1
|
Ehring K, Ehlers SF, Froese J, Gude F, Puschmann J, Grobe K. Two-way Dispatched function in Sonic hedgehog shedding and transfer to high-density lipoproteins. eLife 2024; 12:RP86920. [PMID: 39297609 PMCID: PMC11412720 DOI: 10.7554/elife.86920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.
Collapse
Affiliation(s)
- Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | | | - Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | - Fabian Gude
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | - Janna Puschmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| |
Collapse
|
2
|
Gyimesi M, Oikari LE, Yu C, Sutherland HG, Nyholt DR, Griffiths LR, Van Wijnen AJ, Okolicsanyi RK, Haupt LM. CpG methylation changes in human mesenchymal and neural stem cells in response to in vitro niche modifications. Biochimie 2024; 223:147-157. [PMID: 38640996 DOI: 10.1016/j.biochi.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Stem cell therapies hold promise in addressing the burden of neurodegenerative diseases with human embryonic neural stem cells (hNSC-H9s) and bone marrow-derived human mesenchymal stem cells (hMSCs) as viable candidates. The induction of hMSC neurospheres (hMSC-IN) generate a more lineage-restricted common neural progenitor-like cell population, potentially tunable by heparan sulfate proteoglycans (HSPGs). We examined CpG (5 mC) site methylation patterns using Illumina Infinium 850 K EPIC arrays in hNSC-H9, hMSCs and hMSC-IN cultures with HSPG agonist heparin at early and late phases of growth. We identified key regulatory CpG sites in syndecans (SDC2; SDC4) that potentially regulate gene expression in monolayers. Unique hMSC-IN hypomethylation in glypicans (GPC3; GPC4) underscore their significance in neural lineages with Sulfatase 1 and 2 (SULF1 &2) CpG methylation changes potentially driving the neurogenic shift. hMSC-INs methylation levels at SULF1 CpG sites and SULF2:cg25401628 were more closely aligned with hNSC-H9 cells than with hMSCs. We further suggest SOX2 regulation governed by lncSOX2-Overall Transcript (lncSOX2-OT) methylation changes with preferential activation of ENO2 over other neuronal markers within hMSC-INs. Our findings illuminate epigenetic dynamics governing neural lineage commitment of hMSC-INs offering insights for targeted mechanisms for regenerative medicine and therapeutic strategies.
Collapse
Affiliation(s)
- Martina Gyimesi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Lotta E Oikari
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Chieh Yu
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Heidi G Sutherland
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | | | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia; Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia; Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
3
|
Lee J, Kim Y, Ataliotis P, Kim HG, Kim DW, Bennett DC, Brown NA, Layman LC, Kim SH. Coordination of canonical and noncanonical Hedgehog signalling pathways mediated by WDR11 during primordial germ cell development. Sci Rep 2023; 13:12309. [PMID: 37516749 PMCID: PMC10387110 DOI: 10.1038/s41598-023-38017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2023] Open
Abstract
WDR11, a gene associated with Kallmann syndrome, is important in reproductive system development but molecular understanding of its action remains incomplete. We previously reported that Wdr11-deficient embryos exhibit defective ciliogenesis and developmental defects associated with Hedgehog (HH) signalling. Here we demonstrate that WDR11 is required for primordial germ cell (PGC) development, regulating canonical and noncanonical HH signalling in parallel. Loss of WDR11 disrupts PGC motility and proliferation driven by the cilia-independent, PTCH2/GAS1-dependent noncanonical HH pathway. WDR11 modulates the growth of somatic cells surrounding PGCs by regulating the cilia-dependent, PTCH1/BOC-dependent canonical HH pathway. We reveal that PTCH1/BOC or PTCH2/GAS1 receptor context dictates SMO localisation inside or outside of cilia, respectively, and loss of WDR11 affects the signalling responses of SMO in both situations. We show that GAS1 is induced by PTCH2-specific HH signalling, which is lost in the absence of WDR11. We also provide evidence supporting a role for WDR11 in ciliogenesis through regulation of anterograde intraflagellar transport potentially via its interaction with IFT20. Since WDR11 is a target of noncanonical SMO signalling, WDR11 represents a novel mechanism by which noncanonical and canonical HH signals communicate and cooperate.
Collapse
Affiliation(s)
- Jiyoung Lee
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Kernel Diagnostic Laboratories LTD, London, UK
| | - Yeonjoo Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- The Babraham Institute, Cambridge, UK
| | - Paris Ataliotis
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Institute for Medical and Biomedical Education, St. George's, University of London, London, UK
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Dae-Won Kim
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Nigel A Brown
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Department of Neuroscience and Regenerative Medicine, Department of Physiology, Medical College of Georgia, Augusta University, Augusta, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK.
| |
Collapse
|
4
|
Hedgehog is relayed through dynamic heparan sulfate interactions to shape its gradient. Nat Commun 2023; 14:758. [PMID: 36765094 PMCID: PMC9918555 DOI: 10.1038/s41467-023-36450-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Cellular differentiation is directly determined by concentration gradients of morphogens. As a central model for gradient formation during development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in Drosophila wing and eye discs. What is not known is how extracellular Hh spread is achieved and how it translates into precise gradients. Here we show that two separate binding areas located on opposite sides of the Hh molecule can interact directly and simultaneously with two heparan sulfate (HS) chains to temporarily cross-link the chains. Mutated Hh lacking one fully functional binding site still binds HS but shows reduced HS cross-linking. This, in turn, impairs Hhs ability to switch between both chains in vitro and results in striking Hh gradient hypomorphs in vivo. The speed and propensity of direct Hh switching between HS therefore shapes the Hh gradient, revealing a scalable design principle in morphogen-patterned tissues.
Collapse
|
5
|
Manikowski D, Steffes G, Froese J, Exner S, Ehring K, Gude F, Di Iorio D, Wegner SV, Grobe K. Drosophila hedgehog signaling range and robustness depend on direct and sustained heparan sulfate interactions. Front Mol Biosci 2023; 10:1130064. [PMID: 36911531 PMCID: PMC9992881 DOI: 10.3389/fmolb.2023.1130064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Morphogens determine cellular differentiation in many developing tissues in a concentration dependent manner. As a central model for gradient formation during animal development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in the Drosophila wing disc. Although heparan sulfate (HS) expression in the disc is essential for this process, it is not known whether HS regulates Hh signaling and spread in a direct or in an indirect manner. To answer this question, we systematically screened two composite Hh binding areas for HS in vitro and expressed mutated proteins in the Drosophila wing disc. We found that selectively impaired HS binding of the second site reduced Hh signaling close to the source and caused striking wing mispatterning phenotypes more distant from the source. These observations suggest that HS constrains Hh to the wing disc epithelium in a direct manner, and that interfering with this constriction converts Hh into freely diffusing forms with altered signaling ranges and impaired gradient robustness.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Georg Steffes
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Sebastian Exner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Fabian Gude
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Daniele Di Iorio
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Abstract
Hedgehog (Hh) proteins constitute one family of a small number of secreted signaling proteins that together regulate multiple aspects of animal development, tissue homeostasis and regeneration. Originally uncovered through genetic analyses in Drosophila, their subsequent discovery in vertebrates has provided a paradigm for the role of morphogens in positional specification. Most strikingly, the Sonic hedgehog protein was shown to mediate the activity of two classic embryonic organizing centers in vertebrates and subsequent studies have implicated it and its paralogs in a myriad of processes. Moreover, dysfunction of the signaling pathway has been shown to underlie numerous human congenital abnormalities and diseases, especially certain types of cancer. This review focusses on the genetic studies that uncovered the key components of the Hh signaling system and the subsequent, biochemical, cell and structural biology analyses of their functions. These studies have revealed several novel processes and principles, shedding new light on the cellular and molecular mechanisms underlying cell-cell communication. Notable amongst these are the involvement of cholesterol both in modifying the Hh proteins and in activating its transduction pathway, the role of cytonemes, filipodia-like extensions, in conveying Hh signals between cells; and the central importance of the Primary Cilium as a cellular compartment within which the components of the signaling pathway are sequestered and interact.
Collapse
Affiliation(s)
- Philip William Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
7
|
Wang W, Shiraishi R, Kawauchi D. Sonic Hedgehog Signaling in Cerebellar Development and Cancer. Front Cell Dev Biol 2022; 10:864035. [PMID: 35573667 PMCID: PMC9100414 DOI: 10.3389/fcell.2022.864035] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
The sonic hedgehog (SHH) pathway regulates the development of the central nervous system in vertebrates. Aberrant regulation of SHH signaling pathways often causes neurodevelopmental diseases and brain tumors. In the cerebellum, SHH secreted by Purkinje cells is a potent mitogen for granule cell progenitors, which are the most abundant cell type in the mature brain. While a reduction in SHH signaling induces cerebellar structural abnormalities, such as hypoplasia in various genetic disorders, the constitutive activation of SHH signaling often induces medulloblastoma (MB), one of the most common pediatric malignant brain tumors. Based on the existing literature on canonical and non-canonical SHH signaling pathways, emerging basic and clinical studies are exploring novel therapeutic approaches for MB by targeting SHH signaling at distinct molecular levels. In this review, we discuss the present consensus on SHH signaling mechanisms, their roles in cerebellar development and tumorigenesis, and the recent advances in clinical trials for MB.
Collapse
Affiliation(s)
- Wanchen Wang
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- *Correspondence: Daisuke Kawauchi,
| |
Collapse
|
8
|
Kaushal JB, Batra SK, Rachagani S. Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review. Cell Mol Life Sci 2022; 79:266. [PMID: 35486193 PMCID: PMC9990174 DOI: 10.1007/s00018-022-04233-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Hedgehog (Hh) signaling is evolutionarily conserved and plays an instructional role in embryonic morphogenesis, organogenesis in various animals, and the central nervous system organization. Multiple feedback mechanisms dynamically regulate this pathway in a spatiotemporal and context-dependent manner to confer differential patterns in cell fate determination. Hh signaling is complex due to canonical and non-canonical mechanisms coordinating cell-cell communication. In addition, studies have demonstrated a regulatory framework of Hh signaling and shown that cholesterol is vital for Hh ligand biogenesis, signal generation, and transduction from the cell surface to intracellular space. Studies have shown the importance of a specific cholesterol pool, termed accessible cholesterol, which serves as a second messenger, conveying signals between smoothened (Smo) and patched 1 (Ptch1) across the plasma and ciliary membranes. Remarkably, recent high-resolution structural and molecular studies shed new light on the interplay between Hh signaling and cholesterol in membrane biology. These studies elucidated novel mechanistic insight into the release and dispersal of cholesterol-anchored Hh and the basis of Hh recognition by Ptch1. Additionally, the putative model of Smo activation by cholesterol binding and/or modification and Ptch1 antagonization of Smo has been explicated. However, the coupling mechanism of Hh signaling and cholesterol offered a new regulatory principle in cell biology: how effector molecules of the Hh signal network react to and remodel cholesterol accessibility in the membrane and selectively activate Hh signaling proteins thereof. Recognizing the biological importance of cholesterol in Hh signaling activation and transduction opens the door for translational research to develop novel therapeutic strategies. This review looks in-depth at canonical and non-canonical Hh signaling and the distinct proposed model of cholesterol-mediated regulation of Hh signaling components, facilitating a more sophisticated understanding of the Hh signal network and cholesterol biology.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
9
|
A SURF4-to-proteoglycan relay mechanism that mediates the sorting and secretion of a tagged variant of sonic hedgehog. Proc Natl Acad Sci U S A 2022; 119:e2113991119. [PMID: 35271396 PMCID: PMC8931250 DOI: 10.1073/pnas.2113991119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SignificanceSonic Hedgehog (Shh) is a key signaling molecule that plays important roles in embryonic patterning, cell differentiation, and organ development. Although fundamentally important, the molecular mechanisms that regulate secretion of newly synthesized Shh are still unclear. Our study reveals a role for the cargo receptor, SURF4, in facilitating export of Shh from the endoplasmic reticulum (ER) via a ER export signal. In addition, our study provides evidence suggesting that proteoglycans promote the dissociation of SURF4 from Shh at the Golgi, suggesting a SURF4-to-proteoglycan relay mechanism. These analyses provide insight into an important question in cell biology: how do cargo receptors capture their clients in one compartment, then disengage at their destination?
Collapse
|
10
|
Dispatching plasma membrane cholesterol and Sonic Hedgehog dispatch: two sides of the same coin? Biochem Soc Trans 2021; 49:2455-2463. [PMID: 34515747 PMCID: PMC8589413 DOI: 10.1042/bst20210918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Vertebrate and invertebrate Hedgehog (Hh) morphogens signal over short and long distances to direct cell fate decisions during development and to maintain tissue homeostasis after birth. One of the most important questions in Hh biology is how such Hh signaling to distant target cells is achieved, because all Hh proteins are secreted as dually lipidated proteins that firmly tether to the outer plasma membrane leaflet of their producing cells. There, Hhs multimerize into light microscopically visible storage platforms that recruit factors required for their regulated release. One such recruited release factor is the soluble glycoprotein Scube2 (Signal sequence, cubulin domain, epidermal-growth-factor-like protein 2), and maximal Scube2 function requires concomitant activity of the resistance-nodulation-division (RND) transporter Dispatched (Disp) at the plasma membrane of Hh-producing cells. Although recently published cryo-electron microscopy-derived structures suggest possible direct modes of Scube2/Disp-regulated Hh release, the mechanism of Disp-mediated Hh deployment is still not fully understood. In this review, we discuss suggested direct modes of Disp-dependent Hh deployment and relate them to the structural similarities between Disp and the related RND transporters Patched (Ptc) and Niemann-Pick type C protein 1. We then discuss open questions and perspectives that derive from these structural similarities, with particular focus on new findings that suggest shared small molecule transporter functions of Disp to deplete the plasma membrane of cholesterol and to modulate Hh release in an indirect manner.
Collapse
|
11
|
Manikowski D, Ehring K, Gude F, Jakobs P, Froese J, Grobe K. Hedgehog lipids: Promotors of alternative morphogen release and signaling?: Conflicting findings on lipidated Hedgehog transport and signaling can be explained by alternative regulated mechanisms to release the morphogen. Bioessays 2021; 43:e2100133. [PMID: 34611914 DOI: 10.1002/bies.202100133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
Two posttranslational lipid modifications present on all Hedgehog (Hh) morphogens-an N-terminal palmitate and a C-terminal cholesterol-are established and essential regulators of Hh biofunction. Yet, for several decades, the question of exactly how both lipids contribute to Hh signaling remained obscure. Recently, cryogenic electron microscopy revealed different modes by which one or both lipids may contribute directly to Hh binding and signaling to its receptor Patched1 (Ptc). Some of these modes demand that the established release factor Dispatched1 (Disp) extracts dual-lipidated Hh from the cell surface, and that another known upstream signaling modulator called Scube2 chaperones the dual-lipidated morphogen to Ptc. By mechanistically and biochemically aligning this concept with established in vivo and recent in vitro findings, this reflection identifies remaining questions in lipidated Hh transport and evaluates additional mechanisms of Disp- and Scube2-regulated release of a second bioactive Hh fraction that has one or both lipids removed.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Fabian Gude
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| |
Collapse
|
12
|
Pakvasa M, Tucker AB, Shen T, He TC, Reid RR. The Pleiotropic Intricacies of Hedgehog Signaling: From Craniofacial Patterning to Carcinogenesis. FACE (THOUSAND OAKS, CALIF.) 2021; 2:260-274. [PMID: 35812774 PMCID: PMC9268505 DOI: 10.1177/27325016211024326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hedgehog signaling was discovered more than 40 years ago in experiments demonstrating that it is a fundamental mediator of limb development. Since that time, it has been shown to be important in development, homeostasis, and disease. The hedgehog pathway proceeds through a pathway highly conserved throughout animals beginning with the extracellular diffusion of hedgehog ligands, proceeding through an intracellular signaling cascade, and ending with the activation of specific target genes. A vast amount of research has been done elucidating hedgehog signaling mechanisms and regulation. This research has found a complex system of genetics and signaling that helps determine how organisms develop and function. This review provides an overview of what is known about hedgehog genetics and signaling, followed by an in-depth discussion of the role of hedgehog signaling in craniofacial development and carcinogenesis.
Collapse
Affiliation(s)
- Mikhail Pakvasa
- Pritzker School of Medicine, University of Chicago, Chicago, IL USA
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
| | - Andrew B. Tucker
- Pritzker School of Medicine, University of Chicago, Chicago, IL USA
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
| | - Timothy Shen
- Pritzker School of Medicine, University of Chicago, Chicago, IL USA
| | - Tong-Chuan He
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
| | - Russell R. Reid
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
- Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, IL
| |
Collapse
|
13
|
From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development. Int J Mol Sci 2021; 22:ijms22179141. [PMID: 34502050 PMCID: PMC8431582 DOI: 10.3390/ijms22179141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.
Collapse
|
14
|
Association of Sonic Hedgehog with the extracellular matrix requires its zinc-coordination center. BMC Mol Cell Biol 2021; 22:22. [PMID: 33863273 PMCID: PMC8052667 DOI: 10.1186/s12860-021-00359-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Sonic Hedgehog (Shh) has a catalytic cleft characteristic for zinc metallopeptidases and has significant sequence similarities with some bacterial peptidoglycan metallopeptidases defining a subgroup within the M15A family that, besides having the characteristic zinc coordination motif, can bind two calcium ions. Extracellular matrix (ECM) components in animals include heparan-sulfate proteoglycans, which are analogs of bacterial peptidoglycan and are involved in the extracellular distribution of Shh. Results We found that the zinc-coordination center of Shh is required for its association to the ECM as well as for non-cell autonomous signaling. Association with the ECM requires the presence of at least 0.1 μM zinc and is prevented by mutations affecting critical conserved catalytical residues. Consistent with the presence of a conserved calcium binding domain, we find that extracellular calcium inhibits ECM association of Shh. Conclusions Our results indicate that the putative intrinsic peptidase activity of Shh is required for non-cell autonomous signaling, possibly by enzymatically altering ECM characteristics. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00359-5.
Collapse
|
15
|
Anusha, Dalal H, Subramanian S, V P S, Gowda DA, H K, Damodar S, Vyas N. Exovesicular-Shh confers Imatinib resistance by upregulating Bcl2 expression in chronic myeloid leukemia with variant chromosomes. Cell Death Dis 2021; 12:259. [PMID: 33707419 PMCID: PMC7952724 DOI: 10.1038/s41419-021-03542-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/29/2023]
Abstract
Chronic myeloid leukemia (CML) patients with complex chromosomal translocations as well as non-compliant CML patients often demonstrate short-lived responses and poor outcomes on the current therapeutic regimes using Imatinib and its variants. It has been derived so far that leukemic stem cells (LSCs) are responsible for Imatinib resistance and CML progression. Sonic hedgehog (Shh) signaling has been implicated in proliferation of this Imatinib-resistant CD34(+) LSCs. Our work here identifies the molecular mechanism of Shh-mediated mutation-independent Imatinib resistance that is most relevant for treating CML-variants and non-compliant patients. Our results elucidate that while Shh can impart stemness, it also upregulates expression of anti-apoptotic protein—Bcl2. It is the upregulation of Bcl2 that is involved in conferring Imatinib resistance to the CD34(+) LSCs. Sub-toxic doses of Bcl2 inhibitor or Shh inhibitor (<<IC50), when used as adjuvants along with Imatinib, can re-sensitize Shh signaling cells to Imatinib. Our work here highlights the need to molecularly stratify CML patients and implement combinatorial therapy to overcome the current limitations and improve outcomes in CML.
Collapse
Affiliation(s)
- Anusha
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.,St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Hamza Dalal
- Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, 560099, India
| | - Sitalakshmi Subramanian
- St. John's Medical College and Hosptial, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Snijesh V P
- St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Divya A Gowda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Krishnamurthy H
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Sharat Damodar
- Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, 560099, India.
| | - Neha Vyas
- St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India.
| |
Collapse
|
16
|
Ma SKY, Chan ASF, Rubab A, Chan WCW, Chan D. Extracellular Matrix and Cellular Plasticity in Musculoskeletal Development. Front Cell Dev Biol 2020; 8:781. [PMID: 32984311 PMCID: PMC7477050 DOI: 10.3389/fcell.2020.00781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular plasticity refers to the ability of cell fates to be reprogrammed given the proper signals, allowing for dedifferentiation or transdifferentiation into different cell fates. In vitro, this can be induced through direct activation of gene expression, however this process does not naturally occur in vivo. Instead, the microenvironment consisting of the extracellular matrix (ECM) and signaling factors, directs the signals presented to cells. Often the ECM is involved in regulating both biochemical and mechanical signals. In stem cell populations, this niche is necessary for maintenance and proper function of the stem cell pool. However, recent studies have demonstrated that differentiated or lineage restricted cells can exit their current state and transform into another state under different situations during development and regeneration. This may be achieved through (1) cells responding to a changing niche; (2) cells migrating and encountering a new niche; and (3) formation of a transitional niche followed by restoration of the homeostatic niche to sequentially guide cells along the regenerative process. This review focuses on examples in musculoskeletal biology, with the concept of ECM regulating cells and stem cells in development and regeneration, extending beyond the conventional concept of small population of progenitor cells, but under the right circumstances even “lineage-restricted” or differentiated cells can be reprogrammed to enter into a different fate.
Collapse
Affiliation(s)
- Sophia Ka Yan Ma
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Aqsa Rubab
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson Cheuk Wing Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,Department of Orthopedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
17
|
Kahane N, Kalcheim C. Neural tube development depends on notochord-derived sonic hedgehog released into the sclerotome. Development 2020; 147:dev183996. [PMID: 32345743 PMCID: PMC7272346 DOI: 10.1242/dev.183996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
Sonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in the sclerotome using a membrane-tethered hedgehog-interacting protein or Patched1, but not dominant active Patched, decreased the number of Olig2+ motoneuron progenitors and Hb9+ motoneurons without a significant effect on cell survival or proliferation. These effects were a specific and direct consequence of Shh reduction in the mesoderm. In addition, grafting notochords in a basal but not apical location, vis-à-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface. Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates the development of mesodermal and neural progenitors.
Collapse
Affiliation(s)
- Nitza Kahane
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, P.O. Box 12272, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, P.O. Box 12272, Israel
| |
Collapse
|
18
|
Guo W, Roelink H. Loss of the Heparan Sulfate Proteoglycan Glypican5 Facilitates Long-Range Sonic Hedgehog Signaling. Stem Cells 2019; 37:899-909. [PMID: 30977233 PMCID: PMC8491322 DOI: 10.1002/stem.3018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
As a morphogen, Sonic Hedgehog (Shh) mediates signaling at a distance from its sites of synthesis. After secretion, Shh must traverse a distance through the extracellular matrix (ECM) to reach the target cells and activate the Hh response. ECM proteins, in particular, the heparan sulfate proteoglycans (HSPGs) of the glypican family, have both negative and positive effects on Shh signaling, all attributed to their ability to bind Shh. Using mouse embryonic stem cell-derived mosaic tissues with compartments that lack the glycosyltransferases Exostosin1 and Exostosin2, or the HSPG core protein Glypican5, we show that Shh accumulates around its source cells when they are surrounded by cells that have a mutated ECM. This accumulation of Shh is correlated with an increased noncell autonomous Shh response. Our results support a model in which Shh presented on the cell surface accumulates at or near ECM that lacks HSPGs, possibly due to the absence of these Shh sequestering molecules. Stem Cells 2019;37:899-909.
Collapse
Affiliation(s)
- Wei Guo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | - Henk Roelink
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
19
|
Manikowski D, Jakobs P, Jboor H, Grobe K. Soluble Heparin and Heparan Sulfate Glycosaminoglycans Interfere with Sonic Hedgehog Solubilization and Receptor Binding. Molecules 2019; 24:molecules24081607. [PMID: 31018591 PMCID: PMC6526471 DOI: 10.3390/molecules24081607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/24/2022] Open
Abstract
Sonic hedgehog (Shh) signaling plays a tumor-promoting role in many epithelial cancers. Cancer cells produce soluble a Shh that signals to distant stromal cells that express the receptor Patched (Ptc). These receiving cells respond by producing other soluble factors that promote cancer cell growth, generating a positive feedback loop. To interfere with reinforced Shh signaling, we examined the potential of defined heparin and heparan sulfate (HS) polysaccharides to block Shh solubilization and Ptc receptor binding. We confirm in vitro and in vivo that proteolytic cleavage of the N-terminal Cardin-Weintraub (CW) amino acid motif is a prerequisite for Shh solubilization and function. Consistent with the established binding of soluble heparin or HS to the Shh CW target motif, both polysaccharides impaired proteolytic Shh processing and release from source cells. We also show that HS and heparin bind to, and block, another set of basic amino acids required for unimpaired Shh binding to Ptc receptors on receiving cells. Both modes of Shh activity downregulation depend more on HS size and overall charge than on specific HS sulfation modifications. We conclude that heparin oligosaccharide interference in the physiological roles of HS in Shh release and reception may be used to expand the field of investigation to pharmaceutical intervention of tumor-promoting Shh functions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Binding, Competitive
- Cell Line, Tumor
- Drosophila Proteins/antagonists & inhibitors
- Drosophila Proteins/chemistry
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/metabolism
- Embryo, Nonmammalian
- Feedback, Physiological
- Gene Expression Regulation, Developmental
- HeLa Cells
- Hedgehog Proteins/antagonists & inhibitors
- Hedgehog Proteins/chemistry
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Heparin/chemistry
- Heparin/pharmacology
- Heparitin Sulfate/chemistry
- Heparitin Sulfate/pharmacology
- Humans
- Models, Molecular
- Patched-1 Receptor/genetics
- Patched-1 Receptor/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
- Solubility
- Wings, Animal/growth & development
- Wings, Animal/metabolism
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| | - Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| | - Hamodah Jboor
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
20
|
Specification of positional identity in forebrain organoids. Nat Biotechnol 2019; 37:436-444. [PMID: 30936566 PMCID: PMC6447454 DOI: 10.1038/s41587-019-0085-3] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/22/2019] [Indexed: 01/28/2023]
Abstract
Human brain organoids generated with current technologies recapitulate histological features of the human brain, but they lack a reproducible topographic organization. During development, spatial topography is determined by gradients of signaling molecules released from discrete signaling centers. We hypothesized that introduction of a signaling center into forebrain organoids would specify the positional identity of neural tissue in a distance-dependent manner. Here, we present a system to trigger a sonic hedgehog (SHH) protein gradient in developing forebrain organoids that enables ordered self-organization along dorso-ventral and antero-posterior positional axes. SHH-patterned forebrain organoids establish major forebrain subdivisions that are positioned with in vivo-like topography. Consistent with its behavior in vivo, SHH exhibits long-range signaling activity in organoids. Finally, we use SHH-patterned cerebral organoids as a tool to study the role of cholesterol metabolism in SHH signaling. Together, this work identifies inductive signaling as an effective organizing strategy to recapitulate in vivo-like topography in human brain organoids.
Collapse
|
21
|
Kastl P, Manikowski D, Steffes G, Schürmann S, Bandari S, Klämbt C, Grobe K. Disrupting Hedgehog Cardin-Weintraub sequence and positioning changes cellular differentiation and compartmentalization in vivo. Development 2018; 145:145/18/dev167221. [PMID: 30242104 DOI: 10.1242/dev.167221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022]
Abstract
Metazoan Hedgehog (Hh) morphogens are essential regulators of growth and patterning at significant distances from their source, despite being produced as N-terminally palmitoylated and C-terminally cholesteroylated proteins, which firmly tethers them to the outer plasma membrane leaflet of producing cells and limits their spread. One mechanism to overcome this limitation is proteolytic processing of both lipidated terminal peptides, called shedding, but molecular target site requirements for effective Hh shedding remained undefined. In this work, by using Drosophila melanogaster as a model, we show that mutagenesis of the N-terminal Cardin-Weintraub (CW) motif inactivates recombinant Hh proteins to variable degrees and, if overexpressed in the same compartment, converts them into suppressors of endogenous Hh function. In vivo, additional removal of N-palmitate membrane anchors largely restored endogenous Hh function, supporting the hypothesis that proteolytic CW processing controls Hh solubilization. Importantly, we also observed that CW repositioning impairs anterior/posterior compartmental boundary maintenance in the third instar wing disc. This demonstrates that Hh shedding not only controls the differentiation of anterior cells, but also maintains the sharp physical segregation between these receiving cells and posterior Hh-producing cells.
Collapse
Affiliation(s)
- Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Georg Steffes
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Shyam Bandari
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Christian Klämbt
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
22
|
Schürmann S, Steffes G, Manikowski D, Kastl P, Malkus U, Bandari S, Ohlig S, Ortmann C, Rebollido-Rios R, Otto M, Nüsse H, Hoffmann D, Klämbt C, Galic M, Klingauf J, Grobe K. Proteolytic processing of palmitoylated Hedgehog peptides specifies the 3-4 intervein region of the Drosophila wing. eLife 2018. [PMID: 29522397 PMCID: PMC5844694 DOI: 10.7554/elife.33033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell fate determination during development often requires morphogen transport from producing to distant responding cells. Hedgehog (Hh) morphogens present a challenge to this concept, as all Hhs are synthesized as terminally lipidated molecules that form insoluble clusters at the surface of producing cells. While several proposed Hh transport modes tie directly into these unusual properties, the crucial step of Hh relay from producing cells to receptors on remote responding cells remains unresolved. Using wing development in Drosophila melanogaster as a model, we show that Hh relay and direct patterning of the 3–4 intervein region strictly depend on proteolytic removal of lipidated N-terminal membrane anchors. Site-directed modification of the N-terminal Hh processing site selectively eliminated the entire 3–4 intervein region, and additional targeted removal of N-palmitate restored its formation. Hence, palmitoylated membrane anchors restrict morphogen spread until site-specific processing switches membrane-bound Hh into bioactive forms with specific patterning functions. Each cell in a developing embryo receives information that determines what type of body structure it will form. In fruit flies, this information is partly given by a protein called Hedgehog. In the embryo cells that receive it, Hedgehog can trigger a series of events which activate certain genes and thereby regulate structure formation. The Hedgehog proteins are produced by a different organizing group of cells: from there they transport within the embryo, creating a gradient. Depending on where a responding cell is in the embryo, it receives a different amount of Hedgehog, which gives the cell its identity. For example, Hedgehog proteins form a gradient across a fruit fly’s developing wing, which creates a visible vein pattern. How Hedgehog proteins form gradients is enigmatic, however, because once produced, they cling to the cells that created them. The reason for this unusual behavior is that the two ends of the Hedgehog protein are attached to a different fat molecule. In particular, one extremity is linked to a fat molecule called palmitate. These ends’ fatty additions anchor Hedgehog to the cells that produced them. Then, the tethered proteins gather together to form chain-like clusters where they inactivate each other: the extremity with the palmitate ‘hides’ the portion of the neighboring protein that binds to the receiving cells. It is still unclear how Hedgehog can be activated and released to reach these faraway cells. One hypothesis is that an enzyme comes to the clusters and frees the proteins by cutting both of Hedgehog’s fatty anchors. Thanks to how the palmitate tethers Hedgehog to the cell, the protein is positioned in such a way that when the enzyme makes its snip, the binding site on the neighboring Hedgehog gets exposed: this protein is activated and, when also cut by the enzyme, released. Here, Schürmann et al. create an array of mutant Hedgehog proteins – for example some without palmitate, some with palmitate that cannot be removed by the enzyme – and study how they affect the development of the wing’s pattern in the fruit fly. Coupled with the imaging of the clusters, these experiments support the hypothesis that the palmitate anchor is necessary so that Hedgehog proteins can be turned on before diffusing away. The Hedgehog family of proteins is also present in humans, where it presides over the development of the embryo but is also involved in cancer. Understanding how Hedgehog works in the fruit fly could lead to new discoveries in humans too.
Collapse
Affiliation(s)
- Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Georg Steffes
- Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.,Institute of Neurobiology, University of Münster, Münster, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Ursula Malkus
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Shyam Bandari
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Stefanie Ohlig
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Corinna Ortmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | | | - Mandy Otto
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Daniel Hoffmann
- Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Münster, Germany
| | - Milos Galic
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| |
Collapse
|
23
|
Parchure A, Vyas N, Mayor S. Wnt and Hedgehog: Secretion of Lipid-Modified Morphogens. Trends Cell Biol 2018; 28:157-170. [PMID: 29132729 PMCID: PMC6941938 DOI: 10.1016/j.tcb.2017.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/07/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
Morphogens are signaling molecules produced by a localized source, specifying cell fate in a graded manner. The source secretes morphogens into the extracellular milieu to activate various target genes in an autocrine or paracrine manner. Here we describe various secreted forms of two canonical morphogens, the lipid-anchored Hedgehog (Hh) and Wnts, indicating the involvement of multiple carriers in the transport of these morphogens. These different extracellular secreted forms are likely to have distinct functions. Here we evaluate newly identified mechanisms that morphogens use to traverse the required distance to activate discrete paracrine signaling.
Collapse
Affiliation(s)
- Anup Parchure
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India; Current address: Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Neha Vyas
- St John's Research Institute, St John's National Academy of Health Sciences, Bangalore 560034, India.
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India.
| |
Collapse
|
24
|
Manikowski D, Kastl P, Grobe K. Taking the Occam's Razor Approach to Hedgehog Lipidation and Its Role in Development. J Dev Biol 2018; 6:jdb6010003. [PMID: 29615552 PMCID: PMC5875562 DOI: 10.3390/jdb6010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/01/2023] Open
Abstract
All Hedgehog (Hh) proteins signal from producing cells to distant receiving cells despite being synthesized as N-and C-terminally lipidated, membrane-tethered molecules. To explain this paradoxical situation, over the past 15 years, several hypotheses have been postulated that tie directly into this property, such as Hh transport on cellular extensions called cytonemes or on secreted vesicles called lipophorins and exosomes. The alternative situation that tight membrane association merely serves to prevent unregulated Hh solubilization has been addressed by biochemical and structural studies suggesting Hh extraction from the membrane or proteolytic Hh release. While some of these models may act in different organisms, tissues or developmental programs, others may act together to specify Hh short- and long-range signaling in the same tissues. To test and rank these possibilities, we here review major models of Hh release and transport and hypothesize that the (bio)chemical and physical properties of firmly established, homologous, and functionally essential biochemical Hh modifications are adapted to specify and determine interdependent steps of Hh release, transport and signaling, while ruling out other steps. This is also described by the term “congruence”, meaning that the logical combination of biochemical Hh modifications can reveal their true functional implications. This combined approach reveals potential links between models of Hh release and transport that were previously regarded as unrelated, thereby expanding our view of how Hhs can steer development in a simple, yet extremely versatile, manner.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| | - Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
25
|
He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet 2017; 13:e1006992. [PMID: 28859094 PMCID: PMC5597256 DOI: 10.1371/journal.pgen.1006992] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/13/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The tree-like structure of the mammalian lung is generated from branching morphogenesis, a reiterative process that is precisely regulated by numerous factors. How the cell surface and extra cellular matrix (ECM) molecules regulate this process is still poorly understood. Herein, we show that epithelial deletion of Heparan Sulfate (HS) synthetase Ext1 resulted in expanded branching tips and reduced branching number, associated with several mesenchymal developmental defects. We further demonstrate an expanded Fgf10 expression and increased FGF signaling activity in Ext1 mutant lungs, suggesting a cell non-autonomous mechanism. Consistent with this, we observed reduced levels of SHH signaling which is responsible for suppressing Fgf10 expression. Moreover, reactivating SHH signaling in mutant lungs rescued the tip dilation phenotype and attenuated FGF signaling. Importantly, the reduced SHH signaling activity did not appear to be caused by decreased Shh expression or protein stability; instead, biologically active form of SHH proteins were reduced in both the Ext1 mutant epithelium and surrounding wild type mesenchymal cells. Together, our study highlights the epithelial HS as a key player for dictating SHH signaling critical for lung morphogenesis.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meina Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shenfei Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- * E-mail: ,
| |
Collapse
|
26
|
Jakobs P, Schulz P, Schürmann S, Niland S, Exner S, Rebollido-Rios R, Manikowski D, Hoffmann D, Seidler DG, Grobe K. Ca 2+ coordination controls sonic hedgehog structure and its Scube2-regulated release. J Cell Sci 2017; 130:3261-3271. [PMID: 28778988 DOI: 10.1242/jcs.205872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Proteolytic processing of cell-surface-bound ligands, called shedding, is a fundamental system to control cell-cell signaling. Yet, our understanding of how shedding is regulated is still incomplete. One way to increase the processing of dual-lipidated membrane-associated Sonic hedgehog (Shh) is to increase the density of substrate and sheddase. This releases and also activates Shh by the removal of lipidated inhibitory N-terminal peptides from Shh receptor binding sites. Shh release and activation is enhanced by Scube2 [signal sequence, cubulin (CUB) domain, epidermal growth factor (EGF)-like protein 2], raising the question of how this is achieved. Here, we show that Scube2 EGF domains are responsible for specific proteolysis of the inhibitory Shh N-terminus, and that CUB domains complete the process by reversing steric masking of this peptide. Steric masking, in turn, depends on Ca2+ occupancy of Shh ectodomains, unveiling a new mode of shedding regulation at the substrate level. Importantly, Scube2 uncouples processing of Shh peptides from their lipid-mediated juxtamembrane positioning, and thereby explains the long-standing conundrum that N-terminally unlipidated Shh shows patterning activity in Scube2-expressing vertebrates, but not in invertebrates that lack Scube orthologs.
Collapse
Affiliation(s)
- Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Philipp Schulz
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sebastian Exner
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Rocio Rebollido-Rios
- Center for Medical Biotechnology, University of Duisburg-Essen, D-45117 Essen, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Daniel Hoffmann
- Center for Medical Biotechnology, University of Duisburg-Essen, D-45117 Essen, Germany
| | - Daniela G Seidler
- Centre for Internal Medicine, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School I3, EB2/R3110, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
27
|
Himmelstein DS, Cajigas I, Bi C, Clark BS, Van Der Voort G, Kohtz JD. SHH E176/E177-Zn 2+ conformation is required for signaling at endogenous sites. Dev Biol 2017; 424:221-235. [PMID: 28263766 PMCID: PMC6047533 DOI: 10.1016/j.ydbio.2017.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/14/2017] [Accepted: 02/13/2017] [Indexed: 12/16/2022]
Abstract
Sonic hedgehog (SHH) is a master developmental regulator. In 1995, the SHH crystal structure predicted that SHH-E176 (human)/E177 (mouse) regulates signaling through a Zn2+-dependent mechanism. While Zn2+ is known to be required for SHH protein stability, a regulatory role for SHH-E176 or Zn2+ has not been described. Here, we show that SHH-E176/177 modulates Zn2+-dependent cross-linking in vitro and is required for endogenous signaling, in vivo. While ectopically expressed SHH-E176A is highly active, mice expressing SHH-E177A at endogenous sites (ShhE177A/-) are morphologically indistinguishable from mice lacking SHH (Shh-/-), with patterning defects in both embryonic spinal cord and forebrain. SHH-E177A distribution along the embryonic spinal cord ventricle is unaltered, suggesting that E177 does not control long-range transport. While SHH-E177A association with cilia basal bodies increases in embryonic ventral spinal cord, diffusely distributed SHH-E177A is not detected. Together, these results reveal a novel role for E177-Zn2+ in regulating SHH signaling that may involve critical, cilia basal-body localized changes in cross-linking and/or conformation.
Collapse
Affiliation(s)
- Diana S Himmelstein
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Developmental Biology, Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Ivelisse Cajigas
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Developmental Biology, Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Chunming Bi
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Developmental Biology, Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Brian S Clark
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Developmental Biology, Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Grant Van Der Voort
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Developmental Biology, Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Jhumku D Kohtz
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Developmental Biology, Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA.
| |
Collapse
|
28
|
Simon E, Aguirre-Tamaral A, Aguilar G, Guerrero I. Perspectives on Intra- and Intercellular Trafficking of Hedgehog for Tissue Patterning. J Dev Biol 2016; 4:jdb4040034. [PMID: 29615597 PMCID: PMC5831803 DOI: 10.3390/jdb4040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Intercellular communication is a fundamental process for correct tissue development. The mechanism of this process involves, among other things, the production and secretion of signaling molecules by specialized cell types and the capability of these signals to reach the target cells in order to trigger specific responses. Hedgehog (Hh) is one of the best-studied signaling pathways because of its importance during morphogenesis in many organisms. The Hh protein acts as a morphogen, activating its targets at a distance in a concentration-dependent manner. Post-translational modifications of Hh lead to a molecule covalently bond to two lipid moieties. These lipid modifications confer Hh high affinity to lipidic membranes, and intense studies have been carried out to explain its release into the extracellular matrix. This work reviews Hh molecule maturation, the intracellular recycling needed for its secretion and the proposed carriers to explain Hh transportation to the receiving cells. Special focus is placed on the role of specialized filopodia, also named cytonemes, in morphogen transport and gradient formation.
Collapse
Affiliation(s)
- Eléanor Simon
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Adrián Aguirre-Tamaral
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Gustavo Aguilar
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Isabel Guerrero
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
29
|
Mercier F. Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cell Mol Life Sci 2016; 73:4661-4674. [PMID: 27475964 PMCID: PMC11108427 DOI: 10.1007/s00018-016-2314-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/22/2016] [Accepted: 07/21/2016] [Indexed: 12/18/2022]
Abstract
The stem cell niche refers to a specific microenvironment where stem cells proliferate and differentiate to produce new specialized cells throughout an organism's adulthood. Growth factors are crucial signaling molecules that diffuse through the extracellular space, reach the stem cell niche, and ultimately promote stem cell proliferation and differentiation. However, it is not well known how multiple growth factors, often with antagonistic activities, work together in the stem cell niche to select target stem cell populations and determine stem cell fate. There is accumulating evidence suggesting that extracellular matrix (ECM) molecules play an important role in promoting growth factor access and activity in the stem cell niche. In the adult brain neurogenic zone, where neural stem cells (NSCs) reside, there exist specialized ECM structures, which we have named fractones. The processes of NSC allow them to come into contact with fractones and interact with its individual components, which include heparan sulfate proteoglycans (HSPGs) and laminins. We have demonstrated that fractone-associated HSPGs bind growth factors and regulate NSC proliferation in the neurogenic zone. Moreover, emerging results show that fractones are structurally altered in animal models with autism and adult hydrocephalus, as demonstrated by changes in fractone size, quantity, or HSPG content. Interestingly, ECM structures similar to fractones have been found throughout β-amyloid plaques in the brain of patients with Alzheimer's disease. Pathological fractones may cause imbalances in growth factor activity and impair neurogenesis, leading to inflammation and disorder. Generally speaking, these stem cell niche structures play a potentially vital role in controlling growth factor activity during both health and disease.
Collapse
Affiliation(s)
- Frederic Mercier
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
30
|
Kawahara R, Granato DC, Yokoo S, Domingues RR, Trindade DM, Paes Leme AF. Mass spectrometry-based proteomics revealed Glypican-1 as a novel ADAM17 substrate. J Proteomics 2016; 151:53-65. [PMID: 27576135 DOI: 10.1016/j.jprot.2016.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/02/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022]
Abstract
ADAM17 (a disintegrin and metalloproteinase 17) is a plasma membrane metalloprotease involved in proteolytic release of the extracellular domain of many cell surface molecules, a process known as ectodomain shedding. Through this process, ADAM17 is implicated in several aspects of tumor growth and metastasis in a broad range of tumors, including head and neck squamous cell carcinomas (HNSCC). In this study, mass spectrometry-based proteomics approaches revealed glypican-1 (GPC1) as a new substrate for ADAM17, and its shedding was confirmed to be metalloprotease-dependent, induced by a pleiotropic agent (PMA) and physiologic ligand (EGF), and inhibited by marimastat. In addition, immunoblotting analysis of GPC1 in the extracellular media from control and ADAM17shRNA pointed to a direct involvement of ADAM17 in the cleavage of GPC1. Moreover, mass spectrometry-based interactome analysis of GPC1 revealed biological functions and pathways related mainly to cellular movement, adhesion and proliferation, which were events also modulated by up regulation of full length and cleavage GPC1. Altogether, we showed that GPC1 is a novel ADAM17 substrate, thus the function of GPC1 may be modulated by proteolysis signaling. BIOLOGICAL SIGNIFICANCE Inhibition of metalloproteases as a therapeutic approach has failed because there is limited knowledge of the degradome of individual proteases as well as the cellular function of cleaved substrates. Using different proteomic techniques, this study uncovered novel substrates that can be modulated by ADAM17 in oral squamous cell carcinoma cell line. Glypican-1 was validated as a novel substrate for ADAM17, with important function in adhesion, proliferation and migration of carcinoma cells. Therefore, this study opens new avenues regarding the proteolysis-mediated function of GPC1 by ADAM17.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | | | - Sami Yokoo
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | | | | | | |
Collapse
|
31
|
Jakobs P, Schulz P, Ortmann C, Schürmann S, Exner S, Rebollido-Rios R, Dreier R, Seidler DG, Grobe K. Bridging the gap: heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells. Sci Rep 2016; 6:26435. [PMID: 27199253 PMCID: PMC4873810 DOI: 10.1038/srep26435] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022] Open
Abstract
Decision making in cellular ensembles requires the dynamic release of signaling molecules from the producing cells into the extracellular compartment. One important example of molecules that require regulated release in order to signal over several cell diameters is the Hedgehog (Hh) family, because all Hhs are synthesized as dual-lipidated proteins that firmly tether to the outer membrane leaflet of the cell that produces them. Factors for the release of the vertebrate Hh family member Sonic Hedgehog (Shh) include cell-surface sheddases that remove the lipidated terminal peptides, as well as the soluble glycoprotein Scube2 that cell-nonautonomously enhances this process. This raises the question of how soluble Scube2 is recruited to cell-bound Shh substrates to regulate their turnover. We hypothesized that heparan sulfate (HS) proteoglycans (HSPGs) on the producing cell surface may play this role. In this work, we confirm that HSPGs enrich Scube2 at the surface of Shh-producing cells and that Scube2-regulated proteolytic Shh processing and release depends on specific HS. This finding indicates that HSPGs act as cell-surface assembly and storage platforms for Shh substrates and for protein factors required for their release, making HSPGs critical decision makers for Scube2-dependent Shh signaling from the surface of producing cells.
Collapse
Affiliation(s)
- P Jakobs
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - P Schulz
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - C Ortmann
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - S Schürmann
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - S Exner
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - R Rebollido-Rios
- Center for Medical Biotechnology#, University of Duisburg-Essen, 45117 Essen, Germany
| | - R Dreier
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - D G Seidler
- Centre for Internal Medicine, Hannover Medical School I3, EB2/R3110, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - K Grobe
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| |
Collapse
|
32
|
Gallagher J. Fell-Muir Lecture: Heparan sulphate and the art of cell regulation: a polymer chain conducts the protein orchestra. Int J Exp Pathol 2015; 96:203-31. [PMID: 26173450 PMCID: PMC4561558 DOI: 10.1111/iep.12135] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Heparan sulphate (HS) sits at the interface of the cell and the extracellular matrix. It is a member of the glycosaminoglycan family of anionic polysaccharides with unique structural features designed for protein interaction and regulation. Its client proteins include soluble effectors (e.g. growth factors, morphogens, chemokines), membrane receptors and cell adhesion proteins such as fibronectin, fibrillin and various types of collagen. The protein-binding properties of HS, together with its strategic positioning in the pericellular domain, are indicative of key roles in mediating the flow of regulatory signals between cells and their microenvironment. The control of transmembrane signalling is a fundamental element in the complex biology of HS. It seems likely that, in some way, HS orchestrates diverse signalling pathways to facilitate information processing inside the cell. A dictionary definition of an orchestra is 'a large group of musicians who play together on various instruments …' to paraphrase, the HS orchestra is 'a large group of proteins that play together on various receptors'. HS conducts this orchestra to ensure that proteins hit the right notes on their receptors but, in the manner of a true conductor, does it also set 'the musical pulse' and create rhythm and harmony attractive to the cell? This is too big a question to answer but fun to think about as you read this review.
Collapse
Affiliation(s)
- John Gallagher
- Cancer Research UK Manchester Institute, Institute of Cancer Sciences, Paterson Building, University of Manchester, Manchester, UK
| |
Collapse
|
33
|
Lin YC, Roffler SR, Yan YT, Yang RB. Disruption of Scube2 Impairs Endochondral Bone Formation. J Bone Miner Res 2015; 30:1255-67. [PMID: 25639508 DOI: 10.1002/jbmr.2451] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 11/11/2022]
Abstract
Signal peptide-CUB-EGF domain-containing protein 2 (SCUBE2) belongs to a secreted and membrane-tethered multidomain SCUBE protein family composed of three members found in vertebrates and mammals. Recent reports suggested that zebrafish scube2 could facilitate sonic hedgehog (Shh) signaling for proper development of slow muscle. However, whether SCUBE2 can regulate the signaling activity of two other hedgehog ligands (Ihh and Dhh), and the developmental relevance of the SCUBE2-induced hedgehog signaling in mammals remain poorly understood. In this study, we first showed that as compared with SCUBE1 or SCUBE3, SCUBE2 is the most potent modulator of IHH signaling in vitro. In addition, gain and loss-of-function studies demonstrated that SCUBE2 exerted an osteogenic function by enhancing Ihh-stimulated osteoblast differentiation in the mouse mesenchymal progenitor cells. Consistent with these in vitro studies and the prominent roles of Ihh in coordinating skeletogenesis, genetic ablation of Scube2 (-/-) caused defective endochondral bone formation and impaired Ihh-mediated chondrocyte differentiation and proliferation as well as osteoblast differentiation of -/- bone-marrow mesenchymal stromal-cell cultures. Our data demonstrate that Scube2 plays a key regulatory role in Ihh-dependent endochondral bone formation.
Collapse
Affiliation(s)
- Yuh-Charn Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
34
|
Matsuo I, Kimura-Yoshida C. Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0545. [PMID: 25349453 DOI: 10.1098/rstb.2013.0545] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During mouse embryogenesis, diffusible growth factors, i.e. fibroblast growth factors, Wnt, bone morphogenetic protein and Hedgehog family members, emanating from localized areas can travel through the extracellular space and reach their target cells to specify the cell fate and form tissue architectures in coordination. However, the mechanisms by which these growth factors travel great distances to their target cells and control the signalling activity as morphogens remain an enigma. Recent studies in mice and other model animals have revealed that heparan sulfate proteoglycans (HSPGs) located on the cell surface (e.g. syndecans and glypicans) and in the extracellular matrix (ECM; e.g. perlecan and agrin) play crucial roles in the extracellular distribution of growth factors. Principally, the function of HSPGs depends primarily on the fine features and localization of their heparan sulfate glycosaminoglycan chains. Cell-surface-tethered HSPGs retain growth factors as co-receptors and/or endocytosis mediators, and enzymatic release of HSPGs from the cell membrane allows HSPGs to transport or move multiple growth factors. By contrast, ECM-associated HSPGs function as a reservoir or barrier in a context-dependent manner. This review is focused on our current understanding of the extracellular distribution of multiple growth factors controlled by HSPGs in mammalian development.
Collapse
Affiliation(s)
- Isao Matsuo
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| |
Collapse
|
35
|
Holtz AM, Griffiths SC, Davis SJ, Bishop B, Siebold C, Allen BL. Secreted HHIP1 interacts with heparan sulfate and regulates Hedgehog ligand localization and function. J Cell Biol 2015; 209:739-57. [PMID: 26056142 PMCID: PMC4460154 DOI: 10.1083/jcb.201411024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/24/2015] [Indexed: 01/21/2023] Open
Abstract
Vertebrate Hedgehog (HH) signaling is controlled by several ligand-binding antagonists including Patched-1 (PTCH1), PTCH2, and HH-interacting protein 1 (HHIP1), whose collective action is essential for proper HH pathway activity. However, the molecular mechanisms used by these inhibitors remain poorly understood. In this paper, we investigated the mechanisms underlying HHIP1 antagonism of HH signaling. Strikingly, we found evidence that HHIP1 non-cell-autonomously inhibits HH-dependent neural progenitor patterning and proliferation. Furthermore, this non-cell-autonomous antagonism of HH signaling results from the secretion of HHIP1 that is modulated by cell type-specific interactions with heparan sulfate (HS). These interactions are mediated by an HS-binding motif in the cysteine-rich domain of HHIP1 that is required for its localization to the neuroepithelial basement membrane (BM) to effectively antagonize HH pathway function. Our data also suggest that endogenous, secreted HHIP1 localization to HS-containing BMs regulates HH ligand distribution. Overall, the secreted activity of HHIP1 represents a novel mechanism to regulate HH ligand localization and function during embryogenesis.
Collapse
Affiliation(s)
- Alexander M Holtz
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109 Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109
| | - Samuel C Griffiths
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Samantha J Davis
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
36
|
Ortmann C, Pickhinke U, Exner S, Ohlig S, Lawrence R, Jboor H, Dreier R, Grobe K. Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans. J Cell Sci 2015; 128:2374-85. [PMID: 25967551 DOI: 10.1242/jcs.170670] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
All Hedgehog morphogens are released from producing cells, despite being synthesized as N- and C-terminally lipidated molecules, a modification that firmly tethers them to the cell membrane. We have previously shown that proteolytic removal of both lipidated peptides, called shedding, releases bioactive Sonic hedgehog (Shh) morphogens from the surface of transfected Bosc23 cells. Using in vivo knockdown together with in vitro cell culture studies, we now show that glypican heparan sulfate proteoglycans regulate this process, through their heparan sulfate chains, in a cell autonomous manner. Heparan sulfate specifically modifies Shh processing at the cell surface, and purified glycosaminoglycans enhance the proteolytic removal of N- and C-terminal Shh peptides under cell-free conditions. The most likely explanation for these observations is direct Shh processing in the extracellular compartment, suggesting that heparan sulfate acts as a scaffold or activator for Shh ligands and the factors required for their turnover. We also show that purified heparan sulfate isolated from specific cell types and tissues mediates the release of bioactive Shh from pancreatic cancer cells, revealing a previously unknown regulatory role for these versatile molecules in a pathological context.
Collapse
Affiliation(s)
- Corinna Ortmann
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Ute Pickhinke
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Sebastian Exner
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Stefanie Ohlig
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hamodah Jboor
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Rita Dreier
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| | - Kay Grobe
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| |
Collapse
|
37
|
Abstract
Cholesterylation is a post-translational attachment of sterol to proteins. This modification has been a characteristic of a single family of hedgehog proteins (Hh). Hh is a well-established morphogenic molecule important in embryonic development. It was also found to be involved in the progression of many cancer types. Herein, we describe the mechanism of biosynthesis of cholesterylated Hh, the role of this unusual modification on protein functions and novel chemical probes, which could be used to specifically target this modification, both in vitro and in vivo.
Collapse
|
38
|
Jia Y, Wang Y, Xie J. The Hedgehog pathway: role in cell differentiation, polarity and proliferation. Arch Toxicol 2015; 89:179-91. [PMID: 25559776 PMCID: PMC4630008 DOI: 10.1007/s00204-014-1433-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
Hedgehog (Hh) is first described as a genetic mutation that has "spiked" phenotype in the cuticles of Drosophila in later 1970s. Since then, Hh signaling has been implicated in regulation of differentiation, proliferation, tissue polarity, stem cell population and carcinogenesis. The first link of Hh signaling to cancer was established through discovery of genetic mutations of Hh receptor gene PTCH1 being responsible for Gorlin syndrome in 1996. It was later shown that Hh signaling is associated with many types of cancer, including skin, leukemia, lung, brain and gastrointestinal cancers. Another important milestone for the Hh research field is the FDA approval for the clinical use of Hh inhibitor Erivedge/Vismodegib for treatment of locally advanced and metastatic basal cell carcinomas. However, recent clinical trials of Hh signaling inhibitors in pancreatic, colon and ovarian cancer all failed, indicating a real need for further understanding of Hh signaling in cancer. In this review, we will summarize recent progress in the Hh signaling mechanism and its role in human cancer.
Collapse
Affiliation(s)
- Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong, University, Jinan, China
- Division of Hematology and Oncology, Department of Pediatrics, Wells Center for Pediatric Research, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Yunshan Wang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong, University, Jinan, China
| | - Jingwu Xie
- Division of Hematology and Oncology, Department of Pediatrics, Wells Center for Pediatric Research, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
39
|
Vyas N, Walvekar A, Tate D, Lakshmanan V, Bansal D, Lo Cicero A, Raposo G, Palakodeti D, Dhawan J. Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties. Sci Rep 2014; 4:7357. [PMID: 25483805 PMCID: PMC4258658 DOI: 10.1038/srep07357] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/18/2014] [Indexed: 12/29/2022] Open
Abstract
Hedgehog (Hh) is a secreted morphogen that elicits differentiation and patterning in developing tissues. Multiple proposed mechanisms to regulate Hh dispersion includes lipoprotein particles and exosomes. Here we report that vertebrate Sonic Hedgehog (Shh) is secreted on two types of extracellular-vesicles/exosomes, from human cell lines and primary chick notochord cells. Although largely overlapping in size as estimated from electron micrographs, the two exosomal fractions exhibited distinct protein and RNA composition. We have probed the functional properties of these vesicles using cell-based assays of Hh-elicited gene expression. Our results suggest that while both Shh-containing exo-vesicular fractions can activate an ectopic Gli-luciferase construct, only exosomes co-expressing Integrins can activate endogenous Shh target genes HNF3β and Olig2 during the differentiation of mouse ES cells to ventral neuronal progenitors. Taken together, our results demonstrate that primary vertebrate cells secrete Shh in distinct vesicular forms, and support a model where packaging of Shh along with other signaling proteins such as Integrins on exosomes modulates target gene activation. The existence of distinct classes of Shh-containing exosomes also suggests a previously unappreciated complexity for fine-tuning of Shh-mediated gradients and pattern formation.
Collapse
Affiliation(s)
- Neha Vyas
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Ankita Walvekar
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Dhananjay Tate
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | | | - Dhiru Bansal
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Alessandra Lo Cicero
- 1] Institut Curie, UMR 144, CNRS, F-75248 Paris, France [2] Structure and Membrane Compartments, Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France [3] Cell and Tissue Imaging Facility, Infrastructures en Biologie Sante et Agronomie (IBiSA), Paris F-75248, France
| | - Graca Raposo
- 1] Institut Curie, UMR 144, CNRS, F-75248 Paris, France [2] Structure and Membrane Compartments, Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France [3] Cell and Tissue Imaging Facility, Infrastructures en Biologie Sante et Agronomie (IBiSA), Paris F-75248, France
| | | | - Jyotsna Dhawan
- 1] Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India [2] CSIR-Center for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
40
|
Damhofer H, Veenstra VL, Tol JAMG, van Laarhoven HWM, Medema JP, Bijlsma MF. Blocking Hedgehog release from pancreatic cancer cells increases paracrine signaling potency. J Cell Sci 2014; 128:129-39. [PMID: 25359882 DOI: 10.1242/jcs.157966] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Members of the Hedgehog (Hh) family of morphogens play crucial roles in development but are also involved in the progression of certain types of cancer. Despite being synthesized as hydrophobic dually lipid-modified molecules, and thus being strongly membrane-associated, Hh ligands are able to spread through tissues and act on target cells several cell diameters away. Various mechanisms that mediate Hh release have been discussed in recent years; however, little is known about dispersion of this ligand from cancer cells. Using co-culture models in conjunction with a newly developed reporter system, we were able to show that different members of the ADAM family of metalloproteinases strongly contribute to the release of endogenous bioactive Hh from pancreatic cancer cells, but that this solubilization decreases the potency of cancer cells to signal to adjacent stromal cells in direct co-culture models. These findings imply that under certain conditions, cancer-cell-tethered Hh molecules are the more potent signaling activators and that retaining Hh on the surface of cancer cells can unexpectedly increase the effective signaling range of this ligand, depending on tissue context.
Collapse
Affiliation(s)
- Helene Damhofer
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Veronique L Veenstra
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Johanna A M G Tol
- Department of Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
41
|
Ciepla P, Konitsiotis AD, Serwa RA, Masumoto N, Leong WP, Dallman MJ, Magee AI, Tate EW. New chemical probes targeting cholesterylation of Sonic Hedgehog in human cells and zebrafish. Chem Sci 2014; 5:4249-4259. [PMID: 25574372 PMCID: PMC4285107 DOI: 10.1039/c4sc01600a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/25/2014] [Indexed: 12/17/2022] Open
Abstract
Alkynyl-cholesterol probes tag and track Hedgehog protein, illuminating the role of protein cholesterylation in secretion, transport complex formation and signalling, and enabling quantitative proteomic analysis, imaging, and detection of cholesterylation in developing zebrafish.
Sonic Hedgehog protein (Shh) is a morphogen molecule important in embryonic development and in the progression of many cancer types in which it is aberrantly overexpressed. Fully mature Shh requires attachment of cholesterol and palmitic acid to its C- and N-termini, respectively. The study of lipidated Shh has been challenging due to the limited array of tools available, and the roles of these posttranslational modifications are poorly understood. Herein, we describe the development and validation of optimised alkynyl sterol probes that efficiently tag Shh cholesterylation and enable its visualisation and analysis through bioorthogonal ligation to reporters. An optimised probe was shown to be an excellent cholesterol biomimetic in the context of Shh, enabling appropriate release of tagged Shh from signalling cells, formation of multimeric transport complexes and signalling. We have used this probe to determine the size of transport complexes of lipidated Shh in culture medium and expression levels of endogenous lipidated Shh in pancreatic ductal adenocarcinoma cell lines through quantitative chemical proteomics, as well as direct visualisation of the probe by fluorescence microscopy and detection of cholesterylated Hedgehog protein in developing zebrafish embryos. These sterol probes provide a set of novel and well-validated tools that can be used to investigate the role of lipidation on activity of Shh, and potentially other members of the Hedgehog protein family.
Collapse
Affiliation(s)
- Paulina Ciepla
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , UK . ; Institute of Chemical Biology , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| | - Antonios D Konitsiotis
- National Heart and Lung Institute , Imperial College London , Exhibition Road , London SW7 2AZ , UK
| | - Remigiusz A Serwa
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| | - Naoko Masumoto
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , UK . ; Institute of Chemical Biology , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| | - Wai P Leong
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| | - Margaret J Dallman
- Institute of Chemical Biology , Imperial College London , Exhibition Road , London SW7 2AZ , UK . ; Department of Life Sciences , Imperial College London , Exhibition Road , London SW7 2AZ , UK
| | - Anthony I Magee
- Institute of Chemical Biology , Imperial College London , Exhibition Road , London SW7 2AZ , UK . ; National Heart and Lung Institute , Imperial College London , Exhibition Road , London SW7 2AZ , UK
| | - Edward W Tate
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , UK . ; Institute of Chemical Biology , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| |
Collapse
|
42
|
Chen YJ, Lin HC, Chen KC, Lin SR, Cheng TL, Chang LS. Taiwan cobra phospholipase A2 suppresses ERK-mediated ADAM17 maturation, thus reducing secreted TNF-α production in human leukemia U937 cells. Toxicon 2014; 86:79-88. [PMID: 24874889 DOI: 10.1016/j.toxicon.2014.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/09/2014] [Accepted: 05/12/2014] [Indexed: 11/17/2022]
Abstract
The goal of this study was to explore the signaling pathway regulating the processing of proADAM17 into ADAM17 in Taiwan cobra phospholipase A2 (PLA2)-treated human leukemia U937 cells. PLA2 induced reactive oxygen species (ROS)-elicited p38 MAPK activation and ERK inactivation in U937 cells. Catalytically inactive bromophenacylated PLA2 (BPB-PLA2) and PLA2 mutants evoked Ca(2+)-mediated p38 MAPK activation, and the level of phosphorylated ERK remained unchanged. PLA2 treatment reduced mature ADAM17 expression and secreted TNF-α (sTNF-α) production. Co-treatment of SB202190 (p38 MAPK inhibitor) and catalytically inactive PLA2 increased ERK phosphorylation, ADAM17 maturation and sTNF-α production. Nevertheless, mRNA levels of ADAM17 and TNF-α were insignificantly altered after PLA2 and SB202190/BPB-PLA2 treatment. ADAM17 activity assay and knock-down of ADAM17 revealed that ADAM17 was involved in sTNF-α production. Restoration of ERK activation increased the processing of proADAM17 into ADAM17 in PLA2-treated cells, while inactivation of ERK reduced ADAM17 maturation in untreated and SB202190/BPB-PLA2-treated cells. Removal of cell surface heparan sulfate abrogated PLA2 and SB202190/BPB-PLA2 effect on ADAM17 maturation. Taken together, the present data reveal that PLA2 suppresses ERK-mediated ADAM17 maturation, thus reducing sTNF-α production in U937 cells. Moreover, the binding with heparan sulfate is crucial for the PLA2 effect.
Collapse
Affiliation(s)
- Ying-Jung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Hui-Chen Lin
- Department of Nutrition Room, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Ku-Chung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Shinne-Ren Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
43
|
Al Oustah A, Danesin C, Khouri-Farah N, Farreny MA, Escalas N, Cochard P, Glise B, Soula C. Dynamics of sonic hedgehog signaling in the ventral spinal cord are controlled by intrinsic changes in source cells requiring sulfatase 1. Development 2014; 141:1392-403. [PMID: 24595292 DOI: 10.1242/dev.101717] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the ventral spinal cord, generation of neuronal and glial cell subtypes is controlled by Sonic hedgehog (Shh). This morphogen contributes to cell diversity by regulating spatial and temporal sequences of gene expression during development. Here, we report that establishing Shh source cells is not sufficient to induce the high-threshold response required to specify sequential generation of ventral interneurons and oligodendroglial cells at the right time and place in zebrafish. Instead, we show that Shh-producing cells must repeatedly upregulate the secreted enzyme Sulfatase1 (Sulf1) at two critical time points of development to reach their full inductive capacity. We provide evidence that Sulf1 triggers Shh signaling activity to establish and, later on, modify the spatial arrangement of gene expression in ventral neural progenitors. We further present arguments in favor of Sulf1 controlling Shh temporal activity by stimulating production of active forms of Shh from its source. Our work, by pointing out the key role of Sulf1 in regulating Shh-dependent neural cell diversity, highlights a novel level of regulation, which involves temporal evolution of Shh source properties.
Collapse
Affiliation(s)
- Amir Al Oustah
- University of Toulouse, Center for Developmental Biology, UMR 5547 CNRS, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Konitsiotis AD, Chang SC, Jovanović B, Ciepla P, Masumoto N, Palmer CP, Tate EW, Couchman JR, Magee AI. Attenuation of hedgehog acyltransferase-catalyzed sonic Hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells. PLoS One 2014; 9:e89899. [PMID: 24608521 PMCID: PMC3946499 DOI: 10.1371/journal.pone.0089899] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/29/2014] [Indexed: 11/19/2022] Open
Abstract
Overexpression of Hedgehog family proteins contributes to the aetiology of many cancers. To be highly active, Hedgehog proteins must be palmitoylated at their N-terminus by the MBOAT family multispanning membrane enzyme Hedgehog acyltransferase (Hhat). In a pancreatic ductal adenocarcinoma (PDAC) cell line PANC-1 and transfected HEK293a cells Hhat localized to the endoplasmic reticulum. siRNA knockdown showed that Hhat is required for Sonic hedgehog (Shh) palmitoylation, for its assembly into high molecular weight extracellular complexes and for functional activity. Hhat knockdown inhibited Hh autocrine and juxtacrine signaling, and inhibited PDAC cell growth and invasiveness in vitro. In addition, Hhat knockdown in a HEK293a cell line constitutively expressing Shh and A549 human non-small cell lung cancer cells inhibited their ability to signal in a juxtacrine/paracrine fashion to the reporter cell lines C3H10T1/2 and Shh-Light2. Our data identify Hhat as a key player in Hh-dependent signaling and tumour cell transformed behaviour.
Collapse
Affiliation(s)
- Antonios D. Konitsiotis
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Shu-Chun Chang
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Biljana Jovanović
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Paulina Ciepla
- Department of Chemistry, Imperial College London, London, United Kingdom
- Institute of Chemical Biology, Imperial College London, London, United Kingdom
| | - Naoko Masumoto
- Department of Chemistry, Imperial College London, London, United Kingdom
- Institute of Chemical Biology, Imperial College London, London, United Kingdom
| | - Christopher P. Palmer
- Institute for Health Research and Policy, London Metropolitan University, London, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, London, United Kingdom
- Institute of Chemical Biology, Imperial College London, London, United Kingdom
| | - John R. Couchman
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anthony I. Magee
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
- Institute of Chemical Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
45
|
Jakobs P, Exner S, Schürmann S, Pickhinke U, Bandari S, Ortmann C, Kupich S, Schulz P, Hansen U, Seidler DG, Grobe K. Scube2 enhances proteolytic Shh processing from the surface of Shh-producing cells. J Cell Sci 2014; 127:1726-37. [PMID: 24522195 DOI: 10.1242/jcs.137695] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
All morphogens of the Hedgehog (Hh) family are synthesized as dual-lipidated proteins, which results in their firm attachment to the surface of the cell in which they were produced. Thus, Hh release into the extracellular space requires accessory protein activities. We suggested previously that the proteolytic removal of N- and C-terminal lipidated peptides (shedding) could be one such activity. More recently, the secreted glycoprotein Scube2 (signal peptide, cubulin domain, epidermal-growth-factor-like protein 2) was also implicated in the release of Shh from the cell membrane. This activity strictly depended on the CUB domains of Scube2, which derive their name from the complement serine proteases and from bone morphogenetic protein-1/tolloid metalloproteinases (C1r/C1s, Uegf and Bmp1). CUB domains function as regulators of proteolytic activity in these proteins. This suggested that sheddases and Scube2 might cooperate in Shh release. Here, we confirm that sheddases and Scube2 act cooperatively to increase the pool of soluble bioactive Shh, and that Scube2-dependent morphogen release is unequivocally linked to the proteolytic processing of lipidated Shh termini, resulting in truncated soluble Shh. Thus, Scube2 proteins act as protease enhancers in this setting, revealing newly identified Scube2 functions in Hh signaling regulation.
Collapse
Affiliation(s)
- Petra Jakobs
- The Institute for Physiological Chemistry and Pathobiochemistry, Westfälische Wilhelms Universität Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Vazin T, Ashton RS, Conway A, Rode NA, Lee SM, Bravo V, Healy KE, Kane RS, Schaffer DV. The effect of multivalent Sonic hedgehog on differentiation of human embryonic stem cells into dopaminergic and GABAergic neurons. Biomaterials 2013; 35:941-8. [PMID: 24172856 DOI: 10.1016/j.biomaterials.2013.10.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/05/2013] [Indexed: 01/24/2023]
Abstract
Stem cell differentiation is regulated by complex repertoires of signaling ligands which often use multivalent interactions, where multiple ligands tethered to one entity interact with multiple cellular receptors to yield oligomeric complexes. One such ligand is Sonic hedgehog (Shh), whose posttranslational lipid modifications and assembly into multimers enhance its biological potency, potentially through receptor clustering. Investigations of Shh typically utilize recombinant, monomeric protein, and thus the impact of multivalency on ligand potency is unexplored. Among its many activities, Shh is required for ventralization of the midbrain and forebrain and is therefore critical for the development of midbrain dopaminergic (mDA) and forebrain gamma-aminobutyric acid (GABA) inhibitory neurons. We have designed multivalent biomaterials presenting Shh in defined spatial arrangements and investigated the role of Shh valency in ventral specification of human embryonic stem cells (hESCs) into these therapeutically relevant cell types. Multivalent Shh conjugates with optimal valencies, compared to the monomeric Shh, increased the percentages of neurons belonging to mDA or forebrain GABAergic fates from 33% to 60% or 52% to 86%, respectively. Thus, multivalent Shh bioconjugates can enhance neuronal lineage commitment of pluripotent stem cells and thereby facilitate efficient derivation of neurons that could be used to treat Parkinson's and epilepsy patients.
Collapse
Affiliation(s)
- Tandis Vazin
- Chemical and Biomolecular Engineering, and The Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xie J, Bartels CM, Barton SW, Gu D. Targeting hedgehog signaling in cancer: research and clinical developments. Onco Targets Ther 2013; 6:1425-35. [PMID: 24143114 PMCID: PMC3797650 DOI: 10.2147/ott.s34678] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Since its first description in Drosophila by Drs Nusslein-Volhard and Wieschaus in 1980, hedgehog (Hh) signaling has been implicated in regulation of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of Gorlin syndrome in 1996 by two independent teams. Later, it was shown that Hh signaling may be involved in many types of cancer, including skin, leukemia, lung, brain, and gastrointestinal cancers. In early 2012, the US Food and Drug Administration approved the clinical use of Hh inhibitor Erivedge/vismodegib for treatment of locally advanced and metastatic basal cell carcinomas. With further investigation, it is possible to see more clinical applications of Hh signaling inhibitors. In this review, we will summarize major advances in the last 3 years in our understanding of Hh signaling activation in human cancer, and recent developments in preclinical and clinical studies using Hh signaling inhibitors.
Collapse
Affiliation(s)
- Jingwu Xie
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | | | | | | |
Collapse
|
48
|
Whalen DM, Malinauskas T, Gilbert RJC, Siebold C. Structural insights into proteoglycan-shaped Hedgehog signaling. Proc Natl Acad Sci U S A 2013; 110:16420-5. [PMID: 24062467 PMCID: PMC3799379 DOI: 10.1073/pnas.1310097110] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hedgehog (Hh) morphogens play fundamental roles during embryogenesis and adulthood, in health and disease. Multiple cell surface receptors regulate the Hh signaling pathway. Among these, the glycosaminoglycan (GAG) chains of proteoglycans shape Hh gradients and signal transduction. We have determined crystal structures of Sonic Hh complexes with two GAGs, heparin and chondroitin sulfate. The interaction determinants, confirmed by site-directed mutagenesis and binding studies, reveal a previously not identified Hh site for GAG binding, common to all Hh proteins. The majority of Hh residues forming this GAG-binding site have been previously implicated in developmental diseases. Crystal packing analysis, combined with analytical ultracentrifugation of Sonic Hh-GAG complexes, suggests a potential mechanism for GAG-dependent Hh multimerization. Taken together, these results provide a direct mechanistic explanation of the observed correlation between disease and impaired Hh gradient formation. Moreover, GAG binding partially overlaps with the site of Hh interactions with an array of protein partners including Patched, hedgehog interacting protein, and the interference hedgehog protein family, suggesting a unique mechanism of Hh signaling modulation.
Collapse
Affiliation(s)
- Daniel M. Whalen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Robert J. C. Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
49
|
Abstract
Reporting in Nature, Sanders et al. (2013) implicate filopodial projections in Sonic hedgehog (Shh) patterning of the limb. Actin-based filopodia transport Shh from producing cells, while filopodia of responding cells bear Cdon and Boc: coreceptors in the Shh pathway. These findings suggest a new mechanism of ligand movement and transmission.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | | |
Collapse
|
50
|
Douet V, Kerever A, Arikawa‐Hirasawa E, Mercier F. Fractone-heparan sulphates mediate FGF-2 stimulation of cell proliferation in the adult subventricular zone. Cell Prolif 2013; 46:137-45. [PMID: 23510468 PMCID: PMC6495915 DOI: 10.1111/cpr.12023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/07/2012] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Fractones are extracellular matrix structures that form a niche for neural stem cells and their immediate progeny in the subventricular zone of the lateral ventricle (SVZa), the primary neurogenic zone in the adult brain. We have previously shown that heparan sulphates (HS) associated with fractones bind fibroblast growth factor-2 (FGF-2), a powerful mitotic growth factor in the SVZa. Here, our objective was to determine whether the binding of FGF-2 to fractone-HS is implicated in the mechanism leading to cell proliferation in the SVZa. MATERIALS AND METHODS Heparitinase-1 was intracerebroventricularly injected with FGF-2 to N-desulfate HS proteoglycans and determine whether the loss of HS and of FGF-2 binding to fractones modifies FGF-2 effect on cell proliferation. We also examined in vivo the binding of Alexa-Fluor-FGF-2 in relationship with the location of HS immunoreactivity in the SVZa. RESULTS Heparatinase-1 drastically reduced the stimulatory effect of FGF-2 on cell proliferation in the SVZa. Alexa-Fluor-FGF-2 binding was strictly co-localized with HS immunoreactivity in fractones and adjacent vascular basement membranes in the SVZa. CONCLUSIONS Our results demonstrate that FGF-2 requires HS to stimulate cell proliferation in the SVZa and suggest that HS associated with fractones and vascular basement membranes are responsible for activating FGF-2. Therefore, fractones and vascular basement membranes may function as a HS niche to drive cell proliferation in the adult neurogenic zone.
Collapse
Affiliation(s)
- V. Douet
- Department of Tropical Medicine, Medical Microbiology and PharmacologyJohn A. Burns School of MedicineUniversity of HawaiiHonoluluHI96822USA
| | - A. Kerever
- Department of NeurologyResearch Institute for Diseases of Old AgeJuntendo University Faculty of MedicineTokyo113‐8421Japan
| | - E. Arikawa‐Hirasawa
- Department of NeurologyResearch Institute for Diseases of Old AgeJuntendo University Faculty of MedicineTokyo113‐8421Japan
| | - F. Mercier
- Department of Tropical Medicine, Medical Microbiology and PharmacologyJohn A. Burns School of MedicineUniversity of HawaiiHonoluluHI96822USA
| |
Collapse
|