1
|
Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res 2023; 119:1905-1914. [PMID: 37392421 PMCID: PMC10681665 DOI: 10.1093/cvr/cvad100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 07/03/2023] Open
Abstract
A fine balance between uptake, storage, and the use of high energy fuels, like lipids, is crucial in the homeostasis of different metabolic tissues. Nowhere is this balance more important and more precarious than in the heart. This highly energy-demanding muscle normally oxidizes almost all the available substrates to generate energy, with fatty acids being the preferred source under physiological conditions. In patients with cardiomyopathies and heart failure, changes in the main energetic substrate are observed; these hearts often prefer to utilize glucose rather than oxidizing fatty acids. An imbalance between uptake and oxidation of fatty acid can result in cellular lipid accumulation and cytotoxicity. In this review, we will focus on the sources and uptake pathways used to direct fatty acids to cardiomyocytes. We will then discuss the intracellular machinery used to either store or oxidize these lipids and explain how disruptions in homeostasis can lead to mitochondrial dysfunction and heart failure. Moreover, we will also discuss the role of cholesterol accumulation in cardiomyocytes. Our discussion will attempt to weave in vitro experiments and in vivo data from mice and humans and use several human diseases to illustrate metabolism gone haywire as a cause of or accomplice to cardiac dysfunction.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Via Massimo Gorki 50, Cinisello Balsamo, Italy
| |
Collapse
|
2
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
3
|
Cifarelli V, Kuda O, Yang K, Liu X, Gross RW, Pietka TA, Heo GS, Sultan D, Luehmann H, Lesser J, Ross M, Goldberg IJ, Gropler RJ, Liu Y, Abumrad NA. Cardiac immune cell infiltration associates with abnormal lipid metabolism. Front Cardiovasc Med 2022; 9:948332. [PMID: 36061565 PMCID: PMC9428462 DOI: 10.3389/fcvm.2022.948332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023] Open
Abstract
CD36 mediates the uptake of long-chain fatty acids (FAs), a major energy substrate for the myocardium. Under excessive FA supply, CD36 can cause cardiac lipid accumulation and inflammation while its deletion reduces heart FA uptake and lipid content and increases glucose utilization. As a result, CD36 was proposed as a therapeutic target for obesity-associated heart disease. However, more recent reports have shown that CD36 deficiency suppresses myocardial flexibility in fuel preference between glucose and FAs, impairing tissue energy balance, while CD36 absence in tissue macrophages reduces efferocytosis and myocardial repair after injury. In line with the latter homeostatic functions, we had previously reported that CD36-/- mice have chronic subclinical inflammation. Lipids are important for the maintenance of tissue homeostasis and there is limited information on heart lipid metabolism in CD36 deficiency. Here, we document in the hearts of unchallenged CD36-/- mice abnormalities in the metabolism of triglycerides, plasmalogens, cardiolipins, acylcarnitines, and arachidonic acid, and the altered remodeling of these lipids in response to an overnight fast. The hearts were examined for evidence of inflammation by monitoring the presence of neutrophils and pro-inflammatory monocytes/macrophages using the respective positron emission tomography (PET) tracers, 64Cu-AMD3100 and 68Ga-DOTA-ECL1i. We detected significant immune cell infiltration in unchallenged CD36-/- hearts as compared with controls and immune infiltration was also observed in hearts of mice with cardiomyocyte-specific CD36 deficiency. Together, the data show that the CD36-/- heart is in a non-homeostatic state that could compromise its stress response. Non-invasive immune cell monitoring in humans with partial or total CD36 deficiency could help evaluate the risk of impaired heart remodeling and disease.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States,*Correspondence: Vincenza Cifarelli,
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Kui Yang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States,Division of Complex Drug Analysis, Office of Testing and Research, U.S. Food and Drug Administration, St. Louis, MO, United States
| | - Xinping Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard W. Gross
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Terri A. Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Deborah Sultan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Josie Lesser
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Morgan Ross
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Ira J. Goldberg
- Division of Endocrinology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States,Yongjian Liu,
| | - Nada A. Abumrad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States,Nada A. Abumrad,
| |
Collapse
|
4
|
Abstract
As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.
Collapse
Affiliation(s)
- Heiko Bugger
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - Nikole J Byrne
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (E.D.A.)
| |
Collapse
|
5
|
Yamamoto T, Sano M. Deranged Myocardial Fatty Acid Metabolism in Heart Failure. Int J Mol Sci 2022; 23:996. [PMID: 35055179 PMCID: PMC8779056 DOI: 10.3390/ijms23020996] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The heart requires fatty acids to maintain its activity. Various mechanisms regulate myocardial fatty acid metabolism, such as energy production using fatty acids as fuel, for which it is known that coordinated control of fatty acid uptake, β-oxidation, and mitochondrial oxidative phosphorylation steps are important for efficient adenosine triphosphate (ATP) production without unwanted side effects. The fatty acids taken up by cardiomyocytes are not only used as substrates for energy production but also for the synthesis of triglycerides and the replacement reaction of fatty acid chains in cell membrane phospholipids. Alterations in fatty acid metabolism affect the structure and function of the heart. Recently, breakthrough studies have focused on the key transcription factors that regulate fatty acid metabolism in cardiomyocytes and the signaling systems that modify their functions. In this article, we reviewed the latest research on the role of fatty acid metabolism in the pathogenesis of heart failure and provide an outlook on future challenges.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|
6
|
Iso T, Kurabayashi M. Cardiac Metabolism and Contractile Function in Mice with Reduced Trans-Endothelial Fatty Acid Transport. Metabolites 2021; 11:metabo11120889. [PMID: 34940647 PMCID: PMC8706312 DOI: 10.3390/metabo11120889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/15/2023] Open
Abstract
The heart is a metabolic omnivore that combusts a considerable amount of energy substrates, mainly long-chain fatty acids (FAs) and others such as glucose, lactate, ketone bodies, and amino acids. There is emerging evidence that muscle-type continuous capillaries comprise the rate-limiting barrier that regulates FA uptake into cardiomyocytes. The transport of FAs across the capillary endothelium is composed of three major steps-the lipolysis of triglyceride on the luminal side of the endothelium, FA uptake by the plasma membrane, and intracellular FA transport by cytosolic proteins. In the heart, impaired trans-endothelial FA (TEFA) transport causes reduced FA uptake, with a compensatory increase in glucose use. In most cases, mice with reduced FA uptake exhibit preserved cardiac function under unstressed conditions. When the workload is increased, however, the total energy supply relative to its demand (estimated with pool size in the tricarboxylic acid (TCA) cycle) is significantly diminished, resulting in contractile dysfunction. The supplementation of alternative fuels, such as medium-chain FAs and ketone bodies, at least partially restores contractile dysfunction, indicating that energy insufficiency due to reduced FA supply is the predominant cause of cardiac dysfunction. Based on recent in vivo findings, this review provides the following information related to TEFA transport: (1) the mechanisms of FA uptake by the heart, including TEFA transport; (2) the molecular mechanisms underlying the induction of genes associated with TEFA transport; (3) in vivo cardiac metabolism and contractile function in mice with reduced TEFA transport under unstressed conditions; and (4) in vivo contractile dysfunction in mice with reduced TEFA transport under diseased conditions, including an increased afterload and streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Tatsuya Iso
- Department of Medical Technology and Clinical Engineering, Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, 191-1 Kawamagari-Machi, Maebashi 371-0823, Gunma, Japan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
- Correspondence:
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
7
|
Ahmed S, Ahmed A, Rådegran G. Plasma tumour and metabolism related biomarkers AMBP, LPL and Glyoxalase I differentiate heart failure with preserved ejection fraction with pulmonary hypertension from pulmonary arterial hypertension. Int J Cardiol 2021; 345:68-76. [PMID: 34710494 DOI: 10.1016/j.ijcard.2021.10.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Discrimination of heart failure with preserved ejection fraction with pulmonary hypertension (HFpEF-PH) from pulmonary arterial hypertension (PAH) is crucial for clinical management but may be challenging due to similarities in clinical and comorbid characteristics. We aimed to investigate tumour and metabolism related proteins in differentiating HFpEF-PH from PAH. METHODS Sixty-nine tumour and metabolism plasma proteins were analysed with proximity extension assay in heathy controls (n = 20), patients with PAH (n = 48) and LHF-PH (n = 67) [HFpEF-PH (n = 31) and HF reduced EF-PH (n = 36)]. Haemodynamics were assessed with right heart catheterization. RESULTS The plasma levels of alpha-1-microglobulin/bikunin precursor (AMBP) and lipoprotein lipase (LPL), were higher in HFpEF-PH compared to healthy controls (p < 0.01), HFrEF-PH (p < 0.05), and PAH (p < 0.001). Glyoxalase I levels were higher in HFpEF-PH and HFrEF-PH compared to controls (p < 0.001) and PAH (p < 0.001). Each of plasma AMBP, LPL, and glyoxalase I, adjusted for age and sex in multivariable logistic regression models, could differentiate HFpEF-PH from PAH, with areas under the receiver operating characteristic curve (AUC) of 0.81, 0.84 and 0.79, respectively. The combination of AMBP, LPL and glyoxalse I yielded the largest AUC of 0.87 [95% confidence interval (0.79-0.95)] in discriminating HFpEF-PH from PAH, with a sensitivity of 87.1% and a specificity of 85.4%. In HFpEF-PH, the plasma levels of AMBP correlated with pulmonary arterial wedge pressure (rs = -0.42, p = 0.018). CONCLUSIONS Plasma AMBP, LPL and glyoxalase I may facilitate the distinction of HFpEF-PH from PAH. Larger clinical studies are encouraged to confirm and validate our findings.
Collapse
Affiliation(s)
- Salaheldin Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden; The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden.
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden; The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden; The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
8
|
Appiah MG, Park EJ, Akama Y, Nakamori Y, Kawamoto E, Gaowa A, Shimaoka M. Cellular and Exosomal Regulations of Sepsis-Induced Metabolic Alterations. Int J Mol Sci 2021; 22:ijms22158295. [PMID: 34361061 PMCID: PMC8347112 DOI: 10.3390/ijms22158295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a sustained systemic inflammatory condition involving multiple organ failures caused by dysregulated immune response to infections. Sepsis induces substantial changes in energy demands at the cellular level leading to metabolic reprogramming in immune cells and stromal cells. Although sepsis-associated organ dysfunction and mortality have been partly attributed to the initial acute hyperinflammation and immunosuppression precipitated by a dysfunction in innate and adaptive immune responses, the late mortality due to metabolic dysfunction and immune paralysis currently represent the major problem in clinics. It is becoming increasingly recognized that intertissue and/or intercellular metabolic crosstalk via endocrine factors modulates maintenance of homeostasis, and pathological events in sepsis and other inflammatory diseases. Exosomes have emerged as a novel means of intercellular communication in the regulation of cellular metabolism, owing to their capacity to transfer bioactive payloads such as proteins, lipids, and nucleic acids to their target cells. Recent evidence demonstrates transfer of intact metabolic intermediates from cancer-associated fibroblasts via exosomes to modify metabolic signaling in recipient cells and promote cancer progression. Here, we review the metabolic regulation of endothelial cells and immune cells in sepsis and highlight the role of exosomes as mediators of cellular metabolic signaling in sepsis.
Collapse
Affiliation(s)
- Michael G. Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
- Correspondence: (E.J.P.); (M.S.); Tel.: +81-59-231-6408 (E.J.P.); +81-59-231-5036 (M.S.)
| | - Yuichi Akama
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
| | - Yuki Nakamori
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
- Correspondence: (E.J.P.); (M.S.); Tel.: +81-59-231-6408 (E.J.P.); +81-59-231-5036 (M.S.)
| |
Collapse
|
9
|
Shang R, Rodrigues B. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules 2021; 11:biom11071016. [PMID: 34356640 PMCID: PMC8301904 DOI: 10.3390/biom11071016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Ninety percent of plasma fatty acids (FAs) are contained within lipoprotein-triglyceride, and lipoprotein lipase (LPL) is robustly expressed in the heart. Hence, LPL-mediated lipolysis of lipoproteins is suggested to be a key source of FAs for cardiac use. Lipoprotein clearance by LPL occurs at the apical surface of the endothelial cell lining of the coronary lumen. In the heart, the majority of LPL is produced in cardiomyocytes and subsequently is translocated to the apical luminal surface. Here, vascular LPL hydrolyzes lipoprotein-triglyceride to provide the heart with FAs for ATP generation. This article presents an overview of cardiac LPL, explains how the enzyme works, describes key molecules that regulate its activity and outlines how changes in LPL are brought about by physiological and pathological states such as fasting and diabetes, respectively.
Collapse
|
10
|
Vilahur G, Sutelman P, Mendieta G, Ben-Aicha S, Borrell-Pages M, Peña E, Crespo J, Casaní L, Badimon L. Triglyceride-induced cardiac lipotoxicity is mitigated by Silybum marianum. Atherosclerosis 2021; 324:91-101. [PMID: 33857761 DOI: 10.1016/j.atherosclerosis.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Silybum marianum (SM) is an herbal product with cytoprotective and antioxidant properties. We have previously demonstrated that SM ameliorates ventricular remodeling and improves cardiac performance. Here, we evaluated whether SM could exert beneficial effects against cardiac lipotoxicity in a pig model of closed-chest myocardial infarction (MI). METHODS Study 1 investigated the effect of SM administration on lipid profile and any potential SM-related adverse effects. Animals received SM or placebo during 10 days and were afterward sacrificed. Study 2 evaluated the effectiveness of SM daily administration in reducing cardiac lipotoxicity in animals subjected to a 1.5h myocardial infarction (MI), who were subsequently reperfused for 2.5h and euthanized or kept under study for three weeks and then sacrificed. RESULTS Animals administered a 10-day SM regime presented a sharp decline in plasma triglyceride levels vs. controls, with no other modifications in lipid profile. The decrease in triglyceride concentration was accompanied by a marked reduction in triglyceride intestinal absorption and glycoprotein-P expression. Three weeks post-MI the triglyceride content in the ischemic myocardium of the SM-treated animals was significantly lower than in the ischemic myocardium of placebo-controls. This effect was associated with an enhanced cardiac expression of PPARγ and triglyceride clearance receptors. This long-term SM-administration induced a lower expression of lipid receptors in subcutaneous adipose tissue. No SM-related side-effects were registered. CONCLUSION SM administration reduces plasma triglyceride levels through attenuation of triglyceride intestinal absorption and modulates cardiac lipotoxicity in the ischemic myocardium, likely contributing to improve ventricular remodeling.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute Hospital de La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain; CiberCV, Institute Carlos III, Madrid, Spain
| | - Pablo Sutelman
- Cardiovascular Program-ICCC, Research Institute Hospital de La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Guiomar Mendieta
- Cardiovascular Program-ICCC, Research Institute Hospital de La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain; Department of Cardiology, Clinic Hospital, Barcelona, Spain
| | - Soumaya Ben-Aicha
- Cardiovascular Program-ICCC, Research Institute Hospital de La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - María Borrell-Pages
- Cardiovascular Program-ICCC, Research Institute Hospital de La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Esther Peña
- Cardiovascular Program-ICCC, Research Institute Hospital de La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Javier Crespo
- Cardiovascular Program-ICCC, Research Institute Hospital de La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Laura Casaní
- Cardiovascular Program-ICCC, Research Institute Hospital de La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain; CiberCV, Institute Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute Hospital de La Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona, Spain; CiberCV, Institute Carlos III, Madrid, Spain; Chair UAB, Barcelona, Spain.
| |
Collapse
|
11
|
Nakamura T, Tanimoto H, Okamoto M, Takeuchi M, Tsubamoto Y, Noda H. GIP Receptor Antagonist, SKL-14959 Indicated Alteration of the Lipids Metabolism to Catabolism by the Inhibition of Plasma LPL Activity, Resulting in the Suppression of Weight Gain on Diets-Induced Obesity Mice. Diabetes Metab Syndr Obes 2021; 14:1095-1105. [PMID: 33727843 PMCID: PMC7955685 DOI: 10.2147/dmso.s297353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/16/2021] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Glucose-dependent insulinotropic polypeptide (GIP) plays a crucial role in the regulation of lipid metabolism via lipoprotein lipase (LPL). GIP receptor antagonist, SKL-14959, suppressed the weight gain in the diet-induced obesity model. However, the mechanism is not unclear. Therefore, we aimed to give insight into the reason. METHODS Mice were divided into three groups of the low-fat diet, high-fat diets mixture with or without SKL-14959 for 151 days, and were monitored body weight and food consumption through the test. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were also performed. After that, blood, liver, muscle and adipose tissue were collected. Blood samples were measured glycosylated hemoglobin A1c (HbA1c), glucose, insulin, GIP level and plasma LPL activity. Triacylglycerol (TG) contents of liver and muscles were also measured. Moreover, a simple correlation analysis was performed. RESULTS SKL-14959 suppressed the body weight gain, decreased body mass index (BMI), HbA1c, and fasting glucose level, and trended to decline adipose tissues weight and TG contents compared with the vehicle, and inhibited plasma LPL activity. OGTT and ITT in the SKL-14959 group were not significantly changed relative to the vehicle. Additionally, upon treatment with SKL-14959 treatment, weight gain had weak correlation with lipase activity. Furthermore, lipase activity was associated with the fat mass and not white but red muscle TG contents and liver TG contents were not associated with lipase activity but HbA1c. IN CONCLUSION SKL-14959 might direct lipids metabolism to catabolism by inhibition of plasma LPL activity, resulting in the suppression of weight gain on diets-induced obesity mice.
Collapse
Affiliation(s)
- Takashi Nakamura
- Biological Research Group Drug Discovery Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Hitomi Tanimoto
- Biological Research Group Drug Discovery Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Masayuki Okamoto
- Biological Research Group Drug Discovery Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Mitsuaki Takeuchi
- Biological Research Group Drug Discovery Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Yoshiharu Tsubamoto
- Biological Research Group Drug Discovery Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Hitoshi Noda
- Biological Research Group Drug Discovery Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| |
Collapse
|
12
|
Tan Y, Li M, Wu G, Lou J, Feng M, Xu J, Zhou J, Zhang P, Yang H, Dong L, Li J, Zhang X, Gao F. Short-term but not long-term high fat diet feeding protects against pressure overload-induced heart failure through activation of mitophagy. Life Sci 2021; 272:119242. [PMID: 33607155 DOI: 10.1016/j.lfs.2021.119242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
AIMS Recent studies have shown that enhancement of fatty acid utilization through feeding animals a high fat diet (HFD) attenuated cardiac dysfunction in heart failure (HF). Here, we aimed to examine the temporal effects of HFD feeding on cardiac function in mice with heart failure and its underlying mechanism. MAIN METHODS Pressure overload-induced HF was established via transverse aortic constriction (TAC) surgery. After surgery, the mice were fed on either normal diet or HFD for 8 or 16 weeks. KEY FINDINGS HFD feeding exerted opposite effects on cardiac function at different time points post-surgery. Short-term HFD feeding (8 wk) protected the heart against pressure overload, inhibiting cardiac hypertrophy and improving cardiac function, while long-term HFD feeding (16 wk) aggravated cardiac dysfunction in TAC mice. Short-term HFD feeding elevated cardiac fatty acid utilization, while long-term HFD feeding showed no significant effects on cardiac fatty acid utilization in TAC mice. Specifically, an increase in cardiac fatty acid utilization was accompanied with activated mitophagy and improved mitochondrial function. Palmitic acid treatment (400 μM, 2 h) stimulated fatty acid oxidation and mitophagy in neonatal myocytes. Mechanistically, fatty acid utilization stimulated mitophagy through upregulation of Parkin. Cardiac-specific knockdown of Parkin abolished the protective effects of short-term HFD feeding on cardiac function in TAC mice. SIGNIFICANCES These results suggested that short-term but not long-term HFD feeding protects against pressure overload-induced heart failure through activation of mitophagy, and dietary fat intake should be used with caution in treatment of heart failure.
Collapse
Affiliation(s)
- Yanzhen Tan
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Min Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Guiling Wu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Lou
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengya Feng
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Xu
- Department of Cardiology, 986(th) Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jiaheng Zhou
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Pengfei Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Dong
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jia Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
13
|
Barbeau PA, Houad JM, Huber JS, Paglialunga S, Snook LA, Herbst EAF, Dennis KMJH, Simpson JA, Holloway GP. Ablating the Rab-GTPase activating protein TBC1D1 predisposes rats to high-fat diet-induced cardiomyopathy. J Physiol 2020; 598:683-697. [PMID: 31845331 DOI: 10.1113/jp279042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Although the role of TBC1D1 within the heart remains unknown, expression of TBC1D1 increases in the left ventricle following an acute infarction, suggesting a biological importance within this tissue. We investigated the mechanistic role of TBC1D1 within the heart, aiming to establish the consequences of attenuating TBC1D1 signalling in the development of diabetic cardiomyopathy, as well as to determine potential sex differences. TBC1D1 ablation increased plasma membrane fatty acid binding protein content and myocardial palmitate oxidation. Following high-fat feeding, TBC1D1 ablation dramatically increased fibrosis and induced end-diastolic dysfunction in both male and female rats in the absence of changes in mitochondrial bioenergetics. Altogether, independent of sex, ablating TBC1D1 predisposes the left ventricle to pathological remodelling following high-fat feeding, and suggests TBC1D1 protects against diabetic cardiomyopathy. ABSTRACT TBC1D1, a Rab-GTPase activating protein, is involved in the regulation of glucose handling and substrate metabolism within skeletal muscle, and is essential for maintaining pancreatic β-cell mass and insulin secretion. However, the function of TBC1D1 within the heart is largely unknown. Therefore, we examined the role of TBC1D1 in the left ventricle and the functional consequence of ablating TBC1D1 on the susceptibility to high-fat diet-induced abnormalities. Since mutations within TBC1D1 (R125W) display stronger associations with clinical parameters in women, we further examined possible sex differences in the predisposition to diabetic cardiomyopathy. In control-fed animals, TBC1D1 ablation did not alter insulin-stimulated glucose uptake, or echocardiogram parameters, but increased accumulation of a plasma membrane fatty acid transporter and the capacity for palmitate oxidation. When challenged with an 8 week high-fat diet, TBC1D1 knockout rats displayed a four-fold increase in fibrosis compared to wild-type animals, and this was associated with diastolic dysfunction, suggesting a predisposition to diet-induced cardiomyopathy. Interestingly, high-fat feeding only induced cardiac hypertrophy in male TBC1D1 knockout animals, implicating a possible sex difference. Mitochondrial respiratory capacity and substrate sensitivity to pyruvate and ADP were not altered by diet or TBC1D1 ablation, nor were markers of oxidative stress, or indices of overt heart failure. Altogether, independent of sex, ablation of TBC1D1 not only increased the susceptibility to high-fat diet-induced diastolic dysfunction and left ventricular fibrosis, independent of sex, but also predisposed male animals to the development of cardiac hypertrophy. These data suggest that TBC1D1 may exert cardioprotective effects in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Pierre-Andre Barbeau
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Jacy M Houad
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Jason S Huber
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Sabina Paglialunga
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Laelie A Snook
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Eric A F Herbst
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Kaitlyn M J H Dennis
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| |
Collapse
|
14
|
Shang R, Lal N, Puri K, Hussein B, Rodrigues B. Involvement of Heparanase in Endothelial Cell-Cardiomyocyte Crosstalk. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:721-745. [PMID: 32274734 DOI: 10.1007/978-3-030-34521-1_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, the management of diabetes has focused mainly on controlling high blood glucose levels. Unfortunately, despite valiant efforts to normalize this blood glucose, poor medication management predisposes these patients to heart failure. Following diabetes, how the heart utilizes different sources of fuel for energy is key to the development of heart failure. The diabetic heart switches from using both glucose and fats, to predominately using fats as an energy resource for maintaining its activities. This transformation to using fats as an exclusive source of energy is helpful in the initial stages of the disease and is tightly controlled. However, over the progression of diabetes, there is a loss of this controlled supply and use of fats, which ultimately has terrible consequences since the uncontrolled use of fats produces toxic by-products which weaken heart function and cause heart disease. Heparanase is a key player that directs how much fats are provided to the heart and does so in association with several partners like LPL and VEGFs. Together, they regulate the amount of fats supplied, and their subsequent breakdown to provide energy. Following diabetes, there is a disruption in this network resulting in fat oversupply and cell death. Understanding how the heparanase-LPL-VEGFs "ensemble" cooperates, and its dysfunction in the diabetic heart would be useful in restoring metabolic equilibrium and limiting diabetes-related cardiac damage.
Collapse
Affiliation(s)
- Rui Shang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Karanjit Puri
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
da Silveira WA, Vazquez-Hidalgo E, Bartolotta E, Renaud L, Paolini P, Hardiman G. The effects of rosiglitazone on the neonatal rat cardiomyocyte transcriptome: a temporal analysis. Pharmacogenomics 2019; 20:1125-1141. [PMID: 31755367 PMCID: PMC7026769 DOI: 10.2217/pgs-2019-0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022] Open
Abstract
Aim: The objective was to determine via high-throughput RNA sequencing the temporal effects of rosiglitazone (Avandia®) on the neonatal rat ventricular myocyte transcriptome. Materials & methods: Neonatal rat ventricular myocytes (NRVMs) were exposed to rosiglitazone in vitro. Meta analyses utilized temporal comparisons of 0.5 h control versus 0.5 h treatment, 0.5 h treatment versus 24 h treatment and 24 h treatment versus 48 h treatment. Results: Time dependent responses were observed. At 0.5 h, the PI3K-AKT signaling pathway was impacted. At 24 h endoplasmic reticulum activity and protein degradation were altered. At 48 h, oxytocin signaling was perturbed. Conclusion: The effects of rosiglitazone occured early and increased in magnitude over time. A protective molecular response was triggered at 24 h and maintained until 48 h. In parallel, a response that can cause cardiac damage was activated. Our findings suggest that rosiglitazone has deleterious effects.
Collapse
Affiliation(s)
- Willian Abraham da Silveira
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina, Charleston, SC, USA
- Faculty of Medicine, Health & Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Belfast, Northern Ireland, UK
| | - Esteban Vazquez-Hidalgo
- Department of Biology, San Diego State University, San Diego, CA, USA
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
| | - Elesha Bartolotta
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Ludivine Renaud
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Paul Paolini
- Department of Biology, San Diego State University, San Diego, CA, USA
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
| | - Gary Hardiman
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina, Charleston, SC, USA
- Faculty of Medicine, Health & Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Belfast, Northern Ireland, UK
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
16
|
Luan HH, Wang A, Hilliard BK, Carvalho F, Rosen CE, Ahasic AM, Herzog EL, Kang I, Pisani MA, Yu S, Zhang C, Ring AM, Young LH, Medzhitov R. GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell 2019; 178:1231-1244.e11. [PMID: 31402172 PMCID: PMC6863354 DOI: 10.1016/j.cell.2019.07.033] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/02/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Growth and differentiation factor 15 (GDF15) is an inflammation-associated hormone with poorly defined biology. Here, we investigated the role of GDF15 in bacterial and viral infections. We found that inflammation induced GDF15, and that GDF15 was necessary for surviving both bacterial and viral infections, as well as sepsis. The protective effects of GDF15 were largely independent of pathogen control or the magnitude of inflammatory response, suggesting a role in disease tolerance. Indeed, we found that GDF15 was required for hepatic sympathetic outflow and triglyceride metabolism. Failure to defend the lower limit of plasma triglyceride levels was associated with impaired cardiac function and maintenance of body temperature, effects that could be rescued by exogenous administration of lipids. Together, we show that GDF15 coordinates tolerance to inflammatory damage through regulation of triglyceride metabolism.
Collapse
Affiliation(s)
- Harding H Luan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andrew Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Brandon K Hilliard
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fernando Carvalho
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Connor E Rosen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Amy M Ahasic
- Department of Medicine (Pulmonary, Critical Care and Sleep), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Erica L Herzog
- Department of Medicine (Pulmonary, Critical Care and Sleep), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Insoo Kang
- Department of Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Margaret A Pisani
- Department of Medicine (Pulmonary, Critical Care and Sleep), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuang Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cuiling Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aaron M Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lawrence H Young
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Nakatani K, Masuda D, Kobayashi T, Sairyo M, Zhu Y, Okada T, Naito AT, Ohama T, Koseki M, Oka T, Akazawa H, Nishida M, Komuro I, Sakata Y, Yamashita S. Pressure Overload Impairs Cardiac Function in Long-Chain Fatty Acid Transporter CD36-Knockout Mice. Int Heart J 2018; 60:159-167. [PMID: 30518717 DOI: 10.1536/ihj.18-114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CD36 is one of the important transporters of long-chain fatty acids (LCFAs) in the myocardium. We previously reported that CD36-deficient patients demonstrate a marked reduction of myocardial uptake of LCFA, while myocardial glucose uptake shows a compensatory increase, and are often accompanied by cardiomyopathy. However, the molecular mechanisms and functional role of CD36 in the myocardium remain unknown.The current study aimed to explore the pathophysiological role of CD36 in the heart. Methods: Using wild type (WT) and knockout (KO) mice, we generated pressure overload by transverse aortic constriction (TAC) and analyzed cardiac functions by echocardiography. To assess cardiac hypertrophy and fibrosis, histological and molecular analyses and measurement of ATP concentration in mouse hearts were performed.By applying TAC, the survival rate was significantly lower in KO than that in WT mice. After TAC, KO mice showed significantly higher heart weight-to-tibial length ratio and larger cross-sectional area of cardiomyocytes than those of WT. Although left ventricular (LV) wall thickness in the KO mice was similar to that in the WT mice, the KO mice showed a significant enlargement of LV cavity and reduced LV fractional shortening compared to the WT mice with TAC. A tendency for decreased myocardial ATP concentration was observed in the KO mice compared to the WT mice after TAC operation.These data suggest that the LCFA transporter CD36 is required for the maintenance of energy provision, systolic function, and myocardial structure.
Collapse
Affiliation(s)
| | - Daisaku Masuda
- Rinku Innovation Center for Wellness Care and Activities (RICWA), Health Care Center, Department of Cardiology, Rinku General Medical Center
| | | | - Masami Sairyo
- Department of Cardiovascular Medicine, Kawanishi City Hospital
| | - Yinghong Zhu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Atsuhiko T Naito
- Department of Pharmacology, Faculty of Medicine, Toho University
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine.,Osaka University Dental Hospital
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine.,Health Care Division, Health and Counseling Center, Osaka University
| | - Toru Oka
- Department of Medical Checkup, Osaka International Cancer Institute
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine
| | - Makoto Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine.,Health Care Division, Health and Counseling Center, Osaka University
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Shizuya Yamashita
- Rinku General Medical Center.,Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine.,Department of Community Medicine, Osaka University Graduate School of Medicine
| |
Collapse
|
18
|
Nagao M, Nakajima H, Toh R, Hirata KI, Ishida T. Cardioprotective Effects of High-Density Lipoprotein Beyond its Anti-Atherogenic Action. J Atheroscler Thromb 2018; 25:985-993. [PMID: 30146614 PMCID: PMC6193192 DOI: 10.5551/jat.rv17025] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
High-density lipoprotein cholesterol (HDL-C) has been identified as a powerful independent negative predictor of cardiovascular disease. The beneficial effect of HDL is largely attributable to its key role in reverse cholesterol transport, whereby excess cholesterol in the peripheral tissues is transported to the liver, reducing the atherosclerotic burden. However, mounting evidence indicates that HDL also has pleiotropic properties, such as anti-inflammatory, anti-oxidative, and vasodilatory properties, which may contribute in reducing the incidence of heart failure. Actually, previous data from clinical and experimental studies have suggested that HDL exerts cardioprotective effects irrespective of the presence/absence of coronary artery disease. This review summarizes the currently available evidence regarding beneficial effects of HDL on the heart beyond its anti-atherogenic property. Understanding the mechanisms of cardiac protection by HDL will provide new insight into the underlying mechanism and therapeutic strategy for heart failure.
Collapse
Affiliation(s)
- Manabu Nagao
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | - Hideto Nakajima
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| |
Collapse
|
19
|
Guo Y, Wang Z, Qin X, Xu J, Hou Z, Yang H, Mao X, Xing W, Li X, Zhang X, Gao F. Enhancing fatty acid utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing optic atrophy 1 processing in the failing heart. Cardiovasc Res 2018; 114:979-991. [PMID: 29490017 DOI: 10.1093/cvr/cvy052] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/24/2018] [Indexed: 09/12/2024] Open
Abstract
AIMS Heart failure (HF) is characterized by reduced fatty acid (FA) utilization associated with mitochondrial dysfunction. Recent evidence has shown that enhancing FA utilization may provide cardioprotection against HF. Our aim was to investigate the effects and the underlying mechanisms of cardiac FA utilization on cardiac function in response to pressure overload. METHODS AND RESULTS Transverse aortic constriction (TAC) was used in C57 mice to establish pressure overload-induced HF. TAC mice fed on a high fat diet (HFD) exhibited increased cardiac FA utilization and improved cardiac function and survival compared with those on control diet. Such cardioprotection could also be provided by cardiac-specific overexpression of CD36. Notably, both HFD and CD36 overexpression attenuated mitochondrial fragmentation and improved mitochondrial function in the failing heart. Pressure overload decreased ATP-dependent metalloprotease (YME1L) expression and induced the proteolytic cleavage of the dynamin-like guanosine triphosphatase OPA1 as a result of suppressed FA utilization. Enhancing FA utilization upregulated YME1L expression and subsequently rebalanced OPA1 processing, resulting in restoration of mitochondrial morphology in the failing heart. In addition, cardiac-specific overexpression of YME1L exerted similar cardioprotective effects against HF to those provided by HFD or CD36 overexpression. CONCLUSIONS These findings demonstrate that enhancing FA utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing OPA1 processing in pressure overload-induced HF, suggesting a unique metabolic intervention approach to improving cardiac functions in HF.
Collapse
MESH Headings
- Animals
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Energy Metabolism
- Fatty Acids/metabolism
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Heart Failure/diet therapy
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Male
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Mice, Inbred C57BL
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proteolysis
- Rats, Sprague-Dawley
- Ventricular Function, Left
Collapse
Affiliation(s)
- Yongzheng Guo
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Zhen Wang
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Xinghua Qin
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Jie Xu
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Zuoxu Hou
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Xuechao Mao
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Wenjuan Xing
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Xiaoliang Li
- Department of Emergency Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| |
Collapse
|
20
|
Abdurrachim D, Nabben M, Hoerr V, Kuhlmann MT, Bovenkamp P, Ciapaite J, Geraets IME, Coumans W, Luiken JJFP, Glatz JFC, Schäfers M, Nicolay K, Faber C, Hermann S, Prompers JJ. Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations. Cardiovasc Res 2018; 113:1148-1160. [PMID: 28549111 DOI: 10.1093/cvr/cvx100] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/23/2017] [Indexed: 12/11/2022] Open
Abstract
Aims Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Methods and results Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. Conclusion The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function.
Collapse
Affiliation(s)
- Desiree Abdurrachim
- Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Miranda Nabben
- Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.,Department of Genetics and Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Verena Hoerr
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany.,Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | | | - Philipp Bovenkamp
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Jolita Ciapaite
- Department of Pediatrics and Systems Biology Center for Energy Metabolism and Ageing, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ilvy M E Geraets
- Department of Genetics and Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Will Coumans
- Department of Genetics and Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Genetics and Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Michael Schäfers
- European Institute for Molecular Imaging-EIMI, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany.,Department of Nuclear Medicine, University of Münster, Münster, Germany
| | - Klaas Nicolay
- Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging-EIMI, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Jeanine J Prompers
- Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
21
|
Liu C, Han T, Stachura DL, Wang H, Vaisman BL, Kim J, Klemke RL, Remaley AT, Rana TM, Traver D, Miller YI. Lipoprotein lipase regulates hematopoietic stem progenitor cell maintenance through DHA supply. Nat Commun 2018; 9:1310. [PMID: 29615667 PMCID: PMC5882990 DOI: 10.1038/s41467-018-03775-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/07/2018] [Indexed: 01/15/2023] Open
Abstract
Lipoprotein lipase (LPL) mediates hydrolysis of triglycerides (TGs) to supply free fatty acids (FFAs) to tissues. Here, we show that LPL activity is also required for hematopoietic stem progenitor cell (HSPC) maintenance. Knockout of Lpl or its obligatory cofactor Apoc2 results in significantly reduced HSPC expansion during definitive hematopoiesis in zebrafish. A human APOC2 mimetic peptide or the human very low-density lipoprotein, which carries APOC2, rescues the phenotype in apoc2 but not in lpl mutant zebrafish. Creating parabiotic apoc2 and lpl mutant zebrafish rescues the hematopoietic defect in both. Docosahexaenoic acid (DHA) is identified as an important factor in HSPC expansion. FFA-DHA, but not TG-DHA, rescues the HSPC defects in apoc2 and lpl mutant zebrafish. Reduced blood cell counts are also observed in Apoc2 mutant mice at the time of weaning. These results indicate that LPL-mediated release of the essential fatty acid DHA regulates HSPC expansion and definitive hematopoiesis.
Collapse
Affiliation(s)
- Chao Liu
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tianxu Han
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David L Stachura
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Huawei Wang
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Boris L Vaisman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, 31 Center St, Bethesda, MD, 20892, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Richard L Klemke
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, 31 Center St, Bethesda, MD, 20892, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
22
|
Goldberg IJ. 2017 George Lyman Duff Memorial Lecture: Fat in the Blood, Fat in the Artery, Fat in the Heart: Triglyceride in Physiology and Disease. Arterioscler Thromb Vasc Biol 2018; 38:700-706. [PMID: 29419410 PMCID: PMC5864527 DOI: 10.1161/atvbaha.117.309666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Cholesterol is not the only lipid that causes heart disease. Triglyceride supplies the heart and skeletal muscles with highly efficient fuel and allows for the storage of excess calories in adipose tissue. Failure to transport, acquire, and use triglyceride leads to energy deficiency and even death. However, overabundance of triglyceride can damage and impair tissues. Circulating lipoprotein-associated triglycerides are lipolyzed by lipoprotein lipase (LpL) and hepatic triglyceride lipase. We inhibited these enzymes and showed that LpL inhibition reduces high-density lipoprotein cholesterol by >50%, and hepatic triglyceride lipase inhibition shifts low-density lipoprotein to larger, more buoyant particles. Genetic variations that reduce LpL activity correlate with increased cardiovascular risk. In contrast, macrophage LpL deficiency reduces macrophage function and atherosclerosis. Therefore, muscle and macrophage LpL have opposite effects on atherosclerosis. With models of atherosclerosis regression that we used to study diabetes mellitus, we are now examining whether triglyceride-rich lipoproteins or their hydrolysis by LpL affect the biology of established plaques. Following our focus on triglyceride metabolism led us to show that heart-specific LpL hydrolysis of triglyceride allows optimal supply of fatty acids to the heart. In contrast, cardiomyocyte LpL overexpression and excess lipid uptake cause lipotoxic heart failure. We are now studying whether interrupting pathways for lipid uptake might prevent or treat some forms of heart failure.
Collapse
Affiliation(s)
- Ira J Goldberg
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University School of Medicine.
| |
Collapse
|
23
|
Nelson JW, Ferdaus MZ, McCormick JA, Minnier J, Kaul S, Ellison DH, Barnes AP. Endothelial transcriptomics reveals activation of fibrosis-related pathways in hypertension. Physiol Genomics 2018; 50:104-116. [PMID: 29212850 PMCID: PMC5867617 DOI: 10.1152/physiolgenomics.00111.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/20/2017] [Accepted: 12/06/2017] [Indexed: 12/30/2022] Open
Abstract
Hypertension poses a significant challenge to vasculature homeostasis and stands as the most common cardiovascular disease in the world. Its effects are especially profound on endothelial cells that form the inner lining of the vasculature and are directly exposed to the effects of excess pressure. Here, we characterize the in vivo transcriptomic response of cardiac endothelial cells to hypertension by rapidly isolating these cells from the spontaneous hypertension mouse model BPH/2J and its normotensive BPN/3J control strain and performing and RNA sequencing on both. Comparison of transcriptional differences between these groups reveals statistically significant changes in cellular pathways consistent with cardiac fibrosis found in hypertensive animals. Importantly, many of the fibrosis-linked genes identified also differ significantly between juvenile prehypertensive and adult hypertensive BPH/2J mice, suggesting that these transcriptional differences are hypertension related. We examined the dynamic nature of these transcriptional changes by testing whether blood pressure normalization using either a calcium channel blocker (amlodipine) or a angiotensin II receptor blocker (losartan) is able to reverse these expression patterns associated with hypertension. We find that blood pressure reduction is capable of reversing some gene-expression patterns, while other transcripts are recalcitrant to therapeutic intervention. This illuminates the possibility that unmanaged hypertension may irreversibly alter some endothelial transcriptional patterns despite later intervention. This study quantifies how endothelial cells are remodeled at the molecular level in cardiovascular pathology and advances our understanding of the transcriptional events associated with endothelial response to hypertensive challenge.
Collapse
Affiliation(s)
- Jonathan W Nelson
- The Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Mohammed Z Ferdaus
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon
| | - James A McCormick
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon
| | - Jessica Minnier
- The Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Sanjiv Kaul
- The Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon
- Department of Medicine, Oregon Clinical and Translational Research Institute, Oregon Health & Science University , Portland, Oregon
| | - Anthony P Barnes
- The Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
24
|
Joyal JS, Gantner ML, Smith LEH. Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog Retin Eye Res 2017; 64:131-156. [PMID: 29175509 DOI: 10.1016/j.preteyeres.2017.11.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Qc, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Canada.
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, United States
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston MA 02115, United States.
| |
Collapse
|
25
|
Liang Y, Li X, Zhang Y, Yeung SC, Zhen Z, Ip MSM, Tse HF, Lian Q, Mak JCW. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction. Front Pharmacol 2017; 8:501. [PMID: 28804458 PMCID: PMC5532447 DOI: 10.3389/fphar.2017.00501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
The strong relationship between cigarette smoking and cardiovascular disease (CVD) has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs) are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs) or bone marrow (BM-MSCs) might alleviate cigarette smoke (CS)-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA) as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and dysfunction. Thus, iPSC-MSCs may be a promising candidate in cell-based therapy to prevent cardiac complications in smokers.
Collapse
Affiliation(s)
- Yingmin Liang
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPok Fu Lam, Hong Kong
| | - Xiang Li
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPok Fu Lam, Hong Kong
| | - Yuelin Zhang
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong
| | - Sze Chun Yeung
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPok Fu Lam, Hong Kong
| | - Zhe Zhen
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong
| | - Mary S M Ip
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPok Fu Lam, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong KongPok Fu Lam, Hong Kong
| | - Hung Fat Tse
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong
| | - Qizhou Lian
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPok Fu Lam, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong KongPok Fu Lam, Hong Kong.,Department of Ophthalmology, The University of Hong KongPok Fu Lam, Hong Kong
| | - Judith C W Mak
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPok Fu Lam, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong KongPok Fu Lam, Hong Kong.,Department of Pharmacology and Pharmacy, The University of Hong KongPok Fu Lam, Hong Kong
| |
Collapse
|
26
|
The ‘Goldilocks zone’ of fatty acid metabolism; to ensure that the relationship with cardiac function is just right. Clin Sci (Lond) 2017; 131:2079-2094. [DOI: 10.1042/cs20160671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022]
Abstract
Fatty acids (FA) are the main fuel used by the healthy heart to power contraction, supplying 60–70% of the ATP required. FA generate more ATP per carbon molecule than glucose, but require more oxygen to produce the ATP, making them a more energy dense but less oxygen efficient fuel compared with glucose. The pathways involved in myocardial FA metabolism are regulated at various subcellular levels, and can be divided into sarcolemmal FA uptake, cytosolic activation and storage, mitochondrial uptake and β-oxidation. An understanding of the critical involvement of each of these steps has been amassed from genetic mouse models, where forcing the heart to metabolize too much or too little fat was accompanied by cardiac contractile dysfunction and hypertrophy. In cardiac pathologies, such as heart disease and diabetes, aberrations in FA metabolism occur concomitantly with changes in cardiac function. In heart failure, FA oxidation is decreased, correlating with systolic dysfunction and hypertrophy. In contrast, in type 2 diabetes, FA oxidation and triglyceride storage are increased, and correlate with diastolic dysfunction and insulin resistance. Therefore, too much FA metabolism is as detrimental as too little FA metabolism in these settings. Therapeutic compounds that rebalance FA metabolism may provide a mechanism to improve cardiac function in disease. Just like Goldilocks and her porridge, the heart needs to maintain FA metabolism in a zone that is ‘just right’ to support contractile function.
Collapse
|
27
|
Peterzan MA, Lygate CA, Neubauer S, Rider OJ. Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 2017. [PMID: 28646030 DOI: 10.1152/ajpheart.00731.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The energy starvation hypothesis proposes that maladaptive metabolic remodeling antedates, initiates, and maintains adverse contractile dysfunction in heart failure (HF). Better understanding of the cardiac metabolic phenotype and metabolic signaling could help identify the role metabolic remodeling plays within HF and the conditions known to transition toward HF, including "pathological" hypertrophy. In this review, we discuss metabolic phenotype and metabolic signaling in the contexts of pathological hypertrophy and HF. We discuss the significance of alterations in energy supply (substrate utilization, oxidative capacity, and phosphotransfer) and energy sensing using observations from human and animal disease models and models of manipulated energy supply/sensing. We aim to provide ways of thinking about metabolic remodeling that center around metabolic flexibility, capacity (reserve), and efficiency rather than around particular substrate preferences or transcriptomic profiles. We show that maladaptive metabolic remodeling takes multiple forms across multiple energy-handling domains. We suggest that lack of metabolic flexibility and reserve (substrate, oxidative, and phosphotransfer) represents a final common denominator ultimately compromising efficiency and contractile reserve in stressful contexts.
Collapse
Affiliation(s)
- Mark A Peterzan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
28
|
Evans RD, Hauton D. The role of triacylglycerol in cardiac energy provision. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1481-91. [DOI: 10.1016/j.bbalip.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023]
|
29
|
Papageorgiou I, Viglino C, Brulhart-Meynet MC, James RW, Lerch R, Montessuit C. Impaired stimulation of glucose transport in cardiac myocytes exposed to very low-density lipoproteins. Nutr Metab Cardiovasc Dis 2016; 26:614-622. [PMID: 27052924 DOI: 10.1016/j.numecd.2016.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 11/27/2015] [Accepted: 01/25/2016] [Indexed: 12/13/2022]
Abstract
We recently observed that free fatty acids impair the stimulation of glucose transport into cardiomyocytes in response to either insulin or metabolic stress. In vivo, fatty acids for the myocardium are mostly obtained from triglyceride-rich lipoproteins (chylomicrons and Very Low-Density Lipoproteins). We therefore determined whether exposure of cardiac myocytes to VLDL resulted in impaired basal and stimulated glucose transport. Primary adult rat cardiac myocytes were chronically exposed to VLDL before glucose uptake was measured in response to insulin or metabolic stress, provoked by the mitochondrial ATP synthase inhibitor oligomycin. Exposure of cardiac myocytes to VLDL reduced both insulin-and oligomycin-stimulated glucose uptake. The reduction of glucose uptake was associated with a moderately reduced tyrosine phosphorylation of the insulin receptor. No reduction of the phosphorylation of the downstream effectors of insulin signaling Akt and AS160 was however observed. Similarly only a modest reduction of the activating phosphorylation of the AMP-activated kinase (AMPK) was observed in response to oligomycin. Similar to our previous observations with free fatty acids, inhibition of fatty acid oxidation restored oligomycin-stimulated glucose uptake. In conclusions, VLDL-derived fatty acids impair stimulated glucose transport in cardiac myocytes by a mechanism that seems to be mediated by a fatty acid oxidation intermediate. Thus, in the clinical context of the metabolic syndrome high VLDL may contribute to enhancement of ischemic injury by reduction of metabolic stress-stimulated glucose uptake.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Biological Transport
- Cells, Cultured
- Cholesterol/metabolism
- Deoxyglucose/metabolism
- Dose-Response Relationship, Drug
- Fatty Acids, Nonesterified/metabolism
- GTPase-Activating Proteins/metabolism
- Humans
- Insulin/pharmacology
- Lipoproteins, VLDL/pharmacology
- Male
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Oligomycins/pharmacology
- Oxidation-Reduction
- Phosphorylation
- Primary Cell Culture
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Receptor, Insulin/drug effects
- Receptor, Insulin/metabolism
- Signal Transduction/drug effects
- Stress, Physiological/drug effects
- Tyrosine
- Uncoupling Agents/pharmacology
Collapse
Affiliation(s)
- I Papageorgiou
- Division of Cardiology, Department of Medical Specialties, Geneva University Hospitals, Switzerland; Foundation for Medical Researches, University of Geneva School of Medicine, Switzerland
| | - C Viglino
- Foundation for Medical Researches, University of Geneva School of Medicine, Switzerland
| | - M-C Brulhart-Meynet
- Division of Endocrinology and Diabetology, Department of Medical Specialties, Geneva University Hospitals, Switzerland
| | - R W James
- Division of Endocrinology and Diabetology, Department of Medical Specialties, Geneva University Hospitals, Switzerland
| | - R Lerch
- Division of Cardiology, Department of Medical Specialties, Geneva University Hospitals, Switzerland
| | - C Montessuit
- Division of Cardiology, Department of Medical Specialties, Geneva University Hospitals, Switzerland; Foundation for Medical Researches, University of Geneva School of Medicine, Switzerland.
| |
Collapse
|
30
|
Westermeier F, Riquelme JA, Pavez M, Garrido V, Díaz A, Verdejo HE, Castro PF, García L, Lavandero S. New Molecular Insights of Insulin in Diabetic Cardiomyopathy. Front Physiol 2016; 7:125. [PMID: 27148064 PMCID: PMC4828458 DOI: 10.3389/fphys.2016.00125] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a highly prevalent disease worldwide. Cardiovascular disorders generated as a consequence of T2DM are a major cause of death related to this disease. Diabetic cardiomyopathy (DCM) is characterized by the morphological, functional and metabolic changes in the heart produced as a complication of T2DM. This cardiac disorder is characterized by constant high blood glucose and lipids levels which eventually generate oxidative stress, defective calcium handling, altered mitochondrial function, inflammation and fibrosis. In this context, insulin is of paramount importance for cardiac contractility, growth and metabolism and therefore, an impaired insulin signaling plays a critical role in the DCM development. However, the exact pathophysiological mechanisms leading to DCM are still a matter of study. Despite the numerous questions raised in the study of DCM, there have also been important findings, such as the role of micro-RNAs (miRNAs), which can not only have the potential of being important biomarkers, but also therapeutic targets. Furthermore, exosomes also arise as an interesting variable to consider, since they represent an important inter-cellular communication mechanism and therefore, they may explain many aspects of the pathophysiology of DCM and their study may lead to the development of therapeutic agents capable of improving insulin signaling. In addition, adenosine and adenosine receptors (ARs) may also play an important role in DCM. Moreover, the possible cross-talk between insulin and ARs may provide new strategies to reverse its defective signaling in the diabetic heart. This review focuses on DCM, the role of insulin in this pathology and the discussion of new molecular insights which may help to understand its underlying mechanisms and generate possible new therapeutic strategies.
Collapse
Affiliation(s)
- Francisco Westermeier
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Jaime A Riquelme
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Mario Pavez
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Valeria Garrido
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Ariel Díaz
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Hugo E Verdejo
- Faculty of Medicine, Advanced Center for Chronic Diseases, Pontifical Catholic University of ChileSantiago, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontifical Catholic University of ChileSantiago, Chile
| | - Pablo F Castro
- Faculty of Medicine, Advanced Center for Chronic Diseases, Pontifical Catholic University of ChileSantiago, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontifical Catholic University of ChileSantiago, Chile
| | - Lorena García
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of Chile Santiago, Chile
| | - Sergio Lavandero
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases, University of ChileSantiago, Chile; Department of Internal Medicine (Division of Cardiology), University of Texas Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
31
|
Chiu APL, Wan A, Rodrigues B. Cardiomyocyte-endothelial cell control of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1434-41. [PMID: 26995461 DOI: 10.1016/j.bbalip.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/17/2023]
Abstract
In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Andrea Wan
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
32
|
Lipid metabolism and signaling in cardiac lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1513-24. [PMID: 26924249 DOI: 10.1016/j.bbalip.2016.02.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/01/2023]
Abstract
The heart balances uptake, metabolism and oxidation of fatty acids (FAs) to maintain ATP production, membrane biosynthesis and lipid signaling. Under conditions where FA uptake outpaces FA oxidation and FA sequestration as triacylglycerols in lipid droplets, toxic FA metabolites such as ceramides, diacylglycerols, long-chain acyl-CoAs, and acylcarnitines can accumulate in cardiomyocytes and cause cardiomyopathy. Moreover, studies using mutant mice have shown that dysregulation of enzymes involved in triacylglycerol, phospholipid, and sphingolipid metabolism in the heart can lead to the excess deposition of toxic lipid species that adversely affect cardiomyocyte function. This review summarizes our current understanding of lipid uptake, metabolism and signaling pathways that have been implicated in the development of lipotoxic cardiomyopathy under conditions including obesity, diabetes, aging, and myocardial ischemia-reperfusion. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
|
33
|
Chiu APL, Wan A, Lal N, Zhang D, Wang F, Vlodavsky I, Hussein B, Rodrigues B. Cardiomyocyte VEGF Regulates Endothelial Cell GPIHBP1 to Relocate Lipoprotein Lipase to the Coronary Lumen During Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2016; 36:145-55. [DOI: 10.1161/atvbaha.115.306774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023]
Abstract
Objective—
Lipoprotein lipase (LPL)–mediated triglyceride hydrolysis is the major source of fatty acid for cardiac energy. LPL, synthesized in cardiomyocytes, is translocated across endothelial cells (EC) by its transporter glycosylphosphatidylinositol-anchored high-density lipoprotein–binding protein 1 (GPIHBP1). Previously, we have reported an augmentation in coronary LPL, which was linked to an increased expression of GPIHBP1 following moderate diabetes mellitus. We examined the potential mechanism by which hyperglycemia amplifies GPIHBP1.
Approach and Results—
Exposure of rat aortic EC to high glucose induced GPIHBP1 expression and amplified LPL shuttling across these cells. This effect coincided with an elevated secretion of heparanase. Incubation of EC with high glucose or latent heparanase resulted in secretion of vascular endothelial growth factor (VEGF). Primary cardiomyocytes, being a rich source of VEGF, when cocultured with EC, restored EC GPIHBP1 that is lost because of cell passaging. Furthermore, recombinant VEGF induced EC GPIHBP1 mRNA and protein expression within 24 hours, an effect that could be prevented by a VEGF neutralizing antibody. This VEGF-induced increase in GPIHBP1 was through Notch signaling that encompassed Delta-like ligand 4 augmentation and nuclear translocation of the Notch intracellular domain. Finally, cardiomyocytes from severely diabetic animals exhibiting attenuation of VEGF were unable to increase EC GPIHBP1 expression and had lower LPL activity at the vascular lumen in perfused hearts.
Conclusion—
EC, as the first responders to hyperglycemia, can release heparanase to liberate myocyte VEGF. This growth factor, by activating EC Notch signaling, is responsible for facilitating GPIHBP1-mediated translocation of LPL across EC and regulating LPL-derived fatty acid delivery to the cardiomyocytes.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Andrea Wan
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Nathaniel Lal
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Dahai Zhang
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Fulong Wang
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Israel Vlodavsky
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Bahira Hussein
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Brian Rodrigues
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| |
Collapse
|
34
|
Nakatani K, Watabe T, Masuda D, Imaizumi M, Shimosegawa E, Kobayashi T, Sairyo M, Zhu Y, Okada T, Kawase R, Nakaoka H, Naito A, Ohama T, Koseki M, Oka T, Akazawa H, Nishida M, Komuro I, Sakata Y, Hatazawa J, Yamashita S. Myocardial energy provision is preserved by increased utilization of glucose and ketone bodies in CD36 knockout mice. Metabolism 2015; 64:1165-74. [PMID: 26130608 DOI: 10.1016/j.metabol.2015.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 01/30/2023]
Abstract
AIMS CD36 is an important transporter of long-chain fatty acids (LCFAs) in the myocardium. As we have reported previously, CD36-deficient patients demonstrate a marked reduction in myocardial uptake of (123)I-15-(p-iodophenyl)-(R, S)-methyl pentadecanoic acid (BMIPP), which is an analog of LCFAs, while myocardial (18)F-fluorodeoxy-glucose (FDG) uptake is increased. However, it has not been clarified whether energy provision is preserved in patients with CD36 deficiency. The aims of the current study were to investigate the myocardial uptake of glucose and alterations in myocardial metabolites in wild-type (WT) and CD36 knockout (KO) mice. METHODS AND RESULTS High-resolution positron emission tomography (PET) demonstrated markedly enhanced glucose uptake in KO mouse hearts compared with those of WT mice in real-time. The myocardial protein expression of glucose transporter protein 1 (GLUT1) was significantly enhanced in KO mice compared to WT mice, whereas that of GLUT4 was not altered. While the myocardial expression of genes involved in fatty acid metabolism did not increase in KO mice, that of genes related to glucose utilization compensatorily increased in KO mice. The metabolomic analysis of cardiac tissues revealed that the myocardial concentrations of ATP and phosphocreatine were maintained, even in KO mice. The concentration of 3-hydroxybutyric acid and mRNA expression of hydroxybutyrate dehydrogenase in the heart were significantly higher in KO than in WT mice. CONCLUSION These data suggest that high-energy phosphate might be preserved by the increased utilization of glucose and ketone bodies in CD36KO mouse hearts under conditions of deficient LCFA uptake.
Collapse
Affiliation(s)
- Kazuhiro Nakatani
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Watabe
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisaku Masuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masao Imaizumi
- Hanwa Intelligent Medical Center, 3176 Fukai-kitamachi, Nakaku, Sakai, Osaka 599-8271, Japan
| | - Eku Shimosegawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Kobayashi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masami Sairyo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yinghong Zhu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryota Kawase
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hajime Nakaoka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuhiko Naito
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongou, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Health Care Center, Osaka University, 1-7 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toru Oka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongou, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makoto Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Health Care Center, Osaka University, 1-7 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongou, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shizuya Yamashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Community Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Abdurrachim D, Luiken JJFP, Nicolay K, Glatz JFC, Prompers JJ, Nabben M. Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovasc Res 2015; 106:194-205. [PMID: 25765936 DOI: 10.1093/cvr/cvv105] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/18/2015] [Indexed: 12/25/2022] Open
Abstract
The shift in substrate preference away from fatty acid oxidation (FAO) towards increased glucose utilization in heart failure has long been interpreted as an oxygen-sparing mechanism. Inhibition of FAO has therefore evolved as an accepted approach to treat heart failure. However, recent data indicate that increased reliance on glucose might be detrimental rather than beneficial for the failing heart. This review discusses new insights into metabolic adaptations in heart failure. A particular focus lies on data obtained from mouse models with modulations of cardiac FA metabolism at different levels of the FA metabolic pathway and how these differently affect cardiac function. Based on studies in which these mouse models were exposed to ischaemic and non-ischaemic heart failure, we discuss whether and when modulations in FA metabolism are protective against heart failure.
Collapse
Affiliation(s)
- Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Jan F C Glatz
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Miranda Nabben
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
36
|
Puthanveetil P, Wan A, Rodrigues B. Lipoprotein lipase and angiopoietin-like 4 – Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease. Crit Rev Clin Lab Sci 2015; 52:138-49. [DOI: 10.3109/10408363.2014.997931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Paolini P, Pick D, Lapira J, Sannino G, Pasqualini L, Ludka C, Sprague LJ, Zhang X, Bartolotta EA, Vazquez-Hidalgo E, Barba DT, Bazan C, Hardiman G. Developmental and extracellular matrix-remodeling processes in rosiglitazone-exposed neonatal rat cardiomyocytes. Pharmacogenomics 2015; 15:759-74. [PMID: 24897284 DOI: 10.2217/pgs.14.39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The objective of this study was to investigate the effects of rosiglitazone (Avandia(®)) on gene expression in neonatal rat ventricular myocytes. MATERIALS & METHODS Myocytes were exposed to rosiglitazone ex vivo. The two factors examined in the experiment were drug exposure (rosiglitazone and dimethyl sulfoxide vs dimethyl sulfoxide), and length of exposure to drug (½ h, 1 h, 2 h, 4 h, 6 h, 8 h, 12 h, 18 h, 24 h, 36 h and 48 h). RESULTS Transcripts that were consistently expressed in response to the drug were identified. Cardiovascular system development, extracellular matrix and immune response are represented prominently among the significantly modified gene ontology terms. CONCLUSION Hmgcs2, Angptl4, Cpt1a, Cyp1b1, Ech1 and Nqo1 mRNAs were strongly upregulated in cells exposed to rosiglitazone. Enrichment of transcripts involved in cardiac muscle cell differentiation and the extracellular matrix provides a panel of biomarkers for further analysis in the context of adverse cardiac outcomes in humans. Original submitted 15 November 2013; Revision submitted 14 February 2014.
Collapse
Affiliation(s)
- Paul Paolini
- Department of Biology, San Diego State University, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Coppiello G, Collantes M, Sirerol-Piquer MS, Vandenwijngaert S, Schoors S, Swinnen M, Vandersmissen I, Herijgers P, Topal B, van Loon J, Goffin J, Prósper F, Carmeliet P, García-Verdugo JM, Janssens S, Peñuelas I, Aranguren XL, Luttun A. Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake. Circulation 2015; 131:815-26. [PMID: 25561514 DOI: 10.1161/circulationaha.114.013721] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Microvascular endothelium in different organs is specialized to fulfill the particular needs of parenchymal cells. However, specific information about heart capillary endothelial cells (ECs) is lacking. METHODS AND RESULTS Using microarray profiling on freshly isolated ECs from heart, brain, and liver, we revealed a genetic signature for microvascular heart ECs and identified Meox2/Tcf15 heterodimers as novel transcriptional determinants. This signature was largely shared with skeletal muscle and adipose tissue endothelium and was enriched in genes encoding fatty acid (FA) transport-related proteins. Using gain- and loss-of-function approaches, we showed that Meox2/Tcf15 mediate FA uptake in heart ECs, in part, by driving endothelial CD36 and lipoprotein lipase expression and facilitate FA transport across heart ECs. Combined Meox2 and Tcf15 haplodeficiency impaired FA uptake in heart ECs and reduced FA transfer to cardiomyocytes. In the long term, this combined haplodeficiency resulted in impaired cardiac contractility. CONCLUSIONS Our findings highlight a regulatory role for ECs in FA transfer to the heart parenchyma and unveil 2 of its intrinsic regulators. Our insights could be used to develop new strategies based on endothelial Meox2/Tcf15 targeting to modulate FA transfer to the heart and remedy cardiac dysfunction resulting from altered energy substrate usage.
Collapse
Affiliation(s)
- Giulia Coppiello
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Maria Collantes
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - María Salomé Sirerol-Piquer
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Sara Vandenwijngaert
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Sandra Schoors
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Melissa Swinnen
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Ine Vandersmissen
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Paul Herijgers
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Baki Topal
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Johannes van Loon
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Jan Goffin
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Felipe Prósper
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Peter Carmeliet
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Jose Manuel García-Verdugo
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Stefan Janssens
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Iván Peñuelas
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Xabier L Aranguren
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium
| | - Aernout Luttun
- From Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (G.C., I.V., X.L.A., A.L.), Department of Cardiovascular Sciences, Cardiology Unit (S.V., M.S., S.J.), Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology (S.S., P.C.), and Department of Cardiovascular Sciences, Experimental Cardiac Surgery Unit (P.H.), KULeuven, Belgium; Department of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN (M.C., I.P.), and Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research (F.P., X.L.A), University of Navarra, Pamplona, Spain; Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Spain (M.S.S.-P., J.M.G.-V.); and Departments of Abdominal Surgery (B.T.) and Neurosurgery (J.v.L., J.G.), University Hospitals Leuven/KULeuven, Belgium.
| |
Collapse
|
39
|
Intrinsic and extrinsic regulation of cardiac lipoprotein lipase following diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:163-71. [PMID: 25463481 DOI: 10.1016/j.bbalip.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
Cardiac lipoprotein lipase (LPL) is a pivotal enzyme controlling heart metabolism by providing the majority of fatty acids required by this organ. From activation in cardiomyocytes to secretion to the vascular lumen, cardiac LPL is regulated by multiple pathways, which are altered during diabetes. Hence, dimerization/activation of LPL is modified following diabetes, a process controlled by lipase maturation factor 1. The role of AMP-activated protein kinase, protein kinase D, and heparan sulfate proteoglycans, intrinsic factors that regulate the intracellular transport of LPL is also shifted, and is discussed. More recent studies have identified several exogenous factors released from endothelial cells (EC) and adipose tissue that are required for proper functioning of LPL. In response to hyperglycemia, both active and latent heparanase are released from EC to facilitate LPL secretion. Diabetes also increased the expression of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in EC, which mediates the transport of LPL across EC. Angiopoietin-like protein 4 secreted from the adipose tissue has the potential to reduce coronary LPL activity. Knowledge of these intrinsic and extrinsic factors could be used develop therapeutic targets to normalize LPL function, and maintain cardiac energy homeostasis after diabetes.
Collapse
|
40
|
Alfarano C, Foussal C, Lairez O, Calise D, Attané C, Anesia R, Daviaud D, Wanecq E, Parini A, Valet P, Kunduzova O. Transition from metabolic adaptation to maladaptation of the heart in obesity: role of apelin. Int J Obes (Lond) 2014; 39:312-20. [PMID: 25027224 PMCID: PMC4326962 DOI: 10.1038/ijo.2014.122] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/15/2014] [Accepted: 06/17/2014] [Indexed: 11/10/2022]
Abstract
Background/Objectives: Impaired energy metabolism is the defining characteristic of obesity-related heart failure. The adipocyte-derived peptide apelin has a role in the regulation of cardiovascular and metabolic homeostasis and may contribute to the link between obesity, energy metabolism and cardiac function. Here we investigate the role of apelin in the transition from metabolic adaptation to maladaptation of the heart in obese state. Methods: Adult male C57BL/6J, apelin knock-out (KO) or wild-type mice were fed a high-fat diet (HFD) for 18 weeks. To induce heart failure, mice were subjected to pressure overload after 18 weeks of HFD. Long-term effects of apelin on fatty acid (FA) oxidation, glucose metabolism, cardiac function and mitochondrial changes were evaluated in HFD-fed mice after 4 weeks of pressure overload. Cardiomyocytes from HFD-fed mice were isolated for analysis of metabolic responses. Results: In HFD-fed mice, pressure overload-induced transition from hypertrophy to heart failure is associated with reduced FA utilization (P<0.05), accelerated glucose oxidation (P<0.05) and mitochondrial damage. Treatment of HFD-fed mice with apelin for 4 weeks prevented pressure overload-induced decline in FA metabolism (P<0.05) and mitochondrial defects. Furthermore, apelin treatment lowered fasting plasma glucose (P<0.01), improved glucose tolerance (P<0.05) and preserved cardiac function (P<0.05) in HFD-fed mice subjected to pressure overload. In apelin KO HFD-fed mice, spontaneous cardiac dysfunction is associated with reduced FA oxidation (P<0.001) and increased glucose oxidation (P<0.05). In isolated cardiomyocytes, apelin stimulated FA oxidation in a dose-dependent manner and this effect was prevented by small interfering RNA sirtuin 3 knockdown. Conclusions: These data suggest that obesity-related decline in cardiac function is associated with defective myocardial energy metabolism and mitochondrial abnormalities. Furthermore, our work points for therapeutic potential of apelin to prevent myocardial metabolic abnormalities in heart failure paired with obesity.
Collapse
Affiliation(s)
- C Alfarano
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - C Foussal
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - O Lairez
- National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France
| | - D Calise
- 1] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France [2] US006, Microsurgery Services, Toulouse, France
| | - C Attané
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - R Anesia
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - D Daviaud
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - E Wanecq
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - A Parini
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - P Valet
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - O Kunduzova
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| |
Collapse
|
41
|
Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:919-33. [PMID: 24721265 DOI: 10.1016/j.bbalip.2014.03.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 01/01/2023]
Abstract
The enzyme lipoprotein lipase (LPL), originally identified as the clearing factor lipase, hydrolyzes triglycerides present in the triglyceride-rich lipoproteins VLDL and chylomicrons. LPL is primarily expressed in tissues that oxidize or store fatty acids in large quantities such as the heart, skeletal muscle, brown adipose tissue and white adipose tissue. Upon production by the underlying parenchymal cells, LPL is transported and attached to the capillary endothelium by the protein GPIHBP1. Because LPL is rate limiting for plasma triglyceride clearance and tissue uptake of fatty acids, the activity of LPL is carefully controlled to adjust fatty acid uptake to the requirements of the underlying tissue via multiple mechanisms at the transcriptional and post-translational level. Although various stimuli influence LPL gene transcription, it is now evident that most of the physiological variation in LPL activity, such as during fasting and exercise, appears to be driven via post-translational mechanisms by extracellular proteins. These proteins can be divided into two main groups: the liver-derived apolipoproteins APOC1, APOC2, APOC3, APOA5, and APOE, and the angiopoietin-like proteins ANGPTL3, ANGPTL4 and ANGPTL8, which have a broader expression profile. This review will summarize the available literature on the regulation of LPL activity in various tissues, with an emphasis on the response to diverse physiological stimuli.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD Wageningen, The Netherlands
| |
Collapse
|
42
|
Beaudoin MS, Perry CGR, Arkell AM, Chabowski A, Simpson JA, Wright DC, Holloway GP. Impairments in mitochondrial palmitoyl-CoA respiratory kinetics that precede development of diabetic cardiomyopathy are prevented by resveratrol in ZDF rats. J Physiol 2014; 592:2519-33. [PMID: 24639481 DOI: 10.1113/jphysiol.2013.270538] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alterations in lipid metabolism within the heart may have a causal role in the establishment of diabetic cardiomyopathy; however, this remains equivocal. Therefore, in the current study we determined cardiac mitochondrial bioenergetics in ZDF rats before overt type 2 diabetes and diabetic cardiomyopathy developed. In addition, we utilized resveratrol, a compound previously shown to improve, prevent or reverse cardiac dysfunction in high-fat-fed rodents, as a tool to potentially recover dysfunctions within mitochondria. Fasting blood glucose and invasive left ventricular haemodynamic analysis confirmed the absence of type 2 diabetes and diabetic cardiomyopathy. However, fibrosis was already increased (P < 0.05) ∼70% in ZDF rats at this early stage in disease progression. Assessments of mitochondrial ADP and pyruvate respiratory kinetics in permeabilized fibres from the left ventricle revealed normal electron transport chain function and content. In contrast, the apparent Km to palmitoyl-CoA (P-CoA) was increased (P < 0.05) ∼60%, which was associated with an accumulation of intracellular triacylgycerol, diacylglycerol and ceramide species. In addition, the capacity for mitochondrial reactive oxygen species emission was increased (P < 0.05) ∼3-fold in ZDF rats. The provision of resveratrol reduced fibrosis, P-CoA respiratory sensitivity, reactive lipid accumulation and mitochondrial reactive oxygen species emission rates. Altogether the current data support the supposition that a chronic dysfunction within mitochondrial lipid-supported bioenergetics contributes to the development of diabetic cardiomyopathy, as this was present before overt diabetes or cardiac dysfunction. In addition, we show that resveratrol supplementation prevents these changes, supporting the belief that resveratrol is a potent therapeutic approach for preventing diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Marie-Soleil Beaudoin
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Alicia M Arkell
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
43
|
Trent CM, Yu S, Hu Y, Skoller N, Huggins LA, Homma S, Goldberg IJ. Lipoprotein lipase activity is required for cardiac lipid droplet production. J Lipid Res 2014; 55:645-58. [PMID: 24493834 PMCID: PMC3966699 DOI: 10.1194/jlr.m043471] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rodent heart accumulates TGs and lipid droplets during fasting. The sources of heart lipids could be either FFAs liberated from adipose tissue or FAs from lipoprotein-associated TGs via the action of lipoprotein lipase (LpL). Because circulating levels of FFAs increase during fasting, it has been assumed that albumin transported FFAs are the source of lipids within heart lipid droplets. We studied mice with three genetic mutations: peroxisomal proliferator-activated receptor α deficiency, cluster of differentiation 36 (CD36) deficiency, and heart-specific LpL deletion. All three genetically altered groups of mice had defective accumulation of lipid droplet TGs. Moreover, hearts from mice treated with poloxamer 407, an inhibitor of lipoprotein TG lipolysis, also failed to accumulate TGs, despite increased uptake of FFAs. TG storage did not impair maximal cardiac function as measured by stress echocardiography. Thus, LpL hydrolysis of circulating lipoproteins is required for the accumulation of lipids in the heart of fasting mice.
Collapse
Affiliation(s)
- Chad M Trent
- Division of Preventive Medicine and Nutrition, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | | | | | | | | | | | |
Collapse
|
44
|
Rider OJ, Lewis AJ, Neubauer S. Structural and Metabolic Effects of Obesity on the Myocardium and the Aorta. Obes Facts 2014; 7:329-338. [PMID: 25342107 PMCID: PMC5644846 DOI: 10.1159/000368429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/08/2013] [Indexed: 12/12/2022] Open
Abstract
Obesity per se is a recognized risk factor for cardiovascular disease exerting independent adverse effects on the cardiovascular system. Despite this well documented link, the mechanisms by which obesity modulates cardiovascular risk are not well understood. Obesity is linked to a wide variety of cardiac changes, from subclinical diastolic dysfunction to end stage systolic heart failure. In addition, obesity causes changes in cardiac metabolism that make ATP production and utilization less efficient producing functional consequences that are linked to the increased rate of heart failure in this population. This review focuses on the cardiovascular structural and metabolic remodelling that occurs in obesity with and without co-morbidities and the potential links to increased mortality in this population. © 2014 S. Karger GmbH, Freiburg.
Collapse
Affiliation(s)
- Oliver J. Rider
- *Dr. Oliver J Rider, University of Oxford Centre for Clinical Magnetic Resonance Research, Level 0, John Radcliffe Hospital, Oxford OX3 9DU (UK),
| | | | | |
Collapse
|
45
|
Khan RS, Lin Y, Hu Y, Son NH, Bharadwaj KG, Palacios C, Chokshi A, Ji R, Yu S, Homma S, Schulze PC, Tian R, Goldberg IJ. Rescue of heart lipoprotein lipase-knockout mice confirms a role for triglyceride in optimal heart metabolism and function. Am J Physiol Endocrinol Metab 2013; 305:E1339-47. [PMID: 24085031 PMCID: PMC3882371 DOI: 10.1152/ajpendo.00349.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hearts utilize fatty acids as a primary source of energy. The sources of those lipids include free fatty acids and lipoprotein triglycerides. Deletion of the primary triglyceride-hydrolyzing enzyme lipoprotein lipase (LPL) leads to cardiac dysfunction. Whether heart LPL-knockout (hLPL0) mice are compromised due a deficiency in energetic substrates is unknown. To test whether alternative sources of energy will prevent cardiac dysfunction in hLPL0 mice, two different models were used to supply nonlipid energy. 1) hLPL0 mice were crossed with mice transgenically expressing GLUT1 in cardiomyocytes to increase glucose uptake into the heart; this cross-corrected cardiac dysfunction, reduced cardiac hypertrophy, and increased myocardial ATP. 2) Mice were randomly assigned to a sedentary or training group (swimming) at 3 mo of age, which leads to increased skeletal muscle production of lactate. hLPL0 mice had greater expression of the lactate transporter monocarboxylate transporter-1 (MCT-1) and increased cardiac lactate uptake. Compared with hearts from sedentary hLPL0 mice, hearts from trained hLPL0 mice had adaptive hypertrophy and improved cardiac function. We conclude that defective energy intake and not the reduced uptake of fat-soluble vitamins or cholesterol is responsible for cardiac dysfunction in hLPL0 mice. In addition, our studies suggest that adaptations in cardiac metabolism contribute to the beneficial effects of exercise on the myocardium of patients with heart failure.
Collapse
|
46
|
Clugston RD, Yuen JJ, Hu Y, Abumrad NA, Berk PD, Goldberg IJ, Blaner WS, Huang LS. CD36-deficient mice are resistant to alcohol- and high-carbohydrate-induced hepatic steatosis. J Lipid Res 2013; 55:239-46. [PMID: 24280415 DOI: 10.1194/jlr.m041863] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD36 is a scavenger receptor with multiple ligands and cellular functions, including facilitating cellular uptake of free fatty acids (FFAs). Chronic alcohol consumption increases hepatic CD36 expression, leading to the hypothesis that this promotes uptake of circulating FFAs, which then serve as a substrate for triglyceride (TG) synthesis and the development of alcoholic steatosis. We investigated this hypothesis in alcohol-fed wild-type and Cd36-deficient (Cd36(-/-)) mice using low-fat/high-carbohydrate Lieber-DeCarli liquid diets, positing that Cd36(-/-) mice would be resistant to alcoholic steatosis. Our data show that the livers of Cd36(-/-) mice are resistant to the lipogenic effect of consuming high-carbohydrate liquid diets. These mice also do not further develop alcoholic steatosis when chronically fed alcohol. Surprisingly, we did not detect an effect of alcohol or CD36 deficiency on hepatic FFA uptake; however, the lower baseline levels of hepatic TG in Cd36(-/-) mice fed a liquid diet were associated with decreased expression of genes in the de novo lipogenesis pathway and a lower rate of hepatic de novo lipogenesis. In conclusion, Cd36(-/-) mice are resistant to hepatic steatosis when fed a high-carbohydrate liquid diet, and they are also resistant to alcoholic steatosis. These studies highlight an important role for CD36 in hepatic lipid homeostasis that is not associated with hepatic fatty acid uptake.
Collapse
|
47
|
Abstract
Diabetes and obesity are both associated with lipotoxic cardiomyopathy exclusive of coronary artery disease and hypertension. Lipotoxicities have become a public health concern and are responsible for a significant portion of clinical cardiac disease. These abnormalities may be the result of a toxic metabolic shift to more fatty acid and less glucose oxidation with concomitant accumulation of toxic lipids. Lipids can directly alter cellular structures and activate downstream pathways leading to toxicity. Recent data have implicated fatty acids and fatty acyl coenzyme A, diacylglycerol, and ceramide in cellular lipotoxicity, which may be caused by apoptosis, defective insulin signaling, endoplasmic reticulum stress, activation of protein kinase C, MAPK activation, or modulation of PPARs.
Collapse
|
48
|
Zhang D, Wan A, Chiu APL, Wang Y, Wang F, Neumaier K, Lal N, Bround MJ, Johnson JD, Vlodavsky I, Rodrigues B. Hyperglycemia-induced secretion of endothelial heparanase stimulates a vascular endothelial growth factor autocrine network in cardiomyocytes that promotes recruitment of lipoprotein lipase. Arterioscler Thromb Vasc Biol 2013; 33:2830-8. [PMID: 24115032 DOI: 10.1161/atvbaha.113.302222] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE During diabetes mellitus, coronary lipoprotein lipase increases to promote the predominant use of fatty acids. We have reported that high glucose stimulates active heparanase secretion from endothelial cells to cleave cardiomyocyte heparan sulfate and release bound lipoprotein lipase for transfer to the vascular lumen. In the current study, we examined whether heparanase also has a function to release cardiomyocyte vascular endothelial growth factor (VEGF), and whether this growth factor influences cardiomyocyte fatty acid delivery in an autocrine manner. APPROACH AND RESULTS Acute, reversible hyperglycemia was induced in rats, and a modified Langendorff heart perfusion was used to separate the coronary perfusate from the interstitial effluent. Coronary artery endothelial cells were exposed to high glucose to generate conditioned medium, and VEGF release from isolated cardiomyocytes was tested using endothelial cell conditioned medium or purified active and latent heparanase. Autocrine signaling of myocyte-derived VEGF on cardiac metabolism was studied. High glucose promoted latent and active heparanase secretion into endothelial cell conditioned medium, an effective stimulus for releasing cardiomyocyte VEGF. Intriguingly, latent heparanase was more efficient than active heparanase in releasing VEGF from a unique cell surface pool. VEGF augmented cardiomyocyte intracellular calcium and AMP-activated protein kinase phosphorylation and increased heparin-releasable lipoprotein lipase. CONCLUSIONS Our data suggest that the heparanase-lipoprotein lipase-VEGF axis amplifies fatty acid delivery, a rapid and adaptive mechanism that is geared to overcome the loss of glucose consumption by the diabetic heart. If prolonged, the resultant lipotoxicity could lead to cardiovascular disease in humans.
Collapse
Affiliation(s)
- Dahai Zhang
- From the Faculty of Pharmaceutical Sciences (D.Z., A.W., A.P.-L.C., Y.W., F.W., K.N., N.L., B.R.), and Department of Cellular and Physiological Sciences (M.J.B., J.D.J.), University of British Columbia, Canada; and Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Israel (I.V.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Taegtmeyer H, Beauloye C, Harmancey R, Hue L. Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. Am J Physiol Heart Circ Physiol 2013; 305:H1693-7. [PMID: 24097426 DOI: 10.1152/ajpheart.00854.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reversing impaired insulin sensitivity has been suggested as treatment for heart failure. However, recent clinical evidence suggests the opposite. Here we present a line of reasoning in support of the hypothesis that insulin resistance protects the heart from the consequences of fuel overload in the dysregulated metabolic state of obesity and diabetes. We discuss pathways of myocardial fuel toxicity, as well as several layers of defense against fuel overload. Our reassessment of the literature suggests that in the heart, insulin-sensitizing agents result in an elimination of some of the defenses, leading to cytotoxic damage. In contrast, a normalization of fuel supply should either prevent or reverse the process. Taken together, we offer a new perspective on insulin resistance of the heart.
Collapse
Affiliation(s)
- Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, The University of Texas School of Medicine at Houston, Houston, Texas
| | | | | | | |
Collapse
|
50
|
Iso T, Maeda K, Hanaoka H, Suga T, Goto K, Syamsunarno MRAA, Hishiki T, Nagahata Y, Matsui H, Arai M, Yamaguchi A, Abumrad NA, Sano M, Suematsu M, Endo K, Hotamisligil GS, Kurabayashi M. Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler Thromb Vasc Biol 2013; 33:2549-57. [PMID: 23968980 DOI: 10.1161/atvbaha.113.301588] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Fatty acids (FAs) are the major substrate for energy production in the heart. Here, we hypothesize that capillary endothelial fatty acid binding protein 4 (FABP4) and FABP5 play an important role in providing sufficient FAs to the myocardium. APPROACH AND RESULTS Both FABP4/5 were abundantly expressed in capillary endothelium in the heart and skeletal muscle. The uptake of a FA analogue, 125I-15-(p-iodophenyl)-3-(R,S)-methyl pentadecanoic acid, was significantly reduced in these tissues in double-knockout (DKO) mice for FABP4/5 compared with wild-type mice. In contrast, the uptake of a glucose analogue, 18F-fluorodeoxyglucose, was remarkably increased in DKO mice. The expression of transcripts for the oxidative catabolism of FAs was reduced during fasting, whereas transcripts for the glycolytic pathway were not altered in DKO hearts. Notably, metabolome analysis revealed that phosphocreatine and ADP levels were significantly lower in DKO hearts, whereas ATP content was kept at a normal level. The protein expression levels of the glucose transporter Glut4 and the phosphorylated form of phosphofructokinase-2 were increased in DKO hearts, whereas the phosphorylation of insulin receptor-β and Akt was comparable between wild-type and DKO hearts during fasting, suggesting that a dramatic increase in glucose usage during fasting is insulin independent and is at least partly attributed to the post-transcriptional and allosteric regulation of key proteins that regulate glucose uptake and glycolysis. CONCLUSIONS Capillary endothelial FABP4/5 are required for FA transport into FA-consuming tissues that include the heart. These findings identify FABP4/5 as promising targets for controlling the metabolism of energy substrates in FA-consuming organs that have muscle-type continuous capillary.
Collapse
Affiliation(s)
- Tatsuya Iso
- From the Department of Medicine and Biological Science (T.I., T.S., K.G., M.R.A.AS., H.M., M.A., M.K.), Education and Research Support Center (T.I., M.K.), Department of Bioimaging Information Analysis (H.H., A.Y.), and Department of Diagnostic Radiology and Nuclear Medicine (K.E.), Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Genetics and Complex Diseases and Nutrition, Broad Institute of Harvard and MIT, Harvard School of Public Health, Boston, MA (K.M., G.S.H.); Department of Biochemistry (T.H., Y.N., M.S.), JST, ERATO, Suematsu Gas Biology Project (T.H., Y.N., M.S.), and Department of Cardiology (M.S.), Keio University School of Medicine, Tokyo, Japan; and Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO (N.A.A.). Current address for K.M.: Department of Complementary and Alternative Medicine, Graduate School of Medicine, Osaka University Hospital, Osaka, Japan. Current address for H.H.: Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|