptor type 2A, p38MAPK, and PCNA in bone morphogenetic protein receptor type 2 knockdown PASMCs. Knockdown of activin A receptor type 2A abrogated the MCTP-induced PCNA and cell cycle progression. CONCLUSIONS MCTP treatment lead to the expression of BMP7, suppression of bone morphogenetic protein receptor type 2 but increasing expression of activin A receptor type 2A, the BMP7 mediated PASMC proliferation via preferential activation of an activin A receptor type 2A signaling axis.
Collapse
|
34
|
Watterston C, Zeng L, Onabadejo A, Childs SJ. MicroRNA26 attenuates vascular smooth muscle maturation via endothelial BMP signalling. PLoS Genet 2019; 15:e1008163. [PMID: 31091229 PMCID: PMC6538191 DOI: 10.1371/journal.pgen.1008163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/28/2019] [Accepted: 04/27/2019] [Indexed: 12/23/2022] Open
Abstract
As small regulatory transcripts, microRNAs (miRs) act as genetic ‘fine tuners’ of posttranscriptional events, and as genetic switches to promote phenotypic switching. The miR miR26a targets the BMP signalling effector, smad1. We show that loss of miR26a leads to hemorrhage (a loss of vascular stability) in vivo, suggesting altered vascular differentiation. Reduction in miR26a levels increases smad1 mRNA and phospho-Smad1 (pSmad1) levels. We show that increasing BMP signalling by overexpression of smad1 also leads to hemorrhage. Normalization of Smad1 levels through double knockdown of miR26a and smad1 rescues hemorrhage, suggesting a direct relationship between miR26a, smad1 and vascular stability. Using an in vivo BMP genetic reporter and pSmad1 staining, we show that the effect of miR26a on smooth muscle differentiation is non-autonomous; BMP signalling is active in embryonic endothelial cells, but not in smooth muscle cells. Nonetheless, increased BMP signalling due to loss of miR26a results in an increase in acta2-expressing smooth muscle cell numbers and promotes a differentiated smooth muscle morphology. Similarly, forced expression of smad1 in endothelial cells leads to an increase in smooth muscle cell number and coverage. Furthermore, smooth muscle phenotypes caused by inhibition of the BMP pathway are rescued by loss of miR26a. Taken together, our data suggest that miR26a modulates BMP signalling in endothelial cells and indirectly promotes a differentiated smooth muscle phenotype. Our data highlights how crosstalk from BMP-responsive endothelium to smooth muscle is important for smooth muscle differentiation. The structural integrity of a blood vessel is critical to ensure proper vessel support and vascular tone. Vascular smooth cells (vSMCs) are a key component of the vessel wall and, in their mature state, express contractile proteins that help to constrict and relax the vessel in response to blood flow changes. vSMCs differentiate from immature vascular mural cells that lack contractile function. Here, we use a zebrafish model to identify a small microRNA that regulates vascular stabilization. We show that a small regulatory RNA, microRNA26a is enriched in the endothelial lining of the blood vessel wall and, through signalling, communicates to the smooth muscle cell to control its maturation. Providing a mechanistic insight into vSMC differentiation may help develop and produce feasible miR-based pharmaceutical to promote SMC differentiation.
Collapse
Affiliation(s)
- Charlene Watterston
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Lei Zeng
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Abidemi Onabadejo
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Sarah J. Childs
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
- * E-mail:
| |
Collapse
|
35
|
Bone morphogenetic proteins: Their role in regulating osteoclast differentiation. Bone Rep 2019; 10:100207. [PMID: 31193008 PMCID: PMC6513777 DOI: 10.1016/j.bonr.2019.100207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
The ability to create recombinant bone morphogenetic proteins (BMPs) in recent years has led to their rise as a common clinical adjuvant. Their application varies, from spinal fixation to repairing palatal clefts, to coating implants for osseointegration. In recent years questions have been raised as to the efficacy of BMPs in several of these procedures. These questions are due to the unwanted side effect of BMPs on other cell types, such as osteoclasts which can resorb bone at the graft/implant site. However, most BMP research focuses on the anabolic osteoinductive effects of BMPs on osteoblasts rather than its counterpart- stimulation of the osteoclasts, which are cells responsible for resorbing bone. In this review, we discuss the data available from multiple in-vitro and in-vivo BMP-related knockout models to elucidate the different functions BMPs have on osteoclast differentiation and activity. BMPs can act directly on osteoclasts to regulate differentiation and activity. Osteoclasts express multiple BMP signaling components. BMPs signal through both SMAD independent and dependent mechanisms in osteoclasts. SMAD dependent BMP signaling regulates osteoclast-osteoblast coupling factors.
Collapse
|
36
|
Tu L, Desroches-Castan A, Mallet C, Guyon L, Cumont A, Phan C, Robert F, Thuillet R, Bordenave J, Sekine A, Huertas A, Ritvos O, Savale L, Feige JJ, Humbert M, Bailly S, Guignabert C. Selective BMP-9 Inhibition Partially Protects Against Experimental Pulmonary Hypertension. Circ Res 2019; 124:846-855. [DOI: 10.1161/circresaha.118.313356] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ly Tu
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Agnès Desroches-Castan
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Christine Mallet
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Laurent Guyon
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Amélie Cumont
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Carole Phan
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Florian Robert
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Raphaël Thuillet
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Jennifer Bordenave
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Ayumi Sekine
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (A.S., A.H., L.S., M.H.)
| | - Alice Huertas
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (A.S., A.H., L.S., M.H.)
| | - Olli Ritvos
- Department of Bacteriology and Immunology and Department of Physiology, Faculty of Medicine, University of Helsinki, Finland (O.R.)
| | - Laurent Savale
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (A.S., A.H., L.S., M.H.)
| | - Jean-Jacques Feige
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Marc Humbert
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (A.S., A.H., L.S., M.H.)
| | - Sabine Bailly
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Christophe Guignabert
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| |
Collapse
|
37
|
Improving recombinant bone morphogenetic protein-4 (BMP-4) production by autoregulatory feedback loop removal using BMP receptor-knockout CHO cell lines. Metab Eng 2019; 52:57-67. [DOI: 10.1016/j.ymben.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/11/2018] [Accepted: 11/11/2018] [Indexed: 01/24/2023]
|
38
|
Dinter T, Bocobo GA, Yu PB. Pharmacologic Strategies for Assaying BMP Signaling Function. Methods Mol Biol 2019; 1891:221-233. [PMID: 30414136 DOI: 10.1007/978-1-4939-8904-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bone morphogenetic protein (BMP) signaling pathway, a subset of the transforming growth factor β (TGF-β) signaling family, consists of structurally diverse receptors and ligands whose combinatorial specificity encodes autocrine, paracrine, and endocrine signals essential for regulating tissue growth, differentiation, and survival during embryonic patterning and postnatal tissue remodeling. Aberrant signaling of these receptors and ligands is implicated in a variety of inborn and acquired diseases. The roles of various receptors and their ligands can be explored using small molecule inhibitors of the BMP receptor kinases. Several BMP type I receptor kinase inhibitor tool compounds have been described that exhibit sufficient selectivity to discriminate BMP receptor signaling in vitro or in vivo, with various trade-offs in selectivity, potency, cell permeability, and pharmacokinetics. Several methods for assaying BMP function via pharmacologic inhibition are presented. Two in vitro methods, an In-Cell Western assay of BMP-mediated SMAD1/5/8 phosphorylation and an alkaline phosphatase osteogenic differentiation assay, represent efficient high-throughput methodologies for assaying pharmacologic inhibitors. Two in vivo methods are described for assaying the effects of BMP signaling inhibition in embryonic zebrafish and mouse development. Small molecule inhibitors of BMP receptor kinases represent an important complementary strategy to genetic gain- and loss-of-function and ligand-trap approaches for targeting this signaling system in biology and disease.
Collapse
Affiliation(s)
- Teresa Dinter
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Geoffrey A Bocobo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Olsen OE, Sankar M, Elsaadi S, Hella H, Buene G, Darvekar SR, Misund K, Katagiri T, Knaus P, Holien T. BMPR2 inhibits activin and BMP signaling via wild-type ALK2. J Cell Sci 2018; 131:jcs.213512. [PMID: 29739878 DOI: 10.1242/jcs.213512] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
TGF-β/BMP superfamily ligands require heteromeric complexes of type 1 and 2 receptors for ligand-dependent downstream signaling. Activin A, a TGF-β superfamily member, inhibits growth of multiple myeloma cells, but the mechanism for this is unknown. We therefore aimed to clarify how activins affect myeloma cell survival. Activin A activates the transcription factors SMAD2/3 through the ALK4 type 1 receptor, but may also activate SMAD1/5/8 through mutated variants of the type 1 receptor ALK2 (also known as ACVR1). We demonstrate that activin A and B activate SMAD1/5/8 in myeloma cells through endogenous wild-type ALK2. Knockdown of the type 2 receptor BMPR2 strongly potentiated activin A- and activin B-induced activation of SMAD1/5/8 and subsequent cell death. Furthermore, activity of BMP6, BMP7 or BMP9, which may also signal via ALK2, was potentiated by knockdown of BMPR2. Similar results were seen in HepG2 liver carcinoma cells. We propose that BMPR2 inhibits ALK2-mediated signaling by preventing ALK2 from oligomerizing with the type 2 receptors ACVR2A and ACVR2B, which are necessary for activation of ALK2 by activins and several BMPs. In conclusion, BMPR2 could be explored as a possible target for therapy in patients with multiple myeloma.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Oddrun Elise Olsen
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Department of Hematology, St. Olav's University Hospital, 7030 Trondheim, Norway
| | - Meenu Sankar
- School of Bioscience, University of Skövde, 541 28 Skövde, Sweden
| | - Samah Elsaadi
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hanne Hella
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Glenn Buene
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Sagar Ramesh Darvekar
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Department of Hematology, St. Olav's University Hospital, 7030 Trondheim, Norway
| | - Takenobu Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama 350-1241, Japan
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Toril Holien
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway .,Department of Hematology, St. Olav's University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
40
|
Malzer E, Dominicus CS, Chambers JE, Dickens JA, Mookerjee S, Marciniak SJ. The integrated stress response regulates BMP signalling through effects on translation. BMC Biol 2018; 16:34. [PMID: 29609607 PMCID: PMC5881181 DOI: 10.1186/s12915-018-0503-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
Background Developmental pathways must be responsive to the environment. Phosphorylation of eIF2α enables a family of stress-sensing kinases to trigger the integrated stress response (ISR), which has pro-survival and developmental consequences. Bone morphogenetic proteins (BMPs) regulate multiple developmental processes in organisms from insects to mammals. Results Here we show in Drosophila that GCN2 antagonises BMP signalling through direct effects on translation and indirectly via the transcription factor crc (dATF4). Expression of a constitutively active GCN2 or loss of the eIF2α phosphatase dPPP1R15 impairs developmental BMP signalling in flies. In cells, inhibition of translation by GCN2 blocks downstream BMP signalling. Moreover, loss of d4E-BP, a target of crc, augments BMP signalling in vitro and rescues tissue development in vivo. Conclusion These results identify a novel mechanism by which the ISR modulates BMP signalling during development. Electronic supplementary material The online version of this article (10.1186/s12915-018-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elke Malzer
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Caia S Dominicus
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Joseph E Chambers
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Jennifer A Dickens
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Souradip Mookerjee
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK. .,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK.
| |
Collapse
|
41
|
Zhang H, Ju B, Nie Y, Song B, Xu Y, Gao P. Adenovirus‑mediated knockdown of activin A receptor type 2A attenuates immune‑induced hepatic fibrosis in mice and inhibits interleukin‑17‑induced activation of primary hepatic stellate cells. Int J Mol Med 2018; 42:279-289. [PMID: 29620144 PMCID: PMC5979935 DOI: 10.3892/ijmm.2018.3600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/08/2018] [Indexed: 01/20/2023] Open
Abstract
Fibrosis induces a progressive loss of liver function, thus leading to organ failure. Activins are secreted proteins that belong to the transforming growth factor (TGF)-β superfamily, which initiate signaling by binding to their two type II receptors: Activin A receptor type 2A (ACVR2A) and activin A receptor type 2B. Previous studies that have explored the mechanisms underlying immune-induced hepatic fibrosis have mainly focused on TGF-β signaling, not activin signaling. To investigate the role of the activin pathway in this disease, adenovirus particles containing short hairpin (sh)RNA targeting ACVR2A mRNA (Ad-ACVR2A shRNA) were administered to mice, which were chronically treated with concanavalin A (Con A). The pathological changes in the liver were evaluated with hematoxylin/eosin staining, Masson trichrome staining and immunohistochemical assay. The results detected an increase in serum activin A and liver ACVR2A in Con A-treated animals. Conversely, liver function was partially restored and fibrotic injury was attenuated when activin signaling was blocked. In addition, the activation of hepatic stellate cells (HSCs) in response to Con A was suppressed by Ad-ACVR2A shRNA, as evidenced by decreased α-smooth muscle actin, and type I and IV collagen expression. Furthermore, primary mouse HSCs (mHSCs) were activated when exposed to interleukin (IL)-17A or IL-17F, which are two major cytokines produced by cluster of differentiation 4+ T helper 17 cells. The levels of activin A, type I and IV collagen were determined with ELISA kits and the expression of fibrotic molecules was determined with western blot analysis. Conversely, blocking activin/ACVR2A impaired the potency of HSCs to produce collagens in response to IL-17s. In addition, C terminus phosphorylation of Smad2 on Ser465 and Ser467, induced by either Con A in the liver or by IL-17s in mHSCs, was partly inhibited when activin A/ACVR2A signaling was suppressed. Collectively, the present study demonstrated an involvement of activated activin A/ACVR2A/Smad2 signaling in immune-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Hongjun Zhang
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Baoling Ju
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Ying Nie
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Baohui Song
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yuanhong Xu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Ping Gao
- Department of Gastroenterology, Mudanjiang Forestry Central Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| |
Collapse
|
42
|
Zhang Z, Wang J, Zeng X, Li D, Ding M, Guan R, Yuan L, Zhou Q, Guo M, Xiong M, Dong L, Lu W. Two-stage study of lung cancer risk modification by a functional variant in the 3'-untranslated region of SMAD5 based on the bone morphogenetic protein pathway. Mol Clin Oncol 2018; 8:38-46. [PMID: 29387395 PMCID: PMC5769268 DOI: 10.3892/mco.2017.1490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence supports a key role for the bone morphogenetic protein (BMP) signaling pathway in lung vasculogenesis and angiogenesis. Genetic variations in BMP genes have been found to be correlated with cancer risk. In particular, the mutation in the 3′-untranslated region of BMPs may significantly affect gene function, leading to cancer susceptibility. The aim of the present study was to determine whether genetic variations in the components of the BMP family are associated with lung cancer risk. A total of 314 tag single-nucleotide polymorphisms were identified in 18 genes, which are considered to either compose or regulate BMPs, and their association with lung cancer risk was evaluated in a two-stage case-control study with 4,680 cases and controls. A consistently significant association of SMAD5 rs12719482 with elevated lung cancer risk was observed in the three types of sources of populations (adjusted additive model in the combined population: Odds ratio=1.32, 95% confidence interval: 1.16–1.51). The lung cancer risk statistically significantly increased with the increasing number of variant alleles of SMAD5 rs12719482 in a dose-dependent pattern (P for trend=4.9×10−5). Consistent evidence was identified for a significant interaction between the rs12719482 and cigarette smoking, performed as either a continuous or discrete variable. These findings indicated that SMAD5 rs12719482 may be a possible candidate marker for susceptibility to lung cancer in the Chinese population.
Collapse
Affiliation(s)
- Zili Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ 85721-0202, USA
| | - Xiansheng Zeng
- Department of Respiratory Medicine, Xiangyang Central Hospital, Xiangyang, Hubei 441021, P.R. China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Mingjing Ding
- Department of Respiratory Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, Inner Mongolia Autonomous Region, P.R. China
| | - Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Liang Yuan
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Qipeng Zhou
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Meihua Guo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Mingmei Xiong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Lian Dong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ 85721-0202, USA.,Department of Laboratory Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
43
|
Bai L, Chang HM, Cheng JC, Chu G, Leung PCK, Yang G. ALK2/ALK3-BMPR2/ACVR2A Mediate BMP2-Induced Downregulation of Pentraxin 3 Expression in Human Granulosa-Lutein Cells. Endocrinology 2017; 158:3501-3511. [PMID: 28977600 DOI: 10.1210/en.2017-00436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic protein 2 (BMP2) belongs to the transforming growth factor-β superfamily and plays a critical role in regulating ovarian follicle function. Currently, the role of BMP2 during cumulus expansion remains to be determined. The aim of this study was to investigate the effect of BMP2 on the regulation of pentraxin 3 (PTX3) expression (the major component of cumulus expansion) and the underlying mechanisms in human granulosa-lutein (hGL) cells. Both primary and immortalized hGL cells were used as research models. Our results showed that treatment with BMP2 significantly suppressed the basal and luteinizing hormone-induced upregulation of PTX3. In addition, BMP2 stimulated the phosphorylation of SMAD1/5/8, and this effect was abolished by the addition of BMP type I receptor inhibitors, dorsomorphin homolog 1, and dorsomorphin but not SB431542. Moreover, the knockdown of activin receptorlike kinase 2/3 or BMP receptor type II/activin receptor type IIB receptors completely reversed the BMP2-induced phosphorylation of SMAD1/5/8 and restored PTX3 expression. Similarly, the knockdown of SMAD4 completely reversed the suppressive effect of BMP2 on the expression of PTX3. These results improve our understanding of the molecular mechanisms of BMP2 signaling. Our findings suggest that BMP2 may be involved in the regulation of cumulus expansion during the periovulatory stage.
Collapse
Affiliation(s)
- Long Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Department of Obstetrics and Gynaecology, University of British Columbia, and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, University of British Columbia, and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, University of British Columbia, and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, University of British Columbia, and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
44
|
Yung LM, Nikolic I, Paskin-Flerlage SD, Pearsall RS, Kumar R, Yu PB. A Selective Transforming Growth Factor-β Ligand Trap Attenuates Pulmonary Hypertension. Am J Respir Crit Care Med 2017; 194:1140-1151. [PMID: 27115515 DOI: 10.1164/rccm.201510-1955oc] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RATIONALE Transforming growth factor-β (TGF-β) ligands signal via type I and type II serine-threonine kinase receptors to regulate broad transcriptional programs. Excessive TGF-β-mediated signaling is implicated in the pathogenesis of pulmonary arterial hypertension, based in part on the ability of broad inhibition of activin-like kinase (ALK) receptors 4/5/7 recognizing TGF-β, activin, growth and differentiation factor, and nodal ligands to attenuate experimental pulmonary hypertension (PH). These broad inhibition strategies do not delineate the specific contribution of TGF-β versus a multitude of other ligands, and their translation is limited by cardiovascular and systemic toxicity. OBJECTIVES We tested the impact of a soluble TGF-β type II receptor extracellular domain expressed as an immunoglobulin-Fc fusion protein (TGFBRII-Fc), serving as a selective TGF-β1/3 ligand trap, in several experimental PH models. METHODS Signaling studies used cultured human pulmonary artery smooth muscle cells. PH was studied in monocrotaline-treated Sprague-Dawley rats, SU5416/hypoxia-treated Sprague-Dawley rats, and SU5416/hypoxia-treated C57BL/6 mice. PH, cardiac function, vascular remodeling, and valve structure were assessed by ultrasound, invasive hemodynamic measurements, and histomorphometry. MEASUREMENTS AND MAIN RESULTS TGFBRII-Fc is an inhibitor of TGF-β1 and TGF-β3, but not TGF-β2, signaling. In vivo treatment with TGFBRII-Fc attenuated Smad2 phosphorylation, normalized expression of plasminogen activator inhibitor-1, and mitigated PH and pulmonary vascular remodeling in monocrotaline-treated rats, SU5416/hypoxia-treated rats, and SU5416/hypoxia-treated mice. Administration of TGFBRII-Fc to monocrotaline-treated or SU5416/hypoxia-treated rats with established PH improved right ventricular systolic pressures, right ventricular function, and survival. No cardiac structural or valvular abnormalities were observed after treatment with TGFBRII-Fc. CONCLUSIONS Our findings are consistent with a pathogenetic role of TGF-β1/3, demonstrating the efficacy and tolerability of selective TGF-β ligand blockade for improving hemodynamics, remodeling, and survival in multiple experimental PH models.
Collapse
Affiliation(s)
- Lai-Ming Yung
- 1 Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Ivana Nikolic
- 1 Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Samuel D Paskin-Flerlage
- 1 Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | | | | | - Paul B Yu
- 1 Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
45
|
Zhang H, Du L, Zhong Y, Flanders KC, Roberts JD. Transforming growth factor-β stimulates Smad1/5 signaling in pulmonary artery smooth muscle cells and fibroblasts of the newborn mouse through ALK1. Am J Physiol Lung Cell Mol Physiol 2017. [PMID: 28642261 DOI: 10.1152/ajplung.00079.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intracellular signaling mechanisms through which TGF-β regulates pulmonary development are incompletely understood. Canonical TGF-β signaling involves Smad2/3 phosphorylation, Smad2/3·Smad4 complex formation and nuclear localization, and gene regulation. Here, we show that physiologically relevant TGF-β1 levels also stimulate Smad1/5 phosphorylation, which is typically a mediator of bone morphogenetic protein (BMP) signaling, in mouse pup pulmonary artery smooth muscle cells (mPASMC) and lung fibroblasts and other interstitial lung cell lines. This cross-talk mechanism likely has in vivo relevance because mixed Smad1/5/8·Smad2/3 complexes, which are indicative of TGF-β-stimulated Smad1/5 activation, were detected in the developing mouse lung using a proximity ligation assay. Although mixed Smad complexes have been shown not to transduce nuclear signaling, we determined that TGF-β stimulates nuclear localization of phosphorylated Smad1/5 and induces the expression of prototypical BMP-regulated genes in the mPASMC. Small-molecule kinase inhibitor studies suggested that TGF-β-regulated Smad1/5 phosphorylation in these cells is mediated by TGF-β-type I receptors, not BMP-type I receptors, but possibly the accessory activin-like kinase (ALK1) receptor. Although work by others suggested that ALK1 is expressed exclusively in endothelial cells in the vasculature, we detected ALK1 mRNA and protein expression in mPASMC in vitro and in mouse pup lungs. Moreover, using an antimurine ALK1 antibody and mPASMC, we determined that ALK1 regulates Smad1/5 phosphorylation by TGF-β. Together, these studies characterize an accessory TGF-β-stimulated BMP R-Smad signaling mechanism in interstitial cells of the developing lung. They also indicate the importance of considering alternate Smad pathways in studies directed at determining how TGF-β regulates newborn lung development.
Collapse
Affiliation(s)
- Huili Zhang
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Lili Du
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Ying Zhong
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen C Flanders
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Jesse D Roberts
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts; .,Department of Anesthesia and the Division of Newborn Medicine in the Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
46
|
TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling. Nat Commun 2017; 8:14079. [PMID: 28084316 PMCID: PMC5241886 DOI: 10.1038/ncomms14079] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Heterozygous germ-line mutations in the bone morphogenetic protein type-II receptor (BMPR-II) gene underlie heritable pulmonary arterial hypertension (HPAH). Although inflammation promotes PAH, the mechanisms by which inflammation and BMPR-II dysfunction conspire to cause disease remain unknown. Here we identify that tumour necrosis factor-α (TNFα) selectively reduces BMPR-II transcription and mediates post-translational BMPR-II cleavage via the sheddases, ADAM10 and ADAM17 in pulmonary artery smooth muscle cells (PASMCs). TNFα-mediated suppression of BMPR-II subverts BMP signalling, leading to BMP6-mediated PASMC proliferation via preferential activation of an ALK2/ACTR-IIA signalling axis. Furthermore, TNFα, via SRC family kinases, increases pro-proliferative NOTCH2 signalling in HPAH PASMCs with reduced BMPR-II expression. We confirm this signalling switch in rodent models of PAH and demonstrate that anti-TNFα immunotherapy reverses disease progression, restoring normal BMP/NOTCH signalling. Collectively, these findings identify mechanisms by which BMP and TNFα signalling contribute to disease, and suggest a tractable approach for therapeutic intervention in PAH. Reduced BMP receptor II signalling underlies pulmonary arterial hypertension (PAH). Here, Hurst et al. show that TNFα subverts BMP signalling by increasing BMP6 expression and signalling via an alternative BMP receptor, ALK2, in pulmonary artery smooth muscle cells to drive abnormal proliferation and PAH.
Collapse
|
47
|
Guignabert C, Bailly S, Humbert M. Restoring BMPRII functions in pulmonary arterial hypertension: opportunities, challenges and limitations. Expert Opin Ther Targets 2016; 21:181-190. [DOI: 10.1080/14728222.2017.1275567] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Univ. Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Sabine Bailly
- INSERM U1036, Grenoble, France
- Laboratoire Biologie du Cancer et de l’Infection, Commissariat à l’Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
| | - Marc Humbert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Univ. Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital de Bicêtre, France
| |
Collapse
|
48
|
Yu Z, Mouillesseaux KP, Kushner EJ, Bautch VL. Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication. PLoS One 2016; 11:e0168334. [PMID: 27977771 PMCID: PMC5158050 DOI: 10.1371/journal.pone.0168334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/30/2016] [Indexed: 01/28/2023] Open
Abstract
Approximately 30% of tumor endothelial cells have over-duplicated (>2) centrosomes, which may contribute to abnormal vessel function and drug resistance. Elevated levels of vascular endothelial growth factor A induce excess centrosomes in endothelial cells, but how other features of the tumor environment affect centrosome over-duplication is not known. To test this, we treated endothelial cells with tumor-derived factors, hypoxia, or reduced p53, and assessed centrosome numbers. We found that hypoxia and elevated levels of bone morphogenetic protein 2, 6 and 7 induced excess centrosomes in endothelial cells through BMPR1A and likely via SMAD signaling. In contrast, inflammatory mediators IL-8 and lipopolysaccharide did not induce excess centrosomes. Finally, down-regulation in endothelial cells of p53, a critical regulator of DNA damage and proliferation, caused centrosome over-duplication. Our findings suggest that some tumor-derived factors and genetic changes in endothelial cells contribute to excess centrosomes in tumor endothelial cells.
Collapse
Affiliation(s)
- Zhixian Yu
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin P. Mouillesseaux
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Erich J. Kushner
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Victoria L. Bautch
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
49
|
Hildebrand L, Stange K, Deichsel A, Gossen M, Seemann P. The Fibrodysplasia Ossificans Progressiva (FOP) mutation p.R206H in ACVR1 confers an altered ligand response. Cell Signal 2016; 29:23-30. [PMID: 27713089 DOI: 10.1016/j.cellsig.2016.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/23/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
Patients with Fibrodysplasia Ossificans Progressiva (FOP) suffer from ectopic bone formation, which progresses during life and results in dramatic movement restrictions. Cause of the disease are point mutations in the Activin A receptor type 1 (ACVR1), with p.R206H being most common. In this study we compared the signalling responses of ACVR1WT and ACVR1R206H to different ligands. ACVR1WT, but not ACVR1R206H inhibited BMP signalling of BMP2 or BMP4 in a ligand binding domain independent manner. Likewise, the basal BMP signalling activity of the receptor BMPR1A or BMPR1B was inhibited by ACVR1WT, but enhanced by ACVR1R206H. In comparison, BMP6 or BMP7 activated ACVR1WT and caused a hyper-activation of ACVR1R206H. These effects were dependent on an intact ligand binding domain. Finally, the neofunction of Activin A in FOP was tested and found to depend on the ligand binding domain for activating ACVR1R206H. We conclude that the FOP mutation ACVR1R206H is more sensitive to a number of natural ligands. The mutant receptor apparently lost some essential inhibitory interactions with its ligands and co-receptors, thereby conferring an enhanced ligand-dependent signalling and stimulating ectopic bone formation as observed in the patients.
Collapse
Affiliation(s)
- Laura Hildebrand
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| | - Katja Stange
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany; Leibniz Institute for Farm Animal Biology, Institute for Muscle Biology and Growth, Dummerstorf, Germany.
| | - Alexandra Deichsel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany.
| | - Petra Seemann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Virchow Campus, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| |
Collapse
|
50
|
Kidwai F, Edwards J, Zou L, Kaufman DS. Fibrinogen Induces RUNX2 Activity and Osteogenic Development from Human Pluripotent Stem Cells. Stem Cells 2016; 34:2079-89. [PMID: 27331788 PMCID: PMC5097445 DOI: 10.1002/stem.2427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells, both human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC), provide an important resource to produce specialized cells such as osteogenic cells for therapeutic applications such as repair or replacement of injured, diseased or damaged bone. hESCs and iPSCs can also be used to better define basic cellular and genetic mechanisms that regulate the earliest stages of human bone development. However, current strategies to mediate osteogenic differentiation of hESC and iPSC are typically limited by the use of xenogeneic components such as fetal bovine serum (FBS) that make defining specific agents that mediate human osteogenesis difficult. Runt-related transcription factor 2 (RUNX2) is a key regulator required for osteogenic differentiation. Here, we used a RUNX2-YFP reporter system to characterize the novel ability of fibrinogen to mediate human osteogenic development from hESC and iPSC in defined (serum-free) conditions. These studies demonstrate that fibrinogen mediates significant osteo-induction potential. Specifically, fibrinogen binds to the surface integrin (α9β1) to mediate RUNX2 gene expression through the SMAD1/5/8 signaling pathway. Additional studies characterize the fibrinogen-induced hESC/iPSC-derived osteogenic cells to demonstrate these osteogenic cells retain the capacity to express typical mature osteoblastic markers. Together, these studies define a novel fibrinogen-α9β1-SMAD1/5/8-RUNX2 signaling axis can efficiently induce osteogenic differentiation from hESCs and iPSCs. Stem Cells 2016;34:2079-2089.
Collapse
Affiliation(s)
- Fahad Kidwai
- Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, Minnesota 55455, USA
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, Minneapolis, Minnesota 55455, USA
| | - Jessica Edwards
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, Minneapolis, Minnesota 55455, USA
| | - Li Zou
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dan S. Kaufman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Medicine, University of California - San Diego, La Jolla, California 92093, USA
| |
Collapse
|