1
|
Garcia BM, Melchinger P, Medeiros T, Hendrix S, Prabhu K, Corrado M, Kingma J, Gorbatenko A, Deshwal S, Veronese M, Scorrano L, Pearce E, Giavalisco P, Zelcer N, Pernas L. Glutamine sensing licenses cholesterol synthesis. EMBO J 2024:10.1038/s44318-024-00269-0. [PMID: 39433901 DOI: 10.1038/s44318-024-00269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The mevalonate pathway produces essential lipid metabolites such as cholesterol. Although this pathway is negatively regulated by metabolic intermediates, little is known of the metabolites that positively regulate its activity. We found that the amino acid glutamine is required to activate the mevalonate pathway. Glutamine starvation inhibited cholesterol synthesis and blocked transcription of the mevalonate pathway-even in the presence of glutamine derivatives such as ammonia and α-ketoglutarate. We pinpointed this glutamine-dependent effect to a loss in the ER-to-Golgi trafficking of SCAP that licenses the activation of SREBP2, the major transcriptional regulator of cholesterol synthesis. Both enforced Golgi-to-ER retro-translocation and the expression of a nuclear SREBP2 rescued mevalonate pathway activity during glutamine starvation. In a cell model of impaired mitochondrial respiration in which glutamine uptake is enhanced, SREBP2 activation and cellular cholesterol were increased. Thus, the mevalonate pathway senses and is activated by glutamine at a previously uncharacterized step, and the modulation of glutamine synthesis may be a strategy to regulate cholesterol levels in pathophysiological conditions.
Collapse
Affiliation(s)
| | | | - Tania Medeiros
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Kavan Prabhu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jenina Kingma
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrej Gorbatenko
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Soni Deshwal
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Matteo Veronese
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Erika Pearce
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Giavalisco
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Lena Pernas
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Xu S, Smothers JC, Rye D, Endapally S, Chen H, Li S, Liang G, Kinnebrew M, Rohatgi R, Posner BA, Radhakrishnan A. A cholesterol-binding bacterial toxin provides a strategy for identifying a specific Scap inhibitor that blocks lipid synthesis in animal cells. Proc Natl Acad Sci U S A 2024; 121:e2318024121. [PMID: 38330014 PMCID: PMC10873635 DOI: 10.1073/pnas.2318024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/15/2023] [Indexed: 02/10/2024] Open
Abstract
Lipid synthesis is regulated by the actions of Scap, a polytopic membrane protein that binds cholesterol in membranes of the endoplasmic reticulum (ER). When ER cholesterol levels are low, Scap activates SREBPs, transcription factors that upregulate genes for synthesis of cholesterol, fatty acids, and triglycerides. When ER cholesterol levels rise, the sterol binds to Scap, triggering conformational changes that prevent activation of SREBPs and halting synthesis of lipids. To achieve a molecular understanding of how cholesterol regulates the Scap/SREBP machine and to identify therapeutics for dysregulated lipid metabolism, cholesterol-mimetic compounds that specifically bind and inhibit Scap are needed. To accomplish this goal, we focused on Anthrolysin O (ALO), a pore-forming bacterial toxin that binds cholesterol with a specificity and sensitivity that is uncannily similar to Scap. We reasoned that a small molecule that would bind and inhibit ALO might also inhibit Scap. High-throughput screening of a ~300,000-compound library for ALO-binding unearthed one molecule, termed UT-59, which binds to Scap's cholesterol-binding site. Upon binding, UT-59 triggers the same conformation changes in Scap as those induced by cholesterol and blocks activation of SREBPs and lipogenesis in cultured cells. UT-59 also inhibits SREBP activation in the mouse liver. Unlike five previously reported inhibitors of SREBP activation, UT-59 is the only one that acts specifically by binding to Scap's cholesterol-binding site. Our approach to identify specific Scap inhibitors such as UT-59 holds great promise in developing therapeutic leads for human diseases stemming from elevated SREBP activation, such as fatty liver and certain cancers.
Collapse
Affiliation(s)
- Shimeng Xu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jared C. Smothers
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Daphne Rye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Shreya Endapally
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Hong Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Shili Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Guosheng Liang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Maia Kinnebrew
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
3
|
Faulkner RA, Yang Y, Tsien J, Qin T, DeBose-Boyd RA. Direct binding to sterols accelerates endoplasmic reticulum-associated degradation of HMG CoA reductase. Proc Natl Acad Sci U S A 2024; 121:e2318822121. [PMID: 38319967 PMCID: PMC10873557 DOI: 10.1073/pnas.2318822121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
The maintenance of cholesterol homeostasis is crucial for normal function at both the cellular and organismal levels. Two integral membrane proteins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and Scap, are key targets of a complex feedback regulatory system that operates to ensure cholesterol homeostasis. HMGCR catalyzes the rate-limiting step in the transformation of the 2-carbon precursor acetate to 27-carbon cholesterol. Scap mediates proteolytic activation of sterol regulatory element-binding protein-2 (SREBP-2), a membrane-bound transcription factor that controls expression of genes involved in the synthesis and uptake of cholesterol. Sterol accumulation triggers binding of HMGCR to endoplasmic reticulum (ER)-localized Insig proteins, leading to the enzyme's ubiquitination and proteasome-mediated ER-associated degradation (ERAD). Sterols also induce binding of Insigs to Scap, which leads to sequestration of Scap and its bound SREBP-2 in the ER, thereby preventing proteolytic activation of SREBP-2 in the Golgi. The oxygenated cholesterol derivative 25-hydroxycholesterol (25HC) and the methylated cholesterol synthesis intermediate 24,25-dihydrolanosterol (DHL) differentially modulate HMGCR and Scap. While both sterols promote binding of HMGCR to Insigs for ubiquitination and subsequent ERAD, only 25HC inhibits the Scap-mediated proteolytic activation of SREBP-2. We showed previously that 1,1-bisphosphonate esters mimic DHL, accelerating ERAD of HMGCR while sparing SREBP-2 activation. Building on these results, our current studies reveal specific, Insig-independent photoaffinity labeling of HMGCR by photoactivatable derivatives of the 1,1-bisphosphonate ester SRP-3042 and 25HC. These findings disclose a direct sterol binding mechanism as the trigger that initiates the HMGCR ERAD pathway, providing valuable insights into the intricate mechanisms that govern cholesterol homeostasis.
Collapse
Affiliation(s)
- Rebecca A. Faulkner
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| | - Yangyan Yang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| | - Jet Tsien
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| | - Tian Qin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| | - Russell A. DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| |
Collapse
|
4
|
Liimatta J, Curschellas E, Altinkilic EM, Naamneh Elzenaty R, Augsburger P, du Toit T, Voegel CD, Breault DT, Flück CE, Pignatti E. Adrenal Abcg1 Controls Cholesterol Flux and Steroidogenesis. Endocrinology 2024; 165:bqae014. [PMID: 38301271 PMCID: PMC10863561 DOI: 10.1210/endocr/bqae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Cholesterol is the precursor of all steroids, but how cholesterol flux is controlled in steroidogenic tissues is poorly understood. The cholesterol exporter ABCG1 is an essential component of the reverse cholesterol pathway and its global inactivation results in neutral lipid redistribution to tissue macrophages. The function of ABCG1 in steroidogenic tissues, however, has not been explored. To model this, we inactivated Abcg1 in the mouse adrenal cortex, which led to an adrenal-specific increase in transcripts involved in cholesterol uptake and de novo synthesis. Abcg1 inactivation did not affect adrenal cholesterol content, zonation, or serum lipid profile. Instead, we observed a moderate increase in corticosterone production that was not recapitulated by the inactivation of the functionally similar cholesterol exporter Abca1. Altogether, our data imply that Abcg1 controls cholesterol uptake and biosynthesis and regulates glucocorticoid production in the adrenal cortex, introducing the possibility that ABCG1 variants may account for physiological or subclinical variation in stress response.
Collapse
Affiliation(s)
- Jani Liimatta
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Kuopio Pediatric Research Unit (KuPRU), University of Eastern Finland and Kuopio University Hospital, Kuopio 70200, Finland
| | - Evelyn Curschellas
- Department of Chemistry, Biochemistry and Pharmacy, Medical Faculty, University of Bern, Bern 3010, Switzerland
| | - Emre Murat Altinkilic
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Rawda Naamneh Elzenaty
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Philipp Augsburger
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Therina du Toit
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Clarissa D Voegel
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - David T Breault
- Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Emanuele Pignatti
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
5
|
Zhu Y, Lei L, Wang X, Jiang Q, Loor JJ, Kong F, Chen L, Li J, Zhao C, Liu M, Liu G, Li X. Low abundance of insulin-induced gene 1 contributes to SREBP-1c processing and hepatic steatosis in dairy cows with severe fatty liver. J Dairy Sci 2023; 106:5626-5635. [PMID: 37291038 DOI: 10.3168/jds.2022-22895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/09/2023] [Indexed: 06/10/2023]
Abstract
Fatty liver is a major metabolic disorder of high-producing dairy cows during the transition period. In nonruminants, it is well established that insulin-induced gene 1 (INSIG1) plays a crucial role in regulating hepatic lipogenesis by controlling the anchoring of sterol regulatory element-binding protein 1 (SREBP-1) on the endoplasmic reticulum along with SREBP cleavage-activating protein (SCAP). Whether the INSIG1-SCAP-SREBP-1c transport axis is affected in cows experiencing fatty liver is unknown. Thus, the aim of this study was to investigate the potential role of INSIG1-SCAP-SREBP-1c axis in the progression of fatty liver in dairy cows. For in vivo experiments, 24 dairy cows at the start of their fourth lactation (median; range 3-5) and 8 d in milk (median; range 4-12 d) were selected into a healthy group [n = 12; triglyceride (TG) content <1%] and a severe fatty liver group (n = 12; TG content >10%) according to their hepatic TG content. Blood samples were collected for detecting serum concentrations of free fatty acids, β-hydroxybutyrate, and glucose. Compared with healthy cows, cows with severe fatty liver had higher serum concentrations of β-hydroxybutyrate and free fatty acids and lower concentration of glucose. Liver biopsies were used to detect the status of INSIG1-SCAP-SREBP-1c axis, and the mRNA expression of SREBP-1c-target lipogenic genes acetyl-CoA carboxylase α (ACACA), fatty acid synthase (FASN), and diacylglycerol acyltransferase 1 (DGAT1). Cows with severe fatty liver had lower protein expression of INSIG1 in the hepatocyte endoplasmic reticulum fraction, greater protein expression of SCAP and precursor SREBP-1c in the hepatocyte Golgi fraction, and greater protein expression of mature SREBP-1c in the hepatocyte nuclear fraction. In addition, the mRNA expression of SREBP-1c-target lipogenic genes ACACA, FASN, and DGAT1 was greater in the liver of dairy cows with severe fatty liver. In vitro experiments were conducted on hepatocytes isolated from 5 healthy 1-d-old female Holstein calves, and hepatocytes from each calf were run independently. First, hepatocytes were treated with 0, 200, or 400 μM palmitic acid (PA) for 12 h. Exogenous PA treatment decreased INSIG1 protein abundance, enhanced the endoplasmic reticulum to Golgi export of SCAP-precursor SREBP-1c complex and the nuclear translocation of mature SREBP-1c, all of which was associated with increased transcriptional activation of lipogenic genes and TG synthesis. Second, hepatocytes were transfected with INSIG1-overexpressing adenovirus for 48 h and treated with 400 μM PA 12 h before the end of transfection. Overexpressing INSIG1 inhibited PA-induced SREBP-1c processing, upregulation of lipogenic genes, and TG synthesis in hepatocytes. Overall, the present in vivo and in vitro results indicated that the low abundance of INSIG1 contributed to SREBP-1c processing and hepatic steatosis in dairy cows. Thus, the INSIG1-SCAP-SREBP-1c axis may be a novel target for treatment of fatty liver in dairy cows.
Collapse
Affiliation(s)
- Yiwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinghui Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Fanrong Kong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Linfang Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jinxia Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chenchen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Menglin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
6
|
Kennewick KT, Bensinger SJ. Decoding the crosstalk between mevalonate metabolism and T cell function. Immunol Rev 2023; 317:71-94. [PMID: 36999733 DOI: 10.1111/imr.13200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
The mevalonate pathway is an essential metabolic pathway in T cells regulating development, proliferation, survival, differentiation, and effector functions. The mevalonate pathway is a complex, branched pathway composed of many enzymes that ultimately generate cholesterol and nonsterol isoprenoids. T cells must tightly control metabolic flux through the branches of the mevalonate pathway to ensure sufficient isoprenoids and cholesterol are available to meet cellular demands. Unbalanced metabolite flux through the sterol or the nonsterol isoprenoid branch is metabolically inefficient and can have deleterious consequences for T cell fate and function. Accordingly, there is tight regulatory control over metabolic flux through the branches of this essential lipid synthetic pathway. In this review we provide an overview of how the branches of the mevalonate pathway are regulated in T cells and discuss our current understanding of the relationship between mevalonate metabolism, cholesterol homeostasis and T cell function.
Collapse
Affiliation(s)
- Kelly T Kennewick
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Steven J Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Saito H, Tachiura W, Nishimura M, Shimizu M, Sato R, Yamauchi Y. Hydroxylation site-specific and production-dependent effects of endogenous oxysterols on cholesterol homeostasis: Implications for SREBP-2 and LXR. J Biol Chem 2022; 299:102733. [PMID: 36423680 PMCID: PMC9792893 DOI: 10.1016/j.jbc.2022.102733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
The cholesterol metabolites, oxysterols, play central roles in cholesterol feedback control. They modulate the activity of two master transcription factors that control cholesterol homeostatic responses, sterol regulatory element-binding protein-2 (SREBP-2) and liver X receptor (LXR). Although the role of exogenous oxysterols in regulating these transcription factors has been well established, whether endogenously synthesized oxysterols similarly control both SREBP-2 and LXR remains poorly explored. Here, we carefully validate the role of oxysterols enzymatically synthesized within cells in cholesterol homeostatic responses. We first show that SREBP-2 responds more sensitively to exogenous oxysterols than LXR in Chinese hamster ovary cells and rat primary hepatocytes. We then show that 25-hydroxycholesterol (25-HC), 27-hydroxycholesterol, and 24S-hydroxycholesterol endogenously synthesized by CH25H, CYP27A1, and CYP46A1, respectively, suppress SREBP-2 activity at different degrees by stabilizing Insig (insulin-induced gene) proteins, whereas 7α-hydroxycholesterol has little impact on SREBP-2. These results demonstrate the role of site-specific hydroxylation of endogenous oxysterols. In contrast, the expression of CH25H, CYP46A1, CYP27A1, or CYP7A1 fails to induce LXR target gene expression. We also show the 25-HC production-dependent suppression of SREBP-2 using a tetracycline-inducible CH25H expression system. To induce 25-HC production physiologically, murine macrophages are stimulated with a Toll-like receptor 4 ligand, and its effect on SREBP-2 and LXR is examined. The results also suggest that de novo synthesis of 25-HC preferentially regulates SREBP-2 activity. Finally, we quantitatively determine the specificity of the four cholesterol hydroxylases in living cells. Based on our current findings, we conclude that endogenous side-chain oxysterols primarily regulate the activity of SREBP-2, not LXR.
Collapse
Affiliation(s)
- Hodaka Saito
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wakana Tachiura
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mizuki Nishimura
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yoshio Yamauchi
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan,For correspondence: Yoshio Yamauchi
| |
Collapse
|
8
|
Khan Z, Nath N, Rauf A, Emran TB, Mitra S, Islam F, Chandran D, Barua J, Khandaker MU, Idris AM, Wilairatana P, Thiruvengadam M. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem Biol Interact 2022; 365:110117. [PMID: 35995256 DOI: 10.1016/j.cbi.2022.110117] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/17/2022]
Abstract
Currently, available therapeutic medications are both costly as well as not entirely promising in terms of potency. So, new candidates from natural resources are of research interest to find new alternative therapeutics. A well-known combination is a β-sitosterol, a plant-derived nutrient with anticancer properties against breast, prostate, colon, lung, stomach, and leukemia. Studies have shown that β-sitosterol interferes with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis, anti-inflammatory, anticancer, hepatoprotective, antioxidant, cardioprotective, and antidiabetic effects have been discovered during pharmacological screening without significant toxicity. The pharmacokinetic profile of β-sitosterol has also been extensively investigated. However, a comprehensive review of the pharmacology, phytochemistry and analytical methods of β-sitosterol is desired. Because β-sitosterol is a significant component of most plant materials, humans use it for various reasons, and numerous β-sitosterol-containing products have been commercialized. To offset the low efficacy of β-sitosterol, designing β-sitosterol delivery for "cancer cell-specific" therapy holds great potential. Delivery of β-sitosterol via liposomes is a demonstration that has shown great promise. But further research has not progressed on the drug delivery of β-sitosterol or how it can enhance β-sitosterol mediated anti-inflammatory activity, thus making β-sitosterol an orphan nutraceutical. Therefore, extensive research on β-sitosterol as an anticancer nutraceutical is recommended.
Collapse
Affiliation(s)
- Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23430, Khyber Pakhtunkhwa, Pakistan.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, 642109, India
| | - Jackie Barua
- Department of Biology, University of Louisiana at Lafayette, 410 East Saint Mary Boulevard, Lafayette, LA, 70503, USA
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, South Korea; Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India.
| |
Collapse
|
9
|
Watanabe Y, Sasaki T, Miyoshi S, Shimizu M, Yamauchi Y, Sato R. Insulin-induced genes INSIG1 and INSIG2 mediate oxysterol-dependent activation of the PERK-eIF2α-ATF4 axis. J Biol Chem 2021; 297:100989. [PMID: 34298014 PMCID: PMC8363831 DOI: 10.1016/j.jbc.2021.100989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/06/2022] Open
Abstract
Insulin-induced genes (INSIGs) encode endoplasmic reticulum–resident proteins that regulate intracellular cholesterol metabolism. Oxysterols are oxygenated derivatives of cholesterol, some of which orchestrate lipid metabolism via interaction with INSIGs. Recently, it was reported that expression of activating transcription factor-4 (ATF4) was induced by certain oxysterols; the precise of mechanism is unclear. Herein, we show that INSIGs mediate ATF4 upregulation upon interaction with oxysterol. Oxysterols that possess a high affinity for INSIG, such as 27- and 25-hydroxycholesterol (25HC), markedly induced the increase of ATF4 protein when compared with other oxysterols. In addition, ATF4 upregulation by these oxysterols was attenuated in INSIG1/2-deficient Chinese hamster ovary cells and recovered by either INSIG1 or INSIG2 rescue. Mechanistic studies revealed that the binding of 25HC to INSIG is critical for increased ATF4 protein via activation of protein kinase RNA-activated–like ER kinase and eukaryotic translation initiation factor 2α. Knockout of INSIG1 or INSIG2 in human hepatoma Huh7 cells attenuated ATF4 protein upregulation, indicating that only one of the endogenous INSIGs, unlike overexpression of intrinsic INSIG1 or INSIG2, was insufficient for ATF4 induction. Furthermore, ATF4 proactively upregulated the cell death–inducible gene expression, such as Chop, Chac1, and Trb3, thereby markedly reducing cell viability with 25HC. These findings support a model whereby that INSIGs sense an increase in oxysterol in the endoplasmic reticulum and induce an increase of ATF4 protein via the protein kinase RNA-activated–like ER kinase–eukaryotic translation initiation factor 2α pathway, thereby promoting cell death.
Collapse
Affiliation(s)
- Yuichi Watanabe
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Takashi Sasaki
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Shoko Miyoshi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yoshio Yamauchi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan; Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
10
|
Kober DL, Radhakrishnan A, Goldstein JL, Brown MS, Clark LD, Bai XC, Rosenbaum DM. Scap structures highlight key role for rotation of intertwined luminal loops in cholesterol sensing. Cell 2021; 184:3689-3701.e22. [PMID: 34139175 PMCID: PMC8277531 DOI: 10.1016/j.cell.2021.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/08/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022]
Abstract
The cholesterol-sensing protein Scap induces cholesterol synthesis by transporting membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) from the endoplasmic reticulum (ER) to the Golgi apparatus for proteolytic activation. Transport requires interaction between Scap's two ER luminal loops (L1 and L7), which flank an intramembrane sterol-sensing domain (SSD). Cholesterol inhibits Scap transport by binding to L1, which triggers Scap's binding to Insig, an ER retention protein. Here we used cryoelectron microscopy (cryo-EM) to elucidate two structures of full-length chicken Scap: (1) a wild-type free of Insigs and (2) mutant Scap bound to chicken Insig without cholesterol. Strikingly, L1 and L7 intertwine tightly to form a globular domain that acts as a luminal platform connecting the SSD to the rest of Scap. In the presence of Insig, this platform undergoes a large rotation accompanied by rearrangement of Scap's transmembrane helices. We postulate that this conformational change halts Scap transport of SREBPs and inhibits cholesterol synthesis.
Collapse
Affiliation(s)
- Daniel L Kober
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Joseph L Goldstein
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael S Brown
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lindsay D Clark
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao-Chen Bai
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Li MX, Yang Y, Zhao Q, Wu Y, Song L, Yang H, He M, Gao H, Song BL, Luo J, Rao Y. Degradation versus Inhibition: Development of Proteolysis-Targeting Chimeras for Overcoming Statin-Induced Compensatory Upregulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase. J Med Chem 2020; 63:4908-4928. [DOI: 10.1021/acs.jmedchem.0c00339] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mei-Xin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yiqing Yang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P.R. China
| | - Qiuye Zhao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P.R. China
| | - Yue Wu
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P.R. China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences PHOENIX Center, Beijing Institute of LifeOmics, Beijing 102206, P.R. China
| | - Haiyan Yang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Ming He
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P.R. China
| | - Hongying Gao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P.R. China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
12
|
Kuan YC, Takahashi Y, Maruyama T, Shimizu M, Yamauchi Y, Sato R. Ring finger protein 5 activates sterol regulatory element-binding protein 2 (SREBP2) to promote cholesterol biosynthesis via inducing polyubiquitination of SREBP chaperone SCAP. J Biol Chem 2020; 295:3918-3928. [PMID: 32054686 DOI: 10.1074/jbc.ra119.011849] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Sterol regulatory element-binding protein 2 (SREBP2) is the master transcription factor that regulates cholesterol metabolism. SREBP2 activation is regulated by SREBP chaperone SCAP. Here we show that ring finger protein 5 (RNF5), an endoplasmic reticulum-anchored E3 ubiquitin ligase, mediates the Lys-29-linked polyubiquitination of SCAP and thereby activates SREBP2. RNF5 knockdown inhibited SREBP2 activation and reduced cholesterol biosynthesis in human hepatoma cells, and RNF5 overexpression activated SREBP2. Mechanistic studies revealed that RNF5 binds to the transmembrane domain of SCAP and ubiquitinates the Lys-305 located in cytosolic loop 2 of SCAP. Moreover, the RNF5-mediated ubiquitination enhanced an interaction between SCAP luminal loop 1 and loop 7, a crucial event for SREBP2 activation. Notably, an overexpressed K305R SCAP variant failed to restore the SREBP2 pathway in SCAP-deficient cell lines. These findings define a new mechanism by which an ubiquitination-induced SCAP conformational change regulates cholesterol biosynthesis.
Collapse
Affiliation(s)
- Yen-Chou Kuan
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yu Takahashi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Maruyama
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshio Yamauchi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ryuichiro Sato
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan .,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
13
|
Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2019; 21:225-245. [DOI: 10.1038/s41580-019-0190-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
|
14
|
Sun JJ, Zheng LG, Chen CY, Zhang JY, You CH, Zhang QH, Ma HY, Monroig Ó, Tocher DR, Wang SQ, Li YY. MicroRNAs Involved in the Regulation of LC-PUFA Biosynthesis in Teleosts: miR-33 Enhances LC-PUFA Biosynthesis in Siganus canaliculatus by Targeting insig1 which in Turn Upregulates srebp1. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:475-487. [PMID: 31020472 DOI: 10.1007/s10126-019-09895-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Post-transcriptional regulatory mechanisms play important roles in the regulation of LC-PUFA biosynthesis. Our previous study revealed that miR-33 could increase the expression of fatty acyl desaturases (fads2) in the rabbitfish Siganus canaliculatus, but the specific mechanism is unknown. Here, we confirmed that miR-33 could target the 3'UTR of insulin-induced gene 1 (insig1), resulting in downregulation of its protein level in the rabbitfish hepatocyte line (SCHL). In vitro overexpression of miR-33 inhibited the mRNA level of insig1 and increased the mRNA levels of Δ6Δ5 fads2 and elovl5, as well as srebp1. In SCHL cells, proteolytic activation of sterol-regulatory-element-binding protein-1 (Srebp1) was blocked by Insig1, with overexpression of insig1 decreasing mature Srebp1 level, while inhibition of insig1 led to the opposite effect. Srebp1 could enhance the promoter activity of Δ6Δ5 fads2 and elovl5, whose expression levels decreased with knockdown of srebp1 in SCHL. Overexpression of miR-33 also resulted in a higher conversion of 18:3n-3 to 18:4n-3 and 20:5n-3 to 22:5n-3, linked to desaturation and elongation via Δ6Δ5 Fads2 and Elovl5, respectively. The results suggested that the mechanism by which miR-33 regulates LC-PUFA biosynthesis in rabbitfish is through enhancing the expression of srebp1 by targeting insig1. The findings here provide more insight to the mechanism of miRNAs involvement in the regulation of LC-PUFA biosynthesis in teleosts.
Collapse
Affiliation(s)
- Jun Jun Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Li Guo Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Cui Ying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jin Ying Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Cui Hong You
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Qing Hao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Hong Yu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Shu Qi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| | - Yuan You Li
- School of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Jiang SY, Li H, Tang JJ, Wang J, Luo J, Liu B, Wang JK, Shi XJ, Cui HW, Tang J, Yang F, Qi W, Qiu WW, Song BL. Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nat Commun 2018; 9:5138. [PMID: 30510211 PMCID: PMC6277434 DOI: 10.1038/s41467-018-07590-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Statins are inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol biosynthesis, and have been clinically used to treat cardiovascular disease. However, a paradoxical increase of reductase protein following statin treatment may attenuate the effect and increase the side effects. Here we present a previously unexplored strategy to alleviate statin-induced reductase accumulation by inducing its degradation. Inspired by the observations that cholesterol intermediates trigger reductase degradation, we identify a potent degrader, namely Cmpd 81, through structure-activity relationship analysis of sterol analogs. Cmpd 81 stimulates ubiquitination and degradation of reductase in an Insig-dependent manner, thus dramatically reducing protein accumulation induced by various statins. Cmpd 81 can act alone or synergistically with statin to lower cholesterol and reduce atherosclerotic plaques in mice. Collectively, our work suggests that inducing reductase degradation by Cmpd 81 or similar chemicals alone or in combination with statin therapy can be a promising strategy for treating cardiovascular disease.
Collapse
Affiliation(s)
- Shi-You Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Hui Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jing-Jie Tang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jie Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Bing Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jin-Kai Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Xiong-Jie Shi
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Hai-Wei Cui
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Wei Qi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
16
|
Cheng C, Geng F, Cheng X, Guo D. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond) 2018; 38:27. [PMID: 29784041 PMCID: PMC5993136 DOI: 10.1186/s40880-018-0301-4] [Citation(s) in RCA: 453] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of lipid metabolism is a newly recognized hallmark of malignancy. Increased lipid uptake, storage and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. Lipids constitute the basic structure of membranes and also function as signaling molecules and energy sources. Sterol regulatory element-binding proteins (SREBPs), a family of membrane-bound transcription factors in the endoplasmic reticulum, play a central role in the regulation of lipid metabolism. Recent studies have revealed that SREBPs are highly up-regulated in various cancers and promote tumor growth. SREBP cleavage-activating protein is a key transporter in the trafficking and activation of SREBPs as well as a critical glucose sensor, thus linking glucose metabolism and de novo lipid synthesis. Targeting altered lipid metabolic pathways has become a promising anti-cancer strategy. This review summarizes recent progress in our understanding of lipid metabolism regulation in malignancy, and highlights potential molecular targets and their inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Chunming Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Feng Geng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Xiang Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
17
|
Zhang Q, Qin W, Yang L, An J, Zhang X, Hong H, Xu L, Wang Y. Microcystis bloom containing microcystin-LR induces type 2 diabetes mellitus. Toxicol Lett 2018; 294:87-94. [PMID: 29777831 DOI: 10.1016/j.toxlet.2018.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/03/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
Epidemiological data from Lake Taihu showed significantly higher incidences of type 2 diabetes mellitus (T2DM) than in other areas of China. This may be related to the occurrence of a Microcystis bloom in Lake Taihu in the summer and autumn every year. The objective of this study is to investigate whether the contaminated water from the Microcystis bloom and the derivative pollutant microcystin-LR (MC-LR) can explain the higher incidences of T2DM. Healthy male mice were fed with water from different regions of Lake Taihu, and were either acutely or chronically exposed to MC-LR through oral administration or intraperitoneal injection. Serum lipid profiles were determined, and the effects on T2DM-related gene expression and insulin receptor signaling pathway were investigated. Intraperitoneal glucose tolerance (IPGTT) and insulin resistance (IRT) tests were implemented, and the functions of pancreatic islet and β-cell were also evaluated. The results showed that both water sampled from the region with a Microcysis bloom and those containing MC-LR altered the serum glucide and lipid profiles in mice after exposure. The exposure to a Microcysis bloom water affected the expression T2DM-related genes: up-regulated the mRNA levels of FASn, ACACA, G6pc, LPL, and Insig2, and down-regulated the mRNA level of PEPCK and Gsk-3β. Both acute and chronic exposure of MC-LR, even at very low concentrations (1 μg/L), impaired the insulin receptor signalling pathway and induced hyperinsulinemia and insulin resistance in mice. In this study, the most important intracellular target of MC-LR was found to be hetapocellular mitochondria. Thus, exposure to Microcystis bloom water containing microcystin-LR can induce the incidence of T2DM, by impairing the function of mitochondria by microcystin-LR. The study suggests a review of the risk assessment concerning 1 μg/L MC-LR as the reference dose in surface water.
Collapse
Affiliation(s)
- Qiong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom
| | - Wendi Qin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Jing An
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Lizhi Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Yaping Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
18
|
Jiang LY, Jiang W, Tian N, Xiong YN, Liu J, Wei J, Wu KY, Luo J, Shi XJ, Song BL. Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase. J Biol Chem 2018; 293:4047-4055. [PMID: 29374057 PMCID: PMC5857978 DOI: 10.1074/jbc.ra117.001260] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/15/2018] [Indexed: 12/21/2022] Open
Abstract
Cholesterol biosynthesis is tightly regulated in the cell. For example, high sterol concentrations can stimulate degradation of the rate-limiting cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, HMGCR). HMGCR is broken down by the endoplasmic reticulum membrane-associated protein complexes consisting of insulin-induced genes (Insigs) and the E3 ubiquitin ligase gp78. Here we found that HMGCR degradation is partially blunted in Chinese hamster ovary (CHO) cells lacking gp78 (gp78-KO). To identify other ubiquitin ligase(s) that may function together with gp78 in triggering HMGCR degradation, we performed a small-scale short hairpin RNA-based screening targeting endoplasmic reticulum-localized E3s. We found that knockdown of both ring finger protein 145 (Rnf145) and gp78 genes abrogates sterol-induced degradation of HMGCR in CHO cells. We also observed that RNF145 interacts with Insig-1 and -2 proteins and ubiquitinates HMGCR. Moreover, the tetrapeptide sequence YLYF in the sterol-sensing domain and the Cys-537 residue in the RING finger domain were essential for RNF145 binding to Insigs and RNF145 E3 activity, respectively. Of note, amino acid substitutions in the YLYF or of Cys-537 completely abolished RNF145-mediated HMGCR degradation. In summary, our study reveals that RNF145, along with gp78, promotes HMGCR degradation in response to elevated sterol levels and identifies residues essential for RNF145 function.
Collapse
Affiliation(s)
- Lu-Yi Jiang
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wei Jiang
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Na Tian
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yan-Ni Xiong
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jie Liu
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jian Wei
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Kai-Yue Wu
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jie Luo
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xiong-Jie Shi
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Bao-Liang Song
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
19
|
Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annu Rev Biochem 2017; 87:783-807. [PMID: 28841344 DOI: 10.1146/annurev-biochem-062917-011852] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Scap is a polytopic membrane protein that functions as a molecular machine to control the cholesterol content of membranes in mammalian cells. In the 21 years since our laboratory discovered Scap, we have learned how it binds sterol regulatory element-binding proteins (SREBPs) and transports them from the endoplasmic reticulum (ER) to the Golgi for proteolytic processing. Proteolysis releases the SREBP transcription factor domains, which enter the nucleus to promote cholesterol synthesis and uptake. When cholesterol in ER membranes exceeds a threshold, the sterol binds to Scap, triggering several conformational changes that prevent the Scap-SREBP complex from leaving the ER. As a result, SREBPs are no longer processed, cholesterol synthesis and uptake are repressed, and cholesterol homeostasis is restored. This review focuses on the four domains of Scap that undergo concerted conformational changes in response to cholesterol binding. The data provide a molecular mechanism for the control of lipids in cell membranes.
Collapse
Affiliation(s)
- Michael S Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ;
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ;
| | - Joseph L Goldstein
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ;
| |
Collapse
|
20
|
Wang YJ, Bian Y, Luo J, Lu M, Xiong Y, Guo SY, Yin HY, Lin X, Li Q, Chang CCY, Chang TY, Li BL, Song BL. Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation. Nat Cell Biol 2017; 19:808-819. [PMID: 28604676 PMCID: PMC5518634 DOI: 10.1038/ncb3551] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/10/2017] [Indexed: 12/26/2022]
Abstract
Ubiquitin linkage to cysteine is an unconventional modification targeting protein for degradation. However, the physiological regulation of cysteine ubiquitylation is still mysterious. Here we found that ACAT2, a cellular enzyme converting cholesterol and fatty acid to cholesteryl esters, was ubiquitylated on Cys277 for degradation when the lipid level was low. gp78-Insigs catalysed Lys48-linked polyubiquitylation on this Cys277. A high concentration of cholesterol and fatty acid, however, induced cellular reactive oxygen species (ROS) that oxidized Cys277, resulting in ACAT2 stabilization and subsequently elevated cholesteryl esters. Furthermore, ACAT2 knockout mice were more susceptible to high-fat diet-associated insulin resistance. By contrast, expression of a constitutively stable form of ACAT2 (C277A) resulted in higher insulin sensitivity. Together, these data indicate that lipid-induced stabilization of ACAT2 ameliorates lipotoxicity from excessive cholesterol and fatty acid. This unconventional cysteine ubiquitylation of ACAT2 constitutes an important mechanism for sensing lipid-overload-induced ROS and fine-tuning lipid homeostasis.
Collapse
Affiliation(s)
- Yong-Jian Wang
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yan Bian
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ming Lu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Ying Xiong
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Shu-Yuan Guo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui-Yong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qin Li
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Catherine CY Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Ta-Yuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Bo-Liang Li
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Gao Y, Zhou Y, Goldstein JL, Brown MS, Radhakrishnan A. Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis. J Biol Chem 2017; 292:8729-8737. [PMID: 28377508 DOI: 10.1074/jbc.m117.783894] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Indexed: 01/28/2023] Open
Abstract
Scap is a polytopic protein of endoplasmic reticulum (ER) membranes that transports sterol regulatory element-binding proteins to the Golgi complex for proteolytic activation. Cholesterol accumulation in ER membranes prevents Scap transport and decreases cholesterol synthesis. Previously, we provided evidence that cholesterol inhibition is initiated when cholesterol binds to loop 1 of Scap, which projects into the ER lumen. Within cells, this binding causes loop 1 to dissociate from loop 7, another luminal Scap loop. However, we have been unable to demonstrate this dissociation when we added cholesterol to isolated complexes of loops 1 and 7. We therefore speculated that the dissociation requires a conformational change in the intervening polytopic sequence separating loops 1 and 7. Here we demonstrate such a change using a protease protection assay in sealed membrane vesicles. In the absence of cholesterol, trypsin or proteinase K cleaved cytosolic loop 4, generating a protected fragment that we visualized with a monoclonal antibody against loop 1. When cholesterol was added to these membranes, cleavage in loop 4 was abolished. Because loop 4 is part of the so-called sterol-sensing domain separating loops 1 and 7, these results support the hypothesis that cholesterol binding to loop 1 alters the conformation of the sterol-sensing domain. They also suggest that this conformational change helps transmit the cholesterol signal from loop 1 to loop 7, thereby allowing separation of the loops and facilitating the feedback inhibition of cholesterol synthesis. These insights suggest a new structural model for cholesterol-mediated regulation of Scap activity.
Collapse
Affiliation(s)
- Yansong Gao
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Yulian Zhou
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Joseph L Goldstein
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Michael S Brown
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Arun Radhakrishnan
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
22
|
Ru P, Guo D. microRNA-29 mediates a novel negative feedback loop to regulate SCAP/SREBP-1 and lipid metabolism. RNA & DISEASE 2017; 4. [PMID: 28664184 DOI: 10.14800/rd.1525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The membrane-bound transcription factors, SREBPs (sterol regulatory element-binding proteins), play a central role in regulating lipid metabolism. The transcriptional activation of SREBPs requires the key protein SCAP (SREBP-cleavage activating protein) to translocate their precursors from the endoplasmic reticulum to the Golgi for subsequent proteolytic activation, a process tightly regulated by a cholesterol-mediated negative feedback loop. Our previous work showed that the SCAP/SREBP-1 pathway is significantly upregulated in human glioblastoma (GBM), the most deadly brain cancer, and that glucose-mediated N-glycosylation of SCAP is a prerequisite step for SCAP/SREBP trafficking. More recently, we demonstrated that microRNA-29 (miR-29) mediates a previously unrecognized negative feedback loop in SCAP/SREBP-1 signaling to control lipid metabolism. We found that SREBP-1, functioning as a transcription factor, promotes the expression of the miR-29 family members, miR-29a, -29b and -29c. In turn, the miR-29 isoforms reversely repress the expression of SCAP and SREBP-1. Moreover, treatment with miR-29 mimics effectively suppressed GBM tumor growth by inhibiting SCAP/SREBP-1 and de novo lipid synthesis. These findings, recently published in Cell Reports, strongly suggest that delivery of miR-29 in vivo may be a promising approach to treat cancer and metabolic diseases by suppressing SCAP/SREBP-1-regulated lipid metabolism.
Collapse
Affiliation(s)
- Peng Ru
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Abstract
Cellular cholesterol levels are intricately controlled to maintain homeostasis. Here, we describe ways in which cellular cholesterol status can be manipulated for the study of cholesterol homeostasis, including sterol starvation (by culturing cells in lipoprotein-deficient serum and pretreating/treating with the cholesterol-lowering drug, statin) and sterol enrichment (using cholesterol complexed to cyclodextrin, and low-density lipoprotein). We also describe how to prepare lipoprotein-deficient serum and complex cholesterol to cyclodextrin.
Collapse
Affiliation(s)
- Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia
| | - Ingrid C Gelissen
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia.
| |
Collapse
|
24
|
Koskinen S, Kampman O, Solismaa A, Lyytikäinen LP, Seppälä N, Viikki M, Hämäläinen M, Moilanen E, Mononen N, Lehtimäki T, Leinonen E. INSIG2 polymorphism and weight gain, dyslipidemia and serum adiponectin in Finnish patients with schizophrenia treated with clozapine. Pharmacogenomics 2016; 17:1987-1997. [DOI: 10.2217/pgs-2016-0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate INSIG2's association with obesity, weight change and serum lipid profile during clozapine treatment. Materials & methods: Subjects with schizophrenia (n = 190) were genotyped, identifying seven SNPs. Genetic risk scores (GRSs) were calculated to adiponectin, high-density lipoprotein cholesterol, triglycerides and weight gain. Results: In the model for weight gain, SNPs rs12151787, rs17047733 and rs10490626 were selected. Explanatory variables were BMI (p = 5.05 × 10-5), age (p = 0.003) and GRS (p = 2.81 × 10-5, p = 0.0002 after permutation). No GRS resulted for adiponectin or high-density lipoprotein cholesterol. Rs2161829 and rs10490620 were selected for triglycerides; this GRS was insignificant after permutation. Conclusion: INSIG2 plays a role in weight gain and obesity during clozapine treatment.
Collapse
Affiliation(s)
- Suvi Koskinen
- School of Medicine, University of Tampere, 33014 Tampere, Finland
| | - Olli Kampman
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- Department of Psychiatry, Seinäjoki Hospital District, Seinäjoki, Finland
| | - Anssi Solismaa
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- Department of Psychiatry, Seinäjoki Hospital District, Seinäjoki, Finland
| | - Leo-Pekka Lyytikäinen
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- University of Tampere, School of Medicine, Department of Clinical Chemistry and Fimlab Laboratories, Tampere, Finland
| | - Niko Seppälä
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| | - Merja Viikki
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- Tampere Mental Health Centre, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, School of Medicine & Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, School of Medicine & Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Nina Mononen
- University of Tampere, School of Medicine, Department of Clinical Chemistry and Fimlab Laboratories, Tampere, Finland
| | - Terho Lehtimäki
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- University of Tampere, School of Medicine, Department of Clinical Chemistry and Fimlab Laboratories, Tampere, Finland
| | - Esa Leinonen
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
25
|
Shao W, Machamer CE, Espenshade PJ. Fatostatin blocks ER exit of SCAP but inhibits cell growth in a SCAP-independent manner. J Lipid Res 2016; 57:1564-73. [PMID: 27324795 DOI: 10.1194/jlr.m069583] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 12/30/2022] Open
Abstract
Sterol regulatory element-binding protein (SREBP) transcription factors are central regulators of cellular lipid homeostasis and activate expression of genes required for fatty acid, triglyceride, and cholesterol synthesis and uptake. SREBP cleavage activating protein (SCAP) plays an essential role in SREBP activation by mediating endoplasmic reticulum (ER)-to-Golgi transport of SREBP. In the Golgi, membrane-bound SREBPs are cleaved sequentially by the site-1 and site-2 proteases. Recent studies have shown a requirement for the SREBP pathway in the development of fatty liver disease and tumor growth, making SCAP a target for drug development. Fatostatin is a chemical inhibitor of the SREBP pathway that directly binds SCAP and blocks its ER-to-Golgi transport. In this study, we determined that fatostatin blocks ER exit of SCAP and showed that inhibition is independent of insulin-induced gene proteins, which function to retain the SCAP-SREBP complex in the ER. Fatostatin potently inhibited cell growth, but unexpectedly exogenous lipids failed to rescue proliferation of fatostatin-treated cells. Furthermore, fatostatin inhibited growth of cells lacking SCAP Using a vesicular stomatitis virus glycoprotein (VSVG) trafficking assay, we demonstrated that fatostatin delays ER-to-Golgi transport of VSVG. In summary, fatostatin inhibited SREBP activation, but fatostatin additionally inhibited cell proliferation through both lipid-independent and SCAP-independent mechanisms, possibly by general inhibition of ER-to-Golgi transport.
Collapse
Affiliation(s)
- Wei Shao
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Carolyn E Machamer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
26
|
Abstract
The endoplasmic reticulum is the port of entry for proteins into the secretory pathway and the site of synthesis for several important lipids, including cholesterol, triacylglycerol, and phospholipids. Protein production within the endoplasmic reticulum is tightly regulated by a cohort of resident machinery that coordinates the folding, modification, and deployment of secreted and integral membrane proteins. Proteins failing to attain their native conformation are degraded through the endoplasmic reticulum-associated degradation (ERAD) pathway via a series of tightly coupled steps: substrate recognition, dislocation, and ubiquitin-dependent proteasomal destruction. The same ERAD machinery also controls the flux through various metabolic pathways by coupling the turnover of metabolic enzymes to the levels of key metabolites. We review the current understanding and biological significance of ERAD-mediated regulation of lipid metabolism in mammalian cells.
Collapse
Affiliation(s)
- Julian Stevenson
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - Edmond Y Huang
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - James A Olzmann
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| |
Collapse
|
27
|
Desai AJ, Dong M, Miller LJ. Beneficial effects of β-sitosterol on type 1 cholecystokinin receptor dysfunction induced by elevated membrane cholesterol. Clin Nutr 2016; 35:1374-1379. [PMID: 27016394 DOI: 10.1016/j.clnu.2016.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The type 1 cholecystokinin receptor (CCK1R) mediates the actions of CCK to support nutritional homeostasis, including post-cibal satiety. However, elevated levels of membrane cholesterol, such as have been observed in metabolic syndrome, interfere with CCK stimulus-activity coupling at the CCK1R, thereby disrupting this important servomechanism. We hypothesize that reversal of the negative impact of cholesterol on this receptor could be useful in the management of obesity. METHODS We have studied the effects of β-sitosterol, a phytosterol structurally related to cholesterol, on CCK receptor function. This included CCK binding and biological activity at wild type CCK1R and CCK2R, as well as at CCK1R in a high cholesterol environment, and at a CCK1R mutant, Y140A, which mimics the behavior of wild type receptor in high cholesterol. RESULTS β-sitosterol (100 μM and 10 μM) significantly improved the defective signaling of the CCK1R present in high cholesterol (p < 0.05), without affecting CCK binding affinity. This effect was absent at the CCK1R present in a normal cholesterol environment, as well as at the structurally-related CCK2R. Furthermore, the cholesterol-insensitive Y140A mutant of CCK1R was resistant to the effects of β-sitosterol. CONCLUSION These data suggest that β-sitosterol affects CCK1R function in high cholesterol by competing with cholesterol at a receptor cholesterol-binding site and may shift its conformation toward normal. This phytosterol extends our understanding of the structure-activity relationships for developing a drug that can target the external surface of CCK1R. Since the concentrations of β-sitosterol shown to be effective in this study are similar to serum levels of this compound achievable during oral administration, it may be worthwhile to study possible beneficial effects of β-sitosterol in metabolic syndrome.
Collapse
Affiliation(s)
- Aditya J Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA.
| |
Collapse
|
28
|
Ochiai A, Miyata S, Shimizu M, Inoue J, Sato R. Piperine Induces Hepatic Low-Density Lipoprotein Receptor Expression through Proteolytic Activation of Sterol Regulatory Element-Binding Proteins. PLoS One 2015; 10:e0139799. [PMID: 26431033 PMCID: PMC4592265 DOI: 10.1371/journal.pone.0139799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
Elevated plasma low-density lipoprotein (LDL) cholesterol is considered as a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) uptakes plasma lipoproteins and lowers plasma LDL cholesterol, the activation of LDLR is a promising drug target for atherosclerosis. In the present study, we identified the naturally occurring alkaloid piperine, as an inducer of LDLR gene expression by screening the effectors of human LDLR promoter. The treatment of HepG2 cells with piperine increased LDLR expression at mRNA and protein levels and stimulated LDL uptake. Subsequent luciferase reporter gene assays revealed that the mutation of sterol regulatory element-binding protein (SREBP)-binding element abolished the piperine-mediated induction of LDLR promoter activity. Further, piperine treatments increased mRNA levels of several SREBP targets and mature forms of SREBPs. However, the piperine-mediated induction of the mature forms of SREBPs was not observed in SRD–15 cells, which lack insulin-induced gene–1 (Insig–1) and Insig–2. Finally, the knockdown of SREBPs completely abolished the piperine-meditated induction of LDLR gene expression in HepG2 cells, indicating that piperine stimulates the proteolytic activation of SREBP and subsequent induction of LDLR expression and activity.
Collapse
Affiliation(s)
- Ayasa Ochiai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Miyata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (JI); (RS)
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (JI); (RS)
| |
Collapse
|
29
|
Desai AJ, Dong M, Harikumar KG, Miller LJ. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function. Am J Physiol Gastrointest Liver Physiol 2015; 309:G377-86. [PMID: 26138469 PMCID: PMC4556949 DOI: 10.1152/ajpgi.00173.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 01/31/2023]
Abstract
Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation.
Collapse
Affiliation(s)
- Aditya J. Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| | - Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| |
Collapse
|
30
|
Miyata S, Inoue J, Shimizu M, Sato R. Xanthohumol Improves Diet-induced Obesity and Fatty Liver by Suppressing Sterol Regulatory Element-binding Protein (SREBP) Activation. J Biol Chem 2015; 290:20565-79. [PMID: 26140926 DOI: 10.1074/jbc.m115.656975] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 02/02/2023] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are key transcription factors that stimulate the expression of genes involved in fatty acid and cholesterol biosynthesis. Here, we demonstrate that a prenylated flavonoid in hops, xanthohumol (XN), is a novel SREBP inactivator that reduces the de novo synthesis of fatty acid and cholesterol. XN independently suppressed the maturation of SREBPs of insulin-induced genes in a manner different from sterols. Our results suggest that XN impairs the endoplasmic reticulum-to-Golgi translocation of the SREBP cleavage-activating protein (SCAP)-SREBP complex by binding to Sec23/24 and blocking SCAP/SREBP incorporation into common coated protein II vesicles. Furthermore, in diet-induced obese mice, dietary XN suppressed SREBP-1 target gene expression in the liver accompanied by a reduction of the mature form of hepatic SREBP-1, and it inhibited the development of obesity and hepatic steatosis. Altogether, our data suggest that XN attenuates the function of SREBP-1 by repressing its maturation and that it has the potential of becoming a nutraceutical food or pharmacological agent for improving metabolic syndrome.
Collapse
Affiliation(s)
- Shingo Miyata
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Jun Inoue
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Makoto Shimizu
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ryuichiro Sato
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Jiang W, Tang JJ, Miao HH, Qu YX, Qin J, Xu J, Yang J, Li BL, Song BL. Forward genetic screening for regulators involved in cholesterol synthesis using validation-based insertional mutagenesis. PLoS One 2014; 9:e112632. [PMID: 25426949 PMCID: PMC4245081 DOI: 10.1371/journal.pone.0112632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/30/2014] [Indexed: 11/18/2022] Open
Abstract
Somatic cell genetics is a powerful approach for unraveling the regulatory mechanism of cholesterol metabolism. However, it is difficult to identify the mutant gene(s) due to cells are usually mutagenized chemically or physically. To identify important genes controlling cholesterol biosynthesis, an unbiased forward genetics approach named validation-based insertional mutagenesis (VBIM) system was used to isolate and characterize the 25-hydroxycholesterol (25-HC)-resistant and SR-12813-resisitant mutants. Here we report that five mutant cell lines were isolated. Among which, four sterol-resistant mutants either contain a truncated NH2-terminal domain of sterol regulatory element-binding protein (SREBP)-2 terminating at amino acids (aa) 400, or harbor an overexpressed SREBP cleavage-activating protein (SCAP). Besides, one SR-12813 resistant mutant was identified to contain a truncated COOH-terminal catalytic domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase). This study demonstrates that the VBIM system can be a powerful tool to screen novel regulatory genes in cholesterol biosynthesis.
Collapse
Affiliation(s)
- Wei Jiang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Jie Tang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Hua Miao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Xiu Qu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Qin
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinbo Yang
- School of Life Sciences, Lanzhou University, Lanzhou, China
- * E-mail: (JBY); (BLS)
| | - Bo-Liang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bao-Liang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (JBY); (BLS)
| |
Collapse
|
32
|
Desai AJ, Harikumar KG, Miller LJ. A type 1 cholecystokinin receptor mutant that mimics the dysfunction observed for wild type receptor in a high cholesterol environment. J Biol Chem 2014; 289:18314-26. [PMID: 24825903 DOI: 10.1074/jbc.m114.570200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cholecystokinin (CCK) stimulates the type 1 CCK receptor (CCK1R) to elicit satiety after a meal. Agonists with this activity, although potentially useful for treatment of obesity, can also have side effects and toxicities of concern, making the development of an intrinsically inactive positive allosteric modulator quite attractive. Positive allosteric modulators also have the potential to correct the defective receptor-G protein coupling observed in the high membrane cholesterol environment described in metabolic syndrome. Current model systems to study CCK1R in such an environment are unstable and expensive to maintain. We now report that the Y140A mutation within a cholesterol-binding motif and the conserved, class A G protein-coupled receptor-specific (E/D)RY signature sequence results in ligand binding and activity characteristics similar to wild type CCK1R in a high cholesterol environment. This is true for natural CCK, as well as ligands with distinct chemistries and activity profiles. Additionally, the Y140A construct also behaved like CCK1R in high cholesterol in regard to its internalization, sensitivity to a nonhydrolyzable GTP analog, and anisotropy of a bound fluorescent CCK analog. Chimeric CCK1R/CCK2R constructs that systematically changed the residues in the allosteric ligand-binding pocket were studied in the presence of Y140A. This established increased importance of unique residues within TM3 and reduced the importance of TM2 for binding in the presence of this mutation, with the agonist trigger likely pulled away from its Leu(356) target on TM7. The distinct conformation of this intramembranous pocket within Y140A CCK1R provides an opportunity to normalize this by using a small molecule allosteric ligand, thereby providing safe and effective correction of the coupling defect in metabolic syndrome.
Collapse
Affiliation(s)
- Aditya J Desai
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| | - Kaleeckal G Harikumar
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| | - Laurence J Miller
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| |
Collapse
|
33
|
PKR-like endoplasmic reticulum kinase is necessary for lipogenic activation during HCMV infection. PLoS Pathog 2013; 9:e1003266. [PMID: 23592989 PMCID: PMC3617203 DOI: 10.1371/journal.ppat.1003266] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022] Open
Abstract
PKR-like endoplasmic reticulum (ER) kinase (PERK) is an ER-associated stress sensor protein which phosphorylates eukaryotic initiation factor 2α (eIF2α) to induce translation attenuation in response to ER stress. PERK is also a regulator of lipogenesis during adipocyte differentiation through activation of the cleavage of sterol regulatory element binding protein 1 (SREBP1), resulting in the upregulation of lipogenic enzymes. Our recent studies have shown that human cytomegalovirus (HCMV) infection in human fibroblasts (HF) induces adipocyte-like lipogenesis through the activation of SREBP1. Here, we report that PERK expression is highly increased in HCMV-infected cells and is necessary for HCMV growth. Depletion of PERK, using short hairpin RNA (shRNA), resulted in attenuation of HCMV growth, inhibition of lipid synthesis and reduction of lipogenic gene expression. Examination of the cleavage of SREBP proteins showed PERK depletion inhibited the cleavage of SREBP1, but not SREBP2, in HCMV-infected cells, suggesting different cleavage regulatory mechanisms for SREBP1 and 2. Further studies showed that the depletion of SREBP1, but not SREBP2, reduced lipid synthesis in HCMV infection, suggesting that activation of SREBP1 is sufficient to induce lipogenesis in HCMV infection. The reduction of lipid synthesis by PERK depletion can be partially restored by expressing a Flag-tagged nuclear form of SREBP1a. Our studies also suggest that the induction of PERK in HCMV-infected cells stimulates SREBP1 cleavage by reducing levels of Insig1 (Insulin inducible gene 1) protein; this occurs independent of the phosphorylation of eIF2α. Introduction of an exogenous Insig1-Myc into HCMV infected cells significantly reduced HCMV growth and lipid synthesis. Our data demonstrate that the induction of PERK during HCMV infection is necessary for full activation of lipogenesis; this effect appears to be mediated by limiting the levels of Insig1 thus freeing SREBP1-SCAP complexes for SREBP1 processing.
Collapse
|
34
|
Faulkner RA, Nguyen AD, Jo Y, DeBose-Boyd RA. Lipid-regulated degradation of HMG-CoA reductase and Insig-1 through distinct mechanisms in insect cells. J Lipid Res 2013; 54:1011-22. [PMID: 23403031 PMCID: PMC3653402 DOI: 10.1194/jlr.m033639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells, levels of the integral membrane proteins 3-hydroxy-3-methylglutaryl-CoA reductase and Insig-1 are controlled by lipid-regulated endoplasmic reticulum-associated degradation (ERAD). The ERAD of reductase slows a rate-limiting step in cholesterol synthesis and results from sterol-induced binding of its membrane domain to Insig-1 and the highly related Insig-2 protein. Insig binding bridges reductase to ubiquitin ligases that facilitate its ubiquitination, thereby marking the protein for cytosolic dislocation and proteasomal degradation. In contrast to reductase, Insig-1 is subjected to ERAD in lipid-deprived cells. Sterols block this ERAD by inhibiting Insig-1 ubiquitination, whereas unsaturated fatty acids block the reaction by preventing the protein's cytosolic dislocation. In previous studies, we found that the membrane domain of mammalian reductase was subjected to ERAD in Drosophila S2 cells. This ERAD was appropriately accelerated by sterols and required the action of Insigs, which bridged reductase to a Drosophila ubiquitin ligase. We now report reconstitution of mammalian Insig-1 ERAD in S2 cells. The ERAD of Insig-1 in S2 cells mimics the reaction that occurs in mammalian cells with regard to its inhibition by either sterols or unsaturated fatty acids. Genetic and pharmacologic manipulations coupled with subcellular fractionation indicate that Insig-1 and reductase are degraded through distinct mechanisms that are mediated by different ubiquitin ligase complexes. Together, these results establish Drosophila S2 cells as a model system to elucidate mechanisms through which lipid constituents of cell membranes (i.e., sterols and fatty acids) modulate the ERAD of Insig-1 and reductase.
Collapse
Affiliation(s)
- Rebecca A Faulkner
- Howard Hughes Medical Institute, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | | | | | | |
Collapse
|
35
|
Membrane cholesterol affects stimulus-activity coupling in type 1, but not type 2, CCK receptors: use of cell lines with elevated cholesterol. Lipids 2013; 48:231-44. [PMID: 23306829 DOI: 10.1007/s11745-012-3744-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
The lipid microenvironment of membrane proteins can affect their structure, function, and regulation. We recently described differential effects of acute modification of membrane cholesterol on the function of type 1 and 2 cholecystokinin (CCK) receptors. We now explore the regulatory impact of chronic cholesterol modification on these receptors using novel receptor-bearing cell lines with elevated membrane cholesterol. Stable CCK1R and CCK2R expression was established in clonal lines of 25RA cells having gain-of-function in SCAP [sterol regulatory element binding protein (SREBP) cleavage-activating protein] and SRD15 cells having deficiencies in Insig-1 and Insig-2 enzymes affecting HMG CoA reductase and SREBP. Increased cholesterol in the plasma membrane of these cells was directly demonstrated, and receptor binding and signaling characteristics were shown to reflect predicted effects on receptor function. In both environments, both types of CCK receptors were internalized and recycled normally in response to agonist occupation. No differences in receptor distribution within the membrane were appreciated at the light microscopic level in these CHO-derived cell lines. Fluorescence anisotropy was studied for these receptors occupied by fluorescent agonist and antagonist, as well as when tagged with YFP. These studies demonstrated increased anisotropy of the agonist ligand occupying the active state of the CCK1R in a cholesterol-enriched environment, mimicking fluorescence of the uncoupled, inactive state of this receptor, while there was no effect of increasing cholesterol on fluorescence at the CCK2R. These cell lines should be quite useful for examining the functional characteristics of potential drugs that might be used in an abnormal lipid environment.
Collapse
|
36
|
Dong XY, Tang SQ, Chen JD. Dual functions of Insig proteins in cholesterol homeostasis. Lipids Health Dis 2012; 11:173. [PMID: 23249523 PMCID: PMC3564778 DOI: 10.1186/1476-511x-11-173] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 12/05/2012] [Indexed: 01/29/2023] Open
Abstract
The molecular mechanism of how cells maintain cholesterol homeostasis has become clearer for the understanding of complicated association between sterol regulatory element-binding proteins (SREBPs), SREBP cleavage-activating protein (SCAP), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) and Insuin induced-genes (Insigs). The pioneering researches suggested that SREBP activated the transcription of genes encoding HMG-CoA reductase and all of the other enzymes involved in the synthesis of cholesterol and lipids. However, SREBPs can not exert their activities alone, they must form a complex with another protein, SCAP in the endoplasmic reticulum (ER) and translocate to Golgi. Insigs are sensors and mediators that regulate cholesterol homeostasis through binding to SCAP and HMG-CoA reductase in diverse tissues such as adipose tissue and liver, as well as the cultured cells. In this article, we aim to review on the dual functions of Insig protein family in cholesterol homeostasis.
Collapse
Affiliation(s)
- Xiao-Ying Dong
- College of Veterinary Medicine, South China Agricultural University, No,483 Wu Shan Road, Tian He District, Guangzhou, 510642, China.
| | | | | |
Collapse
|
37
|
A key regulator of cholesterol homoeostasis, SREBP-2, can be targeted in prostate cancer cells with natural products. Biochem J 2012; 446:191-201. [PMID: 22657538 DOI: 10.1042/bj20120545] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is growing evidence showing that prostate cancer cells have perturbed cholesterol homoeostasis, accumulating cholesterol to promote cell growth. Consequently, cholesterol-lowering drugs such as statins are being evaluated in prostate cancer treatment. Furthermore, natural products such as betulin (from birch tree bark) and tocotrienol (a minor form of vitamin E) have been shown to lower cholesterol levels. Using these drugs and oxysterols, we have determined which aspects of cholesterol homoeostasis should be targeted in prostate cancer, e.g. cellular cholesterol levels are increased by the transcription factor SREBP-2 (sterol-regulatory-element-binding protein isoform 2), whereas LXR (liver X receptor) promotes cholesterol efflux. Whereas betulin exerted non-specific effects on cell viability, tocotrienols produced a strong direct correlation between SREBP-2 activity and cell viability. Mechanistically, tocotrienols lowered SREBP-2 activity by degrading mature SREBP-2 independently of the proteasome. In contrast, no correlation was seen between LXR activity and cell viability, implying that SREBP-2 is a better target than LXR for prostate cancer treatment. Lastly, androgen-dependent and -independent LNCaP cells were both sensitive to tocotrienols. Overall, this suggests that tocotrienols and other drugs targeting the SREBP-2 pathway are a potential therapeutic option for prostate cancer.
Collapse
|
38
|
Xu L, Shen S, Ma Y, Kim JK, Rodriguez-Agudo D, Heuman DM, Hylemon PB, Pandak WM, Ren S. 25-Hydroxycholesterol-3-sulfate attenuates inflammatory response via PPARγ signaling in human THP-1 macrophages. Am J Physiol Endocrinol Metab 2012; 302:E788-99. [PMID: 22275753 PMCID: PMC3330710 DOI: 10.1152/ajpendo.00337.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nuclear receptor peroxisome proliferator-activated receptors (PPARs) are important in regulating lipid metabolism and inflammatory responses in macrophages. Activation of PPARγ represses key inflammatory response gene expressions. Recently, we identified a new cholesterol metabolite, 25-hydroxycholesterol-3-sulfate (25HC3S), as a potent regulatory molecule of lipid metabolism. In this paper, we report the effect of 25HC3S and its precursor 25-hydroxycholesterol (25HC) on PPARγ activity and on inflammatory responses. Addition of 25HC3S to human macrophages markedly increased nuclear PPARγ and cytosol IκB and decreased nuclear NF-κB protein levels. PPARγ response element reporter gene assays showed that 25HC3S significantly increased luciferase activities. PPARγ competitor assay showed that the K(i) for 25HC3S was ∼1 μM, similar to those of other known natural ligands. NF-κB-dependent promoter reporter gene assays showed that 25HC3S suppressed TNFα-induced luciferase activities only when cotransfected with pcDNAI-PPARγ plasmid. In addition, 25HC3S decreased LPS-induced expression and release of IL-1β. In the PPARγ-specific siRNA transfected macrophages or in the presence of PPARγ-specific antagonist, 25HC3S failed to increase IκB and to suppress TNFα and IL-1β expression. In contrast to 25HC3S, its precursor 25HC, a known liver X receptor ligand, decreased nuclear PPARγ and cytosol IκB and increased nuclear NF-κB protein levels. We conclude that 25HC3S acts in macrophages as a PPARγ ligand and suppresses inflammatory responses via the PPARγ/IκB/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23249, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8. Proc Natl Acad Sci U S A 2011; 108:20503-8. [PMID: 22143767 DOI: 10.1073/pnas.1112831108] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulation of sterols in membranes of the endoplasmic reticulum (ER) leads to the accelerated ubiquitination and proteasomal degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids. This degradation results from sterol-induced binding of reductase to the Insig-1 or Insig-2 proteins of ER membranes. We previously reported that in immortalized human fibroblasts (SV-589 cells) Insig-1, but not Insig-2, recruits gp78, a membrane-bound RING-finger ubiquitin ligase. We now report that both Insig-1 and Insig-2 bind another membrane-bound RING-finger ubiquitin ligase called Trc8. Knockdown of either gp78 or Trc8 in SV-589 cells through RNA interference (RNAi) inhibited sterol-induced ubiquitination of reductase and inhibited sterol-induced degradation by 50-60%. The combined knockdown of gp78 and Trc8 produced a more complete inhibition of degradation (> 90%). Knockdown of gp78 led to a three to fourfold increase in levels of Trc8 and Insig-1 proteins, which opposed the inhibitory action of gp78. In contrast, knockdown of Trc8 had no effect on gp78 or Insig-1. The current results suggest that sterol-induced ubiquitination and proteasomal degradation of reductase is dictated by the complex interplay of at least four proteins: Insig-1, Insig-2, gp78, and Trc8. Variations in the concentrations of any one of these proteins may account for differences in cell- and/or tissue-specific regulation of reductase degradation.
Collapse
|
40
|
Gill S, Stevenson J, Kristiana I, Brown AJ. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. Cell Metab 2011; 13:260-73. [PMID: 21356516 DOI: 10.1016/j.cmet.2011.01.015] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 10/22/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
Exquisite control of cholesterol synthesis is crucial for maintaining homeostasis of this vital yet potentially toxic lipid. Squalene monooxygenase (SM) catalyzes the first oxygenation step in cholesterol synthesis, acting on squalene before cyclization into the basic steroid structure. Using model cell systems, we found that cholesterol caused the accumulation of the substrate squalene, suggesting that SM may serve as a flux-controlling enzyme beyond 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR, considered as rate limiting). Cholesterol accelerated the proteasomal degradation of SM which required the N-terminal domain, partially conserved in vertebrates but not in lower organisms. Unlike HMGR, SM degradation is not mediated by Insig, 24,25-dihydrolanosterol, or side-chain oxysterols, but rather by cholesterol itself. Importantly, SM's N-terminal domain conferred cholesterol-regulated turnover on heterologous fusion proteins. Furthermore, proteasomal inhibition almost totally eliminated squalene accumulation, highlighting the importance of this degradation mechanism for the control of SM and suggesting this as a possible control point in cholesterol synthesis.
Collapse
Affiliation(s)
- Saloni Gill
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | | | | | |
Collapse
|
41
|
Dong XY, Tang SQ. Insulin-induced gene: a new regulator in lipid metabolism. Peptides 2010; 31:2145-50. [PMID: 20817058 DOI: 10.1016/j.peptides.2010.07.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/15/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Insulin-induced genes (Insigs) including Insig-1 and Insig-2, are proteins that mediate sterol regulation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase). Insigs perform distinct tasks in the regulation of these effectors: they promote the endoplasmic reticulum (ER) retention of SCAP, but ubiquitin-mediated degradation of HMG-CoA reductase. Through these activities, Insig-1 and Insig-2 influence cholesterol metabolism, lipogenesis, and glucose homeostasis in diverse tissues such as adipose tissue and liver. In this article, we focus on the functions, expression and regulation, gene polymorphisms of Insigs, and their deficiency with diseases.
Collapse
Affiliation(s)
- Xiao-Ying Dong
- College of Yingdong Agricultural Science and Engineering, Shaoguan University, Daxue Avenue, Zhenjiang District, Shaoguan 512005, PR China
| | | |
Collapse
|
42
|
Jo Y, Debose-Boyd RA. Control of cholesterol synthesis through regulated ER-associated degradation of HMG CoA reductase. Crit Rev Biochem Mol Biol 2010; 45:185-98. [PMID: 20482385 DOI: 10.3109/10409238.2010.485605] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple mechanisms for feedback control of cholesterol synthesis converge on the rate-limiting enzyme in the pathway, 3-hydroxy-3-methylglutaryl coenzyme A reductase. This complex feedback regulatory system is mediated by sterol and nonsterol metabolites of mevalonate, the immediate product of reductase activity. One mechanism for feedback control of reductase involves rapid degradation of the enzyme from membranes of the endoplasmic reticulum (ER). This degradation results from the accumulation of sterols in ER membranes, which triggers binding of reductase to ER membrane proteins called Insig-1 and Insig-2. Insig binding leads to the recruitment of a membrane-associated ubiquitin ligase called gp78 that initiates ubiquitination of reductase. Ubiquitinated reductase then becomes extracted from ER membranes and is delivered to cytosolic 26S proteasomes through an unknown mechanism that is mediated by the gp78-associated ATPase Valosin-containing protein/p97 and appears to be augmented by nonsterol isoprenoids. Here, we will highlight several advances that have led to the current view of mechanisms for sterol-accelerated, ER-associated degradation of reductase. In addition, we will discuss potential mechanisms for other aspects of the pathway such as selection of reductase for gp78-mediated ubiquitination, extraction of the ubiquitinated enzyme from ER membranes, and the contribution of Insig-mediated degradation to overall regulation of reductase in whole animals.
Collapse
Affiliation(s)
- Youngah Jo
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
43
|
Lee PCW, DeBose-Boyd RA. Intramembrane glycine mediates multimerization of Insig-2, a requirement for sterol regulation in Chinese hamster ovary cells. J Lipid Res 2010; 51:192-201. [PMID: 19617589 DOI: 10.1194/jlr.m900336-jlr200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterol-induced binding of endoplasmic reticulum (ER) membrane proteins Insig-1 and Insig-2 to SREBP cleavage-activating protein (Scap) and HMG-CoA reductase triggers regulatory events that limit cholesterol synthesis in animal cells. Binding of Insigs to Scap prevents proteolytic activation of sterol-regulatory element binding proteins (SREBPs), membrane-bound transcription factors that enhance cholesterol synthesis, by trapping Scap-SREBP complexes in the ER. Insig binding to reductase causes ubiquitination and subsequent proteasome-mediated degradation of the enzyme from ER membranes, slowing a rate-limiting step in cholesterol synthesis. Here, we report the characterization of mutant Chinese hamster ovary cells, designated SRD-20, that are resistant to 25-hydroxycholesterol, which potently inhibits SREBP activation and stimulates degradation of reductase. SRD-20 cells were produced by mutagenesis of Insig-1-deficient SRD-14 cells, followed by selection in 25-hydroxycholesterol. DNA sequencing reveals that SRD-20 cells harbor a point mutation in one Insig-2 allele that results in production of a truncated, nonfunctional protein, whereas the other allele contains a point mutation that results in substitution of glutamic acid for glycine-39. This glycine residue localizes to the first membrane-spanning segment of Insig-2 and is also present in the corresponding region of Insig-1. Mutant forms of Insig-1 and Insig-2 containing the Glu-to-Gly substitution fail to confer sterol regulation upon overexpressed Scap and reductase. These studies identify the intramembrane glycine as a key residue for normal sterol regulation in animal cells.
Collapse
Affiliation(s)
- Peter C W Lee
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center Dallas TX 75390-9046, USA
| | | |
Collapse
|
44
|
Abstract
Bilayer synthesis during membrane biogenesis involves the concerted assembly of multiple lipid species, requiring coordination of the level of lipid synthesis, uptake, turnover, and subcellular distribution. In this review, we discuss some of the salient conclusions regarding the coordination of lipid synthesis that have emerged from work in mammalian and yeast cells. The principal instruments of global control are a small number of transcription factors that target a wide range of genes encoding enzymes that operate in a given metabolic pathway. Critical in mammalian cells are sterol regulatory element binding proteins (SREBPs) that stimulate expression of genes for the uptake and synthesis of cholesterol and fatty acids. From work with Saccharomyces cerevisiae, much has been learned about glycerophospholipid and ergosterol regulation through Ino2p/Ino4p and Upc2p transcription factors, respectively. Lipid supply is fine-tuned through a multitude of negative feedback circuits initiated by both end products and intermediates of lipid synthesis pathways. Moreover, there is evidence that the diversity of membrane lipids is maintained through cross-regulatory effects, whereby classes of lipids activate the activity of enzymes operating in another metabolic branch.
Collapse
Affiliation(s)
- Axel Nohturfft
- Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's University of London, London, SW17 0RE United Kingdom.
| | | |
Collapse
|
45
|
Ikeda Y, Demartino GN, Brown MS, Lee JN, Goldstein JL, Ye J. Regulated endoplasmic reticulum-associated degradation of a polytopic protein: p97 recruits proteasomes to Insig-1 before extraction from membranes. J Biol Chem 2009; 284:34889-900. [PMID: 19815544 DOI: 10.1074/jbc.m109.044875] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polytopic membrane proteins subjected to endoplasmic reticulum (ER)-associated degradation are extracted from membranes and targeted to proteasomes for destruction. The extraction mechanism is poorly understood. One polytopic ER protein subjected to ER-associated degradation is Insig-1, a negative regulator of cholesterol synthesis. Insig-1 is rapidly degraded by proteasomes when cells are depleted of cholesterol, and its degradation is inhibited when sterols accumulate in cells. Insig-2, a functional homologue of Insig-1, is degraded slowly, and its degradation is not regulated by sterols. Here, we report that a single amino acid substitution in Insig-2, Insig-2(L210A), causes Insig-2 to be degraded in an accelerated and sterol-regulated manner similar to Insig-1. In seeking an explanation for the accelerated degradation, we found that proteasomes bind to wild type Insig-1 and mutant Insig-2(L210A) but not to wild type Insig-2, whereas the proteins are still embedded in cell membranes. This binding depends on at least two factors, ubiquitination of Insig and association with the ATPase p97/VCP complex. These data suggest that p97 recruits proteasomes to polytopic ER proteins even before they are extracted from membranes.
Collapse
Affiliation(s)
- Yukio Ikeda
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA
| | | | | | | | | | | |
Collapse
|
46
|
König B, Koch A, Spielmann J, Hilgenfeld C, Hirche F, Stangl GI, Eder K. Activation of PPARalpha and PPARgamma reduces triacylglycerol synthesis in rat hepatoma cells by reduction of nuclear SREBP-1. Eur J Pharmacol 2009; 605:23-30. [PMID: 19248225 DOI: 10.1016/j.ejphar.2009.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fibrates and thiazolidinediones, agonists of PPARalpha and PPARgamma, respectively, reduce triglyceride concentrations in rat liver and plasma. Fatty acid and triacylglycerol synthesis in mammals is regulated by sterol regulatory element-binding protein (SREBP)-1c. Recently, it was shown that insulin-induced gene (Insig)-1, the key regulator of SREBP activity, is up-regulated by both activation of PPARalpha and PPARgamma. In order to elucidate whether inhibition of SREBP-1 activation may contribute to the triacylglycerol lowering effect of PPARalpha and PPARgamma agonists, we incubated rat hepatoma Fao cells with WY 14,643 and troglitazone, strong and selective agonists of PPARalpha and PPARgamma, respectively. Activation of both, PPARalpha and PPARgamma led to increased concentrations of Insig-1 and Insig-2a, with the most prominent effect on Insig-2a after troglitazone incubation. As a result, the amount of nuclear SREBP-1 was reduced in Fao cells by both WY 14,643 and troglitazone treatment. The reduction of nuclear SREBP-1 was associated with decreased mRNA concentrations of its target genes fatty acid synthase and glycerol-3-phosphate acyltransferase, implicated in fatty acid and triacylglycerol synthesis. This was finally reflected in reduced rates of newly synthesized triacylglycerols from de novo-derived fatty acids and decreased intracellular and secreted triacylglycerol concentrations in Fao cells treated with WY 14,643 and troglitazone, respectively. Thus, these data suggest that the triacylglycerol reducing effect of fibrates and thiazolidinediones is partially caused by inhibition of SREBP-1 activation via up-regulation of Insig.
Collapse
Affiliation(s)
- Bettina König
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle, Saale, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Leichner GS, Avner R, Harats D, Roitelman J. Dislocation of HMG-CoA reductase and Insig-1, two polytopic endoplasmic reticulum proteins, en route to proteasomal degradation. Mol Biol Cell 2009; 20:3330-41. [PMID: 19458199 DOI: 10.1091/mbc.e08-09-0953] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The endoplasmic reticulum (ER) glycoprotein HMG-CoA reductase (HMGR) catalyzes the rate-limiting step in sterols biosynthesis. Mammalian HMGR is ubiquitinated and degraded by the proteasome when sterols accumulate in cells, representing the best example for metabolically controlled ER-associated degradation (ERAD). This regulated degradation involves the short-lived ER protein Insig-1. Here, we investigated the dislocation of these ERAD substrates to the cytosol en route to proteasomal degradation. We show that the tagged HMGR membrane region, HMG(350)-HA, the endogenous HMGR, and Insig-1-Myc, all polytopic membrane proteins, dislocate to the cytosol as intact full-length polypeptides. Dislocation of HMG(350)-HA and Insig-1-Myc requires metabolic energy and involves the AAA-ATPase p97/VCP. Sterols stimulate HMG(350)-HA and HMGR release to the cytosol concurrent with removal of their N-glycan by cytosolic peptide:N-glycanase. Sterols neither accelerate dislocation nor stimulate deglycosylation of ubiquitination-defective HMG(350)-HA((K89 + 248R)) mutant. Dislocation of HMG(350)-HA depends on Insig-1-Myc, whose dislocation and degradation are sterol independent. Coimmunoprecipitation experiments demonstrate sterol-stimulated association between HMG(350)-HA and Insig-1-Myc. Sterols do not enhance binding to Insig-1-Myc of HMG(350)-HA mutated in its sterol-sensing domain or of HMG(350)-HA((K89 + 248R)). Wild-type HMG(350)-HA and Insig-1-Myc coimmunoprecipitate from the soluble fraction only when both proteins were coexpressed in the same cell, indicating their encounter before or during dislocation, raising the possibility that they are dislocated as a tightly bound complex.
Collapse
Affiliation(s)
- Gil S Leichner
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
48
|
Brown MS, Goldstein JL. Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL. J Lipid Res 2009; 50 Suppl:S15-27. [PMID: 18974038 PMCID: PMC2674699 DOI: 10.1194/jlr.r800054-jlr200] [Citation(s) in RCA: 367] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 10/29/2008] [Indexed: 01/12/2023] Open
Abstract
Cholesterol biosynthesis is among the most intensely regulated processes in biology. Synthetic rates vary over hundreds of fold depending on the availability of an external source of cholesterol. Studies of this feedback regulatory process have a rich history. The field began 75 years ago when Rudolf Schoenheimer measured cholesterol balance in mice in a bottle. He found that cholesterol feeding led to decreased cholesterol synthesis, thereby introducing the general phenomenon by which end products of biosynthetic pathways inhibit their own synthesis. Recently, cholesterol feedback has been explained at a molecular level with the discovery of membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs), and an appreciation of the sterol-sensing role of their partner, an escort protein called Scap. The key element in Scap is a hexapeptide sequence designated MELADL (rhymes with bottle). Thus, over 75 years, Schoenheimer's bottle led to Scap's MELADL. In addition to their basic importance in membrane biology, these studies have implications for the regulation of plasma cholesterol levels and consequently for the development of atherosclerotic plaques, myocardial infarctions, and strokes. In this article we review the major milestones in the cholesterol feedback story.
Collapse
Affiliation(s)
- Michael S. Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Joseph L. Goldstein
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| |
Collapse
|
49
|
Kovacs WJ, Tape KN, Shackelford JE, Wikander TM, Richards MJ, Fliesler SJ, Krisans SK, Faust PL. Peroxisome deficiency causes a complex phenotype because of hepatic SREBP/Insig dysregulation associated with endoplasmic reticulum stress. J Biol Chem 2008; 284:7232-45. [PMID: 19110480 DOI: 10.1074/jbc.m809064200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of hepatic cholesterol biosynthesis, lipogenesis, and insulin signaling intersect at the transcriptional level by control of SREBP and Insig genes. We previously demonstrated that peroxisome-deficient PEX2-/- mice activate SREBP-2 pathways but are unable to maintain normal cholesterol homeostasis. In this study, we demonstrate that oral bile acid treatment normalized hepatic and plasma cholesterol levels and hepatic cholesterol synthesis in early postnatal PEX2 mutants, but SREBP-2 and its target gene expressions remained increased. SREBP-2 pathway induction was also observed in neonatal and longer surviving PEX2 mutants, where hepatic cholesterol levels were normal. Abnormal expression patterns for SREBP-1c and Insig-2a, and novel regulation of Insig-2b, further demonstrate that peroxisome deficiency widely affects the regulation of related metabolic pathways. We have provided the first demonstration that peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, especially the integrated stress response mediated by PERK and ATF4 signaling. Our studies suggest a mechanism whereby ER stress leads to dysregulation of the endogenous sterol response mechanism and concordantly activates oxidative stress pathways. Several metabolic derangements in peroxisome-deficient PEX2-/- liver are likely to trigger ER stress, including perturbed flux of mevalonate metabolites, altered bile acid homeostasis, changes in fatty acid levels and composition, and oxidative stress.
Collapse
Affiliation(s)
- Werner J Kovacs
- Institute of Cell Biology, ETH Zürich, CH-8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
DeBose-Boyd RA. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 2008; 18:609-21. [PMID: 18504457 DOI: 10.1038/cr.2008.61] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids. The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism. Here, I will discuss recent advances that shed light on one mechanism for control of reductase, which involves rapid degradation of the enzyme. Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2. Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78, which initiates ubiquitination of reductase. This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes. Thus, sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).
Collapse
Affiliation(s)
- Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|