1
|
Milara J, Ribera P, Marín S, Montero P, Roger I, Tenor H, Cortijo J. Phosphodiesterase 4 is overexpressed in human keloids and its inhibition reduces fibroblast activation and skin fibrosis. Chem Biol Interact 2024; 402:111211. [PMID: 39197814 DOI: 10.1016/j.cbi.2024.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
There is a pressing medical need for improved treatments in skin fibrosis including keloids and hypertrophic scars (HTS). This study aimed to characterize the role of phosphodiesterase 4 (PDE4), specifically PDE4B in fibrotic skin remodeling in vitro and in vivo. In vitro, effects of PDE4A-D (Roflumilast) or PDE4B (siRNA) inhibition on TGFβ1-induced myofibroblast differentiation and dedifferentiation were studied in normal (NHDF) and keloid (KF) human dermal fibroblasts. In vivo, the role of PDE4 on HOCl-induced skin fibrosis in mice was addressed in preventive and therapeutic protocols. PDE4B (mRNA, protein) was increased in Keloid > HTS compared to healthy skin and in TGFβ-stimulated NHDF and KF. In Keloid > HTS, collagen Iα1, αSMA, TGFβ1 and NOX4 mRNA were all elevated compared to healthy skin confirming skin fibrosis. In vitro, inhibition of PDE4A-D and PDE4B similarly prevented TGFβ1-induced Smad3 and ERK1/2 phosphorylation and myofibroblast differentiation, elevated NOX4 protein and proliferation in NHDF. PDE4A-D inhibition enabled myofibroblast dedifferentiation and curbed TGFβ1-induced reactive oxygen species and fibroblast senescence. In KF PDE4A-D inhibition restrained TGFβ1-induced Smad3 and ERK1/2 phosphorylation, myofibroblast differentiation and senescence. Mechanistically, PDE4A-D inhibition rescued from TGFβ1-induced loss in PPM1A, a Smad3 phosphatase. In vivo, PDE4 inhibition mitigated HOCl-induced skin fibrosis in mice in preventive and therapeutic protocols. The current study provides novel evidence evolving rationale for PDE4 inhibitors in skin fibrosis (including keloids and HTS) and delivered evidence for a functional role of PDE4B in this fibrotic condition.
Collapse
Affiliation(s)
- Javier Milara
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Pharmacy Unit, University General Hospital Consortium of Valencia, Spain.
| | - Pilar Ribera
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| | - Severiano Marín
- Plastic Surgery Unit, University General Hospital Consortium, 46014, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Inés Roger
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | | | - Julio Cortijo
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| |
Collapse
|
2
|
Milara J, Ribera P, Marín S, Montero P, Roger I, Cortijo J. Phosphodiesterase 4 is overexpressed in keloid epidermal scars and its inhibition reduces keratinocyte fibrotic alterations. Mol Med 2024; 30:134. [PMID: 39223490 PMCID: PMC11370283 DOI: 10.1186/s10020-024-00906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Epidermal remodeling and hypertrophy are hallmarks of skin fibrotic disorders, and keratinocyte to mesenchymal (EMT)-like transformations drive epidermis alteration in skin fibrosis such as keloids and hypertrophic scars (HTS). While phosphodiesterase 4 (PDE4) inhibitors have shown effectiveness in various fibrotic disorders, their role in skin fibrosis is not fully understood. This study aimed to explore the specific role of PDE4B in epidermal remodeling and hypertrophy seen in skin fibrosis. METHODS In vitro experiments examined the effects of inhibiting PDE4A-D (with Roflumilast) or PDE4B (with siRNA) on TGFβ1-induced EMT differentiation and dedifferentiation in human 3D epidermis. In vivo studies investigated the impact of PDE4 inhibition on HOCl-induced skin fibrosis and epidermal hypertrophy in mice, employing both preventive and therapeutic approaches. RESULTS The study found increased levels of PDE4B (mRNA, protein) in keloids > HTS compared to healthy epidermis, as well as in TGFβ-stimulated 3D epidermis. Keloids and HTS epidermis exhibited elevated levels of collagen Iα1, fibronectin, αSMA, N-cadherin, and NOX4 mRNA, along with decreased levels of E-cadherin and ZO-1, confirming an EMT process. Inhibition of both PDE4A-D and PDE4B prevented TGFβ1-induced Smad3 and ERK1/2 phosphorylation and mesenchymal differentiation in vitro. PDE4A-D inhibition also promoted mesenchymal dedifferentiation and reduced TGFβ1-induced ROS and keratinocyte senescence by rescuing PPM1A, a Smad3 phosphatase. In vivo, PDE4 inhibition mitigated HOCl-induced epidermal hypertrophy in mice in both preventive and therapeutic settings. CONCLUSIONS Overall, the study supports the potential of PDE4 inhibitors, particularly PDE4B, in treating skin fibrosis, including keloids and HTS, shedding light on their functional role in this condition.
Collapse
Affiliation(s)
- Javier Milara
- CIBER de enfermedades respiratorias, Health Institute Carlos III, Valencia, Spain.
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez, 15, Valencia, 46010, Spain.
- Pharmacy unit, University General Hospital Consortium of Valencia, Valencia, Spain.
| | - Pilar Ribera
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez, 15, Valencia, 46010, Spain
| | - Severiano Marín
- Plastic Surgery Unit, University General Hospital Consortium, Valencia, 46014, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez, 15, Valencia, 46010, Spain
- Faculty of health sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Inés Roger
- CIBER de enfermedades respiratorias, Health Institute Carlos III, Valencia, Spain
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez, 15, Valencia, 46010, Spain
- Faculty of health sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Julio Cortijo
- CIBER de enfermedades respiratorias, Health Institute Carlos III, Valencia, Spain
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez, 15, Valencia, 46010, Spain
| |
Collapse
|
3
|
Barbarroja N, López-Medina C, Escudero-Contreras A, Arias-de la Rosa I. Clinical and molecular insights into cardiovascular disease in psoriatic patients and the potential protective role of apremilast. Front Immunol 2024; 15:1459185. [PMID: 39170613 PMCID: PMC11335487 DOI: 10.3389/fimmu.2024.1459185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Psoriatic disease, encompassing both psoriasis (Pso) and psoriatic arthritis (PsA), is closely intertwined with a significantly elevated risk of developing cardiovascular diseases. This connection is further compounded by a higher prevalence of cardiometabolic comorbidities, including type 2 diabetes, obesity, insulin resistance, arterial hypertension, and dysregulated lipid profiles. These comorbidities exceed the rates seen in the general population and compound the potential for increased mortality among those living with this condition. Recognizing the heightened cardiometabolic risk inherent in psoriatic disease necessitates a fundamental shift in the treatment paradigm. It is no longer sufficient to focus solely on mitigating inflammation. Instead, there is an urgent need to address and effectively manage the metabolic parameters that have a substantial impact on cardiovascular health. Within this context, apremilast emerges as a pivotal treatment option for psoriatic disease. What sets apremilast apart is its dual-action potential, addressing not only inflammation but also the critical metabolic parameters. This comprehensive treatment approach opens up new opportunities to improve the well-being of people living with psoriatic disease. This review delves into the multifaceted aspects involved in the development of cardiovascular disease and its intricate association with psoriatic disease. We then provide an in-depth exploration of the pleiotropic effects of apremilast, highlighting its potential to simultaneously mitigate metabolic complications and inflammation in individuals affected by these conditions.
Collapse
Affiliation(s)
- Nuria Barbarroja
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia University Hospital, Córdoba, Spain
| | | | | | - Iván Arias-de la Rosa
- Rheumatology Service, Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
4
|
Lusardi M, Rapetti F, Spallarossa A, Brullo C. PDE4D: A Multipurpose Pharmacological Target. Int J Mol Sci 2024; 25:8052. [PMID: 39125619 PMCID: PMC11311937 DOI: 10.3390/ijms25158052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Phosphodiesterase 4 (PDE4) enzymes catalyze cyclic adenosine monophosphate (cAMP) hydrolysis and are involved in a variety of physiological processes, including brain function, monocyte and macrophage activation, and neutrophil infiltration. Among different PDE4 isoforms, Phosphodiesterases 4D (PDE4Ds) play a fundamental role in cognitive, learning and memory consolidation processes and cancer development. Selective PDE4D inhibitors (PDE4Dis) could represent an innovative and valid therapeutic strategy for the treatment of various neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and Lou Gehrig's diseases, but also for stroke, traumatic brain and spinal cord injury, mild cognitive impairment, and all demyelinating diseases such as multiple sclerosis. In addition, small molecules able to block PDE4D isoforms have been recently studied for the treatment of specific cancer types, particularly hepatocellular carcinoma and breast cancer. This review overviews the PDE4DIsso far identified and provides useful information, from a medicinal chemistry point of view, for the development of a novel series of compounds with improved pharmacological properties.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| | | | | | - Chiara Brullo
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| |
Collapse
|
5
|
Staller DW, Bennett RG, Mahato RI. Therapeutic perspectives on PDE4B inhibition in adipose tissue dysfunction and chronic liver injury. Expert Opin Ther Targets 2024; 28:545-573. [PMID: 38878273 PMCID: PMC11305103 DOI: 10.1080/14728222.2024.2369590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.
Collapse
Affiliation(s)
- Dalton W. Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G. Bennett
- Department of Internal Medicine, Division of Diabetes Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ram I. Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
6
|
Saatci O, Alam R, Huynh-Dam KT, Isik A, Uner M, Belder N, Ersan PG, Tokat UM, Ulukan B, Cetin M, Calisir K, Gedik ME, Bal H, Sener Sahin O, Riazalhosseini Y, Thieffry D, Gautheret D, Ogretmen B, Aksoy S, Uner A, Akyol A, Sahin O. Targeting LINC00152 activates cAMP/Ca 2+/ferroptosis axis and overcomes tamoxifen resistance in ER+ breast cancer. Cell Death Dis 2024; 15:418. [PMID: 38879508 PMCID: PMC11180193 DOI: 10.1038/s41419-024-06814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024]
Abstract
Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER + ) breast cancer, constituting around 75% of all cases. However, the emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance by blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of the cAMP/PKA/CREB axis and increased expression of the TRPC1 Ca2+ channel. This causes cytosolic Ca2+ overload and generation of reactive oxygen species (ROS) that is, on the one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe2+ levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels, in part by cAMP/CREB. These ultimately restore tamoxifen-dependent lipid peroxidation and ferroptotic cell death which are reversed upon chelating Ca2+ or overexpressing GPX4 or xCT. Overexpressing PDE4D reverses LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca2+/ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of tamoxifen sensitization via restoring tamoxifen-dependent ferroptosis upon destabilizing PDE4D, increasing cAMP and Ca2+ levels, thus leading to ROS generation and lipid peroxidation. Our findings reveal LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Rashedul Alam
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kim-Tuyen Huynh-Dam
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Aynur Isik
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Meral Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Nevin Belder
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | - Pelin Gulizar Ersan
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | - Unal Metin Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | - Burge Ulukan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Metin Cetin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Kubra Calisir
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mustafa Emre Gedik
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hilal Bal
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | - Ozlem Sener Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, Canada
| | - Denis Thieffry
- Département de biologie de l'Ecole normale supérieure, PSL Université, 75005, Paris, France
- Bioinformatics and Computational Systems Biology of Cancer, U900 Institut Curie - INSERM - Mines ParisTech, PSL Université, 75005, Paris, France
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91190, Gif-sur-Yvette, France
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Aytekin Akyol
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
7
|
Blauvelt A, Draelos ZD, Stein Gold L, Alonso-Llamazares J, Bhatia N, DuBois J, Forman SB, Gooderham M, Green L, Guenthner ST, Hebert AA, Lain E, Moore AY, Papp KA, Zirwas M, Kato S, Snyder S, Krupa D, Burnett P, Berk DR, Chu DH. Roflumilast foam 0.3% for adolescent and adult patients with seborrheic dermatitis: A randomized, double-blinded, vehicle-controlled, phase 3 trial. J Am Acad Dermatol 2024; 90:986-993. [PMID: 38253129 DOI: 10.1016/j.jaad.2023.12.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND The topical phosphodiesterase 4 inhibitor roflumilast has been studied in several dermatologic conditions. OBJECTIVE Roflumilast foam 0.3% is being investigated as a topical treatment for seborrheic dermatitis (SD). METHODS In this phase 3, double-blinded trial, patients with SD were randomly assigned (2:1 ratio) to once-daily roflumilast foam 0.3% or vehicle foam for 8 weeks. The primary efficacy outcome was Investigator Global Assessment (IGA) Success at week 8, defined as IGA of 0 (Clear) or 1 (Almost Clear) plus ≥2-point improvement from baseline. Safety was also assessed. RESULTS 79.5% of roflumilast-treated and 58.0% of vehicle-treated patients met the primary endpoint (P < .001); statistically significant differences in IGA Success also favored roflumilast at week 2 (roflumilast: 43.0%; vehicle: 25.7%; P < .001) and week 4 (roflumilast: 73.1%; vehicle: 47.1%; P < .001). Roflumilast was well-tolerated with a low rate of treatment-emergent adverse events. LIMITATIONS Study limitations include the 8-week treatment period for this chronic condition. CONCLUSIONS Once-daily roflumilast foam was superior to vehicle in leading to IGA of Clear or Almost Clear plus ≥2-point improvement from baseline at 8 weeks in patients with SD. Longer trials are needed to determine durability and safety of roflumilast foam in SD.
Collapse
Affiliation(s)
| | - Zoe D Draelos
- Dermatology Consulting Services, High Point, North Carolina
| | | | | | - Neal Bhatia
- Therapeutics Clinical Research, San Diego, California
| | | | | | - Melinda Gooderham
- SKiN Centre for Dermatology, Probity Medical Research and Queen's University, Peterborough, Ontario, Canada
| | - Lawrence Green
- George Washington University School of Medicine, Rockville, Maryland
| | - Scott T Guenthner
- The Dermatology Center of Indiana, PC, Plainfield, Indiana; The Indiana Clinical Trials Center, PC, Plainfield, Indiana
| | | | | | - Angela Y Moore
- Arlington Research Center, Arlington, Texas; Baylor University Medical Center, Dallas, Texas
| | - Kim A Papp
- Probity Medical Research and Alliance Clinical Trials, Waterloo, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Matthew Zirwas
- Dermatologists of the Central States, Cincinnati, Ohio; Probity Medical Research, Waterloo, Ontario, Canada; Ohio University, Bexley, Ohio
| | - Saori Kato
- Arcutis Biotherapeutics, Inc., Westlake Village, California
| | - Scott Snyder
- Arcutis Biotherapeutics, Inc., Westlake Village, California
| | - David Krupa
- Arcutis Biotherapeutics, Inc., Westlake Village, California
| | | | - David R Berk
- Arcutis Biotherapeutics, Inc., Westlake Village, California
| | - David H Chu
- Arcutis Biotherapeutics, Inc., Westlake Village, California
| |
Collapse
|
8
|
Mikheil D, Larsen MA, Hsiao K, Murray NH, Ugo T, Wang H, Goueli SA. A bioluminescent and homogeneous assay for monitoring GPCR-mediated cAMP modulation and PDE activity. Sci Rep 2024; 14:4440. [PMID: 38396287 PMCID: PMC10891162 DOI: 10.1038/s41598-024-55038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
3',5'-Cyclic adenosine monophosphate (cAMP), the first identified second messenger, is implicated in diverse cellular processes involving cellular metabolism, cell proliferation and differentiation, apoptosis, and gene expression. cAMP is synthesized by adenylyl cyclase (AC), which converts ATP to cAMP upon activation of Gαs-protein coupled receptors (GPCRs) in most cases and hydrolyzed by cyclic nucleotide phosphodiesterases (PDEs) to 5'-AMP. Dysregulation of cAMP signaling is implicated in a wide range of pathophysiological conditions such as cardiovascular diseases, neurodegenerative and behavioral disorders, cancers, diabetes, obesity, cataracts, and others. Therefore, cAMP targeted therapies have been and are still undergoing intense investigation for the treatment of these and other diseases. This highlights the need for developing assays to detect and monitor cAMP levels. In this study, we show cAMP Lumit assay as a highly specific homogeneous bioluminescent assay suitable for high throughput screenings with a large assay window and a wide dynamic range for cAMP detection. We believe that this assay will aid and simplify drug discovery screening efforts for cAMP signaling targeted therapies.
Collapse
Affiliation(s)
- Dareen Mikheil
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA
| | - Matthew A Larsen
- Promega Biosciences, 277 Granada Drive, San Luis Obispo, CA, 93401, USA
| | - Kevin Hsiao
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA
| | - Nathan H Murray
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA
| | - Tim Ugo
- Promega Biosciences, 277 Granada Drive, San Luis Obispo, CA, 93401, USA
| | - Hui Wang
- Promega Biosciences, 277 Granada Drive, San Luis Obispo, CA, 93401, USA
| | - Said A Goueli
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA.
| |
Collapse
|
9
|
Sharp BM, Jiang Q, Kim P, Chen H. Inactivation of phosphodiesterase-4B gene in rat nucleus accumbens shell by CRISPR/Cas9 or positive allosteric modulation of the protein affects the motivation to chronically self-administer nicotine. Sci Rep 2024; 14:2562. [PMID: 38297069 PMCID: PMC10831042 DOI: 10.1038/s41598-024-53037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/27/2024] [Indexed: 02/02/2024] Open
Abstract
Large scale human genome wide association studies (GWAS) have identified a growing pool of genes associated with cigarette smoking. One of the most prominent, phosphodiesterase-4B (PDE4B), has been associated with multiple smoking phenotypes. Although PDE4B modulates the half-life of neuronal cAMP, its precise role in smoking behaviors is unknown. To address this knowledge gap, we used a reverse translational approach. We inactivated PDE4B in bilateral medial nucleus accumbens shell (NAcs) neurons by injecting AAV containing a specific gRNA in female transgenic Cas9+ Long Evans rats. These rats then were given 23-h chronic access to nicotine intravenous self-administration (IVSA) under a schedule of increasing fixed ratios (FR). With the increased effort required at FR7, nicotine SA (i.e. active presses and drug infusions) declined significantly in controls, whereas it was maintained in the mutagenized group. A progressive ratio (PR) study also showed significantly greater cumulative nicotine infusions in the PDE4B-edited group. Hence, we hypothesized that enhanced PDE4B protein activity would reduce nicotine IVSA. A positive allosteric modulator, 2-(3-(4-chloro-3-fluorophenyl)-5-ethyl-1H-1,2,4-triazol-1-yl)-N-(3,5-dichlorobenzyl)acetamide (MR-L2), was microinfused into NAcs bilaterally at FR3 or FR5; in both cohorts, MR-L2 acutely reduced nicotine IVSA. In summary, these studies show that the activity of PDE4B regulates the capacity of NAcs to maintain nicotine IVSA in face of the cost of increasing work. This finding and the results of the PR study indicate that PDE4B affects the motivation to obtain nicotine. These reverse translational studies in rats provide insight into the motivational effects of NAcs PDE4B that advance our understanding of the smoking behaviors mapped in human GWAS.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Qin Jiang
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Panjun Kim
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
10
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
11
|
Saatci O, Alam R, Huynh-Dam KT, Isik A, Uner M, Belder N, Ersan PG, Cetin M, Tokat UM, Gedik ME, Bal H, Sahin OS, Riazalhosseini Y, Thieffry D, Gautheret D, Ogretmen B, Aksoy S, Uner A, Akyol A, Sahin O. Targeting LINC00152 activates cAMP/Ca 2+/ferroptosis axis and overcomes tamoxifen resistance in ER+ breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565697. [PMID: 38496603 PMCID: PMC10942410 DOI: 10.1101/2023.11.05.565697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER+) breast cancer, constituting around 75% of all cases. However, emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance via blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of cAMP/PKA/CREB axis and increased expression of TRPC1 Ca2+ channel. This causes cytosolic Ca2+ overload and generation of reactive oxygen species (ROS) that is, on one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe2+ levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels. These ultimately induce lipid peroxidation and ferroptotic cell death in combination with tamoxifen. Overexpressing PDE4D rescues LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca2+/ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of ferroptosis induction and tamoxifen sensitization, thereby revealing LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Rashed Alam
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kim-Tuyen Huynh-Dam
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Aynur Isik
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, TURKEY
| | - Meral Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, TURKEY
| | - Nevin Belder
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, TURKEY
| | - Pelin Gulizar Ersan
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, TURKEY
| | - Metin Cetin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Unal Metin Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, TURKEY
| | - Mustafa Emre Gedik
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hilal Bal
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, TURKEY
| | - Ozlem Sener Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, Montreal, Quebec, CANADA
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, CANADA
| | - Denis Thieffry
- Département de biologie de l'Ecole normale supérieure, PSL Université, 75005 Paris, FRANCE
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91190, Gifsur-Yvette, FRANCE
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100, Ankara, TURKEY
| | - Aysegul Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, TURKEY
| | - Aytekin Akyol
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, TURKEY
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
12
|
Berne A, Zhang T, Shomar J, Ferrer AJ, Valdes A, Ohyama T, Klein M. Mechanical vibration patterns elicit behavioral transitions and habituation in crawling Drosophila larvae. eLife 2023; 12:e69205. [PMID: 37855833 PMCID: PMC10586805 DOI: 10.7554/elife.69205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
How animals respond to repeatedly applied stimuli, and how animals respond to mechanical stimuli in particular, are important questions in behavioral neuroscience. We study adaptation to repeated mechanical agitation using the Drosophila larva. Vertical vibration stimuli elicit a discrete set of responses in crawling larvae: continuation, pause, turn, and reversal. Through high-throughput larva tracking, we characterize how the likelihood of each response depends on vibration intensity and on the timing of repeated vibration pulses. By examining transitions between behavioral states at the population and individual levels, we investigate how the animals habituate to the stimulus patterns. We identify time constants associated with desensitization to prolonged vibration, with re-sensitization during removal of a stimulus, and additional layers of habituation that operate in the overall response. Known memory-deficient mutants exhibit distinct behavior profiles and habituation time constants. An analogous simple electrical circuit suggests possible neural and molecular processes behind adaptive behavior.
Collapse
Affiliation(s)
- Alexander Berne
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Tom Zhang
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Joseph Shomar
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Anggie J Ferrer
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Aaron Valdes
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Tomoko Ohyama
- Department of Biology, McGill UniversityMontrealCanada
| | - Mason Klein
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| |
Collapse
|
13
|
Jeong MH, Urquhart G, Lewis C, Chi Z, Jewell JL. Inhibition of phosphodiesterase 4D suppresses mTORC1 signaling and pancreatic cancer growth. JCI Insight 2023; 8:e158098. [PMID: 37427586 PMCID: PMC10371348 DOI: 10.1172/jci.insight.158098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) senses multiple upstream stimuli to orchestrate anabolic and catabolic events that regulate cell growth and metabolism. Hyperactivation of mTORC1 signaling is observed in multiple human diseases; thus, pathways that suppress mTORC1 signaling may help to identify new therapeutic targets. Here, we report that phosphodiesterase 4D (PDE4D) promotes pancreatic cancer tumor growth by increasing mTORC1 signaling. GPCRs paired to Gαs proteins activate adenylyl cyclase, which in turn elevates levels of 3',5'-cyclic adenosine monophosphate (cAMP), whereas PDEs catalyze the hydrolysis of cAMP to 5'-AMP. PDE4D forms a complex with mTORC1 and is required for mTORC1 lysosomal localization and activation. Inhibition of PDE4D and the elevation of cAMP levels block mTORC1 signaling via Raptor phosphorylation. Moreover, pancreatic cancer exhibits an upregulation of PDE4D expression, and high PDE4D levels predict the poor overall survival of patients with pancreatic cancer. Importantly, FDA-approved PDE4 inhibitors repress pancreatic cancer cell tumor growth in vivo by suppressing mTORC1 signaling. Our results identify PDE4D as an important activator of mTORC1 and suggest that targeting PDE4 with FDA-approved inhibitors may be beneficial for the treatment of human diseases with hyperactivated mTORC1 signaling.
Collapse
Affiliation(s)
- Mi-Hyeon Jeong
- Department of Molecular Biology
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine, and
| | - Greg Urquhart
- Department of Molecular Biology
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine, and
| | | | - Zhikai Chi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jenna L. Jewell
- Department of Molecular Biology
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine, and
| |
Collapse
|
14
|
Sharp BM, Jiang Q, Kim P, Chen H. Inactivation of phosphodiesterase-4B gene in rat nucleus accumbens shell by CRISPR/Cas9 modulates the motivation to chronically self-administer nicotine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531588. [PMID: 37461457 PMCID: PMC10349965 DOI: 10.1101/2023.03.07.531588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Large scale human genome wide association studies (GWAS) have identified a growing pool of genes associated with cigarette smoking. One of the most prominent, phosphodiesterase-4B (PDE4B), has been associated with multiple smoking phenotypes. Although PDE4B modulates the half-life of neuronal cAMP, its precise role in smoking behaviors is unknown. To address this knowledge gap, we used a reverse translational approach. We inactivated PDE4B in bilateral medial nucleus accumbens shell (NAcs) neurons by injecting AAV containing a specific gRNA in female transgenic Cas9+ Long Evans rats. These rats then were given 23-hour chronic access to nicotine intravenous self-administration (IVSA) under a schedule of increasing fixed ratios (FR). With the increased effort required at FR7, nicotine SA (i.e. active presses and drug infusions) declined significantly in controls, whereas it was maintained in the mutagenized group. A progressive ratio (PR) study also showed significantly greater cumulative nicotine infusions in the mutant group. Hence, we hypothesized that enhanced PDE4B protein activity would reduce nicotine IVSA. A positive allosteric modulator,2-(3-(4-chloro-3-fluorophenyl)-5-ethyl-1H-1,2,4-triazol-1-yl)-N-(3,5-dichlorobenzyl)acetamide (MR-L2), was microinfused into NAcs bilaterally at FR3 or FR5; in both cohorts, MR-L2 acutely reduced nicotine IVSA. In summary, these studies show that the activity of PDE4B regulates the capacity of NAcs to maintain nicotine IVSA in face of the cost of increasing work. This finding and the results of the PR study indicate that PDE4B affects the motivation to obtain nicotine. These reverse translational studies in rats provide insight into the motivational effects of NAcs PDE4B that advance our understanding of the smoking behaviors mapped in human GWAS.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Qin Jiang
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Panjun Kim
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
15
|
Du B, Luo M, Ren C, Zhang J. PDE4 inhibitors for disease therapy: advances and future perspective. Future Med Chem 2023; 15:1185-1207. [PMID: 37470147 DOI: 10.4155/fmc-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The PDE4 enzyme family is specifically responsible for hydrolyzing cAMP and plays a vital role in regulating the balance of second messengers. As a crucial regulator in signal transduction, PDE4 has displayed promising pharmacological targets in a variety of diseases, for which its inhibitors have been used as a therapeutic strategy. This review provides a comprehensive summary of the development of PDE4 inhibitors in the past few years, along with the structure, clinical and research progress of multiple inhibitors of PDE4, focusing on the research and development strategies of PDE4 inhibitors. We hope our analysis will provide a significant reference for the future development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min Luo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
16
|
Roy D, Balasubramanian S, Krishnamurthy PT, Sola P, Rymbai E. Phosphodiesterase-4 Inhibition in Parkinson's Disease: Molecular Insights and Therapeutic Potential. Cell Mol Neurobiol 2023:10.1007/s10571-023-01349-1. [PMID: 37074485 DOI: 10.1007/s10571-023-01349-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Clinicians and researchers are exploring safer and novel treatment strategies for treating the ever-prevalent Parkinson's disease (PD) across the globe. Several therapeutic strategies are used clinically for PD, including dopamine replacement therapy, DA agonists, MAO-B blockers, COMT blockers, and anticholinergics. Surgical interventions such as pallidotomy, particularly deep brain stimulation (DBS), are also employed. However, they only provide temporal and symptomatic relief. Cyclic adenosine monophosphate (cAMP) is one of the secondary messengers involved in dopaminergic neurotransmission. Phosphodiesterase (PDE) regulates cAMP and cGMP intracellular levels. PDE enzymes are subdivided into families and subtypes which are expressed throughout the human body. PDE4 isoenzyme- PDE4B subtype is overexpressed in the substantia nigra of the brain. Various studies have implicated multiple cAMP-mediated signaling cascades in PD, and PDE4 is a common link that can emerge as a neuroprotective and/or disease-modifying target. Furthermore, a mechanistic understanding of the PDE4 subtypes has provided perceptivity into the molecular mechanisms underlying the adverse effects of phosphodiesterase-4 inhibitors (PDE4Is). The repositioning and development of efficacious PDE4Is for PD have gained much attention. This review critically assesses the existing literature on PDE4 and its expression. Specifically, this review provides insights into the interrelated neurological cAMP-mediated signaling cascades involving PDE4s and the potential role of PDE4Is in PD. In addition, we discuss existing challenges and possible strategies for overcoming them.
Collapse
Affiliation(s)
- Dhritiman Roy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Shivaramakrishnan Balasubramanian
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India.
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| |
Collapse
|
17
|
Tao X, Chen C, Huang Z, Lei Y, Wang M, Wang S, Tian D. Genetic deletion of phosphodiesterase 4D in the liver improves kidney damage in high-fat fed mice: liver-kidney crosstalk. Cell Death Dis 2023; 14:273. [PMID: 37072403 PMCID: PMC10113384 DOI: 10.1038/s41419-023-05792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
A growing body of epidemiological evidence suggests that nonalcoholic fatty liver disease (NAFLD) is an independent risk factor for chronic kidney disease (CKD), but the regulatory mechanism linking NAFLD and CKD remains unclear. Our previous studies have shown that overexpression of PDE4D in mouse liver is sufficient for NAFLD, but little is known about its role in kidney injury. Here, liver-specific PDE4D conditional knockout (LKO) mice, adeno-associated virus 8 (AAV8)-mediated gene transfer of PDE4D and the PDE4 inhibitor roflumilast were used to assess the involvement of hepatic PDE4D in NAFLD-associated renal injury. We found that mice fed a high-fat diet (HFD) for 16 weeks developed hepatic steatosis and kidney injury, with an associated increase in hepatic PDE4D but no changes in renal PDE4D. Furthermore, liver-specific knockout of PDE4D or pharmacological inhibition of PDE4 with roflumilast ameliorated hepatic steatosis and kidney injury in HFD-fed diabetic mice. Correspondingly, overexpression of hepatic PDE4D resulted in significant renal damage. Mechanistically, highly expressed PDE4D in fatty liver promoted the production and secretion of TGF-β1 into blood, which triggered kidney injury by activating SMADs and subsequent collagen deposition. Our findings revealed PDE4D might act as a critical mediator between NAFLD and associated kidney injury and indicated PDE4 inhibitor roflumilast as a potential therapeutic strategy for NAFLD-associated CKD.
Collapse
Affiliation(s)
- Xiang Tao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Can Chen
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Huang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Muru Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Sahores A, González AR, Yaneff A, May M, Gómez N, Monczor F, Fernández N, Davio C, Shayo C. Ceefourin-1, a MRP4/ABCC4 inhibitor, induces apoptosis in AML cells enhanced by histamine. Biochim Biophys Acta Gen Subj 2023; 1867:130322. [PMID: 36773726 DOI: 10.1016/j.bbagen.2023.130322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Ceefourin-1 is a specific MRP4/ABCC4 inhibitor with potential antileukemic activity. In this study, we evaluate the ability of ceefourin-1 alone or in combination with histamine, an approved antileukemic agent, to induce cell differentiation or apoptosis in human acute myeloid leukemic cells. We also examine ceefourin-1 toxicity in mice. METHODS U937, HL-60, and KG1a cells were used as models for human acute myeloid leukemia. Cyclic AMP efflux was estimated by measuring intracellular and extracellular cAMP levels. Cell differentiation was assessed by levels of CD14 and CD11b by FACS, and CD88 by western blot, and by cell morphology. Apoptosis was evaluated by cleavage of caspase-3 and PARP by western blot, and by annexin V binding assay. Subacute toxicity study of ceefourin-1 was carried out in BALB/c mice. RESULTS Ceefourin-1 inhibits cAMP exclusion in AML cells and promotes intracellular signaling via CREB. Ceefourin-1 leads AML cells to apoptosis and histamine potentiates this effect, without evidence of cell differentiation. Intraperitoneal administration of ceefourin-1 shows no important alterations in mice blood parameters, hepatic, and renal functions, nor signs of histologic damage. CONCLUSIONS These results show that ceefourin-1 promotes apoptosis in AML cells that is enhanced by histamine. GENERAL SIGNIFICANCE This work indicates that ceefourin-1 represents a promising molecule that could be used alone or in combination with histamine for in vivo evaluation in acute myeloid leukemia malignancies.
Collapse
Affiliation(s)
- Ana Sahores
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angela Rodríguez González
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María May
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Monczor
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Fernández
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Collins KB, Scott JD. Phosphorylation, compartmentalization, and cardiac function. IUBMB Life 2023; 75:353-369. [PMID: 36177749 PMCID: PMC10049969 DOI: 10.1002/iub.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation is a fundamental element of cell signaling. First discovered as a biochemical switch in glycogen metabolism, we now know that this posttranslational modification permeates all aspects of cellular behavior. In humans, over 540 protein kinases attach phosphate to acceptor amino acids, whereas around 160 phosphoprotein phosphatases remove phosphate to terminate signaling. Aberrant phosphorylation underlies disease, and kinase inhibitor drugs are increasingly used clinically as targeted therapies. Specificity in protein phosphorylation is achieved in part because kinases and phosphatases are spatially organized inside cells. A prototypic example is compartmentalization of the cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase A through association with A-kinase anchoring proteins. This configuration creates autonomous signaling islands where the anchored kinase is constrained in proximity to activators, effectors, and selected substates. This article primarily focuses on A kinase anchoring protein (AKAP) signaling in the heart with an emphasis on anchoring proteins that spatiotemporally coordinate excitation-contraction coupling and hypertrophic responses.
Collapse
Affiliation(s)
- Kerrie B. Collins
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| | - John D. Scott
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| |
Collapse
|
20
|
Irelan D, Boyd A, Fiedler E, Lochmaier P, McDonough W, Aragon IV, Rachek L, Abou Saleh L, Richter W. Acute PDE4 Inhibition Induces a Transient Increase in Blood Glucose in Mice. Int J Mol Sci 2023; 24:ijms24043260. [PMID: 36834669 PMCID: PMC9963939 DOI: 10.3390/ijms24043260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
cAMP-phosphodiesterase 4 (PDE4) inhibitors are currently approved for the treatment of inflammatory diseases. There is interest in expanding the therapeutic application of PDE4 inhibitors to metabolic disorders, as their chronic application induces weight loss in patients and animals and improves glucose handling in mouse models of obesity and diabetes. Unexpectedly, we have found that acute PDE4 inhibitor treatment induces a temporary increase, rather than a decrease, in blood glucose levels in mice. Blood glucose levels in postprandial mice increase rapidly upon drug injection, reaching a maximum after ~45 min, and returning to baseline within ~4 h. This transient blood glucose spike is replicated by several structurally distinct PDE4 inhibitors, suggesting that it is a class effect of PDE4 inhibitors. PDE4 inhibitor treatment does not reduce serum insulin levels, and the subsequent injection of insulin potently reduces PDE4 inhibitor-induced blood glucose levels, suggesting that the glycemic effects of PDE4 inhibition are independent of changes in insulin secretion and/or sensitivity. Conversely, PDE4 inhibitors induce a rapid reduction in skeletal muscle glycogen levels and potently inhibit the uptake of 2-deoxyglucose into muscle tissues. This suggests that reduced glucose uptake into muscle tissue is a significant contributor to the transient glycemic effects of PDE4 inhibitors in mice.
Collapse
Affiliation(s)
- Daniel Irelan
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Edward Fiedler
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Peter Lochmaier
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Will McDonough
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ileana V. Aragon
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Lyudmila Rachek
- Department of Pharmacology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Wito Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
21
|
Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 2023; 20:90-108. [PMID: 36050457 DOI: 10.1038/s41569-022-00756-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) modulate the neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple PDE isozymes with different enzymatic properties and subcellular localization regulate local pools of cyclic nucleotides and specific functions. This organization is heavily perturbed during cardiac hypertrophy and heart failure (HF), which can contribute to disease progression. Clinically, PDE inhibition has been considered a promising approach to compensate for the catecholamine desensitization that accompanies HF. Although PDE3 inhibitors, such as milrinone or enoximone, have been used clinically to improve systolic function and alleviate the symptoms of acute HF, their chronic use has proved to be detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as new potential targets to treat HF, each having a unique role in local cyclic nucleotide signalling pathways. In this Review, we describe cAMP and cGMP signalling in cardiomyocytes and present the various PDE families expressed in the heart as well as their modifications in pathological cardiac hypertrophy and HF. We also appraise the evidence from preclinical models as well as clinical data pointing to the use of inhibitors or activators of specific PDEs that could have therapeutic potential in HF.
Collapse
|
22
|
Loken LC, Corsi SR, Alvarez DA, Ankley GT, Baldwin AK, Blackwell BR, De Cicco LA, Nott MA, Oliver SK, Villeneuve DL. Prioritizing Pesticides of Potential Concern and Identifying Potential Mixture Effects in Great Lakes Tributaries Using Passive Samplers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:340-366. [PMID: 36165576 PMCID: PMC10107608 DOI: 10.1002/etc.5491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 09/22/2022] [Indexed: 05/24/2023]
Abstract
To help meet the objectives of the Great Lakes Restoration Initiative with regard to increasing knowledge about toxic substances, 223 pesticides and pesticide transformation products were monitored in 15 Great Lakes tributaries using polar organic chemical integrative samplers. A screening-level assessment of their potential for biological effects was conducted by computing toxicity quotients (TQs) for chemicals with available US Environmental Protection Agency (USEPA) Aquatic Life Benchmark values. In addition, exposure activity ratios (EAR) were calculated using information from the USEPA ToxCast database. Between 16 and 81 chemicals were detected per site, with 97 unique compounds detected overall, for which 64 could be assessed using TQs or EARs. Ten chemicals exceeded TQ or EAR levels of concern at two or more sites. Chemicals exceeding thresholds included seven herbicides (2,4-dichlorophenoxyacetic acid, diuron, metolachlor, acetochlor, atrazine, simazine, and sulfentrazone), a transformation product (deisopropylatrazine), and two insecticides (fipronil and imidacloprid). Watersheds draining agricultural and urban areas had more detections and higher concentrations of pesticides compared with other land uses. Chemical mixtures analysis for ToxCast assays associated with common modes of action defined by gene targets and adverse outcome pathways (AOP) indicated potential activity on biological pathways related to a range of cellular processes, including xenobiotic metabolism, extracellular signaling, endocrine function, and protection against oxidative stress. Use of gene ontology databases and the AOP knowledgebase within the R-package ToxMixtures highlighted the utility of ToxCast data for identifying and evaluating potential biological effects and adverse outcomes of chemicals and mixtures. Results have provided a list of high-priority chemicals for future monitoring and potential biological effects warranting further evaluation in laboratory and field environments. Environ Toxicol Chem 2023;42:340-366. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luke C. Loken
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Steven R. Corsi
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - David A. Alvarez
- US Geological SurveyColumbia Environmental Research CenterColombiaMissouriUSA
| | - Gerald T. Ankley
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | | | - Brett R. Blackwell
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | - Laura A. De Cicco
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Michele A. Nott
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Samantha K. Oliver
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Daniel L. Villeneuve
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| |
Collapse
|
23
|
Giuzio F, Bonomo MG, Catalano A, Infantino V, Salzano G, Monné M, Geronikaki A, Petrou A, Aquaro S, Sinicropi MS, Saturnino C. Potential PDE4B inhibitors as promising candidates against SARS-CoV-2 infection. Biomol Concepts 2023; 14:bmc-2022-0033. [PMID: 37909122 DOI: 10.1515/bmc-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/10/2023] [Indexed: 11/02/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus belonging to the coronavirus family responsible for coronavirus disease 2019 (COVID-19). It primarily affects the pulmonary system, which is the target of chronic obstructive pulmonary disease (COPD), for which many new compounds have been developed. In this study, phosphodiesterase 4 (PDE4) inhibitors are being investigated. The inhibition of PDE4 enzyme produces anti-inflammatory and bronchodilator effects in the lung by inducing an increase in cAMP concentrations. Piclamilast and rolipram are known selective inhibitors of PDE4, which are unfortunately endowed with common side effects, such as nausea and emesis. The selective inhibition of the phosphodiesterase 4B (PDE4B) subtype may represent an intriguing technique for combating this highly contagious disease with fewer side effects. In this article, molecular docking studies for the selective inhibition of the PDE4B enzyme have been carried out on 21 in-house compounds. The compounds were docked into the pocket of the PDE4B catalytic site, and in most cases, they were almost completely superimposed onto piclamilast. Then, in order to enlarge our study, drug-likeness prediction studies were performed on the compounds under study.
Collapse
Affiliation(s)
- Federica Giuzio
- International PhD Programme 'Sciences', Department of Science, University of Basilicata, Viale dell'Ateneo Lucano n.10, 85100 Potenza, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | | | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | | | - Giovanni Salzano
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Magnus Monné
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
24
|
Targeting phosphodiesterase 4 as a therapeutic strategy for cognitive improvement. Bioorg Chem 2022; 130:106278. [DOI: 10.1016/j.bioorg.2022.106278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
25
|
Non-Selective PDE4 Inhibition Induces a Rapid and Transient Decrease of Serum Potassium in Mice. BIOLOGY 2022; 11:biology11111582. [PMID: 36358283 PMCID: PMC9687940 DOI: 10.3390/biology11111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary Inhibitors of phosphodiesterase 4 (PDE4), a group of isoenzymes that hydrolyze and inactivate the second messenger cAMP, produce promising therapeutic benefits, including anti-inflammatory and memory-enhancing effects. Here, we report that, unexpectedly, PDE4 inhibitors also reduce serum potassium levels in mice. As both the total potassium content of the body, as well as the distribution of potassium between intra- and extracellular compartments, are critical for normal cellular functions, we further explored this observation. Several structurally distinct PDE4 inhibitors reduce serum potassium levels in mice, suggesting it is a class effect of these drugs. Serum potassium levels decrease within 15 min of drug injection, suggesting that PDE4 inhibition lowers serum potassium levels by promoting a transcellular shift of potassium from the blood into cells. This shift is a characteristically fast process, compared to a loss of total-body potassium via the kidneys or digestive tract (e.g., diarrhea). Indeed, stimulating cAMP synthesis with β-adrenoceptor agonists is known to rapidly shift potassium into cells, and PDE4 inhibitors appear to mimic this process by preventing PDE4-mediated cAMP degradation. Our findings reveal that the various acute physiologic effects of PDE4 inhibitors are paralleled and/or may be affected by reduced serum potassium levels. Abstract The analysis of blood samples from mice treated with the PDE4 inhibitor Roflumilast revealed an unexpected reduction in serum potassium levels, while sodium and chloride levels were unaffected. Treatment with several structurally distinct PAN-PDE4 inhibitors, including Roflumilast, Rolipram, RS25344, and YM976 dose-dependently reduced serum potassium levels, indicating the effect is a class-characteristic property. PDE4 inhibition also induces hypothermia and hypokinesia in mice. However, while general anesthesia abrogates these effects of PDE4 inhibitors, potassium levels decrease to similar extents in both awake as well as in fully anesthetized mice. This suggests that the hypokalemic effects of PDE4 inhibitors occur independently of hypothermia and hypokinesia. PDE4 inhibition reduces serum potassium within 15 min of treatment, consistent with a rapid transcellular shift of potassium. Catecholamines promote the uptake of potassium into the cell via increased cAMP signaling. PDE4 appears to modulate these adrenoceptor-mediated effects, as PDE4 inhibition has no additional effects on serum potassium in the presence of saturating doses of the β-adrenoceptor agonist Isoprenaline or the α2-blocker Yohimbine, and is partially blocked by pre-treatment with the β-blocker Propranolol. Together, these data suggest that PDE4 inhibitors reduce serum potassium levels by modulating the adrenergic regulation of cellular potassium uptake.
Collapse
|
26
|
Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules 2022; 27:4964. [PMID: 35956914 PMCID: PMC9370432 DOI: 10.3390/molecules27154964] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Since the early 1980s, phosphodiesterase 4 (PDE4) has been an attractive target for the treatment of inflammation-based diseases. Several scientific advancements, by both academia and pharmaceutical companies, have enabled the identification of many synthetic ligands for this target, along with the acquisition of precise information on biological requirements and linked therapeutic opportunities. The transition from pre-clinical to clinical phase was not easy for the majority of these compounds, mainly due to their significant side effects, and it took almost thirty years for a PDE4 inhibitor to become a drug i.e., Roflumilast, used in the clinics for the treatment of chronic obstructive pulmonary disease. Since then, three additional compounds have reached the market a few years later: Crisaborole for atopic dermatitis, Apremilast for psoriatic arthritis and Ibudilast for Krabbe disease. The aim of this review is to provide an overview of the compounds that have reached clinical trials in the last ten years, with a focus on those most recently developed for respiratory, skin and neurological disorders.
Collapse
Affiliation(s)
- Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, UK
| | - Maria Paola Giovannoni
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
27
|
Hansen JN, Kaiser F, Leyendecker P, Stüven B, Krause J, Derakhshandeh F, Irfan J, Sroka TJ, Preval KM, Desai PB, Kraut M, Theis H, Drews A, De‐Domenico E, Händler K, Pazour GJ, Henderson DJP, Mick DU, Wachten D. A cAMP signalosome in primary cilia drives gene expression and kidney cyst formation. EMBO Rep 2022; 23:e54315. [PMID: 35695071 PMCID: PMC9346484 DOI: 10.15252/embr.202154315] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive. By combining spatially resolved optogenetics with RNA sequencing and imaging, we reveal a novel cAMP signalosome that is functionally distinct from the cytoplasm. We identify the genes and pathways targeted by the ciliary cAMP signalosome and shed light on the underlying mechanisms and downstream signaling. We reveal that chronic stimulation of the ciliary cAMP signalosome transforms kidney epithelia from tubules into cysts. Counteracting this chronic cAMP elevation in the cilium by small molecules targeting activation of phosphodiesterase-4 long isoforms inhibits cyst growth. Thereby, we identify a novel concept of how the primary cilium controls cellular functions and maintains tissue integrity in a specific and spatially distinct manner and reveal novel molecular components that might be involved in the development of one of the most common genetic diseases, polycystic kidney disease.
Collapse
Affiliation(s)
- Jan N Hansen
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | - Fabian Kaiser
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | | | - Birthe Stüven
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | | | | | | | - Tommy J Sroka
- Center for Molecular Signaling (PZMS)Center of Human and Molecular Biology (ZHMB)Saarland University, School of MedicineHomburgGermany
| | - Kenley M Preval
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | - Paurav B Desai
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | - Michael Kraut
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Heidi Theis
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Anna‐Dorothee Drews
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Elena De‐Domenico
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Kristian Händler
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Gregory J Pazour
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | | | - David U Mick
- Center for Molecular Signaling (PZMS)Center of Human and Molecular Biology (ZHMB)Saarland University, School of MedicineHomburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
28
|
Mani A. PDE4DIP in health and diseases. Cell Signal 2022; 94:110322. [PMID: 35346821 PMCID: PMC9618167 DOI: 10.1016/j.cellsig.2022.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
Abstract
Cyclic-AMP (cAMP), the first second messenger to be identified, is synthesized, and is universally utilized as a second messenger, and plays important roles in integrity, and function of organs, including heart. Through its coupling with other intracellular messengers, cAMP facilitates excitation-contraction coupling, increases heart rate and conduction velocity. It is degraded by a class of enzymes called cAMP-dependent phosphodiesterase (PDE), with PDE3 and PDE4 being the predominant isoforms in the heart. This highly diverse class of enzymes degrade cAMP and through anchoring proteins generates dynamic microdomains to target specific proteins and control specific cell functions in response to various stimuli. The impaired function of the anchoring protein either by inherited genetic mutations or acquired injuries results in altered intracellular targeting, and blunted responsiveness to stimulating pathways and contributes to pathological cardiac remodeling, cardiac arrhythmias and reduced cell survival. Recent genetic studies provide compelling evidence for an association between the variants in the anchoring protein PDE4DIP and atrial fibrillation, stroke, and heart failure.
Collapse
Affiliation(s)
- Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
29
|
Phosphodiesterase 11 A (PDE11A), a potential biomarker for glioblastoma. Toxicol Res 2022; 38:409-415. [DOI: 10.1007/s43188-022-00129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022] Open
|
30
|
Liu Z, Liu M, Cao Z, Qiu P, Song G. Phosphodiesterase‑4 inhibitors: a review of current developments (2013-2021). Expert Opin Ther Pat 2022; 32:261-278. [PMID: 34986723 DOI: 10.1080/13543776.2022.2026328] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cyclic nucleotide phosphodiesterase 4 (PDE4) is responsible for the hydrolysis of cAMP, which has become an attractive therapeutic target for lung, skin, and severe neurological diseases. Here, we review the current status of development of PDE4 inhibitors since 2013 and discuss the applicability of novel medicinal-chemistry strategies for identifying more efficient and safer inhibitors. AREAS COVERED This review summarizes the clinical development of PDE4 inhibitors from 2013 to 2021, focused on their pharmacophores, the strategies to reduce the side effects of PDE4 inhibitors and the development of subfamily selective PDE4 inhibitors. EXPERT OPINION To date, great efforts have been made in the development of PDE4 inhibitors, and researchers have established a comprehensive preclinical database and collected some promising data from clinical trials. Although four small-molecule PDE4 inhibitors have been approved by FDA for the treatment of human diseases up to now, further development of other reported PDE4 inhibitors with strong potency has been hampered due to the occurrence of severe side effects. There are currently three main strategies for overcoming the dose limitation and systemic side effects, which provide new opportunities for the clinical development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Zhenqing Cao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Pengsen Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
31
|
Agarwal SR, Sherpa RT, Moshal KS, Harvey RD. Compartmentalized cAMP signaling in cardiac ventricular myocytes. Cell Signal 2022; 89:110172. [PMID: 34687901 PMCID: PMC8602782 DOI: 10.1016/j.cellsig.2021.110172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023]
Abstract
Activation of different receptors that act by generating the common second messenger cyclic adenosine monophosphate (cAMP) can elicit distinct functional responses in cardiac myocytes. Selectively sequestering cAMP activity to discrete intracellular microdomains is considered essential for generating receptor-specific responses. The processes that control this aspect of compartmentalized cAMP signaling, however, are not completely clear. Over the years, technological innovations have provided critical breakthroughs in advancing our understanding of the mechanisms underlying cAMP compartmentation. Some of the factors identified include localized production of cAMP by differential distribution of receptors, localized breakdown of this second messenger by targeted distribution of phosphodiesterase enzymes, and limited diffusion of cAMP by protein kinase A (PKA)-dependent buffering or physically restricted barriers. The aim of this review is to provide a discussion of our current knowledge and highlight some of the gaps that still exist in the field of cAMP compartmentation in cardiac myocytes.
Collapse
|
32
|
Huang Z, Liu J, Yang J, Yan Y, Yang C, He X, Huang R, Tan M, Wu D, Yan J, Shen B. PDE4B Induces Epithelial-to-Mesenchymal Transition in Bladder Cancer Cells and Is Transcriptionally Suppressed by CBX7. Front Cell Dev Biol 2021; 9:783050. [PMID: 34977026 PMCID: PMC8716816 DOI: 10.3389/fcell.2021.783050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Urinary bladder cancer (UBC) is a common malignant tumor with high incidence. Advances in the diagnosis and treatment of this disease demand the identification of novel therapeutic targets. Multiple studies demonstrated that PDE4B level was upregulated in malignancies and high PDE4B expression was correlated with poor outcomes. Herein, we identified that PDE4B was a potential therapeutic target in UBC. We confirmed that PDE4B expression was correlated with aggressive clinicopathological characteristics and unfavorable prognosis. Functional studies demonstrated that ectopic expression of PDE4B promoted UBC cells proliferation, migration and invasion, whereas PDE4B depletion suppressed cancer cell aggressiveness. We also identified CBX7 as a regulator of PDE4B to suppress the expression of PDE4B at the transcription level in a PRC1-dependent manner. Moreover, our results indicated that PDE4B induced epithelial-to-mesenchymal transition (EMT) in UBC cells via β-catenin pathway, whereas inhibition of PDE4B by its small molecule inhibitor, rolipram, effectively reversed the PDE4B overexpression-induced effects. To sum up, our results indicated that PDE4B acts as an oncogene by promoting UBC cell migration and invasion via β-catenin/EMT pathway.
Collapse
Affiliation(s)
- Zhengnan Huang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiakuan Liu
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Jiale Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Denglong Wu, ; Jun Yan, ; Bing Shen,
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- *Correspondence: Denglong Wu, ; Jun Yan, ; Bing Shen,
| | - Bing Shen
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Denglong Wu, ; Jun Yan, ; Bing Shen,
| |
Collapse
|
33
|
Mu L, Liu X, Yu H, Hu M, Friedman V, Kelly TJ, Zhao L, Liu QS. Ibudilast attenuates cocaine self-administration and prime- and cue-induced reinstatement of cocaine seeking in rats. Neuropharmacology 2021; 201:108830. [PMID: 34626665 PMCID: PMC8656241 DOI: 10.1016/j.neuropharm.2021.108830] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022]
Abstract
Ibudilast is a non-selective phosphodiesterase (PDE) inhibitor and glial cell modulator which has shown great promise for the treatment of drug and alcohol use disorders in recent clinical studies. However, it is unknown whether and how ibudilast affects cocaine seeking behavior. Here we show that systemic administration of ibudilast dose-dependently reduced cocaine self-administration under fixed- and progressive-ratio reinforcement schedules in rats and shifted cocaine dose-response curves downward. In addition, ibudilast decreased cocaine prime- and cue-induced reinstatement of cocaine seeking. These results indicate that ibudilast was effective in reducing the reinforcing effects of cocaine and relapse to cocaine seeking. Chronic cocaine exposure induces cAMP-related neuroadaptations in the reward circuitry of the brain. To investigate potential mechanisms for ibudilast-induced attenuation of cocaine self-administration, we recorded from ventral tegmental area (VTA) dopamine neurons in ex vivo midbrain slices prepared from rats that had undergone saline and cocaine self-administration. We found cocaine self-administration led to a decrease in inhibitory postsynaptic currents (IPSCs), an increase in the AMPAR/NMDAR ratio, and an increase in the excitation to inhibition (E/I) ratio. Ibudilast pretreatments enhanced GABAergic inhibition and did not further change cocaine-induced potentiation of excitation, leading to normalization of the E/I ratio. Restoration of the balance between excitation and inhibition in VTA dopamine neurons may contribute to the attenuation of cocaine self-administration by ibudilast.
Collapse
Affiliation(s)
- Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Mengming Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Thomas J Kelly
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
34
|
Kim Y, Hou V, Huff RD, Aguiar JA, Revill S, Tiessen N, Cao Q, Miller MS, Inman MD, Ask K, Doxey AC, Hirota JA. Potentiation of long-acting β 2-agonist and glucocorticoid responses in human airway epithelial cells by modulation of intracellular cAMP. Respir Res 2021; 22:266. [PMID: 34666750 PMCID: PMC8527633 DOI: 10.1186/s12931-021-01862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/09/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction Over 300 million people in the world live with asthma, resulting in 500,000 annual global deaths with future increases expected. It is estimated that around 50–80% of asthma exacerbations are due to viral infections. Currently, a combination of long-acting beta agonists (LABA) for bronchodilation and glucocorticoids (GCS) to control lung inflammation represent the dominant strategy for the management of asthma, however, it is still sub-optimal in 35–50% of moderate-severe asthmatics resulting in persistent lung inflammation, impairment of lung function, and risk of mortality. Mechanistically, LABA/GCS combination therapy results in synergistic efficacy mediated by intracellular cyclic adenosine monophosphate (cAMP). Hypothesis Increasing intracellular cAMP during LABA/GCS combination therapy via inhibiting phosphodiesterase 4 (PDE4) and/or blocking the export of cAMP by ATP Binding Cassette Transporter C4 (ABCC4), will potentiate anti-inflammatory responses of mainstay LABA/GCS therapy. Methods Expression and localization experiments were performed using in situ hybridization and immunohistochemistry in human lung tissue from healthy subjects, while confirmatory transcript and protein expression analyses were performed in primary human airway epithelial cells and cell lines. Intervention experiments were performed on the human airway epithelial cell line, HBEC-6KT, by pre-treatment with combinations of LABA/GCS with PDE4 and/or ABCC4 inhibitors followed by Poly I:C or imiquimod challenge as a model for viral stimuli. Cytokine readouts for IL-6, IL-8, CXCL10/IP-10, and CCL5/RANTES were quantified by ELISA. Results Using archived human lung and human airway epithelial cells, ABCC4 gene and protein expression were confirmed in vitro and in situ. LABA/GCS attenuation of Poly I:C or imiquimod-induced IL-6 and IL-8 were potentiated with ABCC4 and PDE4 inhibition, which was greater when ABCC4 and PDE4 inhibition was combined. Modulation of cAMP levels had no impact on LABA/GCS modulation of Poly I:C-induced CXCL10/IP-10 or CCL5/RANTES. Conclusion Modulation of intracellular cAMP levels by PDE4 or ABCC4 inhibition potentiates LABA/GCS efficacy in human airway epithelial cells challenged with viral stimuli. The data suggest further exploration of the value of adding cAMP modulators to mainstay LABA/GCS therapy in asthma for potentiated anti-inflammatory efficacy.
Collapse
Affiliation(s)
- Yechan Kim
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Vincent Hou
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, V6H 3Z, Canada
| | - Jennifer A Aguiar
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Spencer Revill
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Nicholas Tiessen
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Quynh Cao
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Matthew S Miller
- Department of Biochemistry, McMaster University, Hamilton, ON, L8S 4K1, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Mark D Inman
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew C Doxey
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada.,Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada. .,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, V6H 3Z, Canada. .,Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada. .,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
35
|
Uchida H, Kamata M, Shimizu T, Egawa S, Ito M, Takeshima R, Mizukawa I, Watanabe A, Tada Y. Apremilast downregulates interleukin-17 production and induces splenic regulatory B cells and regulatory T cells in imiquimod-induced psoriasiform dermatitis. J Dermatol Sci 2021; 104:55-62. [PMID: 34548208 DOI: 10.1016/j.jdermsci.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Apremilast, a selective inhibitor of the enzyme phosphodiesterase 4, is efficacious for psoriasis. However, detailed in vivo effects of apremilast on psoriasis remain to be elucidated. OBJECTIVE To examine the in vivo effects of apremilast on psoriasis. METHODS Psoriasiform dermatitis was induced by applying imiquimod (IMQ) on the murine shaved back skin for six days. Mice were treated with apremilast or vehicle intraperitoneally daily. RESULTS Apremilast alleviated IMQ-induced psoriasiform dermatitis clinically and pathologically on days 3-6 by reducing infiltration of antigen-presenting cells and interleukin (IL)-17A-positive cells and increasing infiltration of Foxp3-postive cells into the skin on day 6, although a significant increase in IL-10 mRNA level was not observed on day 2. In addition, mRNA expression of IL-17A, IL-17F, and IL-22 was lower in the skin of IMQ-applied mice treated with apremilast than in those without apremilast on day 2, and apremilast inhibited infiltration of IL-17A-producing γδ T cells into the dermis on day 6. Furthermore, apremilast induced regulatory T cells and regulatory B cells in the spleen but not in the draining lymph nodes. CONCLUSION Apremilast downregulated IL-17 production and induced splenic regulatory B cells and regulatory T cells in an IMQ-induced psoriasiform dermatitis mouse model.
Collapse
Affiliation(s)
- Hideaki Uchida
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Masahiro Kamata
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan.
| | - Teruo Shimizu
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shota Egawa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Makoto Ito
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Ryosuke Takeshima
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Itsumi Mizukawa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Ayu Watanabe
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yayoi Tada
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Shi Y, Lv J, Chen L, Luo G, Tao M, Pan J, Hu X, Sheng J, Zhang S, Zhou M, Fan H. Phosphodiesterase-4D Knockdown in the Prefrontal Cortex Alleviates Memory Deficits and Synaptic Failure in Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2021; 13:722580. [PMID: 34539384 PMCID: PMC8446525 DOI: 10.3389/fnagi.2021.722580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023] Open
Abstract
Phosphodiesterase 4 (PDE4)-dependent cAMP signaling plays a crucial role in cognitive impairment associated with Alzheimer’s disease (AD). However, whether inhibition of PDE4 subtypes or their splice variants in the prefrontal cortex positively regulates synaptic plasticity and antioxidative stress, and reverses β-amyloid 1–42 (Aβ1–42, Aβ42)-induced cognitive impairment still need to be clarified. The present study determined whether and how PDE4D knockdown by microinjection of lenti-PDE4D-miRNA into the prefrontal cortex reversed Aβ1–42-induced cognitive impairment in behavioral, neurochemical, and molecular biology assays. The results suggested that PDE4D knockdown increased time to explore the novel object and decreased latency to leave the platform in novel object recognition and step-down passive avoidance tests. Further study suggested that PDE4D knockdown decreased the number of working memory errors in the eight-arm maze test. These effects were prevented by PKA inhibitor H89. The subsequent experiment suggested that inhibition of PDE4D in the prefrontal cortex rescued the long-term potentiation (LTP) and synaptic proteins’ expression; it also increased antioxidant response by increasing superoxide dismutase (SOD) and decreasing malondialdehyde (MDA) levels. PDE4D knockdown also increased phosphorylated cAMP response element-binding protein (pCREB), brain-derived neurotrophic factor (BNDF), and anti-apoptotic proteins’ expression, i.e., the ratio of Bcl-2/Bax, and decreased caspase-3 level in the prefrontal cortex. These findings extend the previous findings and support the hypothesis that RNA interference-mediated PDE4D knockdown in the prefrontal cortex ameliorated memory loss associated with synaptic failure in an AD mouse model by its antioxidant, anti-apoptotic, and neuroprotective properties.
Collapse
Affiliation(s)
- Yongchuan Shi
- Department of Medicine, Jinshan Branch of the Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Jinpeng Lv
- School of Pharmaceutical Engineering, Changzhou University, Changzhou, China
| | - Ling Chen
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guojun Luo
- Department of Medicine, Jinshan Branch of the Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjia Tao
- School of Pharmacy, Brain Institute, Wenzhou Medical University, Wenzhou, China
| | - Jianchun Pan
- School of Pharmacy, Brain Institute, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiong Hu
- Department of Gastroenterology, The People's Hospital of Yichun City, Yi Chun University, Yichun, China
| | - Jianwen Sheng
- Department of Gastroenterology, The People's Hospital of Yichun City, Yi Chun University, Yichun, China
| | - Shanjin Zhang
- Department of Gastroenterology, The People's Hospital of Yichun City, Yi Chun University, Yichun, China
| | - Min Zhou
- Department of Medicine, Jinshan Branch of the Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Huizhen Fan
- Department of Gastroenterology, The People's Hospital of Yichun City, Yi Chun University, Yichun, China
| |
Collapse
|
37
|
Abou Saleh L, Boyd A, Aragon IV, Koloteva A, Spadafora D, Mneimneh W, Barrington RA, Richter W. Ablation of PDE4B protects from Pseudomonas aeruginosa-induced acute lung injury in mice by ameliorating the cytostorm and associated hypothermia. FASEB J 2021; 35:e21797. [PMID: 34383981 DOI: 10.1096/fj.202100495r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
Pseudomonas aeruginosa is a frequent cause of hospital-acquired lung infections characterized by hyperinflammation, antibiotic resistance, and high morbidity/mortality. Here, we show that the genetic ablation of one cAMP-phosphodiesterase 4 subtype, PDE4B, is sufficient to protect mice from acute lung injury induced by P aeruginosa infection as it reduces pulmonary and systemic levels of pro-inflammatory cytokines, as well as pulmonary vascular leakage and mortality. Surprisingly, despite dampening immune responses, bacterial clearance in the lungs of PDE4B-KO mice is significantly improved compared to WT controls. In wildtypes, P aeruginosa-infection produces high systemic levels of several cytokines, including TNF-α, IL-1β, and IL-6, that act as cryogens and render the animals hypothermic. This, in turn, diminishes their ability to clear the bacteria. Ablation of PDE4B curbs both the initial production of acute response cytokines, including TNF-α and IL-1β, as well as their downstream signaling, specifically the induction of the secondary-response cytokine IL-6. This synergistic action protects PDE4B-KO mice from the deleterious effects of the P aeruginosa-induced cytostorm, while concurrently improving bacterial clearance, rather than being immunosuppressive. These benefits of PDE4B ablation are in contrast to the effects resulting from treatment with PAN-PDE4 inhibitors, which have been shown to increase bacterial burden and dissemination. Thus, PDE4B represents a promising therapeutic target in settings of P aeruginosa lung infections.
Collapse
Affiliation(s)
- Lina Abou Saleh
- Department of Biochemistry & Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ileana V Aragon
- Department of Biochemistry & Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Anna Koloteva
- Department of Biochemistry & Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Domenico Spadafora
- Department of Microbiology & Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Wadad Mneimneh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Robert A Barrington
- Department of Microbiology & Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Wito Richter
- Department of Biochemistry & Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
38
|
Anti-inflammatory effects of a novel phosphodiesterase-4 inhibitor, AA6216, in mouse dermatitis models. Eur J Pharmacol 2021; 906:174258. [PMID: 34139195 DOI: 10.1016/j.ejphar.2021.174258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that is commonly treated with corticosteroids. However, these drugs have long-term adverse effects, representing an unmet need for new treatments. AD is associated with dysregulation of phosphodiesterase 4 (PDE4) activity in inflammatory cells and the topical PDE4 inhibitor, crisaborole, is approved by the US FDA for mild-to-moderate AD. In this study, we compared the effects of a novel PDE4 inhibitor, AA6216, with those of crisaborole on skin inflammation. We found that AA6216 is a more potent inhibitor of PDE4 and of cytokine production (TNF-α, IL-12/23p40, IL-4, IL-13, and IFN-γ) by human peripheral blood mononuclear cells (PBMCs) stimulated by phytohemagglutinin (PHA) or anti-CD3 antibodies, with IC50 values ranging from 5.9 to 47 nM. AA6216 also significantly suppressed skin inflammation in three mouse models of dermatitis. In acute and chronic oxazolone-induced dermatitis models, topical AA6216 exhibited stronger inhibitory effects on ear inflammation and cytokine production (TNFα, IL-1β, and IL-4) in skin lesions compared with crisaborole. In a Dermatophagoides farinae-induced dermatitis model, AA6216 significantly reduced the dermatitis score, based on the development of erythema/hemorrhage, scarring/dryness, edema, and excoriation/erosion, compared with a clinically used topical AD drug, tacrolimus. These results suggest the possibility that AA6216 is a novel and effective topical therapeutic agent for the treatment of dermatitis including AD.
Collapse
|
39
|
Kim S, Lim B, Cho J, Lee S, Dang CG, Jeon JH, Kim JM, Lee J. Genome-Wide Identification of Candidate Genes for Milk Production Traits in Korean Holstein Cattle. Animals (Basel) 2021; 11:ani11051392. [PMID: 34068321 PMCID: PMC8153329 DOI: 10.3390/ani11051392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Milk production traits that are economically important in the dairy industry have been considered the main selection criteria for breeding. The present genome-wide association study was performed to identify chromosomal loci and candidate genes with potential effects on milk production phenotypes in a Korean Holstein population. A total of eight significant quantitative trait locus regions were identified for milk yield (Bos taurus autosome (BTA) 7 and 14), adjusted 305-d fat yield (BTA 3, 5, and 14), adjusted 305-d protein yield (BTA 8), and somatic cell score (BTA 8 and 23) of milk production traits. Furthermore, we discovered three main candidate genes (diacylglycerol O-acyltransferase 1 (DGAT1), phosphodiesterase 4B (PDE4B), and anoctamin 2 (ANO2)) through bioinformatics analysis. These genes may help to understand better the underlying genetic and molecular mechanisms for milk production phenotypes in the Korean Holstein population. Abstract We performed a genome-wide association study and fine mapping using two methods (single marker regression: frequentist approach and Bayesian C (BayesC): fitting selected single nucleotide polymorphisms (SNPs) in a Bayesian framework) through three high-density SNP chip platforms to analyze milk production phenotypes in Korean Holstein cattle (n = 2780). We identified four significant SNPs for each phenotype in the single marker regression model: AX-311625843 and AX-115099068 on Bos taurus autosome (BTA) 14 for milk yield (MY) and adjusted 305-d fat yield (FY), respectively, AX-428357234 on BTA 18 for adjusted 305-d protein yield (PY), and AX-185120896 on BTA 5 for somatic cell score (SCS). Using the BayesC model, we discovered significant 1-Mb window regions that harbored over 0.5% of the additive genetic variance effects for four milk production phenotypes. The concordant significant SNPs and 1-Mb window regions were characterized into quantitative trait loci (QTL). Among the QTL regions, we focused on a well-known gene (diacylglycerol O-acyltransferase 1 (DGAT1)) and newly identified genes (phosphodiesterase 4B (PDE4B), and anoctamin 2 (ANO2)) for MY and FY, and observed that DGAT1 is involved in glycerolipid metabolism, fat digestion and absorption, metabolic pathways, and retinol metabolism, and PDE4B is involved in cAMP signaling. Our findings suggest that the candidate genes in QTL are strongly related to physiological mechanisms related to the fat production and consequent total MY in Korean Holstein cattle.
Collapse
Affiliation(s)
- Sangwook Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
| | - Joohyeon Cho
- Dairy Cattle Genetic Improvement Center, Nonghyup, Goyang 10292, Gyeonggi-do, Korea; (J.C.); (S.L.)
| | - Seokhyun Lee
- Dairy Cattle Genetic Improvement Center, Nonghyup, Goyang 10292, Gyeonggi-do, Korea; (J.C.); (S.L.)
| | - Chang-Gwon Dang
- Animal Genetics and Breeding Division, National Institute of Animal Science, RDA, Cheonan 31000, Chungcheongnam-do, Korea;
| | - Jung-Hwan Jeon
- Animal Welfare Research Team, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea;
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
- Correspondence: (J.-M.K.); (J.L.); Tel.: +82-31-670-3263 (J.-M.K. & J.L.); Fax: +82-31-675-3108 (J.-M.K. & J.L.)
| | - Jungjae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
- Correspondence: (J.-M.K.); (J.L.); Tel.: +82-31-670-3263 (J.-M.K. & J.L.); Fax: +82-31-675-3108 (J.-M.K. & J.L.)
| |
Collapse
|
40
|
Petraitytė G, Šiaurytė K, Mikštienė V, Cimbalistienė L, Kriaučiūnienė D, Matulevičienė A, Utkus A, Preikšaitienė E. A novel variant in the PDE4D gene is the cause of Acrodysostosis type 2 in a Lithuanian patient: a case report. BMC Endocr Disord 2021; 21:71. [PMID: 33858404 PMCID: PMC8051037 DOI: 10.1186/s12902-021-00741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acrodysostosis is a rare hereditary disorder described as a primary bone dysplasia with or without hormonal resistance. Pathogenic variants in the PRKAR1A and PDE4D genes are known genetic causes of this condition. The latter gene variants are more frequently identified in patients with midfacial and nasal hypoplasia and neurological involvement. The aim of our study was to analyse and confirm a genetic cause of acrodysostosis in a male patient. CASE PRESENTATION We report on a 29-year-old Lithuanian man diagnosed with acrodysostosis type 2. The characteristic phenotype includes specific skeletal abnormalities, facial dysostosis, mild intellectual disability and metabolic syndrome. Using patient's DNA extracted from peripheral blood sample, the novel, likely pathogenic, heterozygous de novo variant NM_001104631.2:c.581G > C was identified in the gene PDE4D via Sanger sequencing. This variant causes amino acid change (NP_001098101.1:p.(Arg194Pro)) in the functionally relevant upstream conserved region 1 domain of PDE4D. CONCLUSIONS This report further expands the knowledge of the consequences of missense variants in PDE4D that affect the upstream conserved region 1 regulatory domain and indicates that pathogenic variants of the gene PDE4D play an important role in the pathogenesis mechanism of acrodysostosis type 2 without significant hormonal resistance.
Collapse
Affiliation(s)
- Gunda Petraitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | - Kamilė Šiaurytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Violeta Mikštienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Loreta Cimbalistienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Dovilė Kriaučiūnienė
- Clinic of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aušra Matulevičienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
41
|
Aragon IV, Boyd A, Abou Saleh L, Rich J, McDonough W, Koloteva A, Richter W. Inhibition of cAMP-phosphodiesterase 4 (PDE4) potentiates the anesthetic effects of Isoflurane in mice. Biochem Pharmacol 2021; 186:114477. [PMID: 33609559 DOI: 10.1016/j.bcp.2021.114477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/26/2022]
Abstract
Despite major advances, there remains a need for novel anesthetic drugs or drug combinations with improved efficacy and safety profiles. Here, we show that inhibition of cAMP-phosphodiesterase 4 (PDE4), while not inducing anesthesia by itself, potently enhances the anesthetic effects of Isoflurane in mice. Treatment with several distinct PAN-PDE4 inhibitors, including Rolipram, Piclamilast, Roflumilast, and RS25344, significantly delayed the time-to-righting after Isoflurane anesthesia. Conversely, treatment with a PDE3 inhibitor, Cilostamide, or treatment with the potent, but non-brain-penetrant PDE4 inhibitor YM976, had no effect. These findings suggest that potentiation of Isoflurane hypnosis is a class effect of brain-penetrant PDE4 inhibitors, and that they act by synergizing with Isoflurane in inhibiting neuronal activity. The PDE4 family comprises four PDE4 subtypes, PDE4A to PDE4D. Genetic deletion of any of the four PDE4 subtypes in mice did not affect Isoflurane anesthesia per se. However, PDE4D knockout mice are largely protected from the effect of pharmacologic PDE4 inhibition, suggesting that PDE4D is the predominant, but not the sole PDE4 subtype involved in potentiating Isoflurane anesthesia. Pretreatment with Naloxone or Propranolol alleviated the potentiating effect of PDE4 inhibition, implicating opioid- and β-adrenoceptor signaling in mediating PDE4 inhibitor-induced augmentation of Isoflurane anesthesia. Conversely, stimulation or blockade of α1-adrenergic, α2-adrenergic or serotonergic signaling did not affect the potentiation of Isoflurane hypnosis by PDE4 inhibition. We further show that pretreatment with a PDE4 inhibitor boosts the delivery of bacteria into the lungs of mice after intranasal infection under Isoflurane, thus providing a first example that PDE4 inhibitor-induced potentiation of Isoflurane anesthesia can critically impact animal models and must be considered as a factor in experimental design. Our findings suggest that PDE4/PDE4D inhibition may serve as a tool to delineate the exact molecular mechanisms of Isoflurane anesthesia, which remain poorly understood, and may potentially be exploited to reduce the clinical doses of Isoflurane required to maintain hypnosis.
Collapse
Affiliation(s)
- Ileana V Aragon
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Justin Rich
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Will McDonough
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Anna Koloteva
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Wito Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA.
| |
Collapse
|
42
|
Lugnier C, Al-Kuraishy HM, Rousseau E. PDE4 inhibition as a therapeutic strategy for improvement of pulmonary dysfunctions in Covid-19 and cigarette smoking. Biochem Pharmacol 2021; 185:114431. [PMID: 33515531 PMCID: PMC7842152 DOI: 10.1016/j.bcp.2021.114431] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the binding-site and entry-point for SARS-CoV-2 in human and highly expressed in the lung. Cigarette smoking (CS) is the leading cause of pulmonary and cardiovascular diseases. Chronic CS leads to upregulation of bronchial ACE2 inducing a high vulnerability in COVID-19 smoker patients. Interestingly, CS-induced dysregulation of pulmonary renin-angiotensin system (RAS) in part contributing into the potential pathogenesis COVID-19 pneumonia and acute respiratory distress syndrome (ARDS). Since, CS-mediated ACE2 activations is not the main pathway for increasing the risk of COVID-19, it appeared that AngII/AT1R might induce an inflammatory-burst in COVID-19 response by up-regulating cyclic nucleotide phosphodiesterase type 4 (PDE4), which hydrolyses specifically the second intracellular messenger 3′, 5′-cyclic AMP (cAMP). It must be pointed out that CS might induce PDE4 up-regulation similarly to the COVID-19 inflammation, and therefore could potentiate COVID-19 inflammation opening the potential therapeutic effects of PDE4 inhibitor in both COVID-19-inflammation and CS.
Collapse
Affiliation(s)
- Claire Lugnier
- Directeur de Recherche 1 CNRS/université de Strasbourg, Institut de Physiologie, Faculté de Médecine, CRBS, UR3072: "Mitochondrie, stress oxydant et protection musculaire", 1 rue Eugène Boeckel, 67000 Strasbourg, France.
| | - Hayder M Al-Kuraishy
- Medical Faculty College of Medicine, Al-Mustansiriya University, P.O. Box 14132, Baghdad, Iraq
| | - Eric Rousseau
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| |
Collapse
|
43
|
Regulation of PD-L1 expression is a novel facet of cyclic-AMP-mediated immunosuppression. Leukemia 2020; 35:1990-2001. [PMID: 33299141 PMCID: PMC8187478 DOI: 10.1038/s41375-020-01105-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
Abstract
Cyclic-AMP (cAMP) exerts suppressive effects in the innate and adaptive immune system. The PD-1/PD-L1 immune checkpoint down-regulates T-cell activity. Here, we examined if these two immunosuppressive nodes intersect. Using normal and malignant lymphocytes from humans, and the phosphodiesterase 4b (Pde4b) knockout mouse, we found that cAMP induces PD-L1 transcription and protein expression. Mechanistically, we discovered that the cAMP effectors PKA and CREB induce the transcription/secretion of IL-10, IL-8 and IL-6, which initiate an autocrine loop that activates the JAK/STAT pathway and ultimately increase PD-L1 expression in the cell surface. This signaling axis is disarmed at two specific nodes in subsets of diffuse large B cell lymphoma, which may help explain the variable PD-L1 expression in these tumors. In vivo, we found that despite its immunosuppressive attributes, the PDE4 inhibitor roflumilast did not decrease the clinical activity of checkpoint inhibitors, an important clinical observation given the approved use of these agents in multiple diseases. In summary, we discovered that PD-L1 induction is a part of the repertoire of immunosuppressive actions mediated by cAMP, defined a cytokine-mediated autocrine loop that executes this action and, reassuringly, showed that PDE4 inhibition does not antagonize immune checkpoint blockade in an in vivo syngeneic lymphoma model.
Collapse
|
44
|
Datta D, Enwright JF, Arion D, Paspalas CD, Morozov YM, Lewis DA, Arnsten AFT. Mapping Phosphodiesterase 4D (PDE4D) in Macaque Dorsolateral Prefrontal Cortex: Postsynaptic Compartmentalization in Layer III Pyramidal Cell Circuits. Front Neuroanat 2020; 14:578483. [PMID: 33328902 PMCID: PMC7714912 DOI: 10.3389/fnana.2020.578483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
cAMP signaling has powerful, negative effects on cognitive functions of the primate dorsolateral prefrontal cortex (dlPFC), opening potassium channels to reduce firing and impair working memory, and increasing tau phosphorylation in aging neurons. This contrasts with cAMP actions in classic circuits, where it enhances plasticity and transmitter release. PDE4 isozymes regulate cAMP actions, and thus have been a focus of research and drug discovery. Previous work has focused on the localization of PDE4A and PDE4B in dlPFC, but PDE4D is also of great interest, as it is the predominant PDE4 isoform in primate association cortex, and PDE4D expression decreases with aging in human dlPFC. Here we used laser-capture microdissection transcriptomics and found that PDE4D message is enriched in pyramidal cells compared to GABAergic PV-interneurons in layer III of the human dlPFC. A parallel study in rhesus macaques using high-spatial resolution immunoelectron microscopy revealed the ultrastructural locations of PDE4D in primate dlPFC with clarity not possible in human post-mortem tissue. PDE4D was especially prominent in dendrites associated with microtubules, mitochondria, and likely smooth endoplasmic reticulum (SER). There was substantial postsynaptic labeling in dendritic spines, associated with the SER spine-apparatus near glutamatergic-like axospinous synapses, but sparse labeling in axon terminals. We also observed dense PDE4D labeling perisynaptically in astroglial leaflets ensheathing glutamatergic connections. These data suggest that PDE4D is strategically positioned to regulate cAMP signaling in dlPFC glutamatergic synapses and circuits, especially in postsynaptic compartments where it is localized to influence cAMP actions on intracellular trafficking, mitochondrial physiology, and internal calcium release.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - John F. Enwright
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dominique Arion
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Constantinos D. Paspalas
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Yury M. Morozov
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - David A. Lewis
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
45
|
Abstract
Psoriatic arthritis (PsA) is a seronegative inflammatory arthritis often observed in patients with skin psoriasis. Treatment of PsA, especially peripheral PsA, has typically relied on disease-modifying anti-rheumatic agents (DMARDs); however, these agents have limited efficacy and considerable associated toxicity. More recently, monoclonal antibodies (biologic agents) have revolutionized management of immune-mediated diseases; however, these therapies carry a high cost and require parenteral administration. Apremilast, a novel oral DMARD, was approved by the European Union for psoriatic arthritis in 2015. Apremilast inhibits the function of phosphodiesterase-4, a regulator of cyclic adenosine monophosphate, leading to a broad inhibition of proinflammatory mediators and subsequent reduction in tumour necrosis factor-alpha (TNF-α) response. The PALACE and ACTIVE trials, phase III randomized controlled trials for apremilast, showed that apremilast is effective at improving various clinical and patient-reported outcome measures for psoriatic arthritis in both DMARD-naïve and DMARD-experienced PsA patients. Efficacy was limited in patients with previous biologic DMARD failure and the overall efficacy of apremilast appears to be less than biologics agents, though no head-to-head trials exist comparing apremilast to biologic DMARDs. Apremilast is generally well tolerated, with short-lived gastrointestinal side effects being the most commonly reported adverse events. Guidelines suggest a trial of apremilast in patients who have failed traditional oral DMARDs and for whom, biologics are contraindicated. More studies directly comparing apremilast to conventional DMARDs and biologic DMARDs are needed and will be crucial in informing clinical and economic decisions about apremilast role in management of PsA.
Collapse
Affiliation(s)
- Vijay K Sandhu
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lihi Eder
- Division of Rheumatology, Women's College Hospital, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jensen Yeung
- Department of Medicine, University of Toronto, Toronto, ON, Canada - .,Division of Dermatology, Women's College Hospital, Toronto, ON, Canada.,Division of Dermatology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Probity Medical Research Inc., Waterloo, ON, Canada
| |
Collapse
|
46
|
McDonough W, Rich J, Aragon IV, Abou Saleh L, Boyd A, Richter A, Koloteva A, Richter W. Inhibition of type 4 cAMP-phosphodiesterases (PDE4s) in mice induces hypothermia via effects on behavioral and central autonomous thermoregulation. Biochem Pharmacol 2020; 180:114158. [PMID: 32702371 PMCID: PMC7606724 DOI: 10.1016/j.bcp.2020.114158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
Inhibitors of Type 4 cAMP-phosphodiesterases (PDE4s) exert a number of promising therapeutic benefits, including potent anti-inflammatory, memory- and cognition-enhancing, metabolic, and antineoplastic effects. We report here that treatment with a number of distinct PDE4 inhibitors, including Rolipram, Piclamilast, Roflumilast and RS25344, but not treatment with the PDE3-selective inhibitor Cilostamide, induces a rapid (10-30 min), substantial (-5 °C) and long-lasting (up to 5 h) decrease in core body temperature of C57BL/6 mice; thus, identifying a critical role of PDE4 also in the regulation of body temperature. As little as 0.04 mg/kg of the archetypal PDE4 inhibitor Rolipram induces hypothermia. As similar or higher doses of Rolipram were used in a majority of published animal studies, most of the reported findings are likely paralleled by, or potentially impacted by hypothermia induced by these drugs. We further show that PDE4 inhibition affects central body temperature regulation and acts by lowering the cold-defense balance point of behavioral (including posture and locomotion) and autonomous (including cutaneous tail vasodilation) cold-defense mechanisms. In line with the idea of an effect on central body temperature regulation, hypothermia is induced by moderate doses of various brain-penetrant PDE4 inhibitors, but not by similar doses of YM976, a PDE4 inhibitor that does not efficiently cross the blood-brain barrier. Finally, to begin delineating the mechanism of drug-induced hypothermia, we show that blockade of D2/3-type dopaminergic, but not β-adrenergic, H1-histaminergic or opiate receptors, can alleviate PDE4 inhibitor-induced hypothermia. We thus propose that increased D2/3-type dopaminergic signaling, triggered by PDE4 inhibitor-induced and cAMP-mediated dopamine release in the thermoregulatory centers of the hypothalamus, is a significant contributor to PDE4 inhibitor-induced hypothermia.
Collapse
Affiliation(s)
- Will McDonough
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Justin Rich
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Ileana V Aragon
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Aris Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Anna Koloteva
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Wito Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States.
| |
Collapse
|
47
|
Targeted therapies in melanoma beyond BRAF: targeting NRAS-mutated and KIT-mutated melanoma. Curr Opin Oncol 2020; 32:79-84. [PMID: 31833955 DOI: 10.1097/cco.0000000000000606] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Melanoma treatment have been revolutionized since 2010 by the development of immune checkpoint inhibitors, and, for BRAF-mutated melanoma, targeted therapies based on BRAF and MEK inhibitors, which is a model of effective targeted therapy in cancer. However, patients with BRAF wild type cannot benefit for such treatments. In this review, we will focus on the current clinical development of targeted therapies beyond BRAF, in NRAS-mutated and KIT-altered melanoma. RECENT FINDINGS In NRAS-mutated melanoma, targeted therapies based on MEK inhibition are being developed as monotherapy or in combination with MAPK, PI3K or CDK4/6 inhibitor. Targeted therapies of KIT-altered melanoma patients is based in KIT inhibitor (mostly imatinib, nilotinib), although for both melanoma subtypes, results are for now disappointing as compared with BRAF and MEK inhibitors in BRAF-mutated melanoma. SUMMARY Combined therapeutic targeted strategies are awaited in NRAS-mutated and KIT-altered melanoma and could provide additional benefit.
Collapse
|
48
|
Al-Nema M, Gaurav A, Lee VS. Docking based screening and molecular dynamics simulations to identify potential selective PDE4B inhibitor. Heliyon 2020; 6:e04856. [PMID: 32984588 PMCID: PMC7498760 DOI: 10.1016/j.heliyon.2020.e04856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022] Open
Abstract
Inhibition of phosphodiesterase 4 (PDE4) is a promising therapeutic approach for the treatment of inflammatory pulmonary disorders, i.e. asthma and chronic obstructive pulmonary disease. However, the treatment with non-selective PDE4 inhibitors is associated with side effects such as nausea and vomiting. Among the subtypes of PDE4 inhibited by these inhibitors, PDE4B is expressed in immune, inflammatory and airway smooth muscle cells, whereas, PDE4D is expressed in the area postrema and nucleus of the solitary tract. Thus, PDE4D inhibition is responsible for the emetic response. In this regard, a selective PDE4B inhibitor is expected to be a potential drug candidate for the treatment of inflammatory pulmonary disorders. Therefore, a shared feature pharmacophore model was developed and used as a query for the virtual screening of Maybridge and SPECS databases. A number of filters were applied to ensure only compounds with drug-like properties were selected. Accordingly, nine compounds have been identified as final hits, where HTS04529 showed the highest affinity and selectivity for PDE4B over PDE4D in molecular docking. The docked complexes of HTS04529 with PDE4B and PDE4D were subjected to molecular dynamics simulations for 100ns to assess their binding stability. The results showed that HTS04529 was bound tightly to PDE4B and formed a more stable complex with it than with PDE4D.
Collapse
Affiliation(s)
- Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumber, 50603, Malaysia
| |
Collapse
|
49
|
McDonough W, Aragon IV, Rich J, Murphy JM, Abou Saleh L, Boyd A, Koloteva A, Richter W. PAN-selective inhibition of cAMP-phosphodiesterase 4 (PDE4) induces gastroparesis in mice. FASEB J 2020; 34:12533-12548. [PMID: 32738081 DOI: 10.1096/fj.202001016rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of cAMP-phosphodiesterase 4 (PDE4) exert a number of promising therapeutic benefits, but adverse effects, in particular emesis and nausea, have curbed their clinical utility. Here, we show that PAN-selective inhibition of PDE4, but not inhibition of PDE3, causes a time- and dose-dependent accumulation of chow in the stomachs of mice fed ad libitum without changing the animals' food intake or the weight of their intestines, suggesting that PDE4 inhibition impairs gastric emptying. Indeed, PDE4 inhibition induced gastric retention in an acute model of gastric motility that traces the passage of a food bolus through the stomach over a 30 minutes time period. In humans, abnormal gastric retention of food is known as gastroparesis, a syndrome predominated by nausea (>90% of cases) and vomiting (>80% of cases). We thus explored the abnormal gastric retention induced by PDE4 inhibition in mice under the premise that it may represent a useful correlate of emesis and nausea. Delayed gastric emptying was produced by structurally distinct PAN-PDE4 inhibitors including Rolipram, Piclamilast, Roflumilast, and RS25344, suggesting that it is a class effect. PDE4 inhibitors induced gastric retention at similar or below doses commonly used to induce therapeutic benefits (e.g., 0.04 mg/kg Rolipram), thus mirroring the narrow therapeutic window of PDE4 inhibitors in humans. YM976, a PAN-PDE4 inhibitor that does not efficiently cross the blood-brain barrier, induced gastroparesis only at significantly higher doses (≥1 mg/kg). This suggests that PDE4 inhibition may act in part through effects on the autonomic nervous system regulation of gastric emptying and that PDE4 inhibitors that are not brain-penetrant may have an improved safety profile. The PDE4 family comprises four subtypes, PDE4A, B, C, and D. Selective ablation of any of these subtypes in mice did not induce gastroparesis per se, nor did it protect from PAN-PDE4 inhibitor-induced gastroparesis, indicating that gastric retention may result from the concurrent inhibition of multiple PDE4s. Thus, potentially, any of the four PDE4 subtypes may be targeted individually for therapeutic benefits without inducing nausea or emesis. Acute gastric retention induced by PDE4 inhibition is alleviated by treatment with the widely used prokinetic Metoclopramide, suggesting a potential of this drug to alleviate the side effects of PDE4 inhibitors. Finally, given that the cause of gastroparesis remains largely idiopathic, our findings open the possibility that a physiologic or pathophysiologic downregulation of PDE4 activity/expression may be causative in a subset of patients.
Collapse
Affiliation(s)
- Will McDonough
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Ileana V Aragon
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Justin Rich
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - James M Murphy
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Anna Koloteva
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Wito Richter
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
50
|
Lindner M, Mehel H, David A, Leroy C, Burtin M, Friedlander G, Terzi F, Mika D, Fischmeister R, Prié D. Fibroblast growth factor 23 decreases PDE4 expression in heart increasing the risk of cardiac arrhythmia; Klotho opposes these effects. Basic Res Cardiol 2020; 115:51. [PMID: 32699940 DOI: 10.1007/s00395-020-0810-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/01/2020] [Indexed: 02/01/2023]
Abstract
The concentration of fibroblast growth factor 23 (FGF23) rises progressively in renal failure (RF). High FGF23 concentrations have been consistently associated with adverse cardiovascular outcomes or death, in chronic kidney disease (CKD), heart failure or liver cirrhosis. We identified the mechanisms whereby high concentrations of FGF23 can increase the risk of death of cardiovascular origin. We studied the effects of FGF23 and Klotho in adult rat ventricular cardiomyocytes (ARVMs) and on the heart of mice with CKD. We show that FGF23 increases the frequency of spontaneous calcium waves (SCWs), a marker of cardiomyocyte arrhythmogenicity, in ARVMs. FGF23 increased sarcoplasmic reticulum Ca2+ leakage, basal phosphorylation of Ca2+-cycling proteins including phospholamban and ryanodine receptor type 2. These effects are secondary to a decrease in phosphodiesterase 4B (PDE4B) in ARVMs and in heart of mice with RF. Soluble Klotho, a circulating form of the FGF23 receptor, prevents FGF23 effects on ARVMs by increasing PDE3A and PDE3B expression. Our results suggest that the combination of high FGF23 and low sKlotho concentrations decreases PDE activity in ARVMs, which favors the occurrence of ventricular arrhythmias and may participate in the high death rate observed in patients with CKD.
Collapse
Affiliation(s)
| | - Hind Mehel
- INSERM U1151-CNRS UMR8253, Paris, France
| | | | | | | | - Gérard Friedlander
- INSERM U1151-CNRS UMR8253, Paris, France
- Université de Paris Faculté de Médecine, Paris, France
- Service de Physiologie Explorations Fonctionnelles Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Delphine Mika
- Université Paris-Saclay, Inserm U1180, 92296, Châtenay-Malabry, France
| | | | - Dominique Prié
- INSERM U1151-CNRS UMR8253, Paris, France.
- Université de Paris Faculté de Médecine, Paris, France.
- Service de Physiologie Explorations Fonctionnelles Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|