1
|
Ozkan-Nikitaras T, Grzesik DJ, Romano LEL, Chapple JP, King PJ, Shoulders CC. N-SREBP2 Provides a Mechanism for Dynamic Control of Cellular Cholesterol Homeostasis. Cells 2024; 13:1255. [PMID: 39120286 PMCID: PMC11311687 DOI: 10.3390/cells13151255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Cholesterol is required to maintain the functional integrity of cellular membrane systems and signalling pathways, but its supply must be closely and dynamically regulated because excess cholesterol is toxic. Sterol regulatory element-binding protein 2 (SREBP2) and the ER-resident protein HMG-CoA reductase (HMGCR) are key regulators of cholesterol biosynthesis. Here, we assessed the mechanistic aspects of their regulation in hepatic cells. Unexpectedly, we found that the transcriptionally active fragment of SREBP2 (N-SREBP2) was produced constitutively. Moreover, in the absence of an exogenous cholesterol supply, nuclear N-SREBP2 became resistant to proteasome-mediated degradation. This resistance was paired with increased occupancy at the HMGCR promoter and HMGCR expression. Inhibiting nuclear N-SREBP2 degradation did not increase HMGCR RNA levels; this increase required cholesterol depletion. Our findings, combined with previous physiological and biophysical investigations, suggest a new model of SREBP2-mediated regulation of cholesterol biosynthesis in the organ that handles large and rapid fluctuations in the dietary supply of this key lipid. Specifically, in the nucleus, cholesterol and the ubiquitin-proteasome system provide a short-loop system that modulates the rate of cholesterol biosynthesis via regulation of nuclear N-SREBP2 turnover and HMGCR expression. Our findings have important implications for maintaining cellular cholesterol homeostasis and lowering blood cholesterol via the SREBP2-HMGCR axis.
Collapse
Affiliation(s)
- Tozen Ozkan-Nikitaras
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Dominika J. Grzesik
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Lisa E. L. Romano
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - J. P. Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Peter J. King
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Carol C. Shoulders
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| |
Collapse
|
2
|
Singh H, Jori C, Shyamveer, Mahajan SD, Aalinkeel R, Kaliyappan K, Schwartz SA, Bhattacharya M, Shaikh R, Salve M, Deshmukh J, Ali N, Parvez MK. Comparative analysis of MTP -493G/T and ABCG2 34G/A polymorphisms and theirs expression in HIV-associated lipodystrophy patients. Front Cardiovasc Med 2023; 10:1177054. [PMID: 37324630 PMCID: PMC10262045 DOI: 10.3389/fcvm.2023.1177054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/02/2023] [Indexed: 11/19/2024] Open
Abstract
HIV-associated lipodystrophy (HIVLD) is a metabolic condition with an irregularity in the production of lipoprotein particles, and its occurrence varies among HIV-infected patients. MTP and ABCG2 genes have a role in the transport of lipoproteins. The polymorphisms of MTP -493G/T and ABCG2 34G/A affect its expression and influence the secretion and transportation of lipoproteins. Hence, we investigated the MTP -493G/T and ABCG2 34G/A polymorphisms in 187 HIV-infected patients (64 with HIVLD and 123 without HIVLD) along with 139 healthy controls using polymerase chain reaction (PCR)-restriction fragment length polymorphism and expression analysis using real-time PCR. ABCG2 34A allele showed an insignificantly reduced risk of LDHIV severity [P = 0.07, odds ratio (OR) = 0.55]. MTP -493T allele exhibited a non-significantly reduced risk for the development of dyslipidemia (P = 0.08, OR = 0.71). In patients with HIVLD, the ABCG2 34GA genotype was linked with impaired low-density lipoprotein levels and showed a reduced risk for LDHIV severity (P = 0.04, OR = 0.17). In patients without HIVLD, the ABCG2 34GA genotype was associated with impaired triglyceride levels with marginal significance and showed an increased risk for the development of dyslipidemia (P = 0.07, OR = 2.76). The expression level of MTP gene was 1.22-fold decreased in patients without HIVLD compared with that in patients with HIVLD. ABCG2 gene was upregulated 2.16-fold in patients with HIVLD than in patients without HIVLD. In conclusion, MTP -493C/T polymorphism influences the expression level of MTP in patients without HIVLD. Individuals without HIVLD having ABCG2 34GA genotype with impaired triglyceride levels may facilitate dyslipidemia risk.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute, Pune, India
| | - Chandrashekhar Jori
- Department of Molecular Biology, National AIDS Research Institute, Pune, India
| | - Shyamveer
- Department of Molecular Biology, National AIDS Research Institute, Pune, India
| | - Supriya D. Mahajan
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo’s Clinical Translational Research Center, Buffalo, NY, United States
| | - Ravikumar Aalinkeel
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo’s Clinical Translational Research Center, Buffalo, NY, United States
| | - Kathiravan Kaliyappan
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo’s Clinical Translational Research Center, Buffalo, NY, United States
| | - Stanley A. Schwartz
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo’s Clinical Translational Research Center, Buffalo, NY, United States
| | | | - Ruhi Shaikh
- ART Plus Centre, OPD-136, Government Medical College & Hospital, Aurangabad, India
| | - Madhukar Salve
- ART Plus Centre, OPD-136, Government Medical College & Hospital, Aurangabad, India
| | - Jyoti Deshmukh
- ART Plus Centre, OPD-136, Government Medical College & Hospital, Aurangabad, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Differential Regulation of Glucosylceramide Synthesis and Efflux by Golgi and Plasma Membrane Bound ABCC10. Nutrients 2023; 15:nu15020346. [PMID: 36678216 PMCID: PMC9862172 DOI: 10.3390/nu15020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 01/12/2023] Open
Abstract
Glucosylceramide (GlcCer) synthesis by the enzyme glucosylceramide synthase (GCS) occurs on the cytosolic leaflet of the Golgi and is the first important step for the synthesis of complex glycosphingolipids (GSLs) that takes place inside the lumen. Apart from serving as a precursor for glycosylation, newly synthesized GlcCer is also transported to the plasma membrane and secreted onto HDL in the circulation. The mechanism by which GlcCer is transported to HDL remains unclear. Recently, we showed that ATP-binding cassette transporter protein C10 (ABCC10) plays an important role in the synthesis and efflux of GlcCer in Huh-7 cells. In this study, we found that treatment of Huh-7 cells with an ABCC10 inhibitor, sorafenib, decreased the synthesis and efflux of GlcCer. However, treatment of cells with cepharanthine reduced only the efflux, but not synthesis, of GlcCer. These results indicate that ABCC10 may regulate the synthesis and efflux of GlcCer differentially in liver cells.
Collapse
|
4
|
Otaibi AA, Mubarak SA, Qarni AA, Hawwari A, Bakillah A, Iqbal J. ATP-Binding Cassette Protein ABCC10 Deficiency Prevents Diet-Induced Obesity but Not Atherosclerosis in Mice. Int J Mol Sci 2022; 23:ijms232213813. [PMID: 36430292 PMCID: PMC9694421 DOI: 10.3390/ijms232213813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Excess plasma lipid levels are a risk factor for various cardiometabolic disorders. Studies have shown that improving dyslipidemia lowers the progression of these disorders. In this study, we investigated the role of ATP-binding cassette transporter C10 (ABCC10) in regulating lipid metabolism. Our data indicate that deletion of the Abcc10 gene in male mice results in lower plasma and intestinal triglycerides by around 38% and 36%, respectively. Furthermore, deletion of ABCC10 ameliorates diet-induced obesity in mice and leads to a better response during insulin and glucose tolerance tests. Unexpectedly, ABCC10 deficiency does not affect triglyceride levels or atherosclerosis in ApoE-deficient mice. In addition, our studies demonstrate low oleate uptake by enterocytes (~25-30%) and less absorption (~37%) of triglycerides in the small intestine of ABCC10 knockout mice. Deletion of the Abcc10 gene also alters several lipid metabolism genes in the intestine, suggesting that ABCC10 regulates dietary fat absorption, which may contribute to diet-induced obesity in mice.
Collapse
|
5
|
Lipid Raft Integrity and Cellular Cholesterol Homeostasis Are Critical for SARS-CoV-2 Entry into Cells. Nutrients 2022; 14:nu14163417. [PMID: 36014919 PMCID: PMC9415163 DOI: 10.3390/nu14163417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022] Open
Abstract
Lipid rafts in cell plasma membranes play a critical role in the life cycle of many viruses. However, the involvement of membrane cholesterol-rich lipid rafts in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into target cells is not well known. In this study, we investigated whether the presence of cholesterol-rich microdomains is required for the entry of SARS-CoV-2 into host cells. Our results show that depletion of cholesterol in the rafts by methyl-beta-cyclodextrin (MβCD) treatment impaired the expression of the cell surface receptor angiotensin-converting enzyme 2 (ACE2), resulting in a significant increase in SARS-CoV-2 entry into cells. The effects exerted by MβCD could be substantially reversed by exogenous cholesterol replenishment. In contrast, disturbance of intracellular cholesterol homeostasis by statins or siRNA knockdown of key genes involved in the cholesterol biosynthesis and transport pathways reduced SARS-CoV-2 entry into cells. Our study also reveals that SREBP2-mediated cholesterol biosynthesis is involved in the process of SARS-CoV-2 entry in target cells. These results suggest that the host membrane cholesterol-enriched lipid rafts and cellular cholesterol homeostasis are essential for SARS-CoV-2 entry into cells. Pharmacological manipulation of intracellular cholesterol might provide new therapeutic strategies to alleviate SARS-CoV-2 entry into cells.
Collapse
|
6
|
Kwek E, Zhu H, Ding H, He Z, Hao W, Liu J, Ma KY, Chen ZY. Peony seed oil decreases plasma cholesterol and favorably modulates gut microbiota in hypercholesterolemic hamsters. Eur J Nutr 2022; 61:2341-2356. [PMID: 35107625 DOI: 10.1007/s00394-021-02785-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Peony (Paeonia spp.) seed oil (PSO) contains a high amount of α-linolenic acid. The effects of PSO on hypercholesterolemia and gut microbiota remains unclear. The present study was to investigate effects of PSO supplementation on cholesterol metabolism and modulation of the gut microbiota. METHODS Male Golden Syrian hamsters (n = 40) were randomly divided into five groups (n = 8, each) fed one of the following diets namely low-cholesterol diet (LCD); high cholesterol diet (HCD); HCD with PSO substituting 50% lard (LPSO), PSO substituting 100% lard (HPSO) and HCD with addition of 0.5% cholestyramine (PCD), respectively, for 6 weeks. RESULTS PSO supplementation dose-dependently reduced plasma total cholesterol (TC) by 9-14%, non-high-density lipoprotein cholesterol (non-HDL-C) by 7-18% and triacylglycerols (TG) by 14-34% (p < 0.05). In addition, feeding PSO diets reduced the formation of plaque lesions by 49-61% and hepatic lipids by 9-19% compared with feeding HCD diet (p < 0.01). PSO also altered relative genus abundance of unclassified_f__Coriobacteriaceae, unclassified_f__Erysipelotrichaceae, Peptococcus, unclassified_f__Ruminococcaceae, norank_o__Mollicutes_RF9 and Christensenellaceae_R-7_group. CONCLUSIONS It was concluded that PSO was effective in reducing plasma cholesterol and hepatic lipids and favorably modulating gut microbiota associated with cholesterol metabolism.
Collapse
Affiliation(s)
- Erika Kwek
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hanyue Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Food Science and Engineering/South China Food Safety Research Center, Foshan University, Foshan, Guangdong, China
| | - Huafang Ding
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zouyan He
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Wangjun Hao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianhui Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Ka Ying Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
7
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
8
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Iqbal J, Mascareno E, Chua S, Hussain MM. Leptin-mediated differential regulation of microsomal triglyceride transfer protein in the intestine and liver affects plasma lipids. J Biol Chem 2020; 295:4101-4113. [PMID: 32047110 PMCID: PMC7105304 DOI: 10.1074/jbc.ra119.011881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/06/2020] [Indexed: 11/06/2022] Open
Abstract
The hormone leptin regulates fat storage and metabolism by signaling through the brain and peripheral tissues. Lipids delivered to peripheral tissues originate mostly from the intestine and liver via synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. An intracellular chaperone, microsomal triglyceride transfer protein (MTP), is required for the biosynthesis of these lipoproteins, and its regulation determines fat mobilization to different tissues. Using cell culture and animal models, here we sought to identify the effects of leptin on MTP expression in the intestine and liver. Leptin decreased MTP expression in differentiated intestinal Caco-2 cells, but increased expression in hepatic Huh7 cells. Similarly, acute and chronic leptin treatment of chow diet-fed WT mice decreased MTP expression in the intestine, increased it in the liver, and lowered plasma triglyceride levels. These leptin effects required the presence of leptin receptors (LEPRs). Further experiments also suggested that leptin interacted with long-form LEPR (ObRb), highly expressed in the intestine, to down-regulate MTP. In contrast, in the liver, leptin interacted with short-form LEPR (ObRa) to increase MTP expression. Mechanistic experiments disclosed that leptin activates signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling pathways in intestinal and hepatic cells, respectively, and thereby regulates divergent MTP expression. Our results also indicated that leptin-mediated MTP regulation in the intestine affects plasma lipid levels. In summary, our findings suggest that leptin regulates MTP expression differentially by engaging with different LEPR types and activating distinct signaling pathways in intestinal and hepatic cells.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203; King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Eastern Region, Ministry of National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia.
| | - Eduardo Mascareno
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203
| | - Streamson Chua
- Department of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203; Department of Foundations of Medicine, NYU Long Island School of Medicine and Diabetes and Obesity Research Center, NYU Winthrop Research Institute, Mineola, New York 11501; Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York 11209.
| |
Collapse
|
10
|
Acuña‐Aravena M, Cohen DE. Lipoprotein Metabolism and Cholesterol Balance. THE LIVER 2020:255-267. [DOI: 10.1002/9781119436812.ch22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Iqbal J, Jahangir Z, Al-Qarni AA. Microsomal Triglyceride Transfer Protein: From Lipid Metabolism to Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:37-52. [DOI: 10.1007/978-981-15-6082-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Korber M, Klein I, Daum G. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1534-1545. [DOI: 10.1016/j.bbalip.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
|
13
|
Walsh MT, Hussain MM. Targeting microsomal triglyceride transfer protein and lipoprotein assembly to treat homozygous familial hypercholesterolemia. Crit Rev Clin Lab Sci 2016; 54:26-48. [PMID: 27690713 DOI: 10.1080/10408363.2016.1221883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a polygenic disease arising from defects in the clearance of plasma low-density lipoprotein (LDL), which results in extremely elevated plasma LDL cholesterol (LDL-C) and increased risk of atherosclerosis, coronary heart disease, and premature death. Conventional lipid-lowering therapies, such as statins and ezetimibe, are ineffective at lowering plasma cholesterol to safe levels in these patients. Other therapeutic options, such as LDL apheresis and liver transplantation, are inconvenient, costly, and not readily available. Recently, lomitapide was approved by the Federal Drug Administration as an adjunct therapy for the treatment of HoFH. Lomitapide inhibits microsomal triglyceride transfer protein (MTP), reduces lipoprotein assembly and secretion, and lowers plasma cholesterol levels by over 50%. Here, we explain the steps involved in lipoprotein assembly, summarize the role of MTP in lipoprotein assembly, explore the clinical and molecular basis of HoFH, and review pre-clinical studies and clinical trials with lomitapide and other MTP inhibitors for the treatment of HoFH. In addition, ongoing research and new approaches underway for better treatment modalities are discussed.
Collapse
Affiliation(s)
- Meghan T Walsh
- a School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center , Brooklyn , NY , USA.,b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - M Mahmood Hussain
- b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA.,c Department of Pediatrics , SUNY Downstate Medical Center , Brooklyn , NY , USA.,d VA New York Harbor Healthcare System , Brooklyn , NY , USA , and.,e Winthrop University Hospital , Mineola , NY , USA
| |
Collapse
|
14
|
Julve J, Martín-Campos JM, Escolà-Gil JC, Blanco-Vaca F. Chylomicrons: Advances in biology, pathology, laboratory testing, and therapeutics. Clin Chim Acta 2016; 455:134-48. [PMID: 26868089 DOI: 10.1016/j.cca.2016.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/01/2016] [Accepted: 02/06/2016] [Indexed: 01/17/2023]
Abstract
The adequate absorption of lipids is essential for all mammalian species due to their inability to synthesize some essential fatty acids and fat-soluble vitamins. Chylomicrons (CMs) are large, triglyceride-rich lipoproteins that are produced in intestinal enterocytes in response to fat ingestion, which function to transport the ingested lipids to different tissues. In addition to the contribution of CMs to postprandial lipemia, their remnants, the degradation products following lipolysis by lipoprotein lipase, are linked to cardiovascular disease. In this review, we will focus on the structure-function and metabolism of CMs. Second, we will analyze the impact of gene defects reported to affect CM metabolism and, also, the role of CMs in other pathologies, such as atherothrombotic cardiovascular disease and diabetes mellitus. Third, we will provide an overview of the laboratory tests currently used to study CM disorders, and, finally, we will highlight current treatments in diseases affecting CMs.
Collapse
Affiliation(s)
- Josep Julve
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
| | - Jesús M Martín-Campos
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Francisco Blanco-Vaca
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain; Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica, Barcelona, Spain
| |
Collapse
|
15
|
Sex difference in liver-related mortality and transplantation associated with dietary cholesterol in chronic hepatitis C virus infection. Br J Nutr 2015; 115:193-201. [PMID: 26541123 DOI: 10.1017/s0007114515004158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dietary cholesterol induces hepatic inflammation and fibrosis in animals. We aimed to determine whether dietary cholesterol affects liver-related mortality in hepatitis C virus (HCV)-infected patients. We performed a retrospective cohort study using extended follow-up data from the Hepatitis C Antiviral Long-Term Treatment Against Cirrhosis Trial. The study included HCV patients with advanced fibrosis and compensated cirrhosis. The analysis included 657 patients who completed two FFQ. We assessed whether cholesterol intake, measured in mg/4184 kJ (mg/1000 kcal) of energy intake, was associated with liver-related death or transplantation. In 4·7 (sd 1·6) years, the incidence of liver-related death (n 46) or transplantation (n 52) was 31·8/1000 person-years. The relationship between cholesterol intake and liver-related death or transplantation was significantly different between men and women (test for interaction, P value=0·01). Each higher quartile of cholesterol intake was associated with an increased risk for liver-related death or transplantation in women (adjusted hazard ratio (AHR) 1·83; 95 % CI 1·12, 2·99; P trend=0·02), but not in men (AHR 0·96; 95 % CI 0·76, 1·22; P trend=0·73). Compared with women whose cholesterol intake was within the recommended guidelines (300 mg/d with a 8368 kJ (2000 kcal) diet), women who consumed more cholesterol had significantly increased risk for liver-related death or transplantation (AHR 4·04; 95 % CI 1·42, 11·5). High dietary cholesterol was associated with an increased risk for liver-related death and transplantation in HCV-infected women with advanced fibrosis or compensated cirrhosis. Future studies should assess whether reducing cholesterol intake, among women who consume an excessive amount, can decrease HCV-related mortality.
Collapse
|
16
|
Abstract
Dietary lipids are efficiently absorbed by the small intestine, incorporated into triglyceride-rich lipoproteins (chylomicrons), and transported in the circulation to various tissues. Intestinal lipid absorption and mobilization and chylomicron synthesis and secretion are highly regulated processes. Elevated chylomicron production rate contributes to the dyslipidemia seen in common metabolic disorders such as insulin-resistant states and type 2 diabetes and likely increases the risk for atherosclerosis seen in these conditions. An in-depth understanding of the regulation of chylomicron production may provide leads for the development of drugs that could be of therapeutic utility in the prevention of dyslipidemia and atherosclerosis. Chylomicron secretion is subject to regulation by various factors, including diet, body weight, genetic variants, hormones, nutraceuticals, medications, and emerging interventions such as bariatric surgical procedures. In this review we discuss the regulation of chylomicron production, mechanisms that underlie chylomicron dysregulation, and potential avenues for future research.
Collapse
Affiliation(s)
- Satya Dash
- Departments of Medicine and Physiology and the Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, M5G 2C4 Canada;
| | | | | | | |
Collapse
|
17
|
Abstract
Microsomal triglyceride transfer protein (MTP) is one of the promising targets for the therapy of dyslipidemia and MTP inhibition can lead to robust plasma low-density lipoprotein cholesterol (LDL-C) reduction. Lomitapide, a small-molecule MTP inhibitor, was recently approved by the US FDA as an additional treatment for homozygous familial hypercholesterolemia (hoFH). However, liver-related side effects, including hepatic fat accumulation and transaminase elevations, are the main safety concerns associated with MTP inhibitors. Here, we review recent knowledge on the mechanisms underlying liver toxicity of MTP inhibitors. The contribution of altered levels of intracellular triglycerides, cholesteryl esters, and free cholesterols toward cellular dysfunction is specifically addressed. On this basis, therapies targeted to attenuate cellular lipid accumulation, to reduce risk factors for non-alcoholic fatty liver disease (NAFLD) (i.e., insulin resistance and oxidative stress) and to specifically inhibit intestinal MTP may be useful for ameliorating liver damage induced by MTP inhibitors. In particular, weight loss through lifestyle interventions is expected to be the most effective and safest way to minimize the undesirable side effects. Specific dietary supplementation might also have protective effects against hepatosteatosis. Despite that, to date, few clinical data support these therapeutic options in MTP inhibition-related liver damage, such proposed approaches may be further explored in the future for their use in preventing unwanted effects of MTP inhibitors.
Collapse
|
18
|
Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project. Drug Discov Today 2015; 20:505-13. [PMID: 25582842 DOI: 10.1016/j.drudis.2014.12.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/02/2014] [Accepted: 12/22/2014] [Indexed: 12/14/2022]
Abstract
The pharmaceutical industry is faced with steadily declining R&D efficiency which results in fewer drugs reaching the market despite increased investment. A major cause for this low efficiency is the failure of drug candidates in late-stage development owing to safety issues or previously undiscovered side-effects. We analyzed to what extent gene expression data can help to de-risk drug development in early phases by detecting the biological effects of compounds across disease areas, targets and scaffolds. For eight drug discovery projects within a global pharmaceutical company, gene expression data were informative and able to support go/no-go decisions. Our studies show that gene expression profiling can detect adverse effects of compounds, and is a valuable tool in early-stage drug discovery decision making.
Collapse
|
19
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
20
|
Xie Y, Fung HYJ, Newberry EP, Kennedy S, Luo J, Crooke RM, Graham MJ, Davidson NO. Hepatic Mttp deletion reverses gallstone susceptibility in L-Fabp knockout mice. J Lipid Res 2014; 55:540-8. [PMID: 24474819 DOI: 10.1194/jlr.m046342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies demonstrated that L-Fabp KO mice are more susceptible to lithogenic diet (LD)-induced gallstones because of altered hepatic cholesterol metabolism and increased canalicular cholesterol secretion. Other studies demonstrated that liver-specific deletion of microsomal triglyceride transfer protein (Mttp-LKO) reduced LD-induced gallstone formation by increasing biliary phospholipid secretion. Here we show that mice with combined deletion (i.e., DKO mice) are protected from LD-induced gallstone formation. Following 2 weeks of LD feeding, 73% of WT and 100% of L-Fabp KO mice developed gallstones versus 18% of Mttp-LKO and 23% of DKO mice. This phenotype was recapitulated in both WT and L-Fabp KO mice treated with an Mttp antisense oligonucleotide (M-ASO). Biliary cholesterol secretion was increased in LD-fed L-Fabp KO mice and decreased in DKO mice. However, phospholipid secretion was unchanged in LD-fed Mttp-LKO and DKO mice as well as in M-ASO-treated mice. Expression of the canalicular export pump ABCG5/G8 was reduced in LD-fed DKO mice and in M-ASO-treated L-Fabp KO mice. We conclude that liver-specific Mttp deletion not only eliminates apical lipoprotein secretion from hepatocytes but also attenuates canalicular cholesterol secretion, which in turn decreases LD-induced gallstone susceptibility.
Collapse
Affiliation(s)
- Yan Xie
- Department of Medicine, Washington University School of Medicine, St. Louis, MO; and
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
22
|
Lushnikova EL, Nepomnyashchikh LM, Pichigin VI, Klinnikova MG, Nepomnyashchikh RD, Sergeevichev DS. Expression of mRNA of Apolipoprotein E, Apolipoprotein A-IV, and Matricellular Proteins in the Myocardium and Intensity of Fibroplastic Processes during Experimental Hypercholesterolemia. Bull Exp Biol Med 2013; 156:271-5. [DOI: 10.1007/s10517-013-2328-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Fryer LGD, Jones B, Duncan EJ, Hutchison CE, Ozkan T, Williams PA, Alder O, Nieuwdorp M, Townley AK, Mensenkamp AR, Stephens DJ, Dallinga-Thie GM, Shoulders CC. The endoplasmic reticulum coat protein II transport machinery coordinates cellular lipid secretion and cholesterol biosynthesis. J Biol Chem 2013; 289:4244-61. [PMID: 24338480 PMCID: PMC3924288 DOI: 10.1074/jbc.m113.479980] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions.
Collapse
Affiliation(s)
- Lee G D Fryer
- From the Endocrinology Centre, William Harvey Research Institute, Queen Mary University of London and Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yu L, Morishima C, Ioannou GN. Dietary cholesterol intake is associated with progression of liver disease in patients with chronic hepatitis C: analysis of the Hepatitis C Antiviral Long-term Treatment Against Cirrhosis trial. Clin Gastroenterol Hepatol 2013; 11:1661-6.e1-3. [PMID: 23707779 DOI: 10.1016/j.cgh.2013.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/18/2013] [Accepted: 05/01/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Little is known about whether dietary cholesterol affects disease progression in patients with chronic hepatitis C virus infection. METHODS We analyzed data from the Hepatitis C Antiviral Long-term Treatment Against Cirrhosis trial, which included patients with advanced fibrosis and compensated cirrhosis. Cholesterol intake was determined for 608 participants on the basis of responses to food frequency questionnaires, administered at baseline and 1.8 years later. We investigated whether cholesterol intake was associated with clinical progression (death, variceal bleeding, encephalopathy, ascites, peritonitis, Child-Turcotte-Pugh score ≥ 7, or hepatocellular carcinoma) or histologic progression of disease (an increase in Ishak fibrosis score of 2 or more points in a second liver biopsy compared with the first). RESULTS After adjustments for age, sex, race, presence of cirrhosis, body mass index, treatment with peginterferon, lifetime alcohol consumption, smoking, health status, and coffee and macronutrient intake, each higher quartile of cholesterol intake was associated with a 46% increase in the risk of clinical or histologic progression (adjusted hazard ratio [AHR], 1.46; 95% confidence interval [CI], 1.13-1.87; P for the trend = .004). Compared with patients in the lowest quartile of cholesterol intake (32-152 mg/day), those in the 3rd (224-310 mg/day; AHR, 2.83; 95% CI, 1.45-5.51) and 4th quartiles (>310 mg/day; AHR, 2.74; 95% CI, 1.22-6.16) had significantly increased risk of disease progression. CONCLUSIONS On the basis of analysis of data from the Hepatitis C Antiviral Long-term Treatment Against Cirrhosis trial, higher dietary cholesterol intake is associated with higher risk of disease progression in HCV-infected patients with advanced fibrosis or compensated cirrhosis.
Collapse
Affiliation(s)
- Lei Yu
- Division of Gastroenterology, University of Washington, Seattle, Washington.
| | | | | |
Collapse
|
25
|
Vendel Nielsen L, Krogager TP, Young C, Ferreri C, Chatgilialoglu C, Nørregaard Jensen O, Enghild JJ. Effects of elaidic acid on lipid metabolism in HepG2 cells, investigated by an integrated approach of lipidomics, transcriptomics and proteomics. PLoS One 2013; 8:e74283. [PMID: 24058537 PMCID: PMC3772929 DOI: 10.1371/journal.pone.0074283] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/16/2013] [Indexed: 12/11/2022] Open
Abstract
Trans fatty acid consumption in the human diet can cause adverse health effects, such as cardiovascular disease, which is associated with higher total cholesterol, a higher low density lipoprotein-cholesterol level and a decreased high density lipoprotein-cholesterol level. The aim of the study was to elucidate the hepatic response to the most abundant trans fatty acid in the human diet, elaidic acid, to help explain clinical findings on the relationship between trans fatty acids and cardiovascular disease. The human HepG2 cell line was used as a model to investigate the hepatic response to elaidic acid in a combined proteomic, transcriptomic and lipidomic approach. We found many of the proteins responsible for cholesterol synthesis up-regulated together with several proteins involved in the esterification and hepatic import/export of cholesterol. Furthermore, a profound remodeling of the cellular membrane occurred at the phospholipid level. Our findings contribute to the explanation on how trans fatty acids from the diet can cause modifications in plasma cholesterol levels by inducing abundance changes in several hepatic proteins and the hepatic membrane composition.
Collapse
Affiliation(s)
- Lone Vendel Nielsen
- Interdisciplinary NanoScience Center, iNANO, Aarhus University, Aarhus, Denmark
- Center for insoluble protein structure, InSPIN, at the Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Toke P. Krogager
- Interdisciplinary NanoScience Center, iNANO, Aarhus University, Aarhus, Denmark
- Center for insoluble protein structure, InSPIN, at the Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Clifford Young
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Carla Ferreri
- I.S.O.F. — Consiglio Nazionale delle Ricerche, Bologna, Italy
| | | | - Ole Nørregaard Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jan J. Enghild
- Interdisciplinary NanoScience Center, iNANO, Aarhus University, Aarhus, Denmark
- Center for insoluble protein structure, InSPIN, at the Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Iqbal J, Parks JS, Hussain MM. Lipid absorption defects in intestine-specific microsomal triglyceride transfer protein and ATP-binding cassette transporter A1-deficient mice. J Biol Chem 2013; 288:30432-30444. [PMID: 24019513 DOI: 10.1074/jbc.m113.501247] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92-95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations.
Collapse
Affiliation(s)
- Jahangir Iqbal
- From the Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, New York 11203 and
| | - John S Parks
- the Department of Pathology, Section on Lipid Sciences and Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 25157
| | - M Mahmood Hussain
- From the Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, New York 11203 and.
| |
Collapse
|
27
|
Josekutty J, Iqbal J, Iwawaki T, Kohno K, Hussain MM. Microsomal triglyceride transfer protein inhibition induces endoplasmic reticulum stress and increases gene transcription via Ire1α/cJun to enhance plasma ALT/AST. J Biol Chem 2013; 288:14372-14383. [PMID: 23532846 DOI: 10.1074/jbc.m113.459602] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microsomal triglyceride transfer protein (MTP) is a target to reduce plasma lipids because of its indispensable role in triglyceride-rich lipoprotein biosynthesis. MTP inhibition in Western diet fed mice decreased plasma triglycerides/cholesterol, whereas increasing plasma alanine/aspartate aminotransferases (ALT/AST) and hepatic triglycerides/free cholesterol. Free cholesterol accumulated in the endoplasmic reticulum (ER) and mitochondria resulting in ER and oxidative stresses. Mechanistic studies revealed that MTP inhibition increased transcription of the GPT/GOT1 genes through up-regulation of the IRE1α/cJun pathway leading to increased synthesis and release of ALT1/AST1. Thus, transcriptional up-regulation of GPT/GOT1 genes is a major mechanism, in response to ER stress, elevating plasma transaminases. Increases in plasma and tissue transaminases might represent a normal response to stress for survival.
Collapse
Affiliation(s)
- Joby Josekutty
- School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center, Brooklyn, New York 11203; Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Jahangir Iqbal
- Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Takao Iwawaki
- Advanced Scientific Research Leaders Development Unit, Gunma University, Gunma, Japan
| | - Kenji Kohno
- Nara Institute of Science and Technology, Nara, Japan
| | - M Mahmood Hussain
- Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, New York 11203.
| |
Collapse
|
28
|
Xie Y, Kennedy S, Sidhu R, Luo J, Ory DS, Davidson NO. Liver X receptor agonist modulation of cholesterol efflux in mice with intestine-specific deletion of microsomal triglyceride transfer protein. Arterioscler Thromb Vasc Biol 2012; 32:1624-31. [PMID: 22580900 DOI: 10.1161/atvbaha.112.246066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Previous work demonstrated that intestinal cholesterol absorption and regulated expression of intestinal Niemann-Pick C1-like 1 and ATP-binding cassette protein A1 are required for liver X receptor (LXR) agonist-mediated increases in high-density lipoprotein biogenesis. We re-examined those conclusions in mice with intestine-specific deletion of the microsomal triglyceride transfer protein (MTTP-IKO), where chylomicron formation is eliminated. METHODS AND RESULTS MTTP-IKO mice demonstrated sustained ≈90% reduction in cholesterol absorption and >80% reduction in Niemann-Pick C1-like 1 expression, yet LXR agonist treatment increased serum high-density lipoprotein and upregulated intestinal ATP-binding cassette protein A1 expression. Hepatic lipogenesis and triglyceride content increased with LXR agonist treatment in both genotypes. Biliary cholesterol secretion was increased in MTTP-IKO mice without further increase upon LXR agonist administration. LXR agonist treatment caused a paradoxical increase in cholesterol absorption in MTTP-IKO mice and decreased fecal neutral sterol excretion, but to levels that still exceeded fecal neutral sterol excretion in LXR agonist-treated control mice. Finally, MTTP-IKO mice demonstrated indistinguishable patterns of increased cholesterol turnover and efflux after intravenous radiolabeled cholesterol administration, with or without LXR agonist treatment. CONCLUSIONS Both intestinal and hepatic cholesterol efflux pathways are basally upregulated in MTTP-IKO mice. Moreover, LXR-dependent pathways modulate intestinal cholesterol absorption, transport, efflux, and high-density lipoprotein production independent of chylomicron assembly and secretion.
Collapse
Affiliation(s)
- Yan Xie
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
29
|
Hussain MM, Rava P, Walsh M, Rana M, Iqbal J. Multiple functions of microsomal triglyceride transfer protein. Nutr Metab (Lond) 2012; 9:14. [PMID: 22353470 PMCID: PMC3337244 DOI: 10.1186/1743-7075-9-14] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/21/2012] [Indexed: 02/08/2023] Open
Abstract
Microsomal triglyceride transfer protein (MTP) was first identified as a major cellular protein capable of transferring neutral lipids between membrane vesicles. Its role as an essential chaperone for the biosynthesis of apolipoprotein B (apoB)-containing triglyceride-rich lipoproteins was established after the realization that abetalipoproteinemia patients carry mutations in the MTTP gene resulting in the loss of its lipid transfer activity. Now it is known that it also plays a role in the biosynthesis of CD1, glycolipid presenting molecules, as well as in the regulation of cholesterol ester biosynthesis. In this review, we will provide a historical perspective about the identification, purification and characterization of MTP, describe methods used to measure its lipid transfer activity, and discuss tissue expression and function. Finally, we will review the role MTP plays in the assembly of apoB-lipoprotein, the regulation of cholesterol ester synthesis, biosynthesis of CD1 proteins and propagation of hepatitis C virus. We will also provide a brief overview about the clinical potentials of MTP inhibition.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Paul Rava
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Meghan Walsh
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Muhammad Rana
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
30
|
Pan X, Hussain MM. Gut triglyceride production. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:727-35. [PMID: 21989069 DOI: 10.1016/j.bbalip.2011.09.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Our knowledge of how the body absorbs triacylglycerols (TAG) from the diet and how this process is regulated has increased at a rapid rate in recent years. Dietary TAG are hydrolyzed in the intestinal lumen to free fatty acids (FFA) and monoacylglycerols (MAG), which are taken up by enterocytes from their apical side, transported to the endoplasmic reticulum (ER) and resynthesized into TAG. TAG are assembled into chylomicrons (CM) in the ER, transported to the Golgi via pre-chylomicron transport vesicles and secreted towards the basolateral side. In this review, we mainly focus on the roles of key proteins involved in uptake and intracellular transport of fatty acids, their conversion to TAG and packaging into CM. We will also discuss intracellular transport and secretion of CM. Moreover, we will bring to light few factors that regulate gut triglyceride production. Furthermore, we briefly summarize pathways involved in cholesterol absorption. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | | |
Collapse
|
31
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Tomkin GH. Dyslipidaemia--hepatic and intestinal cross-talk. ATHEROSCLEROSIS SUPP 2011; 11:5-9. [PMID: 20434963 DOI: 10.1016/j.atherosclerosissup.2010.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 01/22/2023]
Abstract
Cholesterol metabolism is tightly regulated with the majority of de novo cholesterol synthesis occurring in the liver and intestine. 3 Hydroxy-3-methylglutaryl coenzyme A reductase, a major enzyme involved in cholesterol synthesis, is raised in both liver and intestine in diabetic animals. Niemann PickC1-like1 protein regulates cholesterol absorption in the intestine and facilitates cholesterol transport through the liver. There is evidence to suggest that the effect of inhibition of Niemann PickC1-like1 lowers cholesterol through its effect not only in the intestine but also in the liver. ATP binding cassette proteins G5/G8 regulate cholesterol re-excretion in the intestine and in the liver, cholesterol excretion into the bile. Diabetes is associated with reduced ATP binding cassette protein G5/G8 expression in both the liver and intestine in animal models. Microsomal triglyceride transfer protein is central to the formation of the chylomicron in the intestine and VLDL in the liver. Microsomal triglyceride transfer protein mRNA is increased in diabetes in both the intestine and liver. Cross-talk between the intestine and liver is poorly documented in humans due to the difficulty in obtaining liver biopsies but animal studies are fairly consistent in showing relationships that explain in part mechanisms involved in cholesterol homeostasis.
Collapse
Affiliation(s)
- Gerald H Tomkin
- Trinity College Dublin and Diabetes Institute of Ireland, Beacon Hospital, Sandyford, Clontra, Quinns Road, Shankill Co, Dublin, Ireland. ,
| |
Collapse
|
33
|
Wolff E, Vergnes MF, Defoort C, Planells R, Portugal H, Nicolay A, Lairon D. Cholesterol absorption status and fasting plasma cholesterol are modulated by the microsomal triacylglycerol transfer protein -493 G/T polymorphism and the usual diet in women. GENES AND NUTRITION 2010; 6:71-9. [PMID: 21437032 DOI: 10.1007/s12263-010-0174-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/15/2010] [Indexed: 12/29/2022]
Abstract
An important inter-individual variability in cholesterol absorption has been reported. It could result from polymorphisms in genes coding for proteins involved in the absorption process and in interaction with dietary intakes. To assess whether the extent of cholesterol absorption or synthesis is modified in adult women according to the -493 G/T polymorphism in the microsomal triglyceride transfer protein gene (MTP) and/or the habitual diet. Cholestanol and sitosterol, as well as desmosterol and lathosterol, surrogate markers of cholesterol absorption or synthesis, respectively, were analyzed in the fasting plasma of 69 middle-aged women under a Western-type diet (WD) and after 3 months on a low-saturated fat, low-cholesterol/Mediterranean-type diet (LFLCD). Genotypes for MTP -493G/T polymorphism were determined. Under an usual WD, subjects homozygous for the MTP -493 T allele exhibited higher (P < 0.05) fasting serum concentrations of cholestanol (199.0 ± 30.0 vs. 133 ± 7.4 × 10(2 )mmol/mol cholesterol) and lathosterol (188.7 ± 21.8 vs. 147.6 ± 9.1 × 10(2) mmol/mol cholesterol), as well as total cholesterol (7.32 ± 0.22 vs. 6.63 ± 0.12 mmol/l) compared to G carrier subjects. After 3 months on a LFLCD, level of absorption markers decreased in TT subjects with no change in synthesis ones, leading to values comparable to those measured in G carriers. The lowering of plasma total and LDL cholesterol due to dietary change was 2.4- and 2.3-fold greater in TT women than in G carriers. The polymorphism -493G/T in MTP modulates the level of cholesterol absorption but not synthesis in women under a WD, an effect abolished under a prudent LFLCD.
Collapse
|
34
|
Differential expression of intestinal genes in opossums with high and low responses to dietary cholesterol. J Nutr Metab 2009; 2010. [PMID: 20721351 PMCID: PMC2915800 DOI: 10.1155/2010/415075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/04/2009] [Indexed: 11/18/2022] Open
Abstract
High and low
responding opossums (Monodelphis
domestica) differ in their plasma very
low density lipoprotein and low density
lipoprotein (VLDL+LDL) cholesterol
concentrations when they consume a high
cholesterol diet, which is due in part to
absorption of a higher percentage of dietary
cholesterol in high responders. We compared the
expression of a set of genes that influence
cholesterol absorption in high and low
responders fed a basal or a high cholesterol and
low fat (HCLF) diet. Up-regulation of the
ABCG5, ABCG8,
and IBABP genes by the HCLF
diet in high and low responders may reduce
cholesterol absorption to maintain cholesterol
homeostasis. Differences in expression of the
phospholipase genes (PLA2 and
PLB) and phospholipase activity
were associated with differences in cholesterol
absorption when opossums were fed
cholesterol-enriched diets. Higher
PLA2 and PLB
mRNA levels and higher phospholipase activity
may increase cholesterol absorption in high
responders by enhancing the release of
cholesterol from bile salt micelles for uptake
by intestinal cells.
Collapse
|
35
|
Cano A, Ciaffoni F, Safwat GM, Aspichueta P, Ochoa B, Bravo E, Botham KM. Hepatic VLDL assembly is disturbed in a rat model of nonalcoholic fatty liver disease: is there a role for dietary coenzyme Q? J Appl Physiol (1985) 2009; 107:707-17. [PMID: 19608932 DOI: 10.1152/japplphysiol.00297.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The overproduction of very-low-density lipoprotein (VLDL) is a characteristic feature of nonalcoholic fatty liver disease (NAFLD). The aim of this study was to use a high-fat diet-induced model of NAFLD in rats to investigate 1) the influence of the disease on hepatic VLDL processing in the endoplasmic reticulum and 2) the potential modulatory effects of dietary coenzyme Q (CoQ). Rats were fed a standard low-fat diet (control) or a diet containing 35% fat (57% metabolizable energy). After 10 wk, high-fat diet-fed animals were divided into three groups: the first group was given CoQ9 (30 mg*kg body wt(-1)*day(-1) in 0.3 ml olive oil), the second group was given olive oil (0.3 ml/day) only, and the third group received no supplements. Feeding (3 high-fat diets and the control diet) was then continued for 8 wk. In all high-fat diet-fed groups, the content of triacylglycerol (TG) and cholesterol in plasma VLDL, the liver, and liver microsomes was increased, hepatic levels of apolipoprotein B48 were raised, and the activities of microsomal TG transfer protein and acyl CoA:cholesterol acyltransferase were reduced. These findings provide new evidence indicating that VLDL assembly and the inherent TG transfer to the endoplasmic reticulum are altered in NAFLD and suggest a possible explanation for both the overproduction of VLDL associated with the condition and the disease etiology itself. Dietary CoQ caused significant increases in apolipoprotein B mRNA and microsomal TG levels and altered the phospholipid content of microsomal membranes. These changes, however, may not be beneficial as they may lead to the secretion of larger, more atherogenic VLDL.
Collapse
Affiliation(s)
- Ainara Cano
- Department of Veterinary Basic Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease.
Collapse
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry, Dartmouth Medical School, 1 Rope Ferry Rd., Hanover, NH 03755-1404, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
Our knowledge of the uptake and transport of dietary fat and fat-soluble vitamins has advanced considerably. Researchers have identified several new mechanisms by which lipids are taken up by enterocytes and packaged as chylomicrons for export into the lymphatic system or clarified the actions of mechanisms previously known to participate in these processes. Fatty acids are taken up by enterocytes involving protein-mediated as well as protein-independent processes. Net cholesterol uptake depends on the competing activities of NPC1L1, ABCG5, and ABCG8 present in the apical membrane. We have considerably more detailed information about the uptake of products of lipid hydrolysis, the active transport systems by which they reach the endoplasmic reticulum, the mechanisms by which they are resynthesized into neutral lipids and utilized within the endoplasmic reticulum to form lipoproteins, and the mechanisms by which lipoproteins are secreted from the basolateral side of the enterocyte. apoB and MTP are known to be central to the efficient assembly and secretion of lipoproteins. In recent studies, investigators found that cholesterol, phospholipids, and vitamin E can also be secreted from enterocytes as components of high-density apoB-free/apoAI-containing lipoproteins. Several of these advances will probably be investigated further for their potential as targets for the development of drugs that can suppress cholesterol absorption, thereby reducing the risk of hypercholesterolemia and cardiovascular disease.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Dept. of Anatomy, 450 Clarkson Ave., State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
38
|
Rutkowski DT, Wu J, Back SH, Callaghan MU, Ferris SP, Iqbal J, Clark R, Miao H, Hassler JR, Fornek J, Katze MG, Hussain MM, Song B, Swathirajan J, Wang J, Yau GDY, Kaufman RJ. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell 2009. [PMID: 19081072 DOI: 10.1016/j.devcel.2008.10.015]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The unfolded protein response (UPR) is linked to metabolic dysfunction, yet it is not known how endoplasmic reticulum (ER) disruption might influence metabolic pathways. Using a multilayered genetic approach, we find that mice with genetic ablations of either ER stress-sensing pathways (ATF6alpha, eIF2alpha, IRE1alpha) or of ER quality control (p58(IPK)) share a common dysregulated response to ER stress that includes the development of hepatic microvesicular steatosis. Rescue of ER protein processing capacity by the combined action of UPR pathways during stress prevents the suppression of a subset of metabolic transcription factors that regulate lipid homeostasis. This suppression occurs in part by unresolved ER stress perpetuating expression of the transcriptional repressor CHOP. As a consequence, metabolic gene expression networks are directly responsive to ER homeostasis. These results reveal an unanticipated direct link between ER homeostasis and the transcriptional regulation of metabolism, and suggest mechanisms by which ER stress might underlie fatty liver disease.
Collapse
Affiliation(s)
- D Thomas Rutkowski
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rutkowski DT, Wu J, Back SH, Callaghan MU, Ferris SP, Iqbal J, Clark R, Miao H, Fornek J, Katze MG, Hussain MM, Song B, Swathirajan J, Wang J, Yau GDY, Kaufman RJ. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell 2008; 15:829-40. [PMID: 19081072 PMCID: PMC2923556 DOI: 10.1016/j.devcel.2008.10.015] [Citation(s) in RCA: 454] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/05/2008] [Accepted: 10/31/2008] [Indexed: 12/14/2022]
Abstract
The unfolded protein response (UPR) is linked to metabolic dysfunction, yet it is not known how endoplasmic reticulum (ER) disruption might influence metabolic pathways. Using a multilayered genetic approach, we find that mice with genetic ablations of either ER stress-sensing pathways (ATF6alpha, eIF2alpha, IRE1alpha) or of ER quality control (p58(IPK)) share a common dysregulated response to ER stress that includes the development of hepatic microvesicular steatosis. Rescue of ER protein processing capacity by the combined action of UPR pathways during stress prevents the suppression of a subset of metabolic transcription factors that regulate lipid homeostasis. This suppression occurs in part by unresolved ER stress perpetuating expression of the transcriptional repressor CHOP. As a consequence, metabolic gene expression networks are directly responsive to ER homeostasis. These results reveal an unanticipated direct link between ER homeostasis and the transcriptional regulation of metabolism, and suggest mechanisms by which ER stress might underlie fatty liver disease.
Collapse
Affiliation(s)
- D. Thomas Rutkowski
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jun Wu
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Sung-Hoon Back
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Michael U. Callaghan
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109
- Department of Pediatrics, Wayne State University, Detroit, MI, 48201
| | - Sean P. Ferris
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jahangir Iqbal
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Robert Clark
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Hongzhi Miao
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jamie Fornek
- Department of Microbiology, University of Washington, Seattle, WA, 98195
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, WA, 98195
| | - M. Mahmood Hussain
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Benbo Song
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jayanth Swathirajan
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Junying Wang
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Grace D.-Y. Yau
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Randal J. Kaufman
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Microsomal triglyceride transfer protein (MTP), a chaperone for the biosynthesis of apolipoprotein B lipoproteins and CD1d, is a therapeutic candidate to decrease plasma lipids and to diminish inflammation. MTP inhibition increases plasma transaminases and tissue lipids, and therefore new approaches are needed to avoid them. RECENT FINDINGS Inositol requiring enzyme1beta has been identified as a novel intestine-specific regulator of MTP. A new function of MTP in cholesterol ester biosynthesis has been reported. The importance of the phospholipid transfer activity of MTP in the lipidation of apolipoprotein B and CD1d has been indicated. Diurnal variations in MTP expression and its induction by food availability have been observed. On the basis of these and other findings, we propose that upregulation of inositol requiring enzyme 1beta, a combined reduction of cellular free cholesterol or triglyceride or both and MTP activity, specific inhibition of phospholipid or triglyceride transfer activities, and targeting of apolipoprotein B-MTP protein-protein interactions might be pursued to avoid some of the side effects associated with the inhibition of triglyceride transfer activity of MTP. We further speculate that short-lived MTP antagonists may be useful in controlling plasma and tissue lipids and in avoiding steatosis. SUMMARY We have highlighted the importance of addressing the causal relationship between MTP inhibition and aberrant elevations in plasma liver enzymes. The proposed approaches may show that MTP targeting is a viable approach to lower plasma lipids.
Collapse
Affiliation(s)
- Mohammed Mahmood Hussain
- Departments of Anatomy and Cell Biology, and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA.
| | | |
Collapse
|