1
|
James-Okoro PP, Lewis JE, Gribble FM, Reimann F. The role of GIPR in food intake control. Front Endocrinol (Lausanne) 2025; 16:1532076. [PMID: 40166681 PMCID: PMC11955450 DOI: 10.3389/fendo.2025.1532076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is one of two incretin hormones playing key roles in the control of food intake, nutrient assimilation, insulin secretion and whole-body metabolism. Recent pharmacological advances and clinical trials show that unimolecular co-agonists that target the receptors for the incretins - GIP and glucagon-like peptide 1 (GLP-1) - offer more effective treatment strategies for obesity and type 2 diabetes mellitus (T2D) compared with GLP-1 receptor (GLP1R) agonists alone, suggesting previously underappreciated roles of GIP in regulating food intake and body weight. The mechanisms by which GIP regulates energy balance remain controversial as both agonism and antagonism of the GIP receptor (GIPR) produce weight loss and improve metabolic outcomes in preclinical models. Recent studies have shown that GIPR signalling in the central nervous system (CNS), especially in regions of the brain that regulate energy balance, is essential for its action on appetite regulation. This finding has sparked interest in understanding the mechanisms by which GIP engages brain circuits to reduce food intake and body weight. In this review, we present key knowledge around the actions of GIP on food intake regulation and the potential mechanisms by which GIPR and GIPR/GLP1R agonists may regulate energy balance.
Collapse
Affiliation(s)
| | | | - Fiona Mary Gribble
- Institute of Metabolic-Science-Metabolic Research Laboratories and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Institute of Metabolic-Science-Metabolic Research Laboratories and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Long A, Wang Y, Guo Y, Hong J, Ning G, Meng Z, Wang J, Wang Y. A famsin-glucagon axis mediates glucose homeostasis. Cell Metab 2025; 37:629-639.e6. [PMID: 39706194 DOI: 10.1016/j.cmet.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/31/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
Glucagon is essential for glucose homeostasis, and its dysregulation is associated with diabetes. Despite extensive research, the mechanisms governing glucagon secretion remain incompletely understood. Here, we unveil that famsin, a gut-secreted hormone, promotes glucagon release and modulates glucose homeostasis. Mechanistically, famsin binds to its receptor OLFR796 in mice (OR10P1 in humans), initiating calcium release in the endoplasmic reticulum of islet α cells. This process triggers glucagon secretion, consequently promoting hepatic glucose production through glucagon signaling. Furthermore, deficiency of famsin signaling reduces hepatic glucose production and lowers blood glucose levels, underscoring the significance of the famsin-glucagon axis in glucose homeostasis. Therefore, our findings establish famsin as a crucial regulator of glucagon secretion and provide valuable insights into the intricate gut-islet-liver interorgan crosstalk that maintains glucose homeostasis.
Collapse
Affiliation(s)
- Aijun Long
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Metabolic Syndrome Research Center, Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yazhuo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yihua Guo
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China.
| | - Yiguo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Song DK, Jung N, Sung YA, Hong YS, Lee H. Differences in GIP Receptor Expression by Feeding Status in the Mouse Brain. Int J Mol Sci 2025; 26:1142. [PMID: 39940910 PMCID: PMC11818402 DOI: 10.3390/ijms26031142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Gastric inhibitory polypeptide (GIP) contributes to energy metabolism regulation. We investigated differences in GIP receptor expression in the brain by feeding status among lean and obese mice and the effect of acute central GIP administration on the expression of appetite-regulating hypothalamic neuropeptides. We divided the mice into four groups: fed/lean, fasted/lean, fed/obese, and fasted/obese. The arcuate nucleus (ARC), paraventricular nucleus of the hypothalamus, and nucleus of the solitary tract in the brainstem were harvested. GIP (6 nmol) or saline was injected for the acute intracerebroventricular administration test, followed by the collection of hypothalamic tissue after 2 h. Fed/obese mice had higher ARC GIP receptor mRNA levels than fasted/obese and lean mice. This difference was not observed among lean mice by feeding status. Obese mice had higher blood GIP levels than lean mice. Fed/obese mice had higher blood GIP levels than fasted/obese mice. This difference was not observed among lean mice by feeding status. GIP administration significantly increased proopiomelano-cortin (Pomc) mRNA levels (GIP: 7.59 ± 0.14; saline: 3.44 ± 1.38 arbitrary units; p = 0.030). Increased GIP receptor expression in the ARC in obese mice indicates its central nervous system involvement in energy balance regulation. GIP potentially regulates POMC-mediated appetite regulation in the hypothalamus. It is possible that POMC neurons are targets of GIP action in the brain.
Collapse
Affiliation(s)
| | | | | | | | - Hyejin Lee
- Department of Internal Medicine, Ewha Womans University School of Medicine, 25, Magokdong-ro 2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; (D.K.S.); (N.J.); (Y.-A.S.); (Y.S.H.)
| |
Collapse
|
5
|
Wean J, Kowalsky AH, Laker R, Will S, Drucker DJ, Rhodes CJ, Seeley RJ. Specific loss of GIPR signaling in GABAergic neurons enhances GLP-1R agonist-induced body weight loss. Mol Metab 2024; 95:102074. [PMID: 39612941 PMCID: PMC11946504 DOI: 10.1016/j.molmet.2024.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
OBJECTIVES Dual incretin agonists are among the most effective pharmaceutical treatments for obesity and type 2 diabetes to date. Such therapeutics can target two receptors, such as the glucagon-like peptide-1 (GLP-1) receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor in the case of tirzepatide, to improve glycemia and reduce body weight. Regarding body weight effects, GIPR signaling is thought to involve at least two relevant mechanisms: the enhancement of food intake reduction and the attenuation of aversive effects caused by GLP-1R agonists. Although it is known that dual GLP-1R-GIPR agonism produces greater weight loss than GLP-1R agonism alone, the precise mechanism is unknown. METHODS To address this question, we used mice lacking GIPR in the whole body, GABAergic neurons, or glutamatergic neurons. These mice were given various combinations of GLP-1R and GIPR agonist drugs with subsequent food intake and conditioned taste aversion measurements. RESULTS A GIPR knockout in either the whole body or selectively in inhibitory GABAergic neurons protects against diet-induced obesity, whereas a knockout in excitatory glutamatergic neurons had a negligible effect. Furthermore, we found that GIPR in GABAergic neurons is essential for the enhanced weight loss efficacy of dual incretin agonism, yet, surprisingly, its removal enhances the effect of GLP-1R agonism alone. Finally, GIPR knockout in GABAergic neurons prevents the anti-aversive effects of GIPR agonism. CONCLUSIONS Our findings are consistent with GIPR research at large in that both enhancement and removal of GIPR signaling are metabolically beneficial. Notably, however, our findings suggest that future obesity therapies designed to modulate GIPR signaling, whether by agonism or antagonism, would be best targeted towards GABAergic neurons.
Collapse
Affiliation(s)
- Jordan Wean
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Rhianna Laker
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sarah Will
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Daniel J Drucker
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, Toronto, Canada
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Jensen MH, Sanni SJ, Riber D, Holst JJ, Rosenkilde MM, Sparre-Ulrich AH. AT-7687, a novel GIPR peptide antagonist, combined with a GLP-1 agonist, leads to enhanced weight loss and metabolic improvements in cynomolgus monkeys. Mol Metab 2024; 88:102006. [PMID: 39128651 PMCID: PMC11382121 DOI: 10.1016/j.molmet.2024.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVES Obesity represents a global health crisis with significant patient burdens and healthcare costs. Despite the advances with glucagon-like peptide-1 (GLP-1) receptor agonists in treating obesity, unmet needs remain. This study characterizes a novel glucose-dependent insulinotropic polypeptide receptor (GIPR) peptide antagonist, AT-7687, evaluating its potential to enhance obesity treatment. METHODS We assessed the in vitro potency and pharmacokinetics of AT-7687, alongside its therapeutic effects when administered subcutaneously (SC) alone and in combination with liraglutide to high-fat-diet-fed obese non-human primates (NHP). The study spanned a 42-day treatment period and a 15-day washout period. RESULTS AT-7687 demonstrated a subnanomolar cAMP antagonistic potency (pKB of 9.5) in HEK-293 cells and a 27.4 h half-life in NHPs. It effectively maintained weight stability in obese monkeys, whereas placebo recipients had an 8.6% weight increase by day 42 (P = 0.01). Monotherapy with liraglutide resulted in a 12.4% weight reduction compared to placebo (P = 0.03) and combining AT-7687 with liraglutide led to a 16.3% weight reduction (P = 0.0002). The combination therapy significantly improved metabolic markers, reducing insulin levels by 52% (P = 0.008), glucose by 30% (P = 0.02), triglycerides by 39% (P = 0.05), total cholesterol by 29% (P = 0.03), and LDL cholesterol by 48% (P = 0.003) compared to placebo. AT-7687 treatment was well tolerated and not associated with any side effects. CONCLUSIONS This study underscores the potential of AT-7687 as a promising addition to current obesity treatments.
Collapse
Affiliation(s)
- Mette H Jensen
- Antag Therapeutics Aps, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Samra J Sanni
- Antag Therapeutics Aps, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Ditte Riber
- Antag Therapeutics Aps, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, 2200 Copenhagen N, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
7
|
Angelini G, Russo S, Mingrone G. Incretin hormones, obesity and gut microbiota. Peptides 2024; 178:171216. [PMID: 38636809 DOI: 10.1016/j.peptides.2024.171216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. By 2030 the number of people affected by obesity will reach 1.12 billion worldwide. Gastrointestinal hormones, namely incretins, play a vital role in the pathogenesis of obesity and its comorbidities. GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1), which are secreted from the intestine after nutrient intake and stimulate insulin secretion from pancreatic β cells, influence lipid metabolism, gastric empting, appetite and body weight. The gut microbiota plays an important role in various metabolic conditions, including obesity and type 2 diabetes and influences host metabolism through the interaction with enteroendocrine cells that modulate incretins secretion. Gut microbiota metabolites, such as short-chain fatty acids (SCFAs) and indole, directly stimulate the release of incretins from colonic enteroendocrine cells influencing host satiety and food intake. Moreover, bariatric surgery and incretin-based therapies are associated with increase gut bacterial richness and diversity. Understanding the role of incretins, gut microbiota, and their metabolites in regulating metabolic processes is crucial to develop effective strategies for the management of obesity and its associated comorbidities.
Collapse
Affiliation(s)
| | - Sara Russo
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geltrude Mingrone
- Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
8
|
Lafferty RA, Flatt PR, Gault VA, Irwin N. Does glucose-dependent insulinotropic polypeptide receptor blockade as well as agonism have a role to play in management of obesity and diabetes? J Endocrinol 2024; 262:e230339. [PMID: 38861364 PMCID: PMC11301427 DOI: 10.1530/joe-23-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Recent approval of the dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist, tirzepatide, for the management of type 2 diabetes mellitus (T2DM) has reinvigorated interest in exploitation of GIP receptor (GIPR) pathways as a means of metabolic disease management. However, debate has long surrounded the use of the GIPR as a therapeutic target and whether agonism or antagonism is of most benefit in management of obesity/diabetes. This controversy appears to be partly resolved by the success of tirzepatide. However, emerging studies indicate that prolonged GIPR agonism may desensitise the GIPR to essentially induce receptor antagonism, with this phenomenon suggested to be more pronounced in the human than rodent setting. Thus, deliberation continues to rage in relation to benefits of GIPR agonism vs antagonism. That said, as with GIPR agonism, it is clear that the metabolic advantages of sustained GIPR antagonism in obesity and obesity-driven forms of diabetes can be enhanced by concurrent GLP-1 receptor (GLP-1R) activation. This narrative review discusses various approaches of pharmacological GIPR antagonism including small molecule, peptide, monoclonal antibody and peptide-antibody conjugates, indicating stage of development and significance to the field. Taken together, there is little doubt that interesting times lie ahead for GIPR agonism and antagonism, either alone or when combined with GLP-1R agonists, as a therapeutic intervention for the management of obesity and associated metabolic disease.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
9
|
Sztanek F, Tóth LI, Pető A, Hernyák M, Diószegi Á, Harangi M. New Developments in Pharmacological Treatment of Obesity and Type 2 Diabetes-Beyond and within GLP-1 Receptor Agonists. Biomedicines 2024; 12:1320. [PMID: 38927527 PMCID: PMC11201978 DOI: 10.3390/biomedicines12061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Guidelines for the management of obesity and type 2 diabetes (T2DM) emphasize the importance of lifestyle changes, including a reduced-calorie diet and increased physical activity. However, for many people, these changes can be difficult to maintain over the long term. Medication options are already available to treat obesity, which can help reduce appetite and/or reduce caloric intake. Incretin-based peptides exert their effect through G-protein-coupled receptors, the receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and glucagon peptide hormones are important regulators of insulin secretion and energy metabolism. Understanding the role of intercellular signaling pathways and inflammatory processes is essential for the development of effective pharmacological agents in obesity. GLP-1 receptor agonists have been successfully used, but it is assumed that their effectiveness may be limited by desensitization and downregulation of the target receptor. A growing number of new agents acting on incretin hormones are becoming available for everyday clinical practice, including oral GLP-1 receptor agonists, the dual GLP-1/GIP receptor agonist tirzepatide, and other dual and triple GLP-1/GIP/glucagon receptor agonists, which may show further significant therapeutic potential. This narrative review summarizes the therapeutic effects of different incretin hormones and presents future prospects in the treatment of T2DM and obesity.
Collapse
Affiliation(s)
- Ferenc Sztanek
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Imre Tóth
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Pető
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Third Department of Internal Medicine, Semmelweis Hospital of Borsod-Abauj-Zemplen County Central Hospital and University Teaching Hospital, H-3529 Miskolc, Hungary
| | - Marcell Hernyák
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Diószegi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- ELKH-UD Vascular Pathophysiology Research Group 11003, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
10
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
11
|
Zomer HD, Cooke PS. Advances in Drug Treatments for Companion Animal Obesity. BIOLOGY 2024; 13:335. [PMID: 38785817 PMCID: PMC11117622 DOI: 10.3390/biology13050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Companion animal obesity has emerged as a significant veterinary health concern globally, with escalating rates posing challenges for preventive and therapeutic interventions. Obesity not only leads to immediate health problems but also contributes to various comorbidities affecting animal well-being and longevity, with consequent emotional and financial burdens on owners. While past treatment strategies have shown limited success, recent breakthroughs in human medicine present new opportunities for addressing this complex issue in companion animals. Here, we discuss the potential of GLP-1 receptor agonists, specifically semaglutide and tirzepatide, already approved for human use, for addressing companion animal obesity. These drugs, originally developed to treat type 2 diabetes in humans and subsequently repurposed to treat obesity, have demonstrated remarkable weight loss effects in rodents, non-human primates and people. Additionally, newer drug combinations have shown even more promising results in clinical trials. Despite current cost and supply challenges, advancements in oral and/or extended-release formulations and increased production may make these drugs more accessible for veterinary use. Thus, these drugs may have utility in companion animal weight management, and future feasibility studies exploring their efficacy and safety in treating companion animal obesity are warranted.
Collapse
Affiliation(s)
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
12
|
Chrysavgis LG, Kazanas S, Bafa K, Rozani S, Koloutsou ME, Cholongitas E. Glucagon-like Peptide 1, Glucose-Dependent Insulinotropic Polypeptide, and Glucagon Receptor Agonists in Metabolic Dysfunction-Associated Steatotic Liver Disease: Novel Medication in New Liver Disease Nomenclature. Int J Mol Sci 2024; 25:3832. [PMID: 38612640 PMCID: PMC11012092 DOI: 10.3390/ijms25073832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that regulate postprandial glucose regulation, stimulating insulin secretion from pancreatic β-cells in response to food ingestion. Modified GLP-1 receptor agonists (GLP-1RAs) are being administered for the treatment of obesity and type 2 diabetes mellitus (T2DM). Strongly related to those disorders, metabolic dysfunction-associated steatotic liver disease (MASLD), especially its aggressive form, defined as metabolic dysfunction-associated steatohepatitis (MASH), is a major healthcare burden associated with high morbidity and extrahepatic complications. GLP-1RAs have been explored in MASH patients with evident improvement in liver dysfunction enzymes, glycemic control, and weight loss. Importantly, the combination of GLP-1RAs with GIP and/or glucagon RAs may be even more effective via synergistic mechanisms in amelioration of metabolic, biochemical, and histological parameters of MASLD but also has a beneficial impact on MASLD-related complications. In this current review, we aim to provide an overview of incretins' physiology, action, and signaling. Furthermore, we provide insight into the key pathophysiological mechanisms through which they impact MASLD aspects, as well as we analyze clinical data from human interventional studies. Finally, we discuss the current challenges and future perspectives pertinent to this growing area of research and clinical medicine.
Collapse
Affiliation(s)
- Lampros G. Chrysavgis
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Spyridon Kazanas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Konstantina Bafa
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Sophia Rozani
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Maria-Evangelia Koloutsou
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece;
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| |
Collapse
|
13
|
Véniant MM, Lu SC, Atangan L, Komorowski R, Stanislaus S, Cheng Y, Wu B, Falsey JR, Hager T, Thomas VA, Ambhaikar M, Sharpsten L, Zhu Y, Kurra V, Jeswani R, Oberoi RK, Parnes JR, Honarpour N, Neutel J, Strande JL. A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. Nat Metab 2024; 6:290-303. [PMID: 38316982 PMCID: PMC10896721 DOI: 10.1038/s42255-023-00966-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 02/07/2024]
Abstract
Obesity is a major public health crisis. Multi-specific peptides have emerged as promising therapeutic strategies for clinical weight loss. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are endogenous incretins that regulate weight through their receptors (R). AMG 133 (maridebart cafraglutide) is a bispecific molecule engineered by conjugating a fully human monoclonal anti-human GIPR antagonist antibody to two GLP-1 analogue agonist peptides using amino acid linkers. Here, we confirm the GIPR antagonist and GLP-1R agonist activities in cell-based systems and report the ability of AMG 133 to reduce body weight and improve metabolic markers in male obese mice and cynomolgus monkeys. In a phase 1, randomized, double-blind, placebo-controlled clinical study in participants with obesity ( NCT04478708 ), AMG 133 had an acceptable safety and tolerability profile along with pronounced dose-dependent weight loss. In the multiple ascending dose cohorts, weight loss was maintained for up to 150 days after the last dose. These findings support continued clinical evaluation of AMG 133.
Collapse
Affiliation(s)
- Murielle M Véniant
- Amgen Research, Department of Cardiometabolic Disorders, Thousand Oaks, CA, USA.
| | - Shu-Chen Lu
- Amgen Research, Department of Cardiometabolic Disorders, Thousand Oaks, CA, USA
| | - Larissa Atangan
- Amgen Research, Department of Cardiometabolic Disorders, Thousand Oaks, CA, USA
| | - Renee Komorowski
- Amgen Research, Department of Cardiometabolic Disorders, Thousand Oaks, CA, USA
| | - Shanaka Stanislaus
- Amgen Research, Department of Cardiometabolic Disorders, Thousand Oaks, CA, USA
| | - Yuan Cheng
- Amgen Research, Department of Therapeutic Discovery, Thousand Oaks, CA, USA
| | - Bin Wu
- Amgen Research, Department of Therapeutic Discovery, Thousand Oaks, CA, USA
| | - James R Falsey
- Amgen Research, Department of Therapeutic Discovery, Thousand Oaks, CA, USA
| | - Todd Hager
- Amgen Research, Department of Translational Safety & Bioanalytical Sciences, Thousand Oaks, CA, USA
| | - Veena A Thomas
- Amgen Research, Department of Pharmacokinetics and Drug Metabolism, South San Francisco, CA, USA
| | - Malhar Ambhaikar
- Pre-pivotal Drug Substance Technologies, Amgen, Thousand Oaks, CA, USA
| | | | - Yineng Zhu
- Amgen Early Development, Amgen, Thousand Oaks, CA, USA
| | - Vamsi Kurra
- Amgen Research, Department of Translational Safety & Bioanalytical Sciences, Thousand Oaks, CA, USA
| | - Rohini Jeswani
- Amgen Research, Department of Translational Safety & Bioanalytical Sciences, Thousand Oaks, CA, USA
| | | | - Jane R Parnes
- Amgen Early Development, Amgen, Thousand Oaks, CA, USA
| | | | - Joel Neutel
- Orange County Research Center, Tustin, CA, USA
| | | |
Collapse
|
14
|
Ruck L, Wiegand S, Kühnen P. Relevance and consequence of chronic inflammation for obesity development. Mol Cell Pediatr 2023; 10:16. [PMID: 37957462 PMCID: PMC10643747 DOI: 10.1186/s40348-023-00170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Increasing prevalence of morbid obesity accompanied by comorbidities like type 2 diabetes mellitus (T2DM) led to a demand for improving therapeutic strategies and pharmacological intervention options. Apart from genetics, inflammation processes have been hypothesized to be of importance for the development of obesity and related aspects like insulin resistance. MAIN TEXT Within this review, we provide an overview of the intricate interplay between chronic inflammation of the adipose tissue and the hypothalamus and the development of obesity. Further understanding of this relationship might improve the understanding of the underlying mechanism and may be of relevance for the establishment of new treatment strategies.
Collapse
Affiliation(s)
- Lisa Ruck
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany.
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susanna Wiegand
- Abteilung Interdisziplinär, Sozial-Pädiatrisches Zentrum, Charité Universitätsmedizin, Berlin, Germany
| | - Peter Kühnen
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
15
|
Drucker DJ, Holst JJ. The expanding incretin universe: from basic biology to clinical translation. Diabetologia 2023; 66:1765-1779. [PMID: 36976349 DOI: 10.1007/s00125-023-05906-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023]
Abstract
Incretin hormones, principally glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1(GLP-1), potentiate meal-stimulated insulin secretion through direct (GIP + GLP-1) and indirect (GLP-1) actions on islet β-cells. GIP and GLP-1 also regulate glucagon secretion, through direct and indirect pathways. The incretin hormone receptors (GIPR and GLP-1R) are widely distributed beyond the pancreas, principally in the brain, cardiovascular and immune systems, gut and kidney, consistent with a broad array of extrapancreatic incretin actions. Notably, the glucoregulatory and anorectic activities of GIP and GLP-1 have supported development of incretin-based therapies for the treatment of type 2 diabetes and obesity. Here we review evolving concepts of incretin action, focusing predominantly on GLP-1, from discovery, to clinical proof of concept, to therapeutic outcomes. We identify established vs uncertain mechanisms of action, highlighting biology conserved across species, while illuminating areas of active investigation and uncertainty that require additional clarification.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| | - Jens J Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Tschöp M, Nogueiras R, Ahrén B. Gut hormone-based pharmacology: novel formulations and future possibilities for metabolic disease therapy. Diabetologia 2023; 66:1796-1808. [PMID: 37209227 PMCID: PMC10474213 DOI: 10.1007/s00125-023-05929-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/22/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are established pharmaceutical therapies for the treatment of type 2 diabetes and obesity. They mimic the action of GLP-1 to reduce glucose levels through stimulation of insulin secretion and inhibition of glucagon secretion. They also reduce body weight by inducing satiety through central actions. The GLP-1 receptor agonists used clinically are based on exendin-4 and native GLP-1 and are available as formulations for daily or weekly s.c. or oral administration. GLP-1 receptor agonism is also achieved by inhibitors of dipeptidyl peptidase-4 (DPP-4), which prevent the inactivation of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), thereby prolonging their raised levels after meal ingestion. Other developments in GLP-1 receptor agonism include the formation of small orally available agonists and compounds with the potential to pharmaceutically stimulate GLP-1 secretion from the gut. In addition, GLP-1/glucagon and GLP-1/GIP dual receptor agonists and GLP-1/GIP/glucagon triple receptor agonists have shown the potential to reduce blood glucose levels and body weight through their effects on islets and peripheral tissues, improving beta cell function and stimulating energy expenditure. This review summarises developments in gut hormone-based therapies and presents the future outlook for their use in type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum, München, Germany
| | - Ruben Nogueiras
- Department of Physiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Bo Ahrén
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
17
|
Novograd J, Mullally JA, Frishman WH. Tirzepatide for Weight Loss: Can Medical Therapy "Outweigh" Bariatric Surgery? Cardiol Rev 2023; 31:278-283. [PMID: 36688833 DOI: 10.1097/crd.0000000000000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The worldwide prevalence of obesity has been increasing progressively over the past few decades and is predicted to continue to rise in coming years. Unfortunately, this epidemic is also affecting increasing rates of children and adolescents, posing a serious global health concern. Increased adiposity is associated with various comorbidities and increased mortality risk. Conversely, weight loss and chronic weight management are associated with improvements in overall morbidity and mortality. The pathophysiology of obesity is multifactorial with complex interactions between genetic and environmental factors. The foundation of most weight loss plans is lifestyle modification including dietary change and exercise. However, lifestyle modification alone is often insufficient to achieve clinically meaningful weight loss due to physiological mechanisms that limit weight reduction and promote weight regain. Therefore, research has focused on adjunctive pharmacotherapy to enable patients to achieve greater weight loss and improved chronic weight maintenance compared to lifestyle modification alone. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin hormone analogs that have proven effective for the management of type 2 diabetes mellitus as well as obesity and overweight. Tirzepatide is a novel "twincretin" that functions as a dual glucose-dependent insulinotropic polypeptide and GLP-1 RA. Tirzepatide was recently approved by the Food and Drug Administration for the management of type 2 diabetes. Similar to previously approved GLP-1RAs, weight loss is a common side effect of tirzepatide which prompted research focused on its use as a primary weight loss therapy. Although this drug has not yet been approved as an antiobesity medication, there are several phase 3 clinical trials that have demonstrated superior weight loss efficacy compared with previously approved medications. This review article will discuss the discovery and mechanism of tirzepatide, as well as the completed and ongoing trials that may lead to its approval as an adjunctive pharmacotherapy for weight loss.
Collapse
|
18
|
Hammoud R, Drucker DJ. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat Rev Endocrinol 2023; 19:201-216. [PMID: 36509857 DOI: 10.1038/s41574-022-00783-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP1) exhibit incretin activity, meaning that they potentiate glucose-dependent insulin secretion. The emergence of GIP receptor (GIPR)-GLP1 receptor (GLP1R) co-agonists has fostered growing interest in the actions of GIP and GLP1 in metabolically relevant tissues. Here, we update concepts of how these hormones act beyond the pancreas. The actions of GIP and GLP1 on liver, muscle and adipose tissue, in the control of glucose and lipid homeostasis, are discussed in the context of plausible mechanisms of action. Both the GIPR and GLP1R are expressed in the central nervous system, wherein receptor activation produces anorectic effects enabling weight loss. In preclinical studies, GIP and GLP1 reduce atherosclerosis. Furthermore, GIPR and GLP1R are expressed within the heart and immune system, and GLP1R within the kidney, revealing putative mechanisms linking GIP and GLP1R agonism to cardiorenal protection. We interpret the clinical and mechanistic data obtained for different agents that enable weight loss and glucose control for the treatment of obesity and type 2 diabetes mellitus, respectively, by activating or blocking GIPR signalling, including the GIPR-GLP1R co-agonist tirzepatide, as well as the GIPR antagonist-GLP1R agonist AMG-133. Collectively, we update translational concepts of GIP and GLP1 action, while highlighting gaps, areas of uncertainty and controversies meriting ongoing investigation.
Collapse
Affiliation(s)
- Rola Hammoud
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Woodward ORM, Gribble FM, Reimann F, Lewis JE. Gut peptide regulation of food intake - evidence for the modulation of hedonic feeding. J Physiol 2022; 600:1053-1078. [PMID: 34152020 DOI: 10.1113/jp280581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
The number of people living with obesity has tripled worldwide since 1975 with serious implications for public health, as obesity is linked to a significantly higher chance of early death from associated comorbidities (metabolic syndrome, type 2 diabetes, cardiovascular disease and cancer). As obesity is a consequence of food intake exceeding the demands of energy expenditure, efforts are being made to better understand the homeostatic and hedonic mechanisms governing food intake. Gastrointestinal peptides are secreted from enteroendocrine cells in response to nutrient and energy intake, and modulate food intake either via afferent nerves, including the vagus nerve, or directly within the central nervous system, predominantly gaining access at circumventricular organs. Enteroendocrine hormones modulate homeostatic control centres at hypothalamic nuclei and the dorso-vagal complex. Additional roles of these peptides in modulating hedonic food intake and/or preference via the neural systems of reward are starting to be elucidated, with both peripheral and central peptide sources potentially contributing to central receptor activation. Pharmacological interventions and gastric bypass surgery for the treatment of type 2 diabetes and obesity elevate enteroendocrine hormone levels and also alter food preference. Hence, understanding of the hedonic mechanisms mediated by gut peptide action could advance development of potential therapeutic strategies for the treatment of obesity and its comorbidities.
Collapse
Affiliation(s)
- Orla R M Woodward
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fiona M Gribble
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jo E Lewis
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
20
|
Killion EA, Hussien R, Shkumatov A, Davies R, Lloyd DJ, Véniant MM, Lebrec H, Fort MM. GIPR gene expression in testis is mouse-specific and can impact male mouse fertility. Andrology 2022; 10:789-799. [PMID: 35224888 DOI: 10.1111/andr.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide receptor (Gipr) gene expression has been reported in mouse spermatids and Gipr knockout (KO) male mice have previously been reported to have decreased in vitro fertilization, although the role of Gipr signaling in male mouse fertility is not well understood. OBJECTIVES The purposes of these studies were to determine the role of GIPR in male fertility using Gipr KO mice and anti-GIPR antibody treated wild-type mice and to determine if the expression of Gipr in mouse testes is similar in non-human and human primates. METHODS AND MATERIALS Adiponectin promoter-driven Gipr knockout male mice (GiprAdipo-/- ) were assessed for in vitro and in vivo fertility, sperm parameters, and testicular histology. CD1 male mice were administered an anti-GIPR antibody (muGIPR-Ab) prior to and during mating for assessment of in vivo fertility and sperm parameters. Expression of Gipr/GIPR mRNA in the mouse, cynomolgus monkey, and human testes was assessed by in situ hybridization methods using species-specific probes. RESULTS GiprAdipo-/- male mice are infertile in vitro and in vivo, despite normal testis morphology, sperm counts and sperm motility. In contrast, administration of muGIPR-Ab to CD1 male mice did not impact fertility. While Gipr mRNA expression is detectable in the mouse testes, GIPR mRNA expression is not detectable in monkey or human testes. DISCUSSION The infertility of GiprAdipo-/- male mice correlated with the lack of Gipr expression in the testis and/or adipocyte tissue. However, as administration of muGIPR-Ab did not impact the fertility of adult male mice, it is possible that the observations in genetically deficient male mice are related to Gipr-deficiency during development. CONCLUSION Our data support a role for Gipr expression in the mouse testis during the development of sperm fertilization potential, but based on gene expression data, a similar role for GIPR in non-human primate or human male fertility is unlikely. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elizabeth A Killion
- Amgen Research, Department of Cardiometabolic Disorders, Amgen, Thousand Oaks, CA
| | - Rajaa Hussien
- Amgen Research, Department of Translational Safety and Bioanalytical Sciences, Amgen Inc, South San Francisco, CA
| | - Artem Shkumatov
- Amgen Research, Department of Translational Safety and Bioanalytical Sciences, Amgen Inc, South San Francisco, CA
| | - Rhian Davies
- Amgen Research, Department of Translational Safety and Bioanalytical Sciences, Amgen Inc, South San Francisco, CA
| | - David J Lloyd
- Amgen Research, Department of Cardiometabolic Disorders, Amgen, Thousand Oaks, CA.,D.L. is currently at Carmot Therapeutics, Inc
| | - Murielle M Véniant
- Amgen Research, Department of Cardiometabolic Disorders, Amgen, Thousand Oaks, CA
| | - Herve Lebrec
- Amgen Research, Department of Translational Safety and Bioanalytical Sciences, Amgen Inc, South San Francisco, CA.,H.L. is currently at Sonoma Biotherapeutics, Inc
| | - Madeline M Fort
- Amgen Research, Department of Translational Safety and Bioanalytical Sciences, Amgen Inc, South San Francisco, CA
| |
Collapse
|
21
|
Ma T, Lu W, Wang Y, Qian P, Tian H, Gao X, Yao W. An oral GLP-1 and GIP dual receptor agonist improves metabolic disorders in high fat-fed mice. Eur J Pharmacol 2021; 914:174635. [PMID: 34800466 DOI: 10.1016/j.ejphar.2021.174635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Dual activation of the glucagon-like peptide 1 (GLP-1) receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor has potential as a novel strategy for treatment of diabesity. Here, we created a hybrid peptide which we named 19W, and show that it is more stable in presence of murine plasma than exendin-4 is. In vitro studies were performed to reveal that 19W could stimulate insulin secretion from INS-1 cells in a dose-dependent manner, just like the native peptide GIP and exendin-4 do. 19W effectively evoked dose-dependent cAMP production in cells targeting both GLP-1R and GIPR. In healthy C57BL/6J mice, the single administration of 19W significantly improved glucose tolerance. When administered in combination with sodium deoxycholate (SDC), its oral hypoglycemic activity was enhanced. Pharmacokinetics studies in Wistar rats revealed that 19W was absorbed following oral uptake, while SDC increased its bioavailability. A long-term (28 days) exposure study of twice-daily oral administration to high fat-fed (HFF) mice showed that 19W significantly reduced animal food intake, body weight, fasting blood glucose, total serum cholesterol (T-CHO), non-esterified free fatty acids (NEFA), and low-density lipoprotein cholesterol (LDL-C) levels. It also significantly improved glucose tolerance and the pancreatic β/α cell ratio, and decreased the area of liver fibrosis. These results clearly demonstrate the beneficial action of this novel oral GLP-1/GIP dual receptor agonist to reduce adiposity and hyperglycemia in diabetic mice and to ameliorate liver fibrosis associated with obesity. This dual-acting peptide can be considered a good candidate for novel oral therapy to treat obesity and diabetes.
Collapse
Affiliation(s)
- Teng Ma
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China, Pharmaceutical University, Nanjing, 210009, China
| | - Weisheng Lu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China, Pharmaceutical University, Nanjing, 210009, China
| | - Yongkang Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China, Pharmaceutical University, Nanjing, 210009, China
| | - Peng Qian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China, Pharmaceutical University, Nanjing, 210009, China
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China, Pharmaceutical University, Nanjing, 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China, Pharmaceutical University, Nanjing, 210009, China.
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China, Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
22
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
23
|
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) (also known as gastric inhibitory polypeptide) is a hormone produced in the upper gut and secreted to the circulation in response to the ingestion of foods, especially fatty foods. Growing evidence supports the physiological and pharmacological relevance of GIP in obesity. In an obesity setting, inhibition of endogenous GIP or its receptor leads to decreased energy intake, increased energy expenditure, or both, eventually causing weight loss. Further, supraphysiological dosing of exogenous long-lasting GIP agonists alters energy balance and has a marked antiobesity effect. This remarkable yet paradoxical antiobesity effect is suggested to occur primarily via the brain. The brain is capable of regulating both energy intake and expenditure and plays a critical role in human obesity. In addition, the GIP receptor is widely distributed throughout the brain, including areas responsible for energy homeostasis. Recent studies have uncovered previously underappreciated roles of the GIP receptor in the brain in the context of obesity. This article highlights how the GIP receptor expressed by the brain impacts obesity-related pathogenesis.
Collapse
Affiliation(s)
- Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
24
|
Nogueiras R. MECHANISMS IN ENDOCRINOLOGY: The gut-brain axis: regulating energy balance independent of food intake. Eur J Endocrinol 2021; 185:R75-R91. [PMID: 34260412 PMCID: PMC8345901 DOI: 10.1530/eje-21-0277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Obesity is a global pandemic with a large health and economic burden worldwide. Bodyweight is regulated by the ability of the CNS, and especially the hypothalamus, to orchestrate the function of peripheral organs that play a key role in metabolism. Gut hormones play a fundamental role in the regulation of energy balance, as they modulate not only feeding behavior but also energy expenditure and nutrient partitioning. This review examines the recent discoveries about hormones produced in the stomach and gut, which have been reported to regulate food intake and energy expenditure in preclinical models. Some of these hormones act on the hypothalamus to modulate thermogenesis and adiposity in a food intake-independent fashion. Finally, the association of these gut hormones to eating, energy expenditure, and weight loss after bariatric surgery in humans is discussed.
Collapse
Affiliation(s)
- Ruben Nogueiras
- Department of Physiology, CIMUS, USC, CIBER Fisiopatología Obesidad y Nutrición (CiberOBN), Instituto Salud Carlos III, Galician Agency of Innovation, Xunta de Galicia, Santiago de Compostela, Spain
| |
Collapse
|
25
|
Petrov MS. Post-pancreatitis diabetes mellitus: investigational drugs in preclinical and clinical development and therapeutic implications. Expert Opin Investig Drugs 2021; 30:737-747. [PMID: 33993813 DOI: 10.1080/13543784.2021.1931118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Post-pancreatitis diabetes mellitus is one of the most common types of secondary diabetes. The pharmaceutical armamentarium in the field of diabetology can be broadened if the design of novel drugs is informed by pathogenetic insights from studies on post-pancreatitis diabetes mellitus.Areas covered: The article provides an overview of preclinical and clinical studies of compounds selectively antagonizing the gastric inhibitory peptide receptor, simultaneously stimulating both the glucagon-like peptide-1 and glucagon receptors, and activating ketogenesis.Expert opinion: The current pharmacotherapy for post-pancreatitis diabetes mellitus is relatively ineffective. This type of diabetes represents a unique platform for rigorous, efficient, and practical search for glucose-lowering therapeutic candidates. Various methods of gastric inhibitory peptide receptor (expressed in the pancreas) antagonism have undergone extensive preclinical testing in diabetes, with promising compounds being trialed in man. Molecular mimicry with oxyntomodulin ─ an extra-pancreatic hormone homologous with pancreatic hormone glucagon and involved in the regulation of exocrine pancreatic function ─ could be harnessed. The emerging findings of a salutary effect of ketosis mimetics in people with prediabetes set the stage for a novel approach to preventing diabetes.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
West JA, Tsakmaki A, Ghosh SS, Parkes DG, Grønlund RV, Pedersen PJ, Maggs D, Rajagopalan H, Bewick GA. Chronic peptide-based GIP receptor inhibition exhibits modest glucose metabolic changes in mice when administered either alone or combined with GLP-1 agonism. PLoS One 2021; 16:e0249239. [PMID: 33788878 PMCID: PMC8011784 DOI: 10.1371/journal.pone.0249239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/13/2021] [Indexed: 12/04/2022] Open
Abstract
Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3–30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5–42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.
Collapse
Affiliation(s)
- Jason A. West
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
| | | | | | | | | | - David Maggs
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | | | - Gavin A. Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021; 13:nu13030883. [PMID: 33803183 PMCID: PMC8000029 DOI: 10.3390/nu13030883] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.
Collapse
|
28
|
Mohr AE, Minicucci O, Long D, Miller VJ, Keller A, Sheridan C, O’brien G, Ward E, Schuler B, Connelly S, Holst JJ, Astrup A, He F, Gentile CL, Arciero PJ. Resistant Starch Combined with Whey Protein Increases Postprandial Metabolism and Lowers Glucose and Insulin Responses in Healthy Adult Men. Foods 2021; 10:foods10030537. [PMID: 33807618 PMCID: PMC8000721 DOI: 10.3390/foods10030537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022] Open
Abstract
Resistant starch (RS) and/or protein consumption favorably influence energy metabolism, substrate utilization, and weight management. The current study administered four different versions of a pancake breakfast containing waxy maize or RS with and without whey protein (WP) and measured postprandial thermogenesis (TEM), fuel utilization, and circulating satiation and appetite factors for 180 min in a group of healthy, adult men. On four separate visits to the laboratory, eight participants were administered four different pancake breakfast meal challenges using a single-blind, randomized crossover design: (1) waxy maize starch (WMS) control; (2) WMS and WP (WMS + WP); (3) RS; or (4) RS and WP (RS + WP). TEM (kcals/180 min) was significantly greater (p < 0.05) in RS + WP (45.11; confidence interval (CI), 33.81–56.41) compared to WMS (25.61; CI, 14.31–36.91), RS (29.44; CI, 18.14–40.74), and WMS + WP (24.64; CI, 13.34–35.94), respectively. Fat oxidation was enhanced (p < 0.05) after RS + WP compared to RS at 60 min (+23.10%), WMS at 120 min (+27.49%), and WMS and WMS + WP at 180 min (+35.76%; +17.31%, respectively), and RER was decreased with RS + WP versus the other three meals (mean differences: ≥−0.021). Insulin concentrations were decreased (p < 0.05) following RS + WP compared to WMS, whereas both RS (−46.19%) and RS + WP (−53.05%) insulin area under the curve (AUC) were greatly reduced (p < 0.01) compared to WMS. While limited by sample size, meals containing both RS and WP increased postprandial thermogenesis and fat oxidation, and lowered insulin response compared to isocaloric meals without this combination. Therefore, RS + WP may favorably impact energy metabolism and thus weight control and body composition under chronic feeding conditions.
Collapse
Affiliation(s)
- Alex E. Mohr
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA; (A.E.M.); (O.M.); (D.L.J.); (V.J.M.); (A.K.); (C.S.); (G.O.); (E.W.); (B.S.); (F.H.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Olivia Minicucci
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA; (A.E.M.); (O.M.); (D.L.J.); (V.J.M.); (A.K.); (C.S.); (G.O.); (E.W.); (B.S.); (F.H.)
| | - Dale Long
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA; (A.E.M.); (O.M.); (D.L.J.); (V.J.M.); (A.K.); (C.S.); (G.O.); (E.W.); (B.S.); (F.H.)
| | - Vincent J. Miller
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA; (A.E.M.); (O.M.); (D.L.J.); (V.J.M.); (A.K.); (C.S.); (G.O.); (E.W.); (B.S.); (F.H.)
| | - Allison Keller
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA; (A.E.M.); (O.M.); (D.L.J.); (V.J.M.); (A.K.); (C.S.); (G.O.); (E.W.); (B.S.); (F.H.)
| | - Caitlin Sheridan
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA; (A.E.M.); (O.M.); (D.L.J.); (V.J.M.); (A.K.); (C.S.); (G.O.); (E.W.); (B.S.); (F.H.)
| | - Gabriel O’brien
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA; (A.E.M.); (O.M.); (D.L.J.); (V.J.M.); (A.K.); (C.S.); (G.O.); (E.W.); (B.S.); (F.H.)
| | - Emery Ward
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA; (A.E.M.); (O.M.); (D.L.J.); (V.J.M.); (A.K.); (C.S.); (G.O.); (E.W.); (B.S.); (F.H.)
| | - Brad Schuler
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA; (A.E.M.); (O.M.); (D.L.J.); (V.J.M.); (A.K.); (C.S.); (G.O.); (E.W.); (B.S.); (F.H.)
| | - Scott Connelly
- Scott Connelly Foundation, Corona Del Mar, Newport Beach, CA 92625, USA;
| | - Jens J. Holst
- Department of Biomedical Sciences, University of Copenhagen, 1017 Copenhagen, Denmark;
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1017 Copenhagen, Denmark;
| | - Feng He
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA; (A.E.M.); (O.M.); (D.L.J.); (V.J.M.); (A.K.); (C.S.); (G.O.); (E.W.); (B.S.); (F.H.)
- Department of Kinesiology, California State University, Chico, CA 95929, USA
| | - Christopher L. Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA;
| | - Paul J. Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA; (A.E.M.); (O.M.); (D.L.J.); (V.J.M.); (A.K.); (C.S.); (G.O.); (E.W.); (B.S.); (F.H.)
- Correspondence: ; Tel.: +1-518-580-5366; Fax: +1-518-580-8356
| |
Collapse
|
29
|
Campbell JE. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol Metab 2020; 46:101139. [PMID: 33290902 PMCID: PMC8085569 DOI: 10.1016/j.molmet.2020.101139] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic peptide (GIP) is one of two incretin hormones that communicate nutrient intake with systemic metabolism. Although GIP was the first incretin hormone to be discovered, the understanding of GIP's biology was quickly outpaced by research focusing on the other incretin hormone, glucagon-like peptide 1 (GLP-1). Early work on GIP produced the theory that GIP is obesogenic, limiting interest in developing GIPR agonists to treat type 2 diabetes. A resurgence of GIP research has occurred in the last five years, reinvigorating interest in this peptide. Two independent approaches have emerged for treating obesity, one promoting GIPR agonism and the other antagonism. In this report, evidence supporting both cases is discussed and hypotheses are presented to reconcile this apparent paradox. SCOPE OF THE REVIEW This review presents evidence to support targeting GIPR to reduce obesity. Most of the focus is on the effect of singly targeting the GIPR using both a gain- and loss-of-function approach, with additional sections that discuss co-targeting of the GIPR and GLP-1R. MAJOR CONCLUSIONS There is substantial evidence to support that GIPR agonism and antagonism can positively impact body weight. The long-standing theory that GIP drives weight gain is exclusively derived from loss-of-function studies, with no evidence to support that GIPR agonisms increases adiposity or body weight. There is insufficient evidence to reconcile the paradoxical observations that both GIPR agonism and antagonism can reduce body weight; however, two independent hypotheses centered on GIPR antagonism are presented based on new data in an effort to address this question. The first discusses the compensatory relationship between incretin receptors and how antagonism of the GIPR may enhance GLP-1R activity. The second discusses how chronic GIPR agonism may produce desensitization and ultimately loss of GIPR activity that mimics antagonism. Overall, it is clear that a deeper understanding of GIP biology is required to understand how modulating this system impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Killion EA, Chen M, Falsey JR, Sivits G, Hager T, Atangan L, Helmering J, Lee J, Li H, Wu B, Cheng Y, Véniant MM, Lloyd DJ. Chronic glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism desensitizes adipocyte GIPR activity mimicking functional GIPR antagonism. Nat Commun 2020; 11:4981. [PMID: 33020469 PMCID: PMC7536395 DOI: 10.1038/s41467-020-18751-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/09/2020] [Indexed: 12/30/2022] Open
Abstract
Antagonism or agonism of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) prevents weight gain and leads to dramatic weight loss in combination with glucagon-like peptide-1 receptor agonists in preclinical models. Based on the genetic evidence supporting GIPR antagonism, we previously developed a mouse anti-murine GIPR antibody (muGIPR-Ab) that protected diet-induced obese (DIO) mice against body weight gain and improved multiple metabolic parameters. This work reconciles the similar preclinical body weight effects of GIPR antagonists and agonists in vivo, and here we show that chronic GIPR agonism desensitizes GIPR activity in primary adipocytes, both differentiated in vitro and adipose tissue in vivo, and functions like a GIPR antagonist. Additionally, GIPR activity in adipocytes is partially responsible for muGIPR-Ab to prevent weight gain in DIO mice, demonstrating a role of adipocyte GIPR in the regulation of adiposity in vivo.
Collapse
Affiliation(s)
- Elizabeth A Killion
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Michelle Chen
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - James R Falsey
- Amgen Research, Department of Selection and Modality Engineering, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Glenn Sivits
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Todd Hager
- Amgen Research, Department of Translational Safety & Bioanalytical Sciences, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Larissa Atangan
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Joan Helmering
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Jae Lee
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Hongyan Li
- Amgen Research, Department of Translational Safety & Bioanalytical Sciences, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Bin Wu
- Amgen Research, Department of Selection and Modality Engineering, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Yuan Cheng
- Amgen Research, Department of Selection and Modality Engineering, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Murielle M Véniant
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - David J Lloyd
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
31
|
Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol Metab 2020; 46:101090. [PMID: 32987188 PMCID: PMC8085566 DOI: 10.1016/j.molmet.2020.101090] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background Glucagon-like peptide-1 receptor (GLP-1R) agonists are approved to treat type 2 diabetes and obesity. They elicit robust improvements in glycemic control and weight loss, combined with cardioprotection in individuals at risk of or with pre-existing cardiovascular disease. These attributes make GLP-1 a preferred partner for next-generation therapies exhibiting improved efficacy yet retaining safety to treat diabetes, obesity, non-alcoholic steatohepatitis, and related cardiometabolic disorders. The available clinical data demonstrate that the best GLP-1R agonists are not yet competitive with bariatric surgery, emphasizing the need to further improve the efficacy of current medical therapy. Scope of review In this article, we discuss data highlighting the physiological and pharmacological attributes of potential peptide and non-peptide partners, exemplified by amylin, glucose-dependent insulinotropic polypeptide (GIP), and steroid hormones. We review the progress, limitations, and future considerations for translating findings from preclinical experiments to competitive efficacy and safety in humans with type 2 diabetes and obesity. Major conclusions Multiple co-agonist combinations exhibit promising clinical efficacy, notably tirzepatide and investigational amylin combinations. Simultaneously, increasing doses of GLP-1R agonists such as semaglutide produces substantial weight loss, raising the bar for the development of new unimolecular co-agonists. Collectively, the available data suggest that new co-agonists with robust efficacy should prove superior to GLP-1R agonists alone to treat metabolic disorders. GLP-1 is a preferred partner for co-agonist development. Co-agonist combinations must exhibit improved weight loss beyond GLP-1 alone. Unimolecular coagonists must exhibit retained or improved cardioprotection. Obesity represents an optimal condition for the development of new GLP-1 co-agonists.
Collapse
Affiliation(s)
- Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, M5G 1X5 Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, M5G 1X5 Canada.
| |
Collapse
|
32
|
Fu Y, Kaneko K, Lin HY, Mo Q, Xu Y, Suganami T, Ravn P, Fukuda M. Gut Hormone GIP Induces Inflammation and Insulin Resistance in the Hypothalamus. Endocrinology 2020; 161:5865317. [PMID: 32603429 PMCID: PMC7410368 DOI: 10.1210/endocr/bqaa102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
The hypothalamus plays a critical role in controlling energy balance. High-fat diet (HFD) feeding increases the gene expression of proinflammatory mediators and decreases insulin actions in the hypothalamus. Here, we show that a gut-derived hormone, glucose-dependent insulinotropic polypeptide (GIP), whose levels are elevated during diet-induced obesity, promotes and mediates hypothalamic inflammation and insulin resistance during HFD-induced obesity. Unbiased ribonucleic acid sequencing of GIP-stimulated hypothalami revealed that hypothalamic pathways most affected by intracerebroventricular (ICV) GIP stimulation were related to inflammatory-related responses. Subsequent analysis demonstrated that GIP administered either peripherally or centrally, increased proinflammatory-related factors such as Il-6 and Socs3 in the hypothalamus, but not in the cortex of C57BL/6J male mice. Consistently, hypothalamic activation of IκB kinase-β inflammatory signaling was induced by ICV GIP. Further, hypothalamic levels of proinflammatory cytokines and Socs3 were significantly reduced by an antagonistic GIP receptor (GIPR) antibody and by GIPR deficiency. Additionally, centrally administered GIP reduced anorectic actions of insulin in the brain and diminished insulin-induced phosphorylation of Protein kinase B and Glycogen synthase kinase 3β in the hypothalamus. Collectively, these findings reveal a previously unrecognized role for brain GIP signaling in diet-induced inflammation and insulin resistance in the hypothalamus.
Collapse
Affiliation(s)
- Yukiko Fu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kentaro Kaneko
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hsiao-Yun Lin
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Qianxing Mo
- Dan L Duncan Cancer Center and Center for Cell Gene & Therapy, Baylor College of Medicine, Houston, Texas
- Present address: Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Peter Ravn
- AstraZeneca, R&D BioPharmaceuticals Unit, Department of Antibody Discovery and Protein Engineering, Cambridge, UK
| | - Makoto Fukuda
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Correspondence: Makoto Fukuda, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
33
|
Gobron B, Bouvard B, Vyavahare S, Blom LV, Pedersen KK, Windeløv JA, Boer GA, Harada N, Zhang S, Shimazu-Kuwahara S, Wice B, Inagaki N, Legrand E, Flatt PR, Chappard D, Hartmann B, Holst JJ, Rosenkilde MM, Irwin N, Mabilleau G. Enteroendocrine K Cells Exert Complementary Effects to Control Bone Quality and Mass in Mice. J Bone Miner Res 2020; 35:1363-1374. [PMID: 32155286 DOI: 10.1002/jbmr.4004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
The involvement of a gut-bone axis in controlling bone physiology has been long suspected, although the exact mechanisms are unclear. We explored whether glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine K cells were involved in this process. The bone phenotype of transgenic mouse models lacking GIP secretion (GIP-GFP-KI) or enteroendocrine K cells (GIP-DT) was investigated. Mice deficient in GIP secretion exhibited lower bone strength, trabecular bone mass, trabecular number, and cortical thickness, notably due to higher bone resorption. Alterations of microstructure, modifications of bone compositional parameters, represented by lower collagen cross-linking, were also apparent. None of these alterations were observed in GIP-DT mice lacking enteroendocrine K cells, suggesting that another K-cell secretory product acts to counteract GIP action. To assess this, stable analogues of the known K-cell peptide hormones, xenin and GIP, were administered to mature NIH Swiss male mice. Both were capable of modulating bone strength mostly by altering bone microstructure, bone gene expression, and bone compositional parameters. However, the two molecules exhibited opposite actions on bone physiology, with evidence that xenin effects are mediated indirectly, possibly via neural networks. Our data highlight a previously unknown interaction between GIP and xenin, which both moderate gut-bone connectivity. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Benoît Gobron
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service de Rhumatologie, CHU d'Angers, Angers, France
| | - Béatrice Bouvard
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service de Rhumatologie, CHU d'Angers, Angers, France
| | - Sagar Vyavahare
- School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | - Liv Vv Blom
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian K Pedersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne A Windeløv
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Geke A Boer
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Norio Harada
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sheng Zhang
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Satoko Shimazu-Kuwahara
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Burton Wice
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Erick Legrand
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service de Rhumatologie, CHU d'Angers, Angers, France
| | - Peter R Flatt
- School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | - Daniel Chappard
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service Commun D'imageries et d'Analyses Microscopiques, SCIAM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Bone Pathology Unit, CHU d'Angers, Angers, France
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | - Guillaume Mabilleau
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service Commun D'imageries et d'Analyses Microscopiques, SCIAM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Bone Pathology Unit, CHU d'Angers, Angers, France
| |
Collapse
|
34
|
Stemmer K, Finan B, DiMarchi RD, Tschöp MH, Müller TD. Insights into incretin-based therapies for treatment of diabetic dyslipidemia. Adv Drug Deliv Rev 2020; 159:34-53. [PMID: 32485206 DOI: 10.1016/j.addr.2020.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023]
Abstract
Derangements in triglyceride and cholesterol metabolism (dyslipidemia) are major risk factors for the development of cardiovascular diseases in obese and type-2 diabetic (T2D) patients. An emerging class of glucagon-like peptide-1 (GLP-1) analogues and next generation peptide dual-agonists such as GLP-1/glucagon or GLP-1/GIP could provide effective therapeutic options for T2D patients. In addition to their role in glucose and energy homeostasis, GLP-1, GIP and glucagon serve as regulators of lipid metabolism. This review summarizes the current knowledge in GLP-1, glucagon and GIP effects on lipid and lipoprotein metabolism and frames the emerging therapeutic benefits of GLP-1 analogs and GLP-1-based multiagonists as add-on treatment options for diabetes associated dyslipidemia.
Collapse
|
35
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
36
|
Regazzo D, Barbot M, Scaroni C, Albiger N, Occhi G. The pathogenic role of the GIP/GIPR axis in human endocrine tumors: emerging clinical mechanisms beyond diabetes. Rev Endocr Metab Disord 2020; 21:165-183. [PMID: 31933128 DOI: 10.1007/s11154-019-09536-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone produced in the gastrointestinal tract in response to nutrients. GIP has a variety of effects on different systems, including the potentiation of insulin secretion from pancreatic β-cells after food intake (i.e. incretin effect), which is probably the most important. GIP effects are mediated by the GIP receptor (GIPR), a G protein-coupled receptor expressed in several tissues, including islet β-cells, adipocytes, bone cells, and brain. As well as its involvement in metabolic disorders (e.g. it contributes to the impaired postprandial insulin secretion in type 2 diabetes (T2DM), and to the pathogenesis of obesity and associated insulin resistance), an inappropriate GIP/GIPR axis activation of potential diagnostic and prognostic value has been reported in several endocrine tumors in recent years. The ectopic GIPR expression seen in patients with overt Cushing syndrome and primary bilateral macronodular adrenal hyperplasia or unilateral cortisol-producing adenoma has been associated with an inverse rhythm of cortisol secretion, with low fasting morning plasma levels that increase after eating. On the other hand, most acromegalic patients with an unusual GH response to oral glucose suppression have GIPR-positive somatotropinomas, and a milder phenotype, and are more responsive to medical treatment. Neuroendocrine tumors are characterized by a strong GIPR expression that may correlate positively or inversely with the proliferative index MIB-1, and that seems an attractive target for developing novel radioligands. The main purpose of this review is to summarize the role of the GIP/GIPR axis in endocrine neoplasia, in the experimental and the clinical settings.
Collapse
Affiliation(s)
- Daniela Regazzo
- Department of Medicine Endocrinology Unit, Padova University Hospital, Padova, Italy
| | - Mattia Barbot
- Department of Medicine Endocrinology Unit, Padova University Hospital, Padova, Italy
| | - Carla Scaroni
- Department of Medicine Endocrinology Unit, Padova University Hospital, Padova, Italy
| | - Nora Albiger
- Endocrinology Service, ULSS 6 Euganea, Padova, Italy
| | - Gianluca Occhi
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
37
|
Beaudry JL, Drucker DJ. Proglucagon-Derived Peptides, Glucose-Dependent Insulinotropic Polypeptide, and Dipeptidyl Peptidase-4-Mechanisms of Action in Adipose Tissue. Endocrinology 2020; 161:5648010. [PMID: 31782955 DOI: 10.1210/endocr/bqz029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Proglucagon-derived peptides (PGDPs) and related gut hormones exemplified by glucose-dependent insulinotropic polypeptide (GIP) regulate energy disposal and storage through actions on metabolically sensitive organs, including adipose tissue. The actions of glucagon, glucagon-like peptide (GLP)-1, GLP-2, GIP, and their rate-limiting enzyme dipeptidyl peptidase-4, include direct and indirect regulation of islet hormone secretion, food intake, body weight, all contributing to control of white and brown adipose tissue activity. Moreover, agents mimicking actions of these peptides are in use for the therapy of metabolic disorders with disordered energy homeostasis such as diabetes, obesity, and intestinal failure. Here we highlight current concepts and mechanisms for direct and indirect actions of these peptides on adipose tissue depots. The available data highlight the importance of indirect peptide actions for control of adipose tissue biology, consistent with the very low level of endogenous peptide receptor expression within white and brown adipose tissue depots. Finally, we discuss limitations and challenges for the interpretation of available experimental observations, coupled to identification of enduring concepts supported by more robust evidence.
Collapse
Affiliation(s)
- Jacqueline L Beaudry
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto ON, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto ON, Canada
| |
Collapse
|
38
|
Killion EA, Lu SC, Fort M, Yamada Y, Véniant MM, Lloyd DJ. Glucose-Dependent Insulinotropic Polypeptide Receptor Therapies for the Treatment of Obesity, Do Agonists = Antagonists? Endocr Rev 2020; 41:5568102. [PMID: 31511854 DOI: 10.1210/endrev/bnz002] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
Glucose-dependent insulinotropic polypeptide receptor (GIPR) is associated with obesity in human genome-wide association studies. Similarly, mouse genetic studies indicate that loss of function alleles and glucose-dependent insulinotropic polypeptide overexpression both protect from high-fat diet-induced weight gain. Together, these data provide compelling evidence to develop therapies targeting GIPR for the treatment of obesity. Further, both antagonists and agonists alone prevent weight gain, but result in remarkable weight loss when codosed or molecularly combined with glucagon-like peptide-1 analogs preclinically. Here, we review the current literature on GIPR, including biology, human and mouse genetics, and pharmacology of both agonists and antagonists, discussing the similarities and differences between the 2 approaches. Despite opposite approaches being investigated preclinically and clinically, there may be viability of both agonists and antagonists for the treatment of obesity, and we expect this area to continue to evolve with new clinical data and molecular and pharmacological analyses of GIPR function.
Collapse
Affiliation(s)
- Elizabeth A Killion
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, California
| | - Shu-Chen Lu
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, California
| | - Madeline Fort
- Department of Comparative Biology and Safety Sciences, Amgen Research, Thousand Oaks, California
| | - Yuichiro Yamada
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Murielle M Véniant
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, California
| | - David J Lloyd
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, California
| |
Collapse
|
39
|
Grandl G, Novikoff A, DiMarchi R, Tschöp MH, Müller TD. Gut Peptide Agonism in the Treatment of Obesity and Diabetes. Compr Physiol 2019; 10:99-124. [PMID: 31853954 DOI: 10.1002/cphy.c180044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a global healthcare challenge that gives rise to devastating diseases such as the metabolic syndrome, type-2 diabetes (T2D), and a variety of cardiovascular diseases. The escalating prevalence of obesity has led to an increased interest in pharmacological options to counteract excess weight gain. Gastrointestinal hormones such as glucagon, amylin, and glucagon-like peptide-1 (GLP-1) are well recognized for influencing food intake and satiety, but the therapeutic potential of these native peptides is overall limited by a short half-life and an often dose-dependent appearance of unwanted effects. Recent clinical success of chemically optimized GLP-1 mimetics with improved pharmacokinetics and sustained action has propelled pharmacological interest in using bioengineered gut hormones to treat obesity and diabetes. In this article, we summarize the basic biology and signaling mechanisms of selected gut peptides and discuss how they regulate systemic energy and glucose metabolism. Subsequently, we focus on the design and evaluation of unimolecular drugs that combine the beneficial effects of selected gut hormones into a single entity to optimize the beneficial impact on systems metabolism. © 2020 American Physiological Society. Compr Physiol 10:99-124, 2020.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
40
|
Killion EA, Wang J, Yie J, Shi SDH, Bates D, Min X, Komorowski R, Hager T, Deng L, Atangan L, Lu SC, Kurzeja RJM, Sivits G, Lin J, Chen Q, Wang Z, Thibault SA, Abbott CM, Meng T, Clavette B, Murawsky CM, Foltz IN, Rottman JB, Hale C, Véniant MM, Lloyd DJ. Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models. Sci Transl Med 2019; 10:10/472/eaat3392. [PMID: 30567927 DOI: 10.1126/scitranslmed.aat3392] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 12/30/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) has been identified in multiple genome-wide association studies (GWAS) as a contributor to obesity, and GIPR knockout mice are protected against diet-induced obesity (DIO). On the basis of this genetic evidence, we developed anti-GIPR antagonistic antibodies as a potential therapeutic strategy for the treatment of obesity and observed that a mouse anti-murine GIPR antibody (muGIPR-Ab) protected against body weight gain, improved multiple metabolic parameters, and was associated with reduced food intake and resting respiratory exchange ratio (RER) in DIO mice. We replicated these results in obese nonhuman primates (NHPs) using an anti-human GIPR antibody (hGIPR-Ab) and found that weight loss was more pronounced than in mice. In addition, we observed enhanced weight loss in DIO mice and NHPs when anti-GIPR antibodies were codosed with glucagon-like peptide-1 receptor (GLP-1R) agonists. Mechanistic and crystallographic studies demonstrated that hGIPR-Ab displaced GIP and bound to GIPR using the same conserved hydrophobic residues as GIP. Further, using a conditional knockout mouse model, we excluded the role of GIPR in pancreatic β-cells in the regulation of body weight and response to GIPR antagonism. In conclusion, these data provide preclinical validation of a therapeutic approach to treat obesity with anti-GIPR antibodies.
Collapse
Affiliation(s)
- Elizabeth A Killion
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Jinghong Wang
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Junming Yie
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Stone D-H Shi
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Darren Bates
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Xiaoshan Min
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Renee Komorowski
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Todd Hager
- Amgen Research, Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Liying Deng
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Larissa Atangan
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Shu-Chen Lu
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Robert J M Kurzeja
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Glenn Sivits
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Joanne Lin
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Qing Chen
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Zhulun Wang
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Stephen A Thibault
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Christina M Abbott
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Tina Meng
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Brandon Clavette
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., 7990 Enterprise Street, Burnaby, BC V5A 1V7, Canada
| | - Christopher M Murawsky
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., 7990 Enterprise Street, Burnaby, BC V5A 1V7, Canada
| | - Ian N Foltz
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., 7990 Enterprise Street, Burnaby, BC V5A 1V7, Canada
| | - James B Rottman
- Amgen Research, Comparative Biology and Safety Sciences, Amgen Inc., 360 Binney St., Cambridge, MA 02141, USA
| | - Clarence Hale
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Murielle M Véniant
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - David J Lloyd
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA.
| |
Collapse
|
41
|
Abstract
Developing effective treatments for obesity and related metabolic disease remains a challenge. One logical strategy targets the appetite-regulating actions of gut hormones such as incretins. One of these incretins, glucose-dependent insulinotropic polypeptide (GIP), has garnered much attention as a potential target: however, whether it is beneficial to boost or block the action of GIP to promote weight loss remains an unresolved question. In this issue of the JCI, Kaneko and colleagues show that antagonizing GIP signaling in the CNS enhances the weight-reducing effects of leptin in rodents with diet-induced obesity. The authors posit that an increase in circulating intestinally derived GIP, as a consequence of overnutrition, acts in the brain to impair hypothalamic leptin action, resulting in increased food intake and body weight gain. This research advances the idea that multiple GIP signaling pathways and mechanisms exist in the obese state and offers intriguing new insights into the antiobesogenic consequences of antagonizing brain GIP action.
Collapse
Affiliation(s)
- Jessica T Y Yue
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Ontario, Canada.,Department of Physiology.,Department of Medicine, and.,Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Chia CW, Egan JM. Incretins in obesity and diabetes. Ann N Y Acad Sci 2019; 1461:104-126. [PMID: 31392745 PMCID: PMC10131087 DOI: 10.1111/nyas.14211] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Incretins are hormones secreted from enteroendocrine cells after nutrient intake that stimulate insulin secretion from β cells in a glucose-dependent manner. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the only two known incretins. Dysregulation of incretin secretion and actions are noted in diseases such as obesity and diabetes. In this review, we first summarize our traditional understanding of the physiology of GIP and GLP-1, and our current knowledge of the relationships between GIP and GLP-1 and obesity and diabetes. Next, we present the results from major randomized controlled trials on the use of GLP-1 receptor agonists for managing type 2 diabetes, and emerging data on treating obesity and prediabetes. We conclude with a glimpse of the future with possible complex interactions between nutrients, gut microbiota, the endocannabinoid system, and enteroendocrine cells.
Collapse
Affiliation(s)
- Chee W Chia
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
43
|
Goupille O, Kadri Z, Langelé A, Luccantoni S, Badoual C, Leboulch P, Chrétien S. The integrity of the FOG-2 LXCXE pRb-binding motif is required for small intestine homeostasis. Exp Physiol 2019; 104:1074-1089. [PMID: 31012180 DOI: 10.1113/ep087369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/16/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do Fog2Rb- / Rb- mice present a defect of small intestine homeostasis? What is the main finding and its importance? The importance of interactions between FOG-2 and pRb in adipose tissue physiology has previously been demonstrated. Here it is shown that this interaction is also intrinsic to small intestine homeostasis and exerts extrinsic control over mouse metabolism. Thus, this association is involved in maintaining small intestine morphology, and regulating crypt proliferation and lineage differentiation. It therefore affects mouse growth and adaptation to a high-fat diet. ABSTRACT GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. We have shown that GATA-1 and FOG-2 contain an LXCXE pRb-binding motif. Interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation, whereas the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Fog2-knock-in mice have defective pRb binding and are resistant to obesity, due to efficient white-into-brown fat conversion. Our aim was to investigate the pathophysiological impact of FOG-2-pRb interaction on the small intestine and mouse growth. Histological analysis of the small intestine revealed architectural changes in Fog2Rb- / Rb- mice, including villus shortening, with crypt expansion and a change in muscularis propria thickness. These differences were more marked in the proximo-distal part of the small intestine and were associated with an increase in crypt cell proliferation and disruption of the goblet and Paneth cell lineage. The small intestine of the mutants was unable to adapt to a high-fat diet, and had significantly lower plasma lipid levels on such a diet. Fog2Rb- / Rb- mice displayed higher levels of glucose-dependent insulinotropic peptide release, and lower levels of insulin-like growth factor I release on a regular diet. Their intestinal lipid absorption was impaired, resulting in restricted weight gain. In addition to the intrinsic effects of the mutation on adipose tissue, we show here an extrinsic relationship between the intestine and the effect of FOG-2 mutation on mouse metabolism. In conclusion, the interaction of FOG-2 with pRb coordinates the crypt-villus axis and controls small intestine homeostasis.
Collapse
Affiliation(s)
- Olivier Goupille
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Zahra Kadri
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Amandine Langelé
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Sophie Luccantoni
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, Institute of Biology François Jacob, CEA - Université Paris Sud 11 - INSERM U1184, Fontenay-aux-Roses, France
| | - Cécile Badoual
- Department of Pathology, G. Pompidou European Hospital APHP - Université Paris, Descartes, Paris, France
| | - Philippe Leboulch
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France.,Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Stany Chrétien
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France.,INSERM, Paris, France
| |
Collapse
|
44
|
Bergmann NC, Lund A, Gasbjerg LS, Meessen ECE, Andersen MM, Bergmann S, Hartmann B, Holst JJ, Jessen L, Christensen MB, Vilsbøll T, Knop FK. Effects of combined GIP and GLP-1 infusion on energy intake, appetite and energy expenditure in overweight/obese individuals: a randomised, crossover study. Diabetologia 2019; 62:665-675. [PMID: 30683945 DOI: 10.1007/s00125-018-4810-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/07/2018] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide 1 (GLP-1) reduces appetite and energy intake in humans, whereas the other incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), seems to have no effect on eating behaviour. Interestingly, studies in rodents have shown that concomitant activation of GIP and GLP-1 receptors may potentiate the satiety-promoting effect of GLP-1, and a novel dual GLP-1/GIP receptor agonist was recently shown to trigger greater weight losses compared with a GLP-1 receptor agonist in individuals with type 2 diabetes. The aim of this study was to delineate the effects of combined GIP and GLP-1 receptor activation on energy intake, appetite and resting energy expenditure in humans. METHODS We examined 17 overweight/obese men in a crossover design with 5 study days. On day 1, a 50 g OGTT was performed; on the following 4 study days, the men received an isoglycaemic i.v. glucose infusion (IIGI) plus saline (154 mmol/l NaCl; placebo), GIP (4 pmol kg-1 min-1), GLP-1 (1 pmol kg-1 min-1) or GIP+GLP-1 (4 and 1 pmol kg-1 min-1, respectively). All IIGIs were performed in a randomised order blinded for the participant and the investigators. The primary endpoint was energy intake as measured by an ad libitum meal after 240 min. Secondary endpoints included appetite ratings and resting energy expenditure, as well as insulin, C-peptide and glucagon responses. RESULTS Energy intake was significantly reduced during IIGI+GLP-1 compared with IIGI+saline infusion (2715 ± 409 vs 4483 ± 568 kJ [mean ± SEM, n = 17], p = 0.014), whereas there were no significant differences in energy intake during IIGI+GIP (4062 ± 520 kJ) or IIGI+GIP+GLP-1 (3875 ± 451 kJ) infusion compared with IIGI+saline (p = 0.590 and p = 0.364, respectively). Energy intake was higher during IIGI+GIP+GLP-1 compared with IIGI+GLP-1 infusion (p = 0.039). CONCLUSIONS/INTERPRETATION While GLP-1 infusion lowered energy intake in overweight/obese men, simultaneous GIP infusion did not potentiate this GLP-1-mediated effect. TRIAL REGISTRATION ClinicalTrials.gov NCT02598791 FUNDING: This study was supported by grants from the Innovation Fund Denmark and the Vissing Foundation.
Collapse
Affiliation(s)
- Natasha C Bergmann
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
- Department of In Vivo Pharmacology, Zealand Pharma A/S, Glostrup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asger Lund
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
- Department of Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma C E Meessen
- Department of Endocrinology and Metabolism, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria M Andersen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
| | - Sigrid Bergmann
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lene Jessen
- Department of In Vivo Pharmacology, Zealand Pharma A/S, Glostrup, Denmark
| | - Mikkel B Christensen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
45
|
Mroz PA, Finan B, Gelfanov V, Yang B, Tschöp MH, DiMarchi RD, Perez-Tilve D. Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. Mol Metab 2019; 20:51-62. [PMID: 30578168 PMCID: PMC6358549 DOI: 10.1016/j.molmet.2018.12.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Structurally-improved GIP analogs were developed to determine precisely whether GIP receptor (GIPR) agonism or antagonism lowers body weight in obese mice. METHODS A series of peptide-based GIP analogs, including structurally diverse agonists and a long-acting antagonist, were generated and characterized in vitro using functional assays in cell systems overexpressing human and mouse derived receptors. These analogs were characterized in vivo in DIO mice following acute dosing for effects on glycemic control, and following chronic dosing for effects on body weight and food intake. Pair-feeding studies and indirect calorimetry were used to survey the mechanism for body weight lowering. Congenital Gipr-/- and Glp1r-/- DIO mice were used to investigate the selectivity of the agonists and to ascribe the pharmacology to effects mediated by the GIPR. RESULTS Non-acylated, Aib2 substituted analogs derived from human GIP sequence showed full in vitro potency at human GIPR and subtly reduced in vitro potency at mouse GIPR without cross-reactivity at GLP-1R. These GIPR agonists lowered acute blood glucose in wild-type and Glp1r-/- mice, and this effect was absent in Gipr-/- mice, which confirmed selectivity towards GIPR. Chronic treatment of DIO mice resulted in modest yet consistent, dose-dependent decreased body weight across many studies with diverse analogs. The mechanism for body weight lowering is due to reductions in food intake, not energy expenditure, as suggested by pair-feeding studies and indirect calorimetry assessment. The weight lowering effect was preserved in DIO Glp-1r-/- mice and absent in DIO Gipr-/- mice. The body weight lowering efficacy of GIPR agonists was enhanced with analogs that exhibit higher mouse GIPR potency, with increased frequency of administration, and with fatty-acylated peptides of extended duration of action. Additionally, a fatty-acylated, N-terminally truncated GIP analog was shown to have high in vitro antagonism potency for human and mouse GIPR without cross-reactive activity at mouse GLP-1R or mouse glucagon receptor (GcgR). This acylated antagonist sufficiently inhibited the acute effects of GIP to improve glucose tolerance in DIO mice. Chronic treatment of DIO mice with high doses of this acylated GIPR antagonist did not result in body weight change. Further, co-treatment of this acylated GIPR antagonist with liraglutide, an acylated GLP-1R agonist, to DIO mice did not result in increased body weight lowering relative to liraglutide-treated mice. Enhanced body weight lowering in DIO mice was evident however following co-treatment of long-acting selective individual agonists for GLP-1R and GIPR, consistent with previous data. CONCLUSIONS We conclude that peptide-based GIPR agonists, not peptide-based GIPR antagonists, that are suitably optimized for receptor selectivity, cross-species activity, and duration of action consistently lower body weight in DIO mice, although with moderate efficacy relative to GLP-1R agonists. These preclinical rodent pharmacology results, in accordance with recent clinical results, provide definitive proof that systemic GIPR agonism, not antagonism, is beneficial for body weight loss.
Collapse
Affiliation(s)
- Piotr A Mroz
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Munich-Neuherberg, Germany.
| | - Vasily Gelfanov
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Bin Yang
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Matthias H Tschöp
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Munich-Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Diego Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
46
|
Müller TD, Clemmensen C, Finan B, DiMarchi RD, Tschöp MH. Anti-Obesity Therapy: from Rainbow Pills to Polyagonists. Pharmacol Rev 2018; 70:712-746. [PMID: 30087160 DOI: 10.1124/pr.117.014803] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With their ever-growing prevalence, obesity and diabetes represent major health threats of our society. Based on estimations by the World Health Organization, approximately 300 million people will be obese in 2035. In 2015 alone there were more than 1.6 million fatalities attributable to hyperglycemia and diabetes. In addition, treatment of these diseases places an enormous burden on our health care system. As a result, the development of pharmacotherapies to tackle this life-threatening pandemic is of utmost importance. Since the beginning of the 19th century, a variety of drugs have been evaluated for their ability to decrease body weight and/or to improve deranged glycemic control. The list of evaluated drugs includes, among many others, sheep-derived thyroid extracts, mitochondrial uncouplers, amphetamines, serotonergics, lipase inhibitors, and a variety of hormones produced and secreted by the gastrointestinal tract or adipose tissue. Unfortunately, when used as a single hormone therapy, most of these drugs are underwhelming in their efficacy or safety, and placebo-subtracted weight loss attributed to such therapy is typically not more than 10%. In 2009, the generation of a single molecule with agonism at the receptors for glucagon and the glucagon-like peptide 1 broke new ground in obesity pharmacology. This molecule combined the beneficial anorectic and glycemic effects of glucagon-like peptide 1 with the thermogenic effect of glucagon into a single molecule with enhanced potency and sustained action. Several other unimolecular dual agonists have subsequently been developed, and, based on their preclinical success, these molecules illuminate the path to a new and more fruitful era in obesity pharmacology. In this review, we focus on the historical pharmacological approaches to treat obesity and glucose intolerance and describe how the knowledge obtained by these studies led to the discovery of unimolecular polypharmacology.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.)
| | - C Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.)
| | - B Finan
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.)
| | - R D DiMarchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.)
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.)
| |
Collapse
|
47
|
Brandt SJ, Kleinert M, Tschöp MH, Müller TD. Are peptide conjugates the golden therapy against obesity? J Endocrinol 2018; 238:R109-R119. [PMID: 29848610 PMCID: PMC6026923 DOI: 10.1530/joe-18-0264] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022]
Abstract
Obesity is a worldwide pandemic, which can be fatal for the most extremely affected individuals. Lifestyle interventions such as diet and exercise are largely ineffective and current anti-obesity medications offer little in the way of significant or sustained weight loss. Bariatric surgery is effective, but largely restricted to only a small subset of extremely obese patients. While the hormonal factors mediating sustained weight loss and remission of diabetes by bariatric surgery remain elusive, a new class of polypharmacological drugs shows potential to shrink the gap in efficacy between a surgery and pharmacology. In essence, this new class of drugs combines the beneficial effects of several independent hormones into a single entity, thereby combining their metabolic efficacy to improve systems metabolism. Such unimolecular drugs include single molecules with agonism at the receptors for glucagon, glucagon-like peptide 1 and the glucose-dependent insulinotropic polypeptide. In preclinical studies, these specially tailored multiagonists outperform both their mono-agonist components and current best in class anti-obesity medications. While clinical trials and vigorous safety analyses are ongoing, these drugs are poised to have a transformative effect in anti-obesity therapy and might hopefully lead the way to a new era in weight-loss pharmacology.
Collapse
Affiliation(s)
- S J Brandt
- Institute for Diabetes and ObesityHelmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD)Neuherberg, Germany
| | - M Kleinert
- Institute for Diabetes and ObesityHelmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD)Neuherberg, Germany
| | - M H Tschöp
- Institute for Diabetes and ObesityHelmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD)Neuherberg, Germany
- Division of Metabolic DiseasesTechnische Universität, Munich, Germany
| | - T D Müller
- Institute for Diabetes and ObesityHelmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD)Neuherberg, Germany
| |
Collapse
|
48
|
Human GIP(3-30)NH 2 inhibits G protein-dependent as well as G protein-independent signaling and is selective for the GIP receptor with high-affinity binding to primate but not rodent GIP receptors. Biochem Pharmacol 2018; 150:97-107. [PMID: 29378179 DOI: 10.1016/j.bcp.2018.01.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022]
Abstract
GIP(3-30)NH2 is a high affinity antagonist of the GIP receptor (GIPR) in humans inhibiting insulin secretion via G protein-dependent pathways. However, its ability to inhibit G protein-independent signaling is unknown. Here we determine its action on arrestin-recruitment and receptor internalization in recombinant cells. As GIP is adipogenic, we evaluate the inhibitory actions of GIP(3-30)NH2 in human adipocytes. Finally, we determine the receptor selectivity of GIP(3-30)NH2 among other human and animal GPCRs. cAMP accumulation and β-arrestin 1 and 2 recruitment were studied in transiently transfected HEK293 cells and real-time internalization in transiently transfected HEK293A and in HEK293A β-arrestin 1 and 2 knockout cells. Furthermore, human subcutaneous adipocytes were assessed for cAMP accumulation following ligand stimulation. Competition binding was examined in transiently transfected COS-7 cells using human 125I-GIP(3-30)NH2. The selectivity of human GIP(3-30)NH2 was examined by testing for agonistic and antagonistic properties on 62 human GPCRs. Human GIP(3-30)NH2 inhibited GIP(1-42)-induced cAMP and β-arrestin 1 and 2 recruitment on the human GIPR and Schild plot analysis showed competitive antagonism with a pA2 and Hill slope of 16.8 nM and 1.11 ± 0.02 in cAMP, 10.6 nM and 1.15 ± 0.05 in β-arrestin 1 recruitment, and 10.2 nM and 1.06 ± 0.05 in β-arrestin 2 recruitment. Efficient internalization of the GIPR was dependent on the presence of either β-arrestin 1 or 2. Moreover, GIP(3-30)NH2 inhibited GIP(1-42)-induced internalization in a concentration-dependent manner and notably also inhibited GIP-mediated signaling in human subcutaneous adipocytes. Finally, the antagonist was established as GIPR selective among 62 human GPCRs being species-specific with high affinity binding to the human and non-human primate (Macaca fascicularis) GIPRs, and low affinity binding to the rat and mouse GIPRs (Kd values of 2.0, 2.5, 31.6 and 100 nM, respectively). In conclusion, human GIP(3-30)NH2 is a selective and species-specific GIPR antagonist with broad inhibition of signaling and internalization in transfected cells as well as in human adipocytes.
Collapse
|
49
|
Brandt SJ, Götz A, Tschöp MH, Müller TD. Gut hormone polyagonists for the treatment of type 2 diabetes. Peptides 2018; 100:190-201. [PMID: 29412819 PMCID: PMC5805859 DOI: 10.1016/j.peptides.2017.12.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022]
Abstract
Chemical derivatives of the gut-derived peptide hormone glucagon-like peptide 1 (GLP-1) are among the best-in-class pharmacotherapies to treat obesity and type 2 diabetes. However, GLP-1 analogs have modest weight lowering capacity, in the range of 5-10%, and the therapeutic window is hampered by dose-dependent side effects. Over the last few years, a new concept has emerged: combining the beneficial effects of several key metabolic hormones into a single molecular entity. Several unimolecular GLP-1-based polyagonists have shown superior metabolic action compared to GLP-1 monotherapies. In this review article, we highlight the history of polyagonists targeting the receptors for GLP-1, GIP and glucagon, and discuss recent progress in expanding of this concept to now allow targeted delivery of nuclear hormones via GLP-1 and other gut hormones, as a novel approach towards more personalized pharmacotherapies.
Collapse
Affiliation(s)
- Sara J Brandt
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748 Garching, Germany
| | - Anna Götz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748 Garching, Germany; Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany; Institute for Diabetes und Regeneration, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748, Garching, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748 Garching, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748 Garching, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
50
|
Previti E, Salinari S, Bertuzzi A, Capristo E, Bornstein S, Mingrone G. Glycemic control after metabolic surgery: a Granger causality and graph analysis. Am J Physiol Endocrinol Metab 2017; 313:E622-E630. [PMID: 28698280 DOI: 10.1152/ajpendo.00042.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to examine the contribution of nonesterified fatty acids (NEFA) and incretin to insulin resistance and diabetes amelioration after malabsorptive metabolic surgery that induces steatorrhea. In fact, NEFA infusion reduces glucose-stimulated insulin secretion, and high-fat diets predict diabetes development. Six healthy controls, 11 obese subjects, and 10 type 2 diabetic (T2D) subjects were studied before and 1 mo after biliopancreatic diversion (BPD). Twenty-four-hour plasma glucose, NEFA, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP) time courses were obtained and analyzed by Granger causality and graph analyses. Insulin sensitivity and secretion were computed by the oral glucose minimal model. Before metabolic surgery, NEFA levels had the strongest influence on the other variables in both obese and T2D subjects. After surgery, GLP-1 and C-peptide levels controlled the system in obese and T2D subjects. Twenty-four-hour GIP levels were markedly reduced after BPD. Finally, not only did GLP-1 levels play a central role, but also insulin and C-peptide levels had a comparable relevance in the network of healthy controls. After BPD, insulin sensitivity was completely normalized in both obese and T2D individuals. Increased 24-h GLP-1 circulating levels positively influenced glucose homeostasis in both obese and T2D subjects who underwent a malabsorptive bariatric operation. In the latter, the reduction of plasma GIP levels also contributed to the improvement of glucose metabolism. It is possible that the combination of a pharmaceutical treatment reducing GIP and increasing GLP-1 plasma levels will contribute to better glycemic control in T2D. The application of Granger causality and graph analyses sheds new light on the pathophysiology of metabolic surgery.
Collapse
Affiliation(s)
- Elena Previti
- Department of Computer, Control, and Management Engineering "Antonio Ruberti," Sapienza University of Rome, Rome, Italy
| | - Serenella Salinari
- Department of Computer, Control, and Management Engineering "Antonio Ruberti," Sapienza University of Rome, Rome, Italy
| | - Alessandro Bertuzzi
- Institute for System Analysis and Computer Science "Antonio Ruberti," Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Esmeralda Capristo
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Stephan Bornstein
- Department of Medicine III, Universitätsklinikum Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany; and
- Diabetes and Nutritional Sciences, King's College London, London, United Kingdom
| | - Geltrude Mingrone
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy;
- Diabetes and Nutritional Sciences, King's College London, London, United Kingdom
| |
Collapse
|