1
|
Rostamighadi M, Kamelshahroudi A, Pitsitikas V, Jacobson KA, Salavati R. Pilot-Scale Screening of Clinically Approved Drugs to Identify Uridine Insertion/Deletion RNA Editing Inhibitors in Trypanosoma brucei. ACS Infect Dis 2024; 10:3289-3303. [PMID: 39118542 PMCID: PMC11456206 DOI: 10.1021/acsinfecdis.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
RNA editing pathway is a validated target in kinetoplastid parasites (Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp.) that cause severe diseases in humans and livestock. An essential large protein complex, the editosome, mediates uridine insertion and deletion in RNA editing through a stepwise process. This study details the discovery of editosome inhibitors by screening a library of widely used human drugs using our previously developed in vitro biochemical Ribozyme Insertion Deletion Editing (RIDE) assay. Subsequent studies on the mode of action of the identified hits and hit expansion efforts unveiled compounds that interfere with RNA-editosome interactions and novel ligase inhibitors with IC50 values in the low micromolar range. Docking studies on the ligase demonstrated similar binding characteristics for ATP and our novel epigallocatechin gallate inhibitor. The inhibitors demonstrated potent trypanocidal activity and are promising candidates for drug repurposing due to their lack of cytotoxic effects. Further studies are necessary to validate these targets using more definitive gene-editing techniques and to enhance the safety profile.
Collapse
Affiliation(s)
- Mojtaba Rostamighadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3 V9, Canada
| | - Arezou Kamelshahroudi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3 V9, Canada
| | - Vanessa Pitsitikas
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3 V9, Canada
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, Maryland 20892, United States
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3 V9, Canada
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Quebec, Canada
| |
Collapse
|
2
|
Demby A, Zaccolo M. Investigating G-protein coupled receptor signalling with light-emitting biosensors. Front Physiol 2024; 14:1310197. [PMID: 38260094 PMCID: PMC10801095 DOI: 10.3389/fphys.2023.1310197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the most frequent target of currently approved drugs and play a central role in both physiological and pathophysiological processes. Beyond the canonical understanding of GPCR signal transduction, the importance of receptor conformation, beta-arrestin (β-arr) biased signalling, and signalling from intracellular locations other than the plasma membrane is becoming more apparent, along with the tight spatiotemporal compartmentalisation of downstream signals. Fluorescent and bioluminescent biosensors have played a pivotal role in elucidating GPCR signalling events in live cells. To understand the mechanisms of action of the GPCR-targeted drugs currently available, and to develop new and better GPCR-targeted therapeutics, understanding these novel aspects of GPCR signalling is critical. In this review, we present some of the tools available to interrogate each of these features of GPCR signalling, we illustrate some of the key findings which have been made possible by these tools and we discuss their limitations and possible developments.
Collapse
Affiliation(s)
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Paul DS, Blatt TN, Schug WJ, Clark EG, Kawano T, Mackman N, Murcia S, Poe KO, Mwiza JMN, Harden TK, Bergmeier W, Nicholas RA. Loss of P2Y 1 receptor desensitization does not impact hemostasis or thrombosis despite increased platelet reactivity in vitro. J Thromb Haemost 2023; 21:1891-1902. [PMID: 36958516 PMCID: PMC10809801 DOI: 10.1016/j.jtha.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND The hemostatic plug formation at sites of vascular injury is strongly dependent on rapid platelet activation and integrin-mediated adhesion and aggregation. However, to prevent thrombotic complications, platelet aggregate formation must be a self-limiting process. The second-wave mediator adenosine diphosphate (ADP) activates platelets via Gq-coupled P2Y1 and Gi-coupled P2Y12 receptors. After ADP exposure, the P2Y1 receptor undergoes rapid phosphorylation-induced desensitization, a negative feedback mechanism believed to be critical for limiting thrombus growth. OBJECTIVE The objective of this study was to examine the role of rapid P2Y1 receptor desensitization on platelet function and thrombus formation in vivo. METHODS We analyzed a novel knock-in mouse strain expressing a P2Y1 receptor variant that cannot be phosphorylated beyond residue 340 (P2Y1340-0P), thereby preventing the desensitization of the receptor. RESULTS P2Y1340-0P mice followed a Mendelian inheritance pattern, and peripheral platelet counts were comparable between P2Y1340-0P/340-0P and control mice. In vitro, P2Y1340-0P/340-0P platelets were hyperreactive to ADP, showed a robust activation response to the P2Y1 receptor-selective agonist, MRS2365, and did not desensitize in response to repeated ADP challenge. We observed increased calcium mobilization, protein kinase C substrate phosphorylation, alpha granule release, activation of the small GTPase Rap1, and integrin inside-out activation/aggregation. This hyperreactivity, however, did not lead to increased platelet adhesion or excessive plug formation under physiological shear conditions. CONCLUSION Our studies demonstrate that receptor phosphorylation at the C-terminus is critical for P2Y1 receptor desensitization in platelets and that impaired desensitization leads to increased P2Y1 receptor signaling in vitro. Surprisingly, desensitization of the P2Y1 receptor is not required for limiting platelet adhesion/aggregation at sites of vascular injury, likely because ADP is degraded quickly or washed away in the bloodstream.
Collapse
Affiliation(s)
- David S Paul
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/David_S_Paul
| | - Tasha N Blatt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wyatt J Schug
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily G Clark
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tomohiro Kawano
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sebastian Murcia
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn O Poe
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jean Marie N Mwiza
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T Kendall Harden
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Robert A Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Girard M, Bellefeuille SD, Eiselt É, Arguin G, Longpré JM, Sarret P, Gendron FP. Ligand-dependent intracellular trafficking of the G protein-coupled P2Y 6 receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119476. [PMID: 37059189 DOI: 10.1016/j.bbamcr.2023.119476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Endosomal trafficking is intricately linked to G protein-coupled receptors (GPCR) fate and signaling. Extracellular uridine diphosphate (UDP) acts as a signaling molecule by selectively activating the GPCR P2Y6. Despite the recent interest for this receptor in pathologies, such as gastrointestinal and neurological diseases, there is sparse information on the endosomal trafficking of P2Y6 receptors in response to its endogenous agonist UDP and synthetic selective agonist 5-iodo-UDP (MRS2693). Confocal microscopy and cell surface ELISA revealed delayed internalization kinetics in response to MRS2693 vs. UDP stimulation in AD293 and HCT116 cells expressing human P2Y6. Interestingly, UDP induced clathrin-dependent P2Y6 internalization, whereas receptor stimulation by MRS2693 endocytosis appeared to be associated with a caveolin-dependent mechanism. Internalized P2Y6 was associated with Rab4, 5, and 7 positive vesicles independent of the agonist. We have measured a higher frequency of receptor expression co-occurrence with Rab11-vesicles, the trans-Golgi network, and lysosomes in response to MRS2693. Interestingly, a higher agonist concentration reversed the delayed P2Y6 internalization and recycling kinetics in the presence of MRS2693 stimulation without changing its caveolin-dependent internalization. This work showed a ligand-dependent effect affecting the P2Y6 receptor internalization and endosomal trafficking. These findings could guide the development of bias ligands that could influence P2Y6 signaling.
Collapse
Affiliation(s)
- Mélissa Girard
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada
| | - Steve Dagenais Bellefeuille
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Émilie Eiselt
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada
| | - Guillaume Arguin
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada
| | - Fernand-Pierre Gendron
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada.
| |
Collapse
|
5
|
Kovanich D, Low TY, Zaccolo M. Using the Proteomics Toolbox to Resolve Topology and Dynamics of Compartmentalized cAMP Signaling. Int J Mol Sci 2023; 24:4667. [PMID: 36902098 PMCID: PMC10003371 DOI: 10.3390/ijms24054667] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by an extracellular stimulus is translated into the appropriate functional outcome. cAMP compartmentalization relies on the formation of local signaling domains where the subset of cAMP signaling effectors, regulators and targets involved in a specific cellular response cluster together. These domains are dynamic in nature and underpin the exacting spatiotemporal regulation of cAMP signaling. In this review, we focus on how the proteomics toolbox can be utilized to identify the molecular components of these domains and to define the dynamic cellular cAMP signaling landscape. From a therapeutic perspective, compiling data on compartmentalized cAMP signaling in physiological and pathological conditions will help define the signaling events underlying disease and may reveal domain-specific targets for the development of precision medicine interventions.
Collapse
Affiliation(s)
- Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
6
|
Platelet P2Y 1 receptor exhibits constitutive G protein signaling and β-arrestin 2 recruitment. BMC Biol 2023; 21:14. [PMID: 36721118 PMCID: PMC9890698 DOI: 10.1186/s12915-023-01528-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Purinergic P2Y1 and P2Y12 receptors (P2Y1-R and P2Y12-R) are G protein-coupled receptors (GPCR) activated by adenosine diphosphate (ADP) to mediate platelet activation, thereby playing a pivotal role in hemostasis and thrombosis. While P2Y12-R is the major target of antiplatelet drugs, no P2Y1-R antagonist has yet been developed for clinical use. However, accumulating data suggest that P2Y1-R inhibition would ensure efficient platelet inhibition with minimal effects on bleeding. In this context, an accurate characterization of P2Y1-R antagonists constitutes an important preliminary step. RESULTS Here, we investigated the pharmacology of P2Y1-R signaling through Gq and β-arrestin pathways in HEK293T cells and in mouse and human platelets using highly sensitive resonance energy transfer-based technologies (BRET/HTRF). We demonstrated that at basal state, in the absence of agonist ligand, P2Y1-R activates Gq protein signaling in HEK293T cells and in mouse and human platelets, indicating that P2Y1-R is constitutively active in physiological conditions. We showed that P2Y1-R also promotes constitutive recruitment of β-arrestin 2 in HEK293T cells. Moreover, the P2Y1-R antagonists MRS2179, MRS2279 and MRS2500 abolished the receptor dependent-constitutive activation, thus behaving as inverse agonists. CONCLUSIONS This study sheds new light on P2Y1-R pharmacology, highlighting for the first time the existence of a constitutively active P2Y1-R population in human platelets. Given the recent interest of P2Y12-R constitutive activity in patients with diabetes, this study suggests that modification of constitutive P2Y1-R signaling might be involved in pathological conditions, including bleeding syndrome or high susceptibility to thrombotic risk. Thus, targeting platelet P2Y1-R constitutive activation might be a promising and powerful strategy for future antiplatelet therapy.
Collapse
|
7
|
Kroning KE, Wang W. Genetically encoded tools for in vivo G-protein-coupled receptor agonist detection at cellular resolution. Clin Transl Med 2022; 12:e1124. [PMID: 36446954 PMCID: PMC9708909 DOI: 10.1002/ctm2.1124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the most abundant receptor type in the human body and are responsible for regulating many physiological processes, such as sensation, cognition, muscle contraction and metabolism. Further, GPCRs are widely expressed in the brain where their agonists make up a large number of neurotransmitters and neuromodulators. Due to the importance of GPCRs in human physiology, genetically encoded sensors have been engineered to detect GPCR agonists at cellular resolution in vivo. These sensors can be placed into two main categories: those that offer real-time information on the signalling dynamics of GPCR agonists and those that integrate the GPCR agonist signal into a permanent, quantifiable mark that can be used to detect GPCR agonist localisation in a large brain area. In this review, we discuss the various designs of real-time and integration sensors, their advantages and limitations, and some in vivo applications. We also discuss the potential of using real-time and integrator sensors together to identify neuronal circuits affected by endogenous GPCR agonists and perform detailed characterisations of the spatiotemporal dynamics of GPCR agonist release in those circuits. By using these sensors together, the overall knowledge of GPCR-mediated signalling can be expanded.
Collapse
Affiliation(s)
- Kayla E. Kroning
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of ChemistryUniversity of MichiganAnn ArborMichiganUSA
| | - Wenjing Wang
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of ChemistryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
8
|
The P2Y 2 Receptor C-Terminal Tail Modulates but Is Dispensable for β-Arrestin Recruitment. Int J Mol Sci 2022; 23:ijms23073460. [PMID: 35408820 PMCID: PMC8999042 DOI: 10.3390/ijms23073460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
The P2Y2 receptor (P2Y2R) is a G protein-coupled receptor that is activated by extracellular ATP and UTP, to a similar extent. This allows it to play roles in the cell's response to the (increased) release of these nucleotides, e.g., in response to stress situations, including mechanical stress and oxygen deprivation. However, despite its involvement in important (patho)physiological processes, the intracellular signaling induced by the P2Y2R remains incompletely described. Therefore, this study implemented a NanoBiT® functional complementation assay to shed more light on the recruitment of β-arrestins (βarr1 and βarr2) upon receptor activation. More specifically, upon determination of the optimal configuration in this assay system, the effect of different (receptor) residues/regions on βarr recruitment to the receptor in response to ATP or UTP was estimated. To this end, the linker was shortened, the C-terminal tail was truncated, and phosphorylatable residues in the third intracellular loop of the receptor were mutated, in either singly or multiply adapted constructs. The results showed that none of the introduced adaptations entirely abolished the recruitment of either βarr, although EC50 values differed and time-luminescence profiles appeared to be qualitatively altered. The results hint at the C-terminal tail modulating the interaction with βarr, while not being indispensable.
Collapse
|
9
|
Shihan M, Novoyatleva T, Lehmeyer T, Sydykov A, Schermuly RT. Role of the Purinergic P2Y2 Receptor in Pulmonary Hypertension. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111009. [PMID: 34769531 PMCID: PMC8582672 DOI: 10.3390/ijerph182111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Pulmonary arterial hypertension (PAH), group 1 pulmonary hypertension (PH), is a fatal disease that is characterized by vasoconstriction, increased pressure in the pulmonary arteries, and right heart failure. PAH can be described by abnormal vascular remodeling, hyperproliferation in the vasculature, endothelial cell dysfunction, and vascular tone dysregulation. The disease pathomechanisms, however, are as yet not fully understood at the molecular level. Purinergic receptors P2Y within the G-protein-coupled receptor family play a major role in fluid shear stress transduction, proliferation, migration, and vascular tone regulation in systemic circulation, but less is known about their contribution in PAH. Hence, studies that focus on purinergic signaling are of great importance for the identification of new therapeutic targets in PAH. Interestingly, the role of P2Y2 receptors has not yet been sufficiently studied in PAH, whereas the relevance of other P2Ys as drug targets for PAH was shown using specific agonists or antagonists. In this review, we will shed light on P2Y receptors and focus more on the P2Y2 receptor as a potential novel player in PAH and as a new therapeutic target for disease management.
Collapse
|
10
|
Liu X, Riquelme MA, Tian Y, Zhao D, Acosta FM, Gu S, Jiang JX. ATP Inhibits Breast Cancer Migration and Bone Metastasis through Down-Regulation of CXCR4 and Purinergic Receptor P2Y11. Cancers (Basel) 2021; 13:cancers13174293. [PMID: 34503103 PMCID: PMC8428338 DOI: 10.3390/cancers13174293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The skeleton is the most frequent metastatic site for advanced breast cancer, and complications resulting from breast cancer metastasis are a leading cause of death in patients. Therefore, the discovery of new targets for the treatment of breast cancer bone metastasis is of great significance. ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells in the bone. The aim of our study was to unveil the underlying molecular mechanism of ATP and purinergic signaling in inhibiting the bone metastasis of breast cancer cells. We demonstrated that CXCR4 and P2Y11 are key factors in regulating this process, and understanding of this important mechanism will aid in identifying new targets and developing first-in-class therapeutics. Abstract ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells into the bone. However, the underlying molecular mechanism is not well understood. Here, we demonstrate the important roles of the CXCR4 and P2Y11 purinergic receptors in mediating the inhibitory effect of ATP on breast cancer cell migration and bone metastasis. Wound-healing and transwell migration assays showed that non-hydrolysable ATP analogue, ATPγS, inhibited migration of bone-tropic human breast cancer cells in a dose-dependent manner. BzATP, an agonist for P2X7 and an inducer for P2Y11 internalization, had a similar dose-dependent inhibition on cell migration. Both ATPγS and BzATP suppressed the expression of CXCR4, a chemokine receptor known to promote breast cancer bone metastasis, and knocking down CXCR4 expression by siRNA attenuated the inhibitory effect of ATPγS on cancer cell migration. While a P2X7 antagonist A804598 had no effect on the impact of ATPγS on cell migration, antagonizing P2Y11 by NF157 ablated the effect of ATPγS. Moreover, the reduction in P2Y11 expression by siRNA decreased cancer cell migration and abolished the impact of ATPγS on cell migration and CXCR4 expression. Similar to the effect of ATPγS on cell migration, antagonizing P2Y11 inhibited bone-tropic breast cancer cell migration in a dose-dependent manner. An in vivo study using an intratibial bone metastatic model showed that ATPγS inhibited breast cancer growth in the bone. Taken together, these results suggest that ATP inhibits bone-tropic breast cancer cells by down-regulating the P2Y11 purinergic receptor and the down-regulation of CXCR4 expression.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Manuel A. Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Yi Tian
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
- Correspondence: ; Tel.: +1-210-562-4094
| |
Collapse
|
11
|
GRK6 regulates the hemostatic response to injury through its rate-limiting effects on GPCR signaling in platelets. Blood Adv 2021; 4:76-86. [PMID: 31899801 DOI: 10.1182/bloodadvances.2019000467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate the majority of platelet activation in response to agonists. However, questions remain regarding the mechanisms that provide negative feedback toward activated GPCRs to limit platelet activation and thrombus formation. Here we provide the first evidence that GPCR kinase 6 (GRK6) serves this role in platelets, using GRK6-/- mice generated by CRISPR-Cas9 genome editing to examine the consequences of GRK6 knockout on GPCR-dependent signaling. Hemostatic thrombi formed in GRK6-/- mice are larger than in wild-type (WT) controls during the early stages of thrombus formation, with a rapid increase in platelet accumulation at the site of injury. GRK6-/- platelets have increased platelet activation, but in an agonist-selective manner. Responses to PAR4 agonist or adenosine 5'-diphosphate stimulation in GRK6-/- platelets are increased compared with WT littermates, whereas the response to thromboxane A2 (TxA2) is normal. Underlying these changes in GRK6-/- platelets is an increase in Ca2+ mobilization, Akt activation, and granule secretion. Furthermore, deletion of GRK6 in human MEG-01 cells causes an increase in Ca2+ response and PAR1 surface expression in response to thrombin. Finally, we show that human platelet activation in response to thrombin causes an increase in binding of GRK6 to PAR1, as well as an increase in the phosphorylation of PAR1. Deletion of GRK6 in MEG-01 cells causes a decrease in PAR1 phosphorylation. Taken together, these data show that GRK6 regulates the hemostatic response to injury through PAR- and P2Y12-mediated effects, helping to limit the rate of platelet activation during thrombus growth and prevent inappropriate platelet activation.
Collapse
|
12
|
Zhou Y, Meng J, Xu C, Liu J. Multiple GPCR Functional Assays Based on Resonance Energy Transfer Sensors. Front Cell Dev Biol 2021; 9:611443. [PMID: 34041234 PMCID: PMC8141573 DOI: 10.3389/fcell.2021.611443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the largest membrane protein families that participate in various physiological and pathological activities. Accumulating structural evidences have revealed how GPCR activation induces conformational changes to accommodate the downstream G protein or β-arrestin. Multiple GPCR functional assays have been developed based on Förster resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) sensors to monitor the conformational changes in GPCRs, GPCR/G proteins, or GPCR/β-arrestin, especially over the past two decades. Here, we will summarize how these sensors have been optimized to increase the sensitivity and compatibility for application in different GPCR classes using various labeling strategies, meanwhile provide multiple solutions in functional assays for high-throughput drug screening.
Collapse
Affiliation(s)
- Yiwei Zhou
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiyong Meng
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
13
|
Klaver D, Thurnher M. Control of Macrophage Inflammation by P2Y Purinergic Receptors. Cells 2021; 10:1098. [PMID: 34064383 PMCID: PMC8147772 DOI: 10.3390/cells10051098] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages comprise a phenotypically and functionally diverse group of hematopoietic cells. Versatile macrophage subsets engage to ensure maintenance of tissue integrity. To perform tissue stress surveillance, macrophages express many different stress-sensing receptors, including purinergic P2X and P2Y receptors that respond to extracellular nucleotides and their sugar derivatives. Activation of G protein-coupled P2Y receptors can be both pro- and anti-inflammatory. Current examples include the observation that P2Y14 receptor promotes STAT1-mediated inflammation in pro-inflammatory M1 macrophages as well as the demonstration that P2Y11 receptor suppresses the secretion of tumor necrosis factor (TNF)-α and concomitantly promotes the release of soluble TNF receptors from anti-inflammatory M2 macrophages. Here, we review macrophage regulation by P2Y purinergic receptors, both in physiological and disease-associated inflammation. Therapeutic targeting of anti-inflammatory P2Y receptor signaling is desirable to attenuate excessive inflammation in infectious diseases such as COVID-19. Conversely, anti-inflammatory P2Y receptor signaling must be suppressed during cancer therapy to preserve its efficacy.
Collapse
Affiliation(s)
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
14
|
Aydin Y, Coin I. Biochemical insights into structure and function of arrestins. FEBS J 2021; 288:2529-2549. [DOI: 10.1111/febs.15811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Yasmin Aydin
- Institute of Biochemistry Faculty of Life Sciences University of Leipzig Germany
| | - Irene Coin
- Institute of Biochemistry Faculty of Life Sciences University of Leipzig Germany
| |
Collapse
|
15
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
16
|
Zaparte A, Cappellari AR, Brandão CA, de Souza JB, Borges TJ, Kist LW, Bogo MR, Zerbini LF, Ribeiro Pinto LF, Glaser T, Gonçalves MCB, Naaldijk Y, Ulrich H, Morrone FB. P2Y 2 receptor activation promotes esophageal cancer cells proliferation via ERK1/2 pathway. Eur J Pharmacol 2020; 891:173687. [PMID: 33130276 DOI: 10.1016/j.ejphar.2020.173687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Esophageal cancer is a prominent worldwide illness that is divided into two main subtypes: esophageal squamous cell carcinoma and esophageal adenocarcinoma. Mortality rates are alarming, and the understanding of the mechanisms involved in esophageal cancer development, becomes essential. Purinergic signaling is related to many diseases and among these various types of tumors. Here we studied the effects of the P2Y2 receptor activation in different types of esophageal cancer. Esophageal tissue samples of healthy controls were used for P2Y2R expression quantification. Two human esophageal cancer cell lines Kyse-450 (squamous cell carcinoma) and OE-33 (adenocarcinoma) were used to perform in vitro analysis of cell proliferation, migration, adhesion, and the signaling pathways involved in P2Y2R activation. Data showed that P2Y2R was expressed in biopsies of patients with ESCC and adenocarcinoma, as well as in the two human esophageal cancer cell lines studied. The RT-qPCR analysis demonstrated that OE-33 cells have higher P2RY2 expression than Kyse-450 squamous cell line. Results showed that P2Y2R activation, induced by ATP or UTP, promoted esophageal cancer cells proliferation and colony formation. P2Y2R blockage with the selective antagonist, AR-C 118925XX, led to decreased proliferation, colony formation and adhesion. Treatments with ATP or UTP activated ERK 1/2 pathway in ESCC and ECA cells. The P2Y2R antagonism did not alter the migration of esophageal cancer cells. Interestingly, the esophageal cancer cell lines presented a distinct profile of nucleotide hydrolysis activity. The modulation of P2Y2 receptors may be a promising target for esophageal cancer treatment.
Collapse
Affiliation(s)
- Aline Zaparte
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690. Partenon, 90619-900, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Angélica R Cappellari
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Caroline A Brandão
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Júlia B de Souza
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Thiago J Borges
- Transplant Research Center, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Luíza W Kist
- Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Maurício R Bogo
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690. Partenon, 90619-900, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa, Instituto Nacional de Cancer, Rua Andre Cavalcante, 37, Centro, Rio de Janeiro, RJ, Brazil
| | - Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Maria Carolina B Gonçalves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Yahaira Naaldijk
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Fernanda B Morrone
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690. Partenon, 90619-900, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Martins E, Brodier H, Rossitto-Borlat I, Ilgaz I, Villard M, Hartley O. Arrestin Recruitment to C-C Chemokine Receptor 5: Potent C-C Chemokine Ligand 5 Analogs Reveal Differences in Dependence on Receptor Phosphorylation and Isoform-Specific Recruitment Bias. Mol Pharmacol 2020; 98:599-611. [PMID: 32943494 DOI: 10.1124/molpharm.120.000036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
C-C chemokine receptor 5 (CCR5) is a chemokine receptor belonging to the G protein-coupled receptor (GPCR) superfamily. An established anti-human immunodeficiency virus drug target, CCR5 is attracting significant additional interest in both cancer and neuroinflammation. Several N-terminally engineered analogs of C-C chemokine ligand 5 (CCL5), a natural ligand of CCR5, are highly potent CCR5 inhibitors. The inhibitory mechanisms of certain analogs relate to modulation of receptor desensitization, but the cellular and molecular mechanisms have not been fully elucidated. Here we made use of a collection of CCR5 phosphorylation mutants and arrestin variants to investigate how CCL5 analogs differ from CCL5 in their capacity to elicit both CCR5 phosphorylation and arrestin recruitment, with reference to the current "core" and "tail" interaction model for arrestin-GPCR interaction. We showed that CCL5 recruits both arrestin 2 and arrestin 3 to CCR5 with recruitment, particularly of arrestin 2, strongly dependent on the arrestin tail interaction. 5P12-RANTES does not elicit receptor phosphorylation or arrestin recruitment. In contrast, PSC-RANTES induces CCR5 hyperphosphorylation, driving enhanced arrestin recruitment with lower dependence on the arrestin tail interaction. 5P14-RANTES induces comparable levels of receptor phosphorylation to CCL5, but arrestin recruitment is absolutely dependent on the arrestin tail interaction, and in one of the cellular backgrounds used, recruitment showed isoform bias toward arrestin 3 versus arrestin 2. No evidence for ligand-specific differences in receptor phosphorylation patterns across the four implicated serine residues was observed. Our results improve understanding of the molecular pharmacology of CCR5 and help further elucidate the inhibitory mechanisms of a group of potent inhibitors. SIGNIFICANCE STATEMENT: C-C chemokine receptor 5 (CCR5) is a key drug target for human immunodeficiency virus, cancer, and inflammation. Highly potent chemokine analog inhibitors act via the modulation of receptor desensitization, a process initiated by the recruitment of arrestin proteins. This study shows that potent C-C chemokine ligand 5 analogs differ from each other and from the parent chemokine in the extent and quality of CCR5-arrestin association that they elicit, providing valuable insights into CCR5 pharmacology and cell biology that will facilitate the development of new medicines targeting this important receptor.
Collapse
Affiliation(s)
- Elsa Martins
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hellena Brodier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Irène Rossitto-Borlat
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ilke Ilgaz
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mélanie Villard
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Babwah AV. The wonderful and masterful G protein-coupled receptor (GPCR): A focus on signaling mechanisms and the neuroendocrine control of fertility. Mol Cell Endocrinol 2020; 515:110886. [PMID: 32574585 DOI: 10.1016/j.mce.2020.110886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Human GnRH deficiency, both clinically and genetically, is a heterogeneous disorder comprising of congenital GnRH deficiency with anosmia (Kallmann syndrome), or with normal olfaction [normosmic idiopathic hypogonadotropic hypogonadism (IHH)], and adult-onset hypogonadotropic hypogonadism. Our understanding of the neural mechanisms underlying GnRH secretion and GnRH signaling continues to increase at a rapid rate and strikingly, the heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) continue to emerge as essential players in these processes. GPCRs were once viewed as binary on-off switches, where in the "on" state they are bound to their Gα protein, but now we understand that view is overly simplistic and does not adequately characterize GPCRs. Instead, GPCRs have emerged as masterful signaling molecules exploiting different physical conformational states of itself to elicit an array of downstream signaling events via their G proteins and the β-arrestins. The "one receptor-multiple signaling conformations" model is likely an evolved strategy that can be used to our advantage as researchers have shown that targeting specific receptor conformations via biased ligands is proving to be a powerful tool in the effective treatment of human diseases. Can biased ligands be used to selectively modulate signaling by GPCR regulators of the neuroendocrine axis in the treatment of IHH? As discussed in this review, the grand possibility exists. However, while we are still very far from developing these treatments, this exciting likelihood can happen through a much greater mechanistic understanding of how GPCRs signal within the cell.
Collapse
Affiliation(s)
- Andy V Babwah
- Department of Pediatrics, Laboratory of Human Growth and Reproductive Development, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Child Health Institute of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
19
|
Chen X, Zhao X, Cooper M, Ma P. The Roles of GRKs in Hemostasis and Thrombosis. Int J Mol Sci 2020; 21:ijms21155345. [PMID: 32731360 PMCID: PMC7432802 DOI: 10.3390/ijms21155345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Along with cancer, cardiovascular and cerebrovascular diseases remain by far the most common causes of death. Heart attacks and strokes are diseases in which platelets play a role, through activation on ruptured plaques and subsequent thrombus formation. Most platelet agonists activate platelets via G protein-coupled receptors (GPCRs), which make these receptors ideal targets for many antiplatelet drugs. However, little is known about the mechanisms that provide feedback regulation on GPCRs to limit platelet activation. Emerging evidence from our group and others strongly suggests that GPCR kinases (GRKs) are critical negative regulators during platelet activation and thrombus formation. In this review, we will summarize recent findings on the role of GRKs in platelet biology and how one specific GRK, GRK6, regulates the hemostatic response to vascular injury. Furthermore, we will discuss the potential role of GRKs in thrombotic disorders, such as thrombotic events in COVID-19 patients. Studies on the function of GRKs during platelet activation and thrombus formation have just recently begun, and a better understanding of the role of GRKs in hemostasis and thrombosis will provide a fruitful avenue for understanding the hemostatic response to injury. It may also lead to new therapeutic options for the treatment of thrombotic and cardiovascular disorders.
Collapse
Affiliation(s)
- Xi Chen
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Correspondence: ; Tel.: +1-215-955-3966
| |
Collapse
|
20
|
Shin SH, Jeong J, Kim JH, Sohn KY, Yoon SY, Kim JW. 1-Palmitoyl-2-Linoleoyl-3-Acetyl-rac-Glycerol (PLAG) Mitigates Monosodium Urate (MSU)-Induced Acute Gouty Inflammation in BALB/c Mice. Front Immunol 2020; 11:710. [PMID: 32395118 PMCID: PMC7196669 DOI: 10.3389/fimmu.2020.00710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Acute gouty arthritis is an auto-inflammatory disease caused by the deposition of monosodium urate (MSU) crystals in joints or tissues. Excessive neutrophil recruitment into gouty lesions is a general clinical sign and induces a pain phenotype. Attenuation of successive periods of neutrophil infiltration might be a beneficial approach to achieve therapeutic efficacy. In this study, the activity of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) in attenuation of excess neutrophil infiltration was assessed in gout-induced lesions of BALB/c mice. Neutrophil infiltration in MSU-induced gouty lesions was analyzed using immunohistochemical staining. ELISA and RT-PCR were used to measure attenuation of expression of the major neutrophil chemoattractant, CXC motif chemokine ligand 8 (CXCL8), in a PLAG-treated animal model and in cells in vitro. The animal model revealed massive increased neutrophil infiltration in the MSU-induced gouty lesions, but the PLAG-treated mice had significantly reduced neutrophil numbers in these lesions. The results also indicated that the MSU crystals stimulated a damage-associated molecular pattern that was recognized by the P2Y6 purinergic receptor. This MSU-stimulated P2Y6 receptor was destined to intracellular trafficking. During intracellular endosomal trafficking of the receptor, endosome-dependent signaling provided expression of CXCL8 chemokines for neutrophil recruitment. PLAG accelerated initiation of the intracellular trafficking of the P2Y6 receptor and returning the receptor to the membrane. This process shortened the intracellular retention time of the receptor anchoring endosome and subsequently attenuated endosome-dependent signaling for CXCL8 expression. These study results suggested that PLAG could be used for resolution of acute inflammation induced in gout lesions.
Collapse
Affiliation(s)
- Su-Hyun Shin
- Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Jinseon Jeong
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Seoul, South Korea
| | - Joo Heon Kim
- Department of Pathology, EulJi University School of Medicine, Daejeon, South Korea
| | - Ki-Young Sohn
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Seoul, South Korea
| | - Sun Young Yoon
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Seoul, South Korea
| | - Jae Wha Kim
- Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
21
|
Mühleder S, Fuchs C, Basílio J, Szwarc D, Pill K, Labuda K, Slezak P, Siehs C, Pröll J, Priglinger E, Hoffmann C, Junger WG, Redl H, Holnthoner W. Purinergic P2Y 2 receptors modulate endothelial sprouting. Cell Mol Life Sci 2020; 77:885-901. [PMID: 31278420 PMCID: PMC11104991 DOI: 10.1007/s00018-019-03213-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Purinergic P2 receptors are critical regulators of several functions within the vascular system, including platelet aggregation, vascular inflammation, and vascular tone. However, a role for ATP release and P2Y receptor signalling in angiogenesis remains poorly defined. Here, we demonstrate that blood vessel growth is controlled by P2Y2 receptors. Endothelial sprouting and vascular tube formation were significantly dependent on P2Y2 expression and inhibition of P2Y2 using a selective antagonist blocked microvascular network generation. Mechanistically, overexpression of P2Y2 in endothelial cells induced the expression of the proangiogenic molecules CXCR4, CD34, and angiopoietin-2, while expression of VEGFR-2 was decreased. Interestingly, elevated P2Y2 expression caused constitutive phosphorylation of ERK1/2 and VEGFR-2. However, stimulation of cells with the P2Y2 agonist UTP did not influence sprouting unless P2Y2 was constitutively expressed. Finally, inhibition of VEGFR-2 impaired spontaneous vascular network formation induced by P2Y2 overexpression. Our data suggest that P2Y2 receptors have an essential function in angiogenesis, and that P2Y2 receptors present a therapeutic target to regulate blood vessel growth.
Collapse
Affiliation(s)
- Severin Mühleder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Kompetenzzentrum für MechanoBiologie (INTERREG V-A AT-CZ ATCZ133), Vienna, Austria
| | - Christiane Fuchs
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - José Basílio
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Dorota Szwarc
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Karoline Pill
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Krystyna Labuda
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Paul Slezak
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christian Siehs
- Mag. Dipl.-Ing. Dr. Christian Siehs, IT-Services, GLN 9110002040261, Vienna, Austria
| | - Johannes Pröll
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Center for Medical Research, Johannes Kepler University, Linz, Austria
- Red Cross Blood Transfusion Service, Linz, Austria
| | - Eleni Priglinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena, Germany
| | - Wolfgang G Junger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215, MA, USA
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
22
|
Caveolin-1 Regulates P2Y 2 Receptor Signaling during Mechanical Injury in Human 1321N1 Astrocytoma. Biomolecules 2019; 9:biom9100622. [PMID: 31635212 PMCID: PMC6843573 DOI: 10.3390/biom9100622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022] Open
Abstract
Caveolae-associated protein caveolin-1 (Cav-1) plays key roles in cellular processes such as mechanosensing, receptor coupling to signaling pathways, cell growth, apoptosis, and cancer. In 1321N1 astrocytoma cells Cav-1 interacts with the P2Y2 receptor (P2Y2R) to modulate its downstream signaling. P2Y2R and its signaling machinery also mediate pro-survival actions after mechanical injury. This study determines if Cav-1 knockdown (KD) affects P2Y2R signaling and its pro-survival actions in the 1321N1 astrocytoma cells mechanical injury model system. KD of Cav-1 decreased its expression in 1321N1 cells devoid of or expressing hHAP2Y2R by ~88% and ~85%, respectively. Cav-1 KD had no significant impact on P2Y2R expression. Post-injury densitometric analysis of pERK1/2 and Akt activities in Cav-1-positive 1321N1 cells (devoid of or expressing a hHAP2Y2R) revealed a P2Y2R-dependent temporal increase in both kinases. These temporal increases in pERK1/2 and pAkt were significantly decreased in Cav-1 KD 1321N1 (devoid of or expressing a hHAP2Y2R). Cav-1 KD led to an ~2.0-fold and ~2.4-fold decrease in the magnitude of the hHAP2Y2R-mediated pERK1/2 and pAkt kinases’ activity, respectively. These early-onset hHAP2Y2R-mediated signaling responses in Cav-1-expressing and Cav-1 KD 1321N1 correlated with changes in cell viability (via a resazurin-based method) and apoptosis (via caspase-9 expression). In Cav-1-positive 1321N1 cells, expression of hHAP2Y2R led to a significant increase in cell viability and decreased apoptotic (caspase-9) activity after mechanical injury. In contrast, hHAP2Y2R-elicited changes in viability and apoptotic (caspase-9) activity were decreased after mechanical injury in Cav-1 KD 1321N1 cells expressing hHAP2Y2R. These findings support the importance of Cav-1 in modulating P2Y2R signaling during mechanical injury and its protective actions in a human astrocytoma cell line, whilst shedding light on potential new venues for brain injury or trauma interventions.
Collapse
|
23
|
|
24
|
Lu B, Li C, Chen Q, Song J. ProBAPred: Inferring protein–protein binding affinity by incorporating protein sequence and structural features. J Bioinform Comput Biol 2018; 16:1850011. [PMID: 29954286 DOI: 10.1142/s0219720018500117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein-protein binding interaction is the most prevalent biological activity that mediates a great variety of biological processes. The increasing availability of experimental data of protein–protein interaction allows a systematic construction of protein–protein interaction networks, significantly contributing to a better understanding of protein functions and their roles in cellular pathways and human diseases. Compared to well-established classification for protein–protein interactions (PPIs), limited work has been conducted for estimating protein–protein binding free energy, which can provide informative real-value regression models for characterizing the protein–protein binding affinity. In this study, we propose a novel ensemble computational framework, termed ProBAPred (Protein–protein Binding Affinity Predictor), for quantitative estimation of protein–protein binding affinity. A large number of sequence and structural features, including physical–chemical properties, binding energy and conformation annotations, were collected and calculated from currently available protein binding complex datasets and the literature. Feature selection based on the WEKA package was performed to identify and characterize the most informative and contributing feature subsets. Experiments on the independent test showed that our ensemble method achieved the lowest Mean Absolute Error (MAE; 1.657[Formula: see text]kcal/mol) and the second highest correlation coefficient ([Formula: see text]), compared with the existing methods. The datasets and source codes of ProBAPred, and the supplementary materials in this study can be downloaded at http://lightning.med.monash.edu/probapred/ for academic use. We anticipate that the developed ProBAPred regression models can facilitate computational characterization and experimental studies of protein–protein binding affinity.
Collapse
Affiliation(s)
- Bangli Lu
- School of Computer, Electronic and Information, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, 100 Daxue Road, 530004 Nanning, P. R. China
| | - Chen Li
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Qingfeng Chen
- School of Computer, Electronic and Information, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, 100 Daxue Road, 530004 Nanning, P. R. China
| | - Jiangning Song
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, VIC 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Monash University, VIC 3800, Australia
| |
Collapse
|
25
|
P2Y 11 Receptors: Properties, Distribution and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:107-122. [PMID: 29134605 DOI: 10.1007/5584_2017_89] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The P2Y11 receptor is a G protein-coupled receptor that is stimulated by endogenous purine nucleotides, particularly ATP. Amongst P2Y receptors it has several unique properties; (1) it is the only human P2Y receptor gene that contains an intron in the coding sequence; (2) the gene does not appear to be present in the rodent genome; (3) it couples to stimulation of both phospholipase C and adenylyl cyclase. Its absence in mice and rats, along with a limited range of selective pharmacological tools, has hampered the development of our knowledge and understanding of its properties and functions. Nonetheless, through a combination of careful use of the available tools, suppression of receptor expression using siRNA and genetic screening for SNPs, possible functions of native P2Y11 receptors have been identified in a variety of human cells and tissues. Many are in blood cells involved in inflammatory responses, consistent with extracellular ATP being a damage-associated signalling molecule in the immune system. Thus proposed potential therapeutic applications relate, in the main, to modulation of acute and chronic inflammatory responses.
Collapse
|
26
|
Nishimura A, Sunggip C, Oda S, Numaga-Tomita T, Tsuda M, Nishida M. Purinergic P2Y receptors: Molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol Ther 2017. [DOI: 10.1016/j.pharmthera.2017.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Gao ZG, Jacobson KA. Distinct Signaling Patterns of Allosteric Antagonism at the P2Y 1 Receptor. Mol Pharmacol 2017; 92:613-626. [PMID: 28864555 DOI: 10.1124/mol.117.109660] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022] Open
Abstract
Traditionally, G protein-coupled receptor antagonists are classified as competitive or noncompetitive and surmountable or insurmountable based on functional antagonism. P2Y1 receptor (P2Y1R) structures showed two antagonists binding to two spatially distinct sites: nucleotide MRS2500 (orthosteric, contacting the helical bundle) and urea BPTU (allosteric, on the external receptor surface). However, the nature of their P2Y1R antagonism has not been characterized. Here we characterized BPTU antagonism at various signaling pathways activated by structurally diverse agonists. BPTU rightward shifted the concentration-response curves of both 2-methylthioadenosine 5'-diphosphate trisodium salt and MRS2365 (5'-diphosphates) in some signaling events, such as extracellular signal-regulated kinase 1/2 and label free, in a parallel manner without affecting the maximum agonist effect (Emax) but antagonized insurmountably (suppressed agonist Emax) in signaling events such as guanosine 5'-3-O-(thio)triphosphate binding and β-arrestin2 recruitment. However, with dinucleotide Ap4A as an agonist, BPTU suppressed the Emax insurmountably in all signaling pathways. By comparison, MRS2500 behaved as surmountable antagonist rightward-shifting concentration-response curves of all three agonists in a parallel manner for all signaling pathways measured. Thus, we demonstrated a previously undocumented phenomenon that P2Y1R antagonism patterns could vary in different signaling pathways, which could be related to conformational selection, signaling amplification, and probe dependence. This phenomenon may apply generally to other receptors considering that antagonism by a specific ligand is often not compared at multiple signaling pathways. Thus, antagonism can be surmountable or insurmountable depending on the signaling pathways measured and the agonists used, which should be of broad relevance to drug discovery and disease treatment.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
28
|
Oehler B, Mohammadi M, Perpina Viciano C, Hackel D, Hoffmann C, Brack A, Rittner HL. Peripheral Interaction of Resolvin D1 and E1 with Opioid Receptor Antagonists for Antinociception in Inflammatory Pain in Rats. Front Mol Neurosci 2017; 10:242. [PMID: 28824373 PMCID: PMC5541027 DOI: 10.3389/fnmol.2017.00242] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022] Open
Abstract
Antinociceptive pathways are activated in the periphery in inflammatory pain, for instance resolvins and opioid peptides. Resolvins are biosynthesized from omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid. Resolvin D1 (RvD1) and resolvin E1 (RvE1) initiate the resolution of inflammation and control of hypersensitivity via induction of anti-inflammatory signaling cascades. RvD1 binds to lipoxin A4/annexin-A1 receptor/formyl-peptide receptor 2 (ALX/FPR2), RvE1 to chemerin receptor 23 (ChemR23). Antinociception of RvD1 is mediated by interaction with transient receptor potential channels ankyrin 1 (TRPA1). Endogenous opioid peptides are synthesized and released from leukocytes in the tissue and bind to opioid receptors on nociceptor terminals. Here, we further explored peripheral mechanisms of RvD1 and chemerin (Chem), the ligand of ChemR23, in complete Freund’s adjuvant (CFA)-induced hindpaw inflammation in male Wistar rats. RvD1 and Chem ameliorated CFA-induced hypersensitivity in early and late inflammatory phases. This was prevented by peripheral blockade of the μ-opioid peptide receptor (MOR) using low dose local naloxone or by local injection of anti-β-endorphin and anti-met-enkephalin (anti-ENK) antibodies. Naloxone also hindered antinociception by the TRPA1 inhibitor HC-030031. RvD1 did not stimulate the release of β-endorphin from macrophages and neutrophils, nor did RvD1 itself activate G-proteins coupled MOR or initiate β-arrestin recruitment to the membrane. TRPA1 blockade by HC-030031 in inflammation in vivo as well as inhibition of the TRPA1-mediated calcium influx in dorsal root ganglia neurons in vitro was hampered by naloxone. Peripheral application of naloxone alone in vivo already lowered mechanical nociceptive thresholds. Therefore, either a perturbation of the balance of endogenous pro- and antinociceptive mechanisms in early and late inflammation, or an interaction of TRPA1 and opioid receptors weaken the antinociceptive potency of RvD1 and TRPA1 blockers.
Collapse
Affiliation(s)
- Beatrice Oehler
- Department of Anesthesiology and Critical Care, University Hospital of WuerzburgWuerzburg, Germany
| | - Milad Mohammadi
- Department of Anesthesiology and Critical Care, University Hospital of WuerzburgWuerzburg, Germany
| | - Cristina Perpina Viciano
- Bio-Imaging-Center/Rudolf-Virchow-Center, Institute of Pharmacology, University of WuerzburgWuerzburg, Germany
| | - Dagmar Hackel
- Department of Anesthesiology and Critical Care, University Hospital of WuerzburgWuerzburg, Germany
| | - Carsten Hoffmann
- Bio-Imaging-Center/Rudolf-Virchow-Center, Institute of Pharmacology, University of WuerzburgWuerzburg, Germany.,Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital JenaJena, Germany
| | - Alexander Brack
- Department of Anesthesiology and Critical Care, University Hospital of WuerzburgWuerzburg, Germany
| | - Heike L Rittner
- Department of Anesthesiology and Critical Care, University Hospital of WuerzburgWuerzburg, Germany
| |
Collapse
|
29
|
Bologna Z, Teoh JP, Bayoumi AS, Tang Y, Kim IM. Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology. Biomol Ther (Seoul) 2017; 25:12-25. [PMID: 28035079 PMCID: PMC5207460 DOI: 10.4062/biomolther.2016.165] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 01/03/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas β-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of β-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of β-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or β-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or β-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation.
Collapse
Affiliation(s)
- Zuzana Bologna
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Ahmed S Bayoumi
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, GA 30912, USA
| |
Collapse
|
30
|
Abstract
G protein-coupled receptors are the largest family of targets for current therapeutics. The classic model of their activation was binary, where agonist binding induced an active conformation and subsequent downstream signaling. Subsequently, the revised concept of biased agonism emerged, where different ligands at the same G protein-coupled receptor selectively activate one downstream pathway versus another. Advances in understanding the mechanism of biased agonism have led to the development of novel ligands, which have the potential for improved therapeutic and safety profiles. In this review, we summarize the theory and most recent breakthroughs in understanding biased signaling, examine recent laboratory investigations concerning biased ligands across different organ systems, and discuss the promising clinical applications of biased agonism.
Collapse
|
31
|
Djerada Z, Feliu C, Richard V, Millart H. Current knowledge on the role of P2Y receptors in cardioprotection against ischemia-reperfusion. Pharmacol Res 2016; 118:5-18. [PMID: 27520402 DOI: 10.1016/j.phrs.2016.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/05/2016] [Accepted: 08/07/2016] [Indexed: 11/27/2022]
Abstract
During ischemia, numerous effective endogenous extracellular mediators have been identified, particularly, nucleosides such as adenosine as well as purinergic and pyrimidinergic nucleotides. They may play important regulatory roles within the cardiovascular system and notably as cardio-protectants. Indeed, the distribution of the P2Y receptors in mammalian heart includes several cellular constituents relevant for the pathophysiology of myocardial ischemia. Beside the well-known cardioprotective effect of adenosine, the additional protective role of P2Y receptors has emerged. However, interpretation of experimental results may be sometimes perplexing. This is due to the variability of: the experimental models, the endpoints criteria, the chemical structure of agonist and antagonist ligands and their concentrations, the sequences of drug administration with respect to the model used (before and/or during and/or after ischemia). The net effect may be in the opposite direction after a transient or a prolonged stimulation. Nevertheless, the overall reading of published data highlights the beneficial role of the P2Y2/4 receptor stimulation, the useful and synergistic role of P2Y6/11 receptor activation and even of the P2Y11 receptor alone in cardioprotection. More, the P2Y11 receptor could be involved in counter-regulation of profibrotic processes. Paradoxically, transient P2X7 receptor stimulation could contribute to the net cardioprotective effect of ATP. Recently, experimental data have shown that blocking the P2Y12 receptor after ischemia confers cardioprotection independently of platelet antiaggregatory effect. This suggests for P2Y receptors an important role in primary prevention and as a therapeutic target in myocardial protection during ischemia and reperfusion.
Collapse
Affiliation(s)
- Zoubir Djerada
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France.
| | - Catherine Feliu
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Vincent Richard
- Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Department of Pharmacology, Rouen, France; Normandy University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hervé Millart
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| |
Collapse
|
32
|
Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function. J Neurosci 2016; 36:3541-51. [PMID: 27013682 DOI: 10.1523/jneurosci.4124-15.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/11/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor-Ca(2+)channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. SIGNIFICANCE STATEMENT Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560) preferentially recruit arrestin 3 and, surprisingly, KO of arrestin 3 produces acute tolerance and impaired receptor resensitization to these agonists. Arrestin 3 is in pre-engaged complexes with the delta opioid receptor at the cell membrane and low-internalizing agonists promote this interaction. This study reveals a novel role for arrestin 3 as a facilitator of receptor resensitization.
Collapse
|
33
|
Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
|
34
|
Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor. Biochem Pharmacol 2016; 113:70-87. [PMID: 27286929 DOI: 10.1016/j.bcp.2016.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022]
Abstract
Biased agonism describes the ability of distinct G protein-coupled receptor (GPCR) ligands to stabilise distinct receptor conformations leading to the activation of different cell signalling pathways that can deliver different physiologic outcomes. This phenomenon is having a major impact on modern drug discovery as it offers the potential to design ligands that selectively activate or inhibit the signalling pathways linked to therapeutic effects with minimal activation or blockade of signalling pathways that are linked to the development of adverse on-target effects. However, the explosion in studies of biased agonism at multiple GPCR families in recombinant cell lines has revealed a high degree of variability on descriptions of biased ligands at the same GPCR and raised the question of whether biased agonism is a fixed attribute of a ligand in all cell types. The current study addresses this question at the mu-opioid receptor (MOP). Here, we have systematically assessed the impact of differential cellular protein complement (and cellular background), signalling kinetics and receptor species on our previous descriptions of biased agonism at MOP by several opioid peptides and synthetic opioids. Our results show that all these factors need to be carefully determined and reported when considering biased agonism. Nevertheless, our studies also show that, despite changes in overall signalling profiles, ligands that previously showed distinct bias profiles at MOP retained their uniqueness across different cell backgrounds.
Collapse
|
35
|
Dreisig K, Kornum BR. A critical look at the function of the P2Y11 receptor. Purinergic Signal 2016; 12:427-37. [PMID: 27246167 DOI: 10.1007/s11302-016-9514-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/17/2016] [Indexed: 11/30/2022] Open
Abstract
The P2Y11 receptor is a member of the purinergic receptor family. It has been overlooked, somewhat due to the lack of a P2ry11 gene orthologue in the murine genome, which prevents the generation of knockout mice, which have been so helpful for defining the roles of other P2Y receptors. Furthermore, some of the studies reported to date have methodological shortcomings, making it difficult to determine the function of P2Y11 with certainty. In this review, we discuss the lack of a murine "P2Y11-like receptor" and highlight the limitations of the currently available methods used to investigate the P2Y11 receptor. These methods include protein recognition with antibodies that show very little specificity, gene expression studies that completely overlook the existence of a fusion transcript between the adjacent PPAN gene and P2RY11, and agonists/antagonists reported to be specific for the P2Y11 receptor but which have not been tested for activity on numerous other adenosine 5'-triphosphate (ATP)-binding receptors. We suggest a set of criteria for evaluating whether a dataset describes effects mediated by the P2Y11 receptor. Following these criteria, we conclude that the current evidence suggests a role for P2Y11 in immune activation with cell type-specific effects.
Collapse
Affiliation(s)
- Karin Dreisig
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
| | - Birgitte Rahbek Kornum
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark.
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
36
|
Martinez NA, Ayala AM, Martinez M, Martinez-Rivera FJ, Miranda JD, Silva WI. Caveolin-1 Regulates the P2Y2 Receptor Signaling in Human 1321N1 Astrocytoma Cells. J Biol Chem 2016; 291:12208-22. [PMID: 27129210 DOI: 10.1074/jbc.m116.730226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/06/2022] Open
Abstract
Damage to the CNS can cause a differential spatio-temporal release of multiple factors, such as nucleotides, ATP and UTP. The latter interact with neuronal and glial nucleotide receptors. The P2Y2 nucleotide receptor (P2Y2R) has gained prominence as a modulator of gliotic responses after CNS injury. Still, the molecular mechanisms underlying these responses in glia are not fully understood. Membrane-raft microdomains, such as caveolae, and their constituent caveolins, modulate receptor signaling in astrocytes; yet, their role in P2Y2R signaling has not been adequately explored. Hence, this study evaluated the role of caveolin-1 (Cav-1) in modulating P2Y2R subcellular distribution and signaling in human 1321N1 astrocytoma cells. Recombinant hP2Y2R expressed in 1321N1 cells and Cav-1 were found to co-fractionate in light-density membrane-raft fractions, co-localize via confocal microscopy, and co-immunoprecipitate. Raft localization was dependent on ATP stimulation and Cav-1 expression. This hP2Y2R/Cav-1 distribution and interaction was confirmed with various cell model systems differing in the expression of both P2Y2R and Cav-1, and shRNA knockdown of Cav-1 expression. Furthermore, shRNA knockdown of Cav-1 expression decreased nucleotide-induced increases in the intracellular Ca(2+) concentration in 1321N1 and C6 glioma cells without altering TRAP-6 and carbachol Ca(2+) responses. In addition, Cav-1 shRNA knockdown also decreased AKT phosphorylation and altered the kinetics of ERK1/2 activation in 1321N1 cells. Our findings strongly suggest that P2Y2R interaction with Cav-1 in membrane-raft caveolae of 1321N1 cells modulates receptor coupling to its downstream signaling machinery. Thus, P2Y2R/Cav-1 interactions represent a novel target for controlling P2Y2R function after CNS injury.
Collapse
Affiliation(s)
| | | | | | - Freddyson J Martinez-Rivera
- Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936
| | | | | |
Collapse
|
37
|
Mambretti EM, Kistner K, Mayer S, Massotte D, Kieffer BL, Hoffmann C, Reeh PW, Brack A, Asan E, Rittner HL. Functional and structural characterization of axonal opioid receptors as targets for analgesia. Mol Pain 2016; 12:12/0/1744806916628734. [PMID: 27030709 PMCID: PMC4994859 DOI: 10.1177/1744806916628734] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/10/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Opioids are the gold standard for the treatment of acute pain despite serious side effects in the central and enteric nervous system. µ-opioid receptors (MOPs) are expressed and functional at the terminals of sensory axons, when activated by exogenous or endogenous ligands. However, the presence and function of MOP along nociceptive axons remains controversial particularly in naïve animals. Here, we characterized axonal MOPs by immunofluorescence, ultrastructural, and functional analyses. Furthermore, we evaluated hypertonic saline as a possible enhancer of opioid receptor function. RESULTS Comparative immunolabeling showed that, among several tested antibodies, which all provided specific MOP detection in the rat central nervous system (CNS), only one monoclonal MOP-antibody yielded specificity and reproducibility for MOP detection in the rat peripheral nervous system including the sciatic nerve. Double immunolabeling documented that MOP immunoreactivity was confined to calcitonin gene-related peptide (CGRP) positive fibers and fiber bundles. Almost identical labeling and double labeling patterns were found using mcherry-immunolabeling on sciatic nerves of mice producing a MOP-mcherry fusion protein (MOP-mcherry knock-in mice). Preembedding immunogold electron microscopy on MOP-mcherry knock-in sciatic nerves indicated presence of MOP in cytoplasm and at membranes of unmyelinated axons. Application of [D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin (DAMGO) or fentanyl dose-dependently inhibited depolarization-induced CGRP release from rat sciatic nerve axons ex vivo, which was blocked by naloxone. When the lipophilic opioid fentanyl was applied perisciatically in naïve Wistar rats, mechanical nociceptive thresholds increased. Subthreshold doses of fentanyl or the hydrophilic opioid DAMGO were only effective if injected together with hypertonic saline. In vitro, using β-arrestin-2/MOP double-transfected human embryonic kidney cells, DAMGO as well as fentanyl lead to a recruitment of β-arrestin-2 to the membrane followed by a β-arrestin-2 reappearance in the cytosol and MOP internalization. Pretreatment with hypertonic saline prevented MOP internalization. CONCLUSION MOPs are present and functional in the axonal membrane from naïve animals. Hypertonic saline acutely decreases ligand-induced internalization of MOP and thereby might improve MOP function. Further studies should explore potential clinical applications of opioids together with enhancers for regional analgesia.
Collapse
Affiliation(s)
- Egle M Mambretti
- Department of Anesthesiology, University Hospital of Wuerzburg, Germany Institute of Anatomy and Cell Biology, University of Wuerzburg, Germany
| | - Katrin Kistner
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuremberg, Germany
| | - Stefanie Mayer
- Institute for Pharmacology and Toxicology & Bio-Imaging Center/Rudolf-Virchow Center, University of Wuerzburg, Germany
| | - Dominique Massotte
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR, Strasbourg Cedex, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Carsten Hoffmann
- Institute for Pharmacology and Toxicology & Bio-Imaging Center/Rudolf-Virchow Center, University of Wuerzburg, Germany
| | - Peter W Reeh
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuremberg, Germany
| | - Alexander Brack
- Department of Anesthesiology, University Hospital of Wuerzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Germany
| | - Heike L Rittner
- Department of Anesthesiology, University Hospital of Wuerzburg, Germany
| |
Collapse
|
38
|
Morrow GB, Nicholas RA, Kennedy C. UTP is not a biased agonist at human P2Y(11) receptors. Purinergic Signal 2015; 10:581-5. [PMID: 25015314 DOI: 10.1007/s11302-014-9418-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/30/2014] [Indexed: 11/24/2022] Open
Abstract
Biased agonism describes a multistate model of G protein-coupled receptor activation in which each ligand induces a unique structural conformation of the receptor, such that the receptor couples differentially to G proteins and other intracellular proteins. P2Y receptors are G protein-coupled receptors that are activated by endogenous nucleotides, such as adenosine 5′-triphosphate (ATP) and uridine 5′-triphosphate (UTP). A previous report suggested that UTP may be a biased agonist at the human P2Y11 receptor, as it increased cytosolic [Ca2+], but did not induce accumulation of inositol phosphates, whereas ATP did both. The mechanism of action of UTP was unclear, so the aim of this study was to characterise the interaction of UTP with the P2Y11 receptor in greater detail. Intracellular Ca2+ was monitored in 1321N1 cells stably expressing human P2Y11 receptors using the Ca2+-sensitive fluorescent indicator, fluo-4. ATP evoked a rapid, concentration-dependent rise in intracellular Ca2+, but surprisingly, even high concentrations of UTP were ineffective. In contrast, UTP was slightly, but significantly more potent than ATP in evoking a rise in intracellular Ca2+ in 1321N1 cells stably expressing the human P2Y2 receptor, with no difference in the maximum response. Thus, the lack of response to UTP at hP2Y11 receptors was not due to a problem with the UTP solution. Furthermore, coapplying a high concentration of UTP with ATP did not inhibit the response to ATP. Thus, contrary to a previous report, we find no evidence for an agonist action of UTP at the human P2Y11 receptor, nor does UTP act as an antagonist.
Collapse
|
39
|
Srivastava A, Gupta B, Gupta C, Shukla AK. Emerging Functional Divergence of β-Arrestin Isoforms in GPCR Function. Trends Endocrinol Metab 2015; 26:628-642. [PMID: 26471844 DOI: 10.1016/j.tem.2015.09.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/21/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are tightly regulated by multifunctional protein β-arrestins. Two isoforms of β-arrestin sharing more than 70% sequence identity and overall very similar 3D structures, β-arrestins 1 and 2, were originally expected to be functionally redundant. However, in recent years multiple lines of emerging evidence suggest they have distinct roles in various aspects of GPCR regulation and signaling. We summarize selected examples of GPCRs where β-arrestin isoforms are discovered to display non-overlapping and sometimes even antagonistic functions. We also discuss potential mechanistic basis for their functional divergence and highlight new frontiers that are likely to form the focal points of research in this area in coming years.
Collapse
Affiliation(s)
- Ashish Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Bhagyashri Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Charu Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
40
|
Molden BM, Cooney KA, West K, Van Der Ploeg LHT, Baldini G. Temporal cAMP Signaling Selectivity by Natural and Synthetic MC4R Agonists. Mol Endocrinol 2015; 29:1619-33. [PMID: 26418335 DOI: 10.1210/me.2015-1071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in the brain, where it controls energy balance through pathways including α-melanocyte-stimulating hormone (α-MSH)-dependent signaling. We have reported that the MC4R can exist in an active conformation that signals constitutively by increasing cAMP levels in the absence of receptor desensitization. We asked whether synthetic MC4R agonists differ in their ability to increase intracellular cAMP over time in Neuro2A cells expressing endogenous MC4R and exogenous, epitope-tagged hemagglutinin-MC4R-green fluorescent protein. By analyzing intracellular cAMP in a temporally resolved Förster resonance energy transfer assay, we show that withdrawal of α-MSH leads to a quick reversal of cAMP induction. By contrast, the synthetic agonist melanotan II (MTII) induces a cAMP signal that persists for at least 1 hour after removal of MTII from the medium and cannot be antagonized by agouti related protein. Similarly, in mHypoE-42 immortalized hypothalamic neurons, MTII, but not α-MSH, induced persistent AMP kinase signal, which occurs downstream of increased cAMP. By using a fluorescence recovery after photobleaching assay, it appears that the receptor exposed to MTII continues to signal after being internalized. Similar to MTII, the synthetic MC4R agonists, THIQ and BIM-22511, but not LY2112688, induced prolonged cAMP signaling after agonist withdrawal. However, agonist-exposed MC4R desensitized to the same extent, regardless of the ligand used and regardless of differences in receptor intracellular retention kinetics. In conclusion, α-MSH and LY2112688, when compared with MTII, THIQ, and BIM-22511, vary in the duration of the acute cAMP response, showing distinct temporal signaling selectivity, possibly linked to specific cell compartments from which cAMP signals may originate.
Collapse
Affiliation(s)
- Brent M Molden
- Department of Biochemistry and Molecular Biology (B.M.M., K.A.C., K.W., G.B.), University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199; and Rhythm Pharmaceuticals, Inc (L.H.T.V.D.P.), Boston, Massachusetts 02116
| | - Kimberly A Cooney
- Department of Biochemistry and Molecular Biology (B.M.M., K.A.C., K.W., G.B.), University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199; and Rhythm Pharmaceuticals, Inc (L.H.T.V.D.P.), Boston, Massachusetts 02116
| | - Kirk West
- Department of Biochemistry and Molecular Biology (B.M.M., K.A.C., K.W., G.B.), University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199; and Rhythm Pharmaceuticals, Inc (L.H.T.V.D.P.), Boston, Massachusetts 02116
| | - Lex H T Van Der Ploeg
- Department of Biochemistry and Molecular Biology (B.M.M., K.A.C., K.W., G.B.), University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199; and Rhythm Pharmaceuticals, Inc (L.H.T.V.D.P.), Boston, Massachusetts 02116
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology (B.M.M., K.A.C., K.W., G.B.), University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199; and Rhythm Pharmaceuticals, Inc (L.H.T.V.D.P.), Boston, Massachusetts 02116
| |
Collapse
|
41
|
Dogra S, Yadav PN. Biased agonism at kappa opioid receptors: Implication in pain and mood disorders. Eur J Pharmacol 2015; 763:184-90. [PMID: 26164787 DOI: 10.1016/j.ejphar.2015.07.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
The kappa opioid receptor (k receptor) and its endogenous ligand dynorphin have received significant attention due to their involvement in pathophysiology of mood disorders, drug addiction, psychotic disorders and pain. Multiple lines of evidences suggest that the k receptor modulates overlapping neurocircuits connecting brainstem monoaminergic nuclei with forebrain limbic structures and thereby regulates neurobiological effects of stress and psychostimulants. The emerging concept of "biased agonism" (also known as functional selectivity) for G Protein Coupled Receptor (GPCR) ligands have provided new insights into overall response generated by a ligand, which could be exploited for drug discovery. According to this concept, every ligand possesses the unique ability (coded in its structure) that dictates distinct signalling pattern, and consequently beneficial or adverse response. Although still a long way to comprehend the clinical potential of biased GPCR ligands, such ligand could be vital pharmacological probes. This article highlights various lines of evidence, which indicates different ligands of k receptor as "biased", and their potential implications in mood and pain disorders.
Collapse
Affiliation(s)
- Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.
| |
Collapse
|
42
|
Stoddart LA, Kellam B, Briddon SJ, Hill SJ. Effect of a toggle switch mutation in TM6 of the human adenosine A₃ receptor on Gi protein-dependent signalling and Gi-independent receptor internalization. Br J Pharmacol 2015; 171:3827-44. [PMID: 24750014 PMCID: PMC4128046 DOI: 10.1111/bph.12739] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE The highly conserved tryptophan (W6.48) in transmembrane domain 6 of GPCRs has been shown to play a central role in forming an active conformation in response to agonist binding. We set out to characterize the effect of this mutation on the efficacy of two agonists at multiple signalling pathways downstream of the adenosine A3 receptor. EXPERIMENTAL APPROACH Residue W6.48 in the human adenosine A3 receptor fused to yellow fluorescent protein was mutated to phenylalanine and expressed in CHO-K1 cells containing a cAMP response element reporter gene. The effects on agonist-mediated receptor internalization were monitored by automated confocal microscopy and image analysis. Further experiments were carried out to investigate agonist-mediated ERK1/2 phosphorylation, inhibition of [3H]-cAMP accumulation and β-arrestin2 binding. KEY RESULTS NECA was able to stimulate agonist-mediated internalization of the W6.48F mutant receptor, while the agonist HEMADO was inactive. Investigation of other downstream signalling pathways indicated that G-protein coupling was impaired for both agonists tested. Mutation of W6.48F therefore resulted in differential effects on agonist efficacy, and introduced signalling pathway bias for HEMADO at the adenosine A3 receptor. CONCLUSIONS AND IMPLICATIONS Investigation of the pharmacology of the W6.48F mutant of the adenosine A3 receptor confirms that this region is important in forming the active conformation of the receptor for stimulating a number of different signalling pathways and that mutations in this residue can lead to changes in agonist efficacy and signalling bias.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Institute of Cell Signalling, School of Life Sciences, The University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
43
|
Thompson GL, Kelly E, Christopoulos A, Canals M. Novel GPCR paradigms at the μ-opioid receptor. Br J Pharmacol 2014; 172:287-96. [PMID: 24460711 DOI: 10.1111/bph.12600] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/12/2014] [Accepted: 01/19/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Opioids, such as morphine, are the most clinically useful class of analgesic drugs for the treatment of acute and chronic pain. However, the use of opioids is greatly limited by the development of severe adverse side effects. Consequently, drug discovery efforts have been directed towards improving the therapeutic profile of opioid-based treatments. Opioid receptors are members of the family of GPCRs. As such, the recent GPCR paradigms of biased agonism and allosterism may provide novel avenues for more effective analgesics. Biased agonism (or functional selectivity) has been described for all the opioid receptor family members. Furthermore, the first allosteric modulators of opioid receptors have very recently been described. However, identification and quantification of biased agonism in a manner that is informative to medicinal chemists and drug discovery programmes still remains a challenge. In this review, we examine the progress, to date, towards identification and quantification of biased agonism and allosterism at the μ-opioid receptor in the context of its implications for the discovery of better and safer analgesics. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- G L Thompson
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
44
|
Targeted activation of conventional and novel protein kinases C through differential translocation patterns. Mol Cell Biol 2014; 34:2370-81. [PMID: 24732802 DOI: 10.1128/mcb.00040-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of the two ubiquitous families of protein kinases, protein kinase A (PKA) and protein kinase C (PKC), is thought to be independently coupled to stimulation of Gαs and Gαq, respectively. Live-cell confocal imaging of protein kinase C fluorescent protein fusion constructs revealed that simultaneous activation of Gαs and Gαq resulted in a differential translocation of the conventional PKCα to the plasma membrane while the novel PKCδ was recruited to the membrane of the endoplasmic reticulum (ER). We demonstrate that the PKCδ translocation was driven by a novel Gαs-cyclic AMP-EPAC-RAP-PLCε pathway resulting in specific diacylglycerol production at the membrane of the ER. Membrane-specific phosphorylation sensors revealed that directed translocation resulted in phosphorylation activity confined to the target membrane. Specific stimulation of PKCδ caused phosphorylation of the inositol-1,4,5-trisphosphate receptor and dampening of global Ca(2+) signaling revealed by graded flash photolysis of caged inositol-1,4,5-trisphosphate. Our data demonstrate a novel signaling pathway enabling differential decoding of incoming stimuli into PKC isoform-specific membrane targeting, significantly enhancing the versatility of cyclic AMP signaling, thus demonstrating the possible interconnection between the PKA and PKC pathways traditionally treated independently. We thus provide novel and elementary understanding and insights into intracellular signaling events.
Collapse
|
45
|
Haas M, Shaaban A, Reiser G. Alanine-(87)-threonine polymorphism impairs signaling and internalization of the human P2Y11 receptor, when co-expressed with the P2Y1 receptor. J Neurochem 2014; 129:602-13. [PMID: 24524250 DOI: 10.1111/jnc.12666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 12/23/2022]
Abstract
The P2Y11 nucleotide receptor detects high extracellular ATP concentrations. Mutations of the human P2RY11 gene can play a role in brain autoimmune responses, and the P2Y11 receptor alanine-87-threonine (A87T) polymorphism has been suggested to affect immune-system functions. We investigated receptor functionality of the P2Y11 A87T mutant using HEK293 and 1321N1 astrocytoma cells. In HEK293 cells, the P2Y11 receptor agonist 3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) was completely inactive in evoking intracellular calcium release while the potency of ATP was reduced. ATP was also less potent in triggering cAMP generation. However, 1321N1 astrocytoma cells, which lack any endogenous P2Y1 receptors, did not display a reduction. Only when 1321N1 cells were co-transfected with P2Y11 A87T and P2Y1 receptors, the calcium responses to the P2Y11 receptor-specific agonist BzATP were reduced. It is already known that P2Y1 and P2Y11 receptors interact. We thus conclude that the physiological impact of A87T mutation of the P2Y11 receptor derives from detrimental effects on P2Y1 -P2Y11 receptor interaction. We additionally investigated alanine-87-serine and alanine-87-tyrosine P2Y11 receptor mutants. Both mutations rescue the response to BzATP in HEK293 cells, thus ruling out polarity of amino acid-87 to be the molecular basis for altered receptor characteristics. We further found that the P2Y11 A87T receptor shows complete loss of nucleotide-induced internalization in HEK293 cells. Thus, we demonstrate impaired signaling of the P2Y11 A87T-mutated receptors when co-operating with P2Y1 receptors.
Collapse
Affiliation(s)
- Michael Haas
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke Universität, Magdeburg, Germany
| | | | | |
Collapse
|
46
|
Abstract
G-protein-coupled receptors (GPCRs) are the primary interaction partners for arrestins. The visual arrestins, arrestin1 and arrestin4, physiologically bind to only very few receptors, i.e., rhodopsin and the color opsins, respectively. In contrast, the ubiquitously expressed nonvisual variants β-arrestin1 and 2 bind to a large number of receptors in a fairly nonspecific manner. This binding requires two triggers, agonist activation and receptor phosphorylation by a G-protein-coupled receptor kinase (GRK). These two triggers are mediated by two different regions of the arrestins, the "phosphorylation sensor" in the core of the protein and a less well-defined "activation sensor." Binding appears to occur mostly in a 1:1 stoichiometry, involving the N-terminal domain of GPCRs, but in addition a second GPCR may loosely bind to the C-terminal domain when active receptors are abundant.Arrestin binding initially uncouples GPCRs from their G-proteins. It stabilizes receptors in an active conformation and also induces a conformational change in the arrestins that involves a rotation of the two domains relative to each other plus changes in the polar core. This conformational change appears to permit the interaction with further downstream proteins. The latter interaction, demonstrated mostly for β-arrestins, triggers receptor internalization as well as a number of nonclassical signaling pathways.Open questions concern the exact stoichiometry of the interaction, possible specificity with regard to the type of agonist and of GRK involved, selective regulation of downstream signaling (=biased signaling), and the options to use these mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany,
| | | |
Collapse
|
47
|
Lu D, Insel PA. Cellular mechanisms of tissue fibrosis. 6. Purinergic signaling and response in fibroblasts and tissue fibrosis. Am J Physiol Cell Physiol 2013; 306:C779-88. [PMID: 24352335 DOI: 10.1152/ajpcell.00381.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tissue fibrosis occurs as a result of the dysregulation of extracellular matrix (ECM) synthesis. Tissue fibroblasts, resident cells responsible for the synthesis and turnover of ECM, are regulated via numerous hormonal and mechanical signals. The release of intracellular nucleotides and their resultant autocrine/paracrine signaling have been shown to play key roles in the homeostatic maintenance of tissue remodeling and in fibrotic response post-injury. Extracellular nucleotides signal through P2 nucleotide and P1 adenosine receptors to activate signaling networks that regulate the proliferation and activity of fibroblasts, which, in turn, influence tissue structure and pathologic remodeling. An important component in the signaling and functional responses of fibroblasts to extracellular ATP and adenosine is the expression and activity of ectonucleotideases that attenuate nucleotide-mediated signaling, and thereby integrate P2 receptor- and subsequent adenosine receptor-initiated responses. Results of studies of the mechanisms of cellular nucleotide release and the effects of this autocrine/paracrine signaling axis on fibroblast-to-myofibroblast conversion and the fibrotic phenotype have advanced understanding of tissue remodeling and fibrosis. This review summarizes recent findings related to purinergic signaling in the regulation of fibroblasts and the development of tissue fibrosis in the heart, lungs, liver, and kidney.
Collapse
Affiliation(s)
- David Lu
- Department of Pharmacology, University of California, San Diego, La Jolla, California; and
| | | |
Collapse
|
48
|
Exposure of MC4R to agonist in the endoplasmic reticulum stabilizes an active conformation of the receptor that does not desensitize. Proc Natl Acad Sci U S A 2013; 110:E4733-42. [PMID: 24248383 DOI: 10.1073/pnas.1219808110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in neurons of the hypothalamus where it regulates food intake. MC4R responds to an agonist, α-melanocyte-stimulating hormone (α-MSH) and to an antagonist/inverse agonist, agouti-related peptide (AgRP), which are released by upstream neurons. Binding to α-MSH leads to stimulation of receptor activity and suppression of food intake, whereas AgRP has opposite effects. MC4R cycles constantly between the plasma membrane and endosomes and undergoes agonist-mediated desensitization by being routed to lysosomes. MC4R desensitization and increased AgRP expression are thought to decrease the effectiveness of MC4R agonists as an antiobesity treatment. In this study, α-MSH, instead of being delivered extracellularly, is targeted to the endoplasmic reticulum (ER) of neuronal cells and cultured hypothalamic neurons. We find that the ER-targeted agonist associates with MC4R at this location, is transported to the cell surface, induces constant cAMP and AMP kinase signaling at maximal amplitude, abolishes desensitization of the receptor, and promotes both cell-surface expression and constant signaling by an obesity-linked MC4R variant, I316S, that otherwise is retained in the ER. Formation of the MC4R/agonist complex in the ER stabilizes the receptor in an active conformation that at the cell surface is insensitive to antagonism by AgRP and at the endosomes is refractory to routing to the lysosomes. The data indicate that targeting agonists to the ER can stabilize an active conformation of a G protein-coupled receptor that does not become desensitized, suggesting a target for therapy.
Collapse
|
49
|
Haas M, Ben-Moshe I, Fischer B, Reiser G. Sp-2-propylthio-ATP-α-B and Sp-2-propylthio-ATP-α-B,β-γ-dichloromethylene are novel potent and specific agonists of the human P2Y₁₁ receptor. Biochem Pharmacol 2013; 86:645-55. [PMID: 23810430 DOI: 10.1016/j.bcp.2013.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Abstract
The human P2Y₁₁ nucleotide receptor mRNA was found in virtually all human tissues, and the receptor serves many physiological roles, such as immune response regulation. The Ala-87-Thr-P2Y₁₁ receptor single nucleotide polymorphism was linked to increased risk for acute myocardial infarction. To facilitate the development of new therapeutic applications involving cells expressing several P2 receptor subtypes, the availability of specific and potent agonists is mandatory. Here, we synthesized a series of novel adenine nucleotide derivatives, based upon the potent P2Y₁₁ receptor agonists AR-C67085. Features of the novel nucleotide derivatives are a propylthio substitution at C2-adenine and a Pα-borano or Pα-thio substitution of non-bridging oxygen atom. The latter substitutions introduce a chiral center at the α-phosphate. Sp-isomers of Pα-borano- and Rp-isomers of Pα-thio-substituted nucleotides are preferred by the P2Y₁₁ receptor. As recently reported by us, diastereoselectivity of the P2Y₁₁ receptor is opposite to that of the P2Y₁ receptor. Therefore, we exploit this characteristic to increase nucleotide selectivity. At the P2Y₁₁ receptor, the Sp-isomers of 2-propylthio-ATP-α-B (2B) and 2-propylthio-ATP-α-B,β-γ-dichloromethylene (4B) were the most potent of the novel nucleotide series, with EC₅₀ values of 0.03 μM for both, being ca. 80-fold more potent than 2-propylthio-ATP and ATP (EC₅₀ = 2.6 μM). We conclude that the borano-substitution at the α-phosphate of 2-propylthio-ATP enhances nucleotide potency at the P2Y₁₁ receptor. The combination with a Pβ-Pγ-dichloromethylene group in 4B results in a nucleotide, which shows higher selectivity for the P2Y₁₁ receptor over the P2Y₁₁ receptor than 2B making it the most promising of the novel P2Y₁₁ receptor agonists.
Collapse
Affiliation(s)
- Michael Haas
- Institute for Neurobiochemistry, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | |
Collapse
|
50
|
Weisman GA, Woods LT, Erb L, Seye CI. P2Y receptors in the mammalian nervous system: pharmacology, ligands and therapeutic potential. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2013; 11:722-38. [PMID: 22963441 DOI: 10.2174/187152712803581047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022]
Abstract
P2Y receptors for extracellular nucleotides are coupled to activation of a variety of G proteins and stimulate diverse intracellular signaling pathways that regulate functions of cell types that comprise the central nervous system (CNS). There are 8 different subtypes of P2Y receptor expressed in cells of the CNS that are activated by a select group of nucleotide agonists. Here, the agonist selectivity of these 8 P2Y receptor subtypes is reviewed with an emphasis on synthetic agonists with high potency and resistance to degradation by extracellular nucleotidases that have potential applications as therapeutic agents. In addition, the recent identification of a wide variety of subtype-selective antagonists is discussed, since these compounds are critical for discerning cellular responses mediated by activation of individual P2Y receptor subtypes. The functional expression of P2Y receptor subtypes in cells that comprise the CNS is also reviewed and the role of each subtype in the regulation of physiological and pathophysiological responses is considered. Other topics include the role of P2Y receptors in the regulation of blood-brain barrier integrity and potential interactions between different P2Y receptor subtypes that likely impact tissue responses to extracellular nucleotides in the CNS. Overall, current research suggests that P2Y receptors in the CNS regulate repair mechanisms that are triggered by tissue damage, inflammation and disease and thus P2Y receptors represent promising targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, 540E Life Sciences Center, 1201 Rollins Road, University of Missouri, Columbia, MO 65211-7310, USA.
| | | | | | | |
Collapse
|