1
|
Lolescu BA, Furdui-Lința AV, Ilie CA, Sturza A, Zară F, Muntean DM, Blidișel A, Crețu OM. Adipose tissue as target of environmental toxicants: focus on mitochondrial dysfunction and oxidative inflammation in metabolic dysfunction-associated steatotic liver disease. Mol Cell Biochem 2024:10.1007/s11010-024-05165-z. [PMID: 39704874 DOI: 10.1007/s11010-024-05165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024]
Abstract
Obesity, diabetes, and their cardiovascular and hepatic comorbidities are alarming public health issues of the twenty-first century, which share mitochondrial dysfunction, oxidative stress, and chronic inflammation as common pathophysiological mechanisms. An increasing body of evidence links the combined exposure to multiple environmental toxicants with the occurrence and severity of metabolic diseases. Endocrine disruptors (EDs) are ubiquitous chemicals or mixtures with persistent deleterious effects on the living organisms beyond the endocrine system impairment; in particular, those known as metabolism-disrupting chemicals (MDCs), increase the risk of the metabolic pathologies in adult organism or its progeny. Being largely lipophilic, MDCs mainly target the adipose tissue and elicit mitochondrial dysfunction by interfering with mitochondrial bioenergetics, biogenesis, dynamics and/or other functions. Plastics, when broken down into micro- and nano-plastics (MNPs), have been detected in several human tissues, including the liver. The harmful interplay between inflammatory and redox processes, which mutually interact in a positive feed-back loop, hence the term oxidative inflammation ("OxInflammation"), occurs both at systemic and organ level. In both liver and adipose tissue, oxinflammation contributes to the progression of the metabolic dysfunction-associated steatotic liver disease (MASLD). Moreover, it has been reported that individuals with MASLD may be more susceptible to the harmful effects of toxicants (mainly, those related to mitochondria) and that chronic exposure to EDs/MDCs or MNPs may play a role in the development of the disease. While liver has been systematically investigated as major target organ for ambient chemicals, surprisingly, less information is available in the literature with respect to the adipose tissue. In this narrative review, we delve into the current literature on the most studied environmental toxicants (bisphenols, polychlorinated biphenyls, phthalates, tolylfluanid and tributyltin, per-fluoroalkyl and polyfluoroalkyl substances, heavy metals and MNPs), summarize their deleterious effects on adipose tissue, and address the role of dysregulated mitochondria and oxinflammation, particularly in the setting of MASLD.
Collapse
Affiliation(s)
- Bogdan A Lolescu
- Doctoral School Medicine, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adina V Furdui-Lința
- Doctoral School Medicine, Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Cosmin A Ilie
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Public Health & Sanitary Management, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adrian Sturza
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Flavia Zară
- Department II Microscopic Morphology-Chair of Histology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department of Pathology, Timisoara Municipal Emergency Clinical Hospital, Timișoara, Romania
| | - Danina M Muntean
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Alexandru Blidișel
- Department of Surgery I-Clinic of Surgical Semiotics & Thoracic Surgery, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., No.2, 300041, Timișoara, Romania.
| | - Octavian M Crețu
- Department of Surgery I-Clinic of Surgical Semiotics & Thoracic Surgery, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., No.2, 300041, Timișoara, Romania
| |
Collapse
|
2
|
Yang Y, Wang TT, Xie HA, Hu PP, Li P. Experimental cell models of insulin resistance: overview and appraisal. Front Endocrinol (Lausanne) 2024; 15:1469565. [PMID: 39749015 PMCID: PMC11693592 DOI: 10.3389/fendo.2024.1469565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Insulin resistance, a key factor in the development of type 2 diabetes mellitus (T2DM), is defined as a defect in insulin-mediated control of glucose metabolism in tissues such as liver, fat and muscle. Insulin resistance is a driving force behind various metabolic diseases, such as T2DM, hyperlipidemia, hypertension, coronary heart disease and fatty liver. Therefore, improving insulin sensitivity can be considered as an effective strategy for the prevention and treatment of these complex metabolic diseases. Cell-based models are extensively employed for the study of pathological mechanisms and drug screening, particularly in relation to insulin resistance in T2DM. Currently, numerous methods are available for the establishment of in vitro insulin resistance models, a comprehensive review of these models is required and can serve as an excellent introduction or understanding for researchers undertaking studies in this filed. This review examines and discusses the primary methods for establishing and evaluating insulin resistance cell models. Furthermore, it highlights key issues and suggestions on cell selection, establishment, evaluation and drug screening of insulin resistance, thereby providing valuable references for the future research efforts.
Collapse
Affiliation(s)
- Ying Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ting-ting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Hu-ai Xie
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ping Ping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Fiorenza M, Onslev J, Henríquez-Olguín C, Persson KW, Hesselager SA, Jensen TE, Wojtaszewski JFP, Hostrup M, Bangsbo J. Reducing the mitochondrial oxidative burden alleviates lipid-induced muscle insulin resistance in humans. SCIENCE ADVANCES 2024; 10:eadq4461. [PMID: 39475607 PMCID: PMC11524190 DOI: 10.1126/sciadv.adq4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Preclinical models suggest mitochondria-derived oxidative stress as an underlying cause of insulin resistance. However, it remains unknown whether this pathophysiological mechanism is conserved in humans. Here, we used an invasive in vivo mechanistic approach to interrogate muscle insulin action while selectively manipulating the mitochondrial redox state in humans. To this end, we conducted insulin clamp studies combining intravenous infusion of a lipid overload with intake of a mitochondria-targeted antioxidant (mitoquinone). Under lipid overload, selective modulation of mitochondrial redox state by mitoquinone enhanced insulin-stimulated glucose uptake in skeletal muscle. Mechanistically, mitoquinone did not affect canonical insulin signaling but augmented insulin-stimulated glucose transporter type 4 (GLUT4) translocation while reducing the mitochondrial oxidative burden under lipid oversupply. Complementary ex vivo studies in human muscle fibers exposed to high intracellular lipid levels revealed that mitoquinone improves features of mitochondrial bioenergetics, including diminished mitochondrial H2O2 emission. These findings provide translational and mechanistic evidence implicating mitochondrial oxidants in the development of lipid-induced muscle insulin resistance in humans.
Collapse
Affiliation(s)
- Matteo Fiorenza
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Johan Onslev
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Carlos Henríquez-Olguín
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago 1509, Chile
| | - Kaspar W. Persson
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Sofie A. Hesselager
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Thomas E. Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen F. P. Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Morten Hostrup
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jens Bangsbo
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
4
|
Gallero S, Persson KW, Henríquez-Olguín C. Unresolved questions in the regulation of skeletal muscle insulin action by reactive oxygen species. FEBS Lett 2024; 598:2145-2159. [PMID: 38803005 DOI: 10.1002/1873-3468.14937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Reactive oxygen species (ROS) are well-established signaling molecules implicated in a wide range of cellular processes, including both oxidative stress and intracellular redox signaling. In the context of insulin action within its target tissues, ROS have been reported to exert both positive and negative regulatory effects. However, the precise molecular mechanisms underlying this duality remain unclear. This Review examines the complex role of ROS in insulin action, with a particular focus on skeletal muscle. We aim to address three critical aspects: (a) the proposed intracellular pro-oxidative redox shift elicited by insulin, (b) the evidence supporting that redox-sensitive cysteine modifications impact insulin signaling and action, and (c) cellular mechanisms underlying how ROS can paradoxically act as both enhancers and inhibitors of insulin action. This Review underscores the urgent need for more systematic research to identify specific reactive species, redox targets, and the physiological significance of redox signaling in maintaining insulin action and metabolic health, with a particular emphasis on human skeletal muscle.
Collapse
Affiliation(s)
- Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Kaspar W Persson
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Carlos Henríquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
5
|
Russell-Guzmán J, Américo-Da Silva L, Cadagan C, Maturana M, Palomero J, Estrada M, Barrientos G, Buvinic S, Hidalgo C, Llanos P. Activation of the ROS/TXNIP/NLRP3 pathway disrupts insulin-dependent glucose uptake in skeletal muscle of insulin-resistant obese mice. Free Radic Biol Med 2024; 222:187-198. [PMID: 38897422 DOI: 10.1016/j.freeradbiomed.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Oxidative stress and the activation of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain containing 3 (NLRP3) inflammasome have been linked to insulin resistance in skeletal muscle. In immune cells, the exacerbated generation of reactive oxygen species (ROS) activates the NLRP3 inflammasome, by facilitating the interaction between thioredoxin interacting protein (TXNIP) and NLRP3. However, the precise role of ROS/TXNIP-dependent NLRP3 inflammasome activation in skeletal muscle during obesity-induced insulin resistance remains undefined. Here, we induced insulin resistance in C57BL/6J mice by feeding them for 8 weeks with a high-fat diet (HFD) and explored whether the ROS/TXNIP/NLRP3 pathway was involved in the induction of insulin resistance in skeletal muscle. Skeletal muscle fibers from insulin-resistant mice exhibited increased oxidative stress, as evidenced by elevated malondialdehyde levels, and altered peroxiredoxin 2 dimerization. Additionally, these fibers displayed augmented activation of the NLRP3 inflammasome, accompanied by heightened ROS-dependent proximity between TXNIP and NLRP3, which was abolished by the antioxidant N-acetylcysteine (NAC). Inhibition of the NLRP3 inflammasome with MCC950 or suppressing the ROS/TXNIP/NLRP3 pathway with NAC restored insulin-dependent glucose uptake in muscle fibers from insulin-resistant mice. These findings provide insights into the mechanistic link between oxidative stress, NLRP3 inflammasome activation, and obesity-induced insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Javier Russell-Guzmán
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380544, Chile; Pedagogy in Physical Education, Faculty of Education, Universidad Autónoma de Chile, Santiago, 8910123, Chile
| | - Luan Américo-Da Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380544, Chile
| | - Cynthia Cadagan
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380544, Chile
| | - Martín Maturana
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380544, Chile
| | - Jesús Palomero
- Department of Physiology and Pharmacology, Faculty of Medicine, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Manuel Estrada
- Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, 8380000, Chile
| | - Genaro Barrientos
- Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, 8380000, Chile; Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380544, Chile; Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Cecilia Hidalgo
- Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, 8380000, Chile; Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile; Department of Neurosciences and Biomedical Neuroscience Institute, Universidad de Chile, Santiago, 8380453, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380544, Chile; Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile.
| |
Collapse
|
6
|
Margolis LM, Wilson MA, Drummer DJ, Carrigan CT, Murphy NE, Allen JT, Dawson MA, Mantzoros CS, Young AJ, Pasiakos SM. Pioglitazone does not enhance exogenous glucose oxidation or metabolic clearance rate during aerobic exercise in men under acute high-altitude exposure. Am J Physiol Regul Integr Comp Physiol 2024; 327:R25-R34. [PMID: 38682243 PMCID: PMC11381008 DOI: 10.1152/ajpregu.00064.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Insulin insensitivity decreases exogenous glucose oxidation and metabolic clearance rate (MCR) during aerobic exercise in unacclimatized lowlanders at high altitude (HA). Whether use of an oral insulin sensitizer before acute HA exposure enhances exogenous glucose oxidation is unclear. This study investigated the impact of pioglitazone (PIO) on exogenous glucose oxidation and glucose turnover compared with placebo (PLA) during aerobic exercise at HA. With the use of a randomized crossover design, native lowlanders (n = 7 males, means ± SD, age: 23 ± 6 yr, body mass: 84 ± 11 kg) consumed 145 g (1.8 g/min) of glucose while performing 80 min of steady-state (1.43 ± 0.16 V̇o2 L/min) treadmill exercise at HA (460 mmHg; [Formula: see text] 96.6 mmHg) following short-term (5 days) use of PIO (15 mg oral dose per day) or PLA (microcrystalline cellulose pill). Substrate oxidation and glucose turnover were determined using indirect calorimetry and stable isotopes ([13C]glucose and 6,6-[2H2]glucose). Exogenous glucose oxidation was not different between PIO (0.31 ± 0.03 g/min) and PLA (0.32 ± 0.09 g/min). Total carbohydrate oxidation (PIO: 1.65 ± 0.22 g/min, PLA: 1.68 ± 0.32 g/min) or fat oxidation (PIO: 0.10 ± 0.0.08 g/min, PLA: 0.09 ± 0.07 g/min) was not different between treatments. There was no treatment effect on glucose rate of appearance (PIO: 2.46 ± 0.27, PLA: 2.43 ± 0.27 mg/kg/min), disappearance (PIO: 2.19 ± 0.17, PLA: 2.20 ± 0.22 mg/kg/min), or MCR (PIO: 1.63 ± 0.37, PLA: 1.73 ± 0.40 mL/kg/min). Results from this study indicate that PIO is not an effective intervention to enhance exogenous glucose oxidation or MCR during acute HA exposure. Lack of effect with PIO suggests that the etiology of glucose metabolism dysregulation during acute HA exposure may not result from insulin resistance in peripheral tissues.NEW & NOTEWORTHY Short-term (5 days) use of the oral insulin sensitizer pioglitazone does not alter circulating glucose or insulin responses to enhance exogenous glucose oxidation during steady-state aerobic exercise in young healthy men under simulated acute (8 h) high-altitude (460 mmHg) conditions. These results indicate that dysregulations in glucose metabolism in native lowlanders sojourning at high altitude may not be due to insulin resistance at peripheral tissue.
Collapse
Affiliation(s)
- Lee M Margolis
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Marques A Wilson
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Devin J Drummer
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, United States
| | - Christopher T Carrigan
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Nancy E Murphy
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Jillian T Allen
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - M Alan Dawson
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Christos S Mantzoros
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States
| | - Andrew J Young
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, United States
| | - Stefan M Pasiakos
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
7
|
van Gerwen J, Masson SWC, Cutler HB, Vegas AD, Potter M, Stöckli J, Madsen S, Nelson ME, Humphrey SJ, James DE. The genetic and dietary landscape of the muscle insulin signalling network. eLife 2024; 12:RP89212. [PMID: 38329473 PMCID: PMC10942587 DOI: 10.7554/elife.89212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Metabolic disease is caused by a combination of genetic and environmental factors, yet few studies have examined how these factors influence signal transduction, a key mediator of metabolism. Using mass spectrometry-based phosphoproteomics, we quantified 23,126 phosphosites in skeletal muscle of five genetically distinct mouse strains in two dietary environments, with and without acute in vivo insulin stimulation. Almost half of the insulin-regulated phosphoproteome was modified by genetic background on an ordinary diet, and high-fat high-sugar feeding affected insulin signalling in a strain-dependent manner. Our data revealed coregulated subnetworks within the insulin signalling pathway, expanding our understanding of the pathway's organisation. Furthermore, associating diverse signalling responses with insulin-stimulated glucose uptake uncovered regulators of muscle insulin responsiveness, including the regulatory phosphosite S469 on Pfkfb2, a key activator of glycolysis. Finally, we confirmed the role of glycolysis in modulating insulin action in insulin resistance. Our results underscore the significance of genetics in shaping global signalling responses and their adaptability to environmental changes, emphasising the utility of studying biological diversity with phosphoproteomics to discover key regulatory mechanisms of complex traits.
Collapse
Affiliation(s)
- Julian van Gerwen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Stewart WC Masson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Harry B Cutler
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Alexis Diaz Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Meg Potter
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Søren Madsen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Marin E Nelson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- Faculty of Medicine and Health, University of SydneySydneyAustralia
| |
Collapse
|
8
|
Wang R, Huang S, Wang P, Shi X, Li S, Ye Y, Zhang W, Shi L, Zhou X, Tang X. Global trends and hotspots in the field of mitochondrial dynamics and hepatocellular carcinoma: A bibliometric analysis from 2007 to 2023. Heliyon 2024; 10:e24407. [PMID: 38293381 PMCID: PMC10826148 DOI: 10.1016/j.heliyon.2024.e24407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Background Mitochondria are dynamic organelles, and mitochondrial dynamics are important for the maintenance of mitochondrial inheritance and function. Recently, an increasing number of studies have shown that mitochondrial dynamics play an important role in the occurrence and development of hepatocellular carcinoma (HCC). However, bibliometric analyses of mitochondrial dynamics in HCC are scarce. Therefore, we conducted a bibliometric analysis to explore the current global research status and trends in mitochondrial dynamics and HCC. Methods Global publications on mitochondrial dynamics and HCC published between 2007 and May 2023 were retrieved from the Web of Science Core Collection (WoSCC) database. Bibliometric analysis was performed using Bibliometrix, VOSviewer, and CiteSpace to analyze the numbers, citations, countries, institutions, authors, journals, references, and keywords. Results A total of 518 publications were retrieved fromthe WoSCC database. China and The Fourth Military Medical University were the most productive countries and institutions. Zorzano, A published the most literature whereas Chen, HC was the author with the highest number of co-citations. Plos One was the most popular journal, whereas the Journal of Biological Chemistry had the highest number of co-citations. The most frequently used keyword was "mitochondria". Further analysis of the references and keywords showed that the molecular mechanisms linking them to drug therapy targets should be the focus of future studies. Conclusions Research on mitochondrial dynamics in HCC has received much attention, and many studies have been published. However, research on mitochondrial dynamics and HCC has been limited by insufficient regional development imbalances and global cooperation. Nevertheless, future research on mitochondrial dynamics and HCC is promising, especially regarding the molecular mechanisms of mitochondrial fission and fusion and how to link the currently known molecular mechanisms with drug therapy targets for HCC.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Shu Huang
- Department of Gastroenterology, Lianshui County People’ Hospital, Huaian, China
- Department of Gastroenterology, Lianshui People’ Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, China
| | - Ping Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaomin Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Shiqi Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Yusong Ye
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Wei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Lei Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xian Zhou
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaowei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
9
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
10
|
Rabbani N, Thornalley PJ. Hexokinase-linked glycolytic overload and unscheduled glycolysis in hyperglycemia-induced pathogenesis of insulin resistance, beta-cell glucotoxicity, and diabetic vascular complications. Front Endocrinol (Lausanne) 2024; 14:1268308. [PMID: 38292764 PMCID: PMC10824962 DOI: 10.3389/fendo.2023.1268308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Hyperglycemia is a risk factor for the development of insulin resistance, beta-cell glucotoxicity, and vascular complications of diabetes. We propose the hypothesis, hexokinase-linked glycolytic overload and unscheduled glycolysis, in explanation. Hexokinases (HKs) catalyze the first step of glucose metabolism. Increased flux of glucose metabolism through glycolysis gated by HKs, when occurring without concomitant increased activity of glycolytic enzymes-unscheduled glycolysis-produces increased levels of glycolytic intermediates with overspill into effector pathways of cell dysfunction and pathogenesis. HK1 is saturated with glucose in euglycemia and, where it is the major HK, provides for basal glycolytic flux without glycolytic overload. HK2 has similar saturation characteristics, except that, in persistent hyperglycemia, it is stabilized to proteolysis by high intracellular glucose concentration, increasing HK activity and initiating glycolytic overload and unscheduled glycolysis. This drives the development of vascular complications of diabetes. Similar HK2-linked unscheduled glycolysis in skeletal muscle and adipose tissue in impaired fasting glucose drives the development of peripheral insulin resistance. Glucokinase (GCK or HK4)-linked glycolytic overload and unscheduled glycolysis occurs in persistent hyperglycemia in hepatocytes and beta-cells, contributing to hepatic insulin resistance and beta-cell glucotoxicity, leading to the development of type 2 diabetes. Downstream effector pathways of HK-linked unscheduled glycolysis are mitochondrial dysfunction and increased reactive oxygen species (ROS) formation; activation of hexosamine, protein kinase c, and dicarbonyl stress pathways; and increased Mlx/Mondo A signaling. Mitochondrial dysfunction and increased ROS was proposed as the initiator of metabolic dysfunction in hyperglycemia, but it is rather one of the multiple downstream effector pathways. Correction of HK2 dysregulation is proposed as a novel therapeutic target. Pharmacotherapy addressing it corrected insulin resistance in overweight and obese subjects in clinical trial. Overall, the damaging effects of hyperglycemia are a consequence of HK-gated increased flux of glucose metabolism without increased glycolytic enzyme activities to accommodate it.
Collapse
Affiliation(s)
| | - Paul J. Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
11
|
Bhattacharya K, Dey R, Sen D, Paul N, Basak AK, Purkait MP, Shukla N, Chaudhuri GR, Bhattacharya A, Maiti R, Adhikary K, Chatterjee P, Karak P, Syamal AK. Polycystic ovary syndrome and its management: In view of oxidative stress. Biomol Concepts 2024; 15:bmc-2022-0038. [PMID: 38242137 DOI: 10.1515/bmc-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
In the past two decades, oxidative stress (OS) has drawn a lot of interest due to the revelation that individuals with many persistent disorders including diabetes, polycystic ovarian syndrome (PCOS), cardiovascular, and other disorders often have aberrant oxidation statuses. OS has a close interplay with PCOS features such as insulin resistance, hyperandrogenism, and chronic inflammation; there is a belief that OS might contribute to the development of PCOS. PCOS is currently recognized as not only one of the most prevalent endocrine disorders but also a significant contributor to female infertility, affecting a considerable proportion of women globally. Therefore, the understanding of the relationship between OS and PCOS is crucial to the development of therapeutic and preventive strategies for PCOS. Moreover, the mechanistic study of intracellular reactive oxygen species/ reactive nitrogen species formation and its possible interaction with women's reproductive health is required, which includes complex enzymatic and non-enzymatic antioxidant systems. Apart from that, our current review includes possible regulation of the pathogenesis of OS. A change in lifestyle, including physical activity, various supplements that boost antioxidant levels, particularly vitamins, and the usage of medicinal herbs, is thought to be the best way to combat this occurrence of OS and improve the pathophysiologic conditions associated with PCOS.
Collapse
Affiliation(s)
- Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Bhubaneswar, Odisha, India
| | - Rajen Dey
- Department of Medical Laboratory Technology, Swami Vivekananda University, Barrackpore, West Bengal, India
| | - Debanjana Sen
- Post-Graduate Department of Physiology, Hooghly Mohsin College, Chinsurah, West-Bengal, India
| | - Nimisha Paul
- Department of General Human Physiology and Biochemistry, Hitkarini Dental College and Hospital, Jabalpur, Madhya Pradesh, India
| | - Asim Kumar Basak
- School of Allied Health Sciences, Brainware University, Barasat, West-Bengal, India
| | | | - Nandini Shukla
- Department of Anatomy, Pt. J.N.M. Medical College, Raipur, Chhattisgarh, India
| | - Gargi Ray Chaudhuri
- Department of Physiotherapy, Nopany Institute of Health Care Studies, Kolkata, West-Bengal, India
| | - Aniruddha Bhattacharya
- Department of Physiology, International Medical School, Management and Science University, Selangor, Malaysia
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, India
| | - Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda Road, Bhubaneswar, Odisha, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College, Durgapur, West Bengal, India
| | - Prithviraj Karak
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, India
| | - Alak Kumar Syamal
- Post-Graduate Department of Physiology, Hooghly Mohsin College, Chinsurah, West-Bengal, India
| |
Collapse
|
12
|
Diaz-Vegas A, Madsen S, Cooke KC, Carroll L, Khor JXY, Turner N, Lim XY, Astore MA, Morris JC, Don AS, Garfield A, Zarini S, Zemski Berry KA, Ryan AP, Bergman BC, Brozinick JT, James DE, Burchfield JG. Mitochondrial electron transport chain, ceramide, and coenzyme Q are linked in a pathway that drives insulin resistance in skeletal muscle. eLife 2023; 12:RP87340. [PMID: 38149844 PMCID: PMC10752590 DOI: 10.7554/elife.87340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Insulin resistance (IR) is a complex metabolic disorder that underlies several human diseases, including type 2 diabetes and cardiovascular disease. Despite extensive research, the precise mechanisms underlying IR development remain poorly understood. Previously we showed that deficiency of coenzyme Q (CoQ) is necessary and sufficient for IR in adipocytes and skeletal muscle (Fazakerley et al., 2018). Here, we provide new insights into the mechanistic connections between cellular alterations associated with IR, including increased ceramides, CoQ deficiency, mitochondrial dysfunction, and oxidative stress. We demonstrate that elevated levels of ceramide in the mitochondria of skeletal muscle cells result in CoQ depletion and loss of mitochondrial respiratory chain components, leading to mitochondrial dysfunction and IR. Further, decreasing mitochondrial ceramide levels in vitro and in animal models (mice, C57BL/6J) (under chow and high-fat diet) increased CoQ levels and was protective against IR. CoQ supplementation also rescued ceramide-associated IR. Examination of the mitochondrial proteome from human muscle biopsies revealed a strong correlation between the respirasome system and mitochondrial ceramide as key determinants of insulin sensitivity. Our findings highlight the mitochondrial ceramide-CoQ-respiratory chain nexus as a potential foundation of an IR pathway that may also play a critical role in other conditions associated with ceramide accumulation and mitochondrial dysfunction, such as heart failure, cancer, and aging. These insights may have important clinical implications for the development of novel therapeutic strategies for the treatment of IR and related metabolic disorders.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
| | - Søren Madsen
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
| | - Kristen C Cooke
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
| | - Luke Carroll
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
| | - Jasmine XY Khor
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| | - Nigel Turner
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research InstituteSydneyAustralia
| | - Xin Y Lim
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| | - Miro A Astore
- Center for Computational Biology and Center for Computational Mathematics, Flatiron InstituteNew YorkUnited States
| | | | - Anthony S Don
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| | - Amanda Garfield
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Simona Zarini
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Karin A Zemski Berry
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Andrew P Ryan
- Lilly Research Laboratories, Division of Eli Lilly and CompanyIndianapolisUnited States
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Joseph T Brozinick
- Lilly Research Laboratories, Division of Eli Lilly and CompanyIndianapolisUnited States
| | - David E James
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| | - James G Burchfield
- Charles Perkins Centre, School of life and Environmental Sciences, University of SydneySydneyAustralia
| |
Collapse
|
13
|
Niveta JPS, John CM, Arockiasamy S. Monoamine oxidase mediated oxidative stress: a potential molecular and biochemical crux in the pathogenesis of obesity. Mol Biol Rep 2023; 51:29. [PMID: 38142252 DOI: 10.1007/s11033-023-08938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
Obesity has become a global health concern with an increasing prevalence as years pass by but the researchers have not come to a consensus on the exact pathophysiological mechanism underlying this disease. In the past three decades, Monoamine Oxidases (MAO), has come into limelight for a possible involvement in orchestrating the genesis of obesity but the exact mechanism is not well elucidated. MAO is essentially an enzyme involved in the catabolism of neurotransmitters and other biogenic amines to form a corresponding aldehyde, hydrogen peroxide (H2O2) and ammonia. This review aims to highlight the repercussions of MAO's catabolic activity on the redox balance, carbohydrate metabolism and lipid metabolism of adipocytes which ultimately leads to obesity. The H2O2 produced by these enzymes seems to be the culprit causing oxidative stress in pre-adipocytes and goes on to mimic insulin's activity independent of its presence via the Protein Kinase B Pathway facilitating glucose influx. The H2O2 activates Sterol regulatory-element binding protein-1c and peroxisome proliferator activated receptor gamma crucial for encoding enzymes like fatty acid synthase, acetyl CoA carboxylase 1, Adenosine triphosphate-citrate lyase, phosphoenol pyruvate carboxykinase etc., which helps promoting lipogenesis at the same time inhibits lipolysis. More reactive oxygen species production occurs via NADPH Oxidases enzymes and is also able activate Nuclear Factor kappa B leading to inflammation in the adipocyte microenvironment. This chronic inflammation is the seed for insulin resistance.
Collapse
Affiliation(s)
- J P Shirley Niveta
- Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Cordelia Mano John
- Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | |
Collapse
|
14
|
Jung IR, Ahima RS, Kim SF. Inositol polyphosphate multikinase modulates free fatty acids-induced insulin resistance in primary mouse hepatocytes. J Cell Biochem 2023; 124:1695-1704. [PMID: 37795573 DOI: 10.1002/jcb.30478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Insulin resistance is a critical mediator of the development of nonalcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of NAFLD. Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of protein kinase B (Akt) phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-acetyl cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Ik-Rak Jung
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Kasai S, Kokubu D, Mizukami H, Itoh K. Mitochondrial Reactive Oxygen Species, Insulin Resistance, and Nrf2-Mediated Oxidative Stress Response-Toward an Actionable Strategy for Anti-Aging. Biomolecules 2023; 13:1544. [PMID: 37892226 PMCID: PMC10605809 DOI: 10.3390/biom13101544] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Reactive oxygen species (ROS) are produced mainly by mitochondrial respiration and function as signaling molecules in the physiological range. However, ROS production is also associated with the pathogenesis of various diseases, including insulin resistance (IR) and type 2 diabetes (T2D). This review focuses on the etiology of IR and early events, especially mitochondrial ROS (mtROS) production in insulin-sensitive tissues. Importantly, IR and/or defective adipogenesis in the white adipose tissues (WAT) is thought to increase free fatty acid and ectopic lipid deposition to develop into systemic IR. Fatty acid and ceramide accumulation mediate coenzyme Q reduction and mtROS production in IR in the skeletal muscle, while coenzyme Q synthesis downregulation is also involved in mtROS production in the WAT. Obesity-related IR is associated with the downregulation of mitochondrial catabolism of branched-chain amino acids (BCAAs) in the WAT, and the accumulation of BCAA and its metabolites as biomarkers in the blood could reliably indicate future T2D. Transcription factor NF-E2-related factor 2 (Nrf2), which regulates antioxidant enzyme expression in response to oxidative stress, is downregulated in insulin-resistant tissues. However, Nrf2 inducers, such as sulforaphane, could restore Nrf2 and target gene expression and attenuate IR in multiple tissues, including the WAT.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| | - Daichi Kokubu
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
- Diet & Well-being Research Institute, KAGOME CO., LTD., 17 Nishitomiyama, Nasushiobara 329-2762, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| |
Collapse
|
16
|
Pinzaru AD, Mihai CM, Chisnoiu T, Pantazi AC, Lupu VV, Kassim MAK, Lupu A, Grosan E, Al Jumaili AZN, Ion I, Stoleriu G, Ion I. Oxidative Stress Biomarkers in Cystic Fibrosis and Cystic Fibrosis-Related Diabetes in Children: A Literature Review. Biomedicines 2023; 11:2671. [PMID: 37893045 PMCID: PMC10604378 DOI: 10.3390/biomedicines11102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The most common inherited condition that results in death, particularly in those of Caucasian heritage, is cystic fibrosis (CF). Of all the young adults diagnosed with cystic fibrosis, 20% will develop hyperglycemia as a complication, later classified as a disease associated with cystic fibrosis. Impaired insulin secretion and glucose intolerance represent the primary mechanisms associated with diabetes (type 1 or type 2) and cystic fibrosis. Oxidative stress represents the imbalance between oxygen-reactive species and antioxidant defense mechanisms. This pathogenic mechanism is vital in triggering other chronic diseases, including cystic fibrosis-related diabetes. It is essential to understand oxidative stress and the significant impact it has on CFRD. This way, therapies can be individually adjusted and tailored to each patient's needs. This review aims to understand the connection between CFRD and oxidative stress. As a subsidiary element, we analyzed the effects of glycemic balance on complications and their evolution over time, providing insights into their potential benefits in mitigating oxidative stress-associated complications.
Collapse
Affiliation(s)
- Anca Daniela Pinzaru
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | - Vasile Valeriu Lupu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Ancuta Lupu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Grosan
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ahmed Zaki Naji Al Jumaili
- National Institute of Diabetes, Nutrition and Metabolic Diseases “N.C. Paulescu”, 020475 Bucharest, Romania
| | - Irina Ion
- Department of Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
- Department of Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Gabriela Stoleriu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Ileana Ion
- Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
| |
Collapse
|
17
|
Diaz-Vegas A, Madsen S, Cooke KC, Carroll L, Khor JXY, Turner N, Lim XY, Astore MA, Morris J, Don A, Garfield A, Zarini S, Zemski Berry KA, Ryan A, Bergman BC, Brozinick JT, James DE, Burchfield JG. Mitochondrial electron transport chain, ceramide and Coenzyme Q are linked in a pathway that drives insulin resistance in skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532020. [PMID: 36945619 PMCID: PMC10028964 DOI: 10.1101/2023.03.10.532020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Insulin resistance (IR) is a complex metabolic disorder that underlies several human diseases, including type 2 diabetes and cardiovascular disease. Despite extensive research, the precise mechanisms underlying IR development remain poorly understood. Here, we provide new insights into the mechanistic connections between cellular alterations associated with IR, including increased ceramides, deficiency of coenzyme Q (CoQ), mitochondrial dysfunction, and oxidative stress. We demonstrate that elevated levels of ceramide in the mitochondria of skeletal muscle cells results in CoQ depletion and loss of mitochondrial respiratory chain components, leading to mitochondrial dysfunction and IR. Further, decreasing mitochondrial ceramide levels in vitro and in animal models (under chow and high fat diet) increased CoQ levels and was protective against IR. CoQ supplementation also rescued ceramide-associated IR. Examination of the mitochondrial proteome from human muscle biopsies revealed a strong correlation between the respirasome system and mitochondrial ceramide as key determinants of insulin sensitivity. Our findings highlight the mitochondrial Ceramide-CoQ-respiratory chain nexus as a potential foundation of an IR pathway that may also play a critical role in other conditions associated with ceramide accumulation and mitochondrial dysfunction, such as heart failure, cancer, and aging. These insights may have important clinical implications for the development of novel therapeutic strategies for the treatment of IR and related metabolic disorders.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Charles Perkins Centre, School of life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Soren Madsen
- Charles Perkins Centre, School of life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Kristen C. Cooke
- Charles Perkins Centre, School of life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Luke Carroll
- Charles Perkins Centre, School of life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Jasmine X. Y. Khor
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Nigel Turner
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Xin Ying Lim
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Miro A. Astore
- Center for Computational Biology and Center for Computational Mathematics, Flatiron Institute, New York, NY 10010, USA
| | - Jonathan Morris
- School of Chemistry, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Anthony Don
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Amanda Garfield
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karin A. Zemski Berry
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew Ryan
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Bryan C. Bergman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joseph T. Brozinick
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - David E. James
- Charles Perkins Centre, School of life and Environmental Sciences, University of Sydney, Sydney, Australia
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - James G. Burchfield
- Charles Perkins Centre, School of life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
You YL, Lee JY, Choi HS. S chisandra chinensis-derived gomisin C suppreses lipid accumulation by JAK2-STAT signaling in adipocyte. Food Sci Biotechnol 2023; 32:1225-1233. [PMID: 37362811 PMCID: PMC10290005 DOI: 10.1007/s10068-023-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Gomisin C is a lignan isolated from the fruit of Schisandra chinensis. The current study aimed to investigate the effect of gomisin C on lipid accumulation in adipocytes and its underlying mechanism. Gomisin C effectively inhibited lipid accumulation by downregulating adipogenic factors such as PPARγ and C/EBPα. Gomisin C-mediated suppression of lipid accumulation occurred in the early adipogenic stage; C/EBPβ was downregulated by 55%, while KLF2 was upregulated by 1.5-fold. Gomisin C significantly reduced the production of reactive oxygen species but upregulated antioxidant enzymes, including catalase, SOD1, and Gpx at the mRNA level. Gomisin C regulated NRF2-KEAP1 pathway by increasing NRF2 and decreasing KEAP1, in protein abundance. Furthermore, gomisin C suppressed the JAK2-STAT signaling pathway by decreasing phosphorylation. Taken together, gomisin C reduced early adipogenesis and ROS production by inhibiting the JAK2-STAT signaling pathway but activating the NRF2-KEAP1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01263-8.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Ji-Yeon Lee
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| |
Collapse
|
19
|
Tuell DS, Los EA, Ford GA, Stone WL. The Role of Natural Antioxidant Products That Optimize Redox Status in the Prevention and Management of Type 2 Diabetes. Antioxidants (Basel) 2023; 12:1139. [PMID: 37371869 DOI: 10.3390/antiox12061139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
The worldwide prevalence of type 2 diabetes (T2D) and prediabetes is rapidly increasing, particularly in children, adolescents, and young adults. Oxidative stress (OxS) has emerged as a likely initiating factor in T2D. Natural antioxidant products may act to slow or prevent T2D by multiple mechanisms, i.e., (1) reducing mitochondrial oxidative stress, (2) preventing the damaging effects of lipid peroxidation, and (3) acting as essential cofactors for antioxidant enzymes. Natural antioxidant products should also be evaluated in the context of the complex physiological processes that modulate T2D-OxS such as glycemic control, postprandial OxS, the polyol pathway, high-calorie, high-fat diets, exercise, and sleep. Minimizing processes that induce chronic damaging OxS and maximizing the intake of natural antioxidant products may provide a means of preventing or slowing T2D progression. This "optimal redox" (OptRedox) approach also provides a framework in which to discuss the potential benefits of natural antioxidant products such as vitamin E, vitamin C, beta-carotene, selenium, and manganese. Although there is a consensus that early effective intervention is critical for preventing or reversing T2D progression, most research has focused on adults. It is critical, therefore, that future research include pediatric populations.
Collapse
Affiliation(s)
- Dawn S Tuell
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - Evan A Los
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - George A Ford
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - William L Stone
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| |
Collapse
|
20
|
Asmara AP, Prasansuklab A, Chiabchalard A, Chen H, Ung AT. Antihyperglycemic Properties of Extracts and Isolated Compounds from Australian Acacia saligna on 3T3-L1 Adipocytes. Molecules 2023; 28:molecules28104054. [PMID: 37241795 DOI: 10.3390/molecules28104054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Our early work indicated that methanolic extracts from the flowers, leaves, bark, and isolated compounds of Acacia saligna exhibited significant antioxidant activities in vitro. The overproduction of reactive oxygen species (ROS) in the mitochondria (mt-ROS) interfered with glucose uptake, metabolism, and its AMPK-dependent pathway, contributing to hyperglycemia and diabetes. This study aimed to screen the ability of these extracts and isolated compounds to attenuate the production of ROS and maintain mitochondrial function via the restoration of mitochondrial membrane potential (MMP) in 3T3-L1 adipocytes. Downstream effects were investigated via an immunoblot analysis of the AMPK signalling pathway and glucose uptake assays. All methanolic extracts effectively reduced cellular ROS and mt-ROS levels, restored the MMP, activated AMPK-α, and enhanced cellular glucose uptake. At 10 µM, (-)-epicatechin-6 (from methanolic leaf and bark extracts) markedly reduced ROS and mt-ROS levels by almost 30% and 50%, respectively, with an MMP potential ratio 2.2-fold higher compared to the vehicle control. (-)-Epicatechin 6 increased the phosphorylation of AMPK-α by 43%, with an 88% higher glucose uptake than the control. Other isolated compounds include naringenin 1, naringenin-7-O-α-L-arabinopyranoside 2, isosalipurposide 3, D-(+)-pinitol 5a, and (-)-pinitol 5b, which also performed relatively well across all assays. Australian A. saligna active extracts and compounds can reduce ROS oxidative stress, improve mitochondrial function, and enhance glucose uptake through AMPK-α activation in adipocytes, supporting its potential antidiabetic application.
Collapse
Affiliation(s)
- Anjar P Asmara
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Chiabchalard
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alison T Ung
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
21
|
Jung IR, Ahima RS, Kim SF. IPMK modulates FFA-induced insulin resistance in primary mouse hepatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538310. [PMID: 37162825 PMCID: PMC10168377 DOI: 10.1101/2023.04.26.538310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Insulin resistance is a critical mediator of the development of non-alcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of non-alcoholic fatty liver disease (NAFLD). Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of Akt phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-Acetyl Cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Ik-Rak Jung
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Li H, Ren J, Li Y, Wu Q, Wei J. Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Front Endocrinol (Lausanne) 2023; 14:1134025. [PMID: 37077347 PMCID: PMC10107409 DOI: 10.3389/fendo.2023.1134025] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
Obesity has been associated with oxidative stress. Obese patients are at increased risk for diabetic cognitive dysfunction, indicating a pathological link between obesity, oxidative stress, and diabetic cognitive dysfunction. Obesity can induce the biological process of oxidative stress by disrupting the adipose microenvironment (adipocytes, macrophages), mediating low-grade chronic inflammation, and mitochondrial dysfunction (mitochondrial division, fusion). Furthermore, oxidative stress can be implicated in insulin resistance, inflammation in neural tissues, and lipid metabolism disorders, affecting cognitive dysfunction in diabetics.
Collapse
Affiliation(s)
- Huimin Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yusi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Yan MQ, Wang Y, Wang Z, Liu XH, Yang YM, Duan XY, Sun H, Liu XM. Mitoguardin2 Is Associated With Hyperandrogenism and Regulates Steroidogenesis in Human Ovarian Granulosa Cells. J Endocr Soc 2023; 7:bvad034. [PMID: 36936714 PMCID: PMC10016062 DOI: 10.1210/jendso/bvad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 03/04/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinopathy characterized by hyperandrogenism, anovulation, and polycystic ovaries, in which hyperandrogenism manifests by excess androgen and other steroid hormone abnormalities. Mitochondrial fusion is essential in steroidogenesis, while the role of mitochondrial fusion in granulosa cells of hyperandrogenic PCOS patients remains unclear. In this study, mRNA expression of mitochondrial fusion genes mitoguardin1, -2 (MIGA 1, -2) was significantly increased in granulosa cells of hyperandrogenic PCOS but not PCOS with normal androgen levels, their mRNA expression positively correlated with testosterone levels. Dihydrotestosterone (DHT) treatment in mice led to high expression of MIGA2 in granulosa cells of ovulating follicles. Testosterone or forskolin/ phorbol 12-myristate 13-acetate treatments increased expression of MIGA2 and the steroidogenic acute regulatory protein (StAR) in KGN cells. MIGA2 interacted with StAR and induced StAR localization on mitochondria. Furthermore, MIGA2 overexpression significantly increased cAMP-activated protein kinase A (PKA) and phosphorylation of AMP-activated protein kinase (pAMPK) at T172 but inhibited StAR protein expression. However, MIGA2 overexpression increased CYP11A1, HSD3B2, and CYP19A1 mRNA expression. As a result, MIGA2 overexpression decreased progesterone but increased estradiol synthesis. Besides the androgen receptor, testosterone or DHT might also regulate MIGA2 and pAMPK (T172) through LH/choriogonadotropin receptor-mediated PKA signaling. Taken together, these findings indicate that testosterone regulates MIGA2 via PKA/AMP-activated protein kinase signaling in ovarian granulosa cells. It is suggested mitochondrial fusion in ovarian granulosa cells is associated with hyperandrogenism and potentially leads to abnormal steroidogenesis in PCOS.
Collapse
Affiliation(s)
- Ming-Qi Yan
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., China
| | - Yong Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Zhao Wang
- Center for Reproductive Medicine, Shandong University, Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan 250012, China
| | - Xiao-Hong Liu
- Department of Infection Control, Jen Ching Memorial Hospital, Kunshan 215300, China
| | - Yu-Meng Yang
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Xiu-Yun Duan
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Hui Sun
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Xiao-Man Liu
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| |
Collapse
|
24
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreas-Liver-Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. TOXICS 2023; 11:223. [PMID: 36976988 PMCID: PMC10059892 DOI: 10.3390/toxics11030223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, Puebla 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| |
Collapse
|
25
|
Fazakerley DJ, van Gerwen J, Cooke KC, Duan X, Needham EJ, Díaz-Vegas A, Madsen S, Norris DM, Shun-Shion AS, Krycer JR, Burchfield JG, Yang P, Wade MR, Brozinick JT, James DE, Humphrey SJ. Phosphoproteomics reveals rewiring of the insulin signaling network and multi-nodal defects in insulin resistance. Nat Commun 2023; 14:923. [PMID: 36808134 PMCID: PMC9938909 DOI: 10.1038/s41467-023-36549-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
The failure of metabolic tissues to appropriately respond to insulin ("insulin resistance") is an early marker in the pathogenesis of type 2 diabetes. Protein phosphorylation is central to the adipocyte insulin response, but how adipocyte signaling networks are dysregulated upon insulin resistance is unknown. Here we employ phosphoproteomics to delineate insulin signal transduction in adipocyte cells and adipose tissue. Across a range of insults causing insulin resistance, we observe a marked rewiring of the insulin signaling network. This includes both attenuated insulin-responsive phosphorylation, and the emergence of phosphorylation uniquely insulin-regulated in insulin resistance. Identifying dysregulated phosphosites common to multiple insults reveals subnetworks containing non-canonical regulators of insulin action, such as MARK2/3, and causal drivers of insulin resistance. The presence of several bona fide GSK3 substrates among these phosphosites led us to establish a pipeline for identifying context-specific kinase substrates, revealing widespread dysregulation of GSK3 signaling. Pharmacological inhibition of GSK3 partially reverses insulin resistance in cells and tissue explants. These data highlight that insulin resistance is a multi-nodal signaling defect that includes dysregulated MARK2/3 and GSK3 activity.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Julian van Gerwen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Xiaowen Duan
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alexis Díaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Søren Madsen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Dougall M Norris
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Amber S Shun-Shion
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QL, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QL, Australia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Pengyi Yang
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW, 2006, Australia
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Mark R Wade
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Joseph T Brozinick
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Medical School, University of Sydney, Sydney, 2006, Australia.
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
26
|
Aedh AI, Alshahrani MS, Huneif MA, Pryme IF, Oruch R. A Glimpse into Milestones of Insulin Resistance and an Updated Review of Its Management. Nutrients 2023; 15:nu15040921. [PMID: 36839279 PMCID: PMC9960458 DOI: 10.3390/nu15040921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Insulin is the main metabolic regulator of fuel molecules in the diet, such as carbohydrates, lipids, and proteins. It does so by facilitating glucose influx from the circulation into the liver, adipose tissue, and skeletal myocytes. The outcome of which is subjected to glycogenesis in skeletal muscle and lipogenesis in adipose tissue, as well as in the liver. Therefore, insulin has an anabolic action while, on the contrary, hypoinsulinemia promotes the reverse process. Protein breakdown in myocytes is also encountered during the late stages of diabetes mellitus. The balance of the blood glucose level in physiological conditions is maintained by virtue of the interactive functions of insulin and glucagon. In insulin resistance (IR), the balance is disturbed because glucose transporters (GLUTs) of cell membranes fail to respond to this peptide hormone, meaning that glucose molecules cannot be internalized into the cells, the consequence of which is hyperglycemia. To develop the full state of diabetes mellitus, IR should be associated with the impairment of insulin release from beta-cells of the pancreas. Periodic screening of individuals of high risk, such as those with obesity, hypercholesterolemia, and pregnant nulliparous women in antenatal control, is vital, as these are important checkpoints to detect cases of insulin resistance. This is pivotal as IR can be reversed, provided it is detected in its early stages, through healthy dietary habits, regular exercise, and the use of hypoglycemic agents. In this review, we discuss the pathophysiology, etiology, diagnosis, preventive methods, and management of IR in brief.
Collapse
Affiliation(s)
- Abdullah I. Aedh
- Department of Internal Medicine, School of Medicine, Najran University, Najran 66324, Saudi Arabia
| | - Majed S. Alshahrani
- Department of Obstetrics & Gynecology, School of Medicine, Najran University, Najran 66324, Saudi Arabia
| | - Mohammed A. Huneif
- Department of Pediatrics, School of Medicine, Najran University, Najran 66324, Saudi Arabia
| | - Ian F. Pryme
- Department of Biomedicine, School of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Ramadhan Oruch
- Department of Biochemistry and Molecular Biology, School of Medicine, Najran University, Najran 66324, Saudi Arabia
- Correspondence: ; Tel.: +966-562144606
| |
Collapse
|
27
|
Kopp W. Pathogenesis of (smoking-related) non-communicable diseases-Evidence for a common underlying pathophysiological pattern. Front Physiol 2022; 13:1037750. [PMID: 36589440 PMCID: PMC9798240 DOI: 10.3389/fphys.2022.1037750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-communicable diseases, like diabetes, cardiovascular diseases, cancer, stroke, chronic obstructive pulmonary disease, osteoporosis, arthritis, Alzheimer's disease and other more are a leading cause of death in almost all countries. Lifestyle factors, especially poor diet and tobacco consumption, are considered to be the most important influencing factors in the development of these diseases. The Western diet has been shown to cause a significant distortion of normal physiology, characterized by dysregulation of the sympathetic nervous system, renin-angiotensin aldosterone system, and immune system, as well as disruption of physiological insulin and oxidant/antioxidant homeostasis, all of which play critical roles in the development of these diseases. This paper addresses the question of whether the development of smoking-related non-communicable diseases follows the same pathophysiological pattern. The evidence presented shows that exposure to cigarette smoke and/or nicotine causes the same complex dysregulation of physiology as described above, it further shows that the factors involved are strongly interrelated, and that all of these factors play a key role in the development of a broad spectrum of smoking-related diseases. Since not all smokers develop one or more of these diseases, it is proposed that this disruption of normal physiological balance represents a kind of pathogenetic "basic toolkit" for the potential development of a range of non-communicable diseases, and that the decision of whether and what disease will develop in an individual is determined by other, individual factors ("determinants"), such as the genome, epigenome, exposome, microbiome, and others. The common pathophysiological pattern underlying these diseases may provide an explanation for the often poorly understood links between non-communicable diseases and disease comorbidities. The proposed pathophysiological process offers new insights into the development of non-communicable diseases and may influence the direction of future research in both prevention and therapy.
Collapse
|
28
|
Memon AA, Vats S, Sundquist J, Li Y, Sundquist K. Mitochondrial DNA Copy Number: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1168-1190. [PMID: 36169625 DOI: 10.1089/ars.2022.0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent Advances: Various studies have suggested that mitochondrial DNA copy number (mtDNA-CN), a surrogate biomarker of mitochondrial dysfunction, is an easily quantifiable biomarker for chronic diseases, including diabetes and cancer. However, current knowledge is limited, and the results are controversial. This has been attributed mainly to methodology and study design. Critical Issues: The incidence of diabetes and cancer has increased significantly in recent years. Moreover, type 2 diabetes (T2D) has been shown to be a risk factor for cancer. mtDNA-CN has been associated with both T2D and cancer. However, it is not known whether mtDNA-CN plays any role in the association between T2D and cancer. Significance: In this review, we have discussed mtDNA-CN in diabetes and cancer, and reviewed the literature and methodology used in published studies so far. Based on the literature review, we have speculated how mtDNA-CN may act as a link between diabetes and cancer. Furthermore, we have provided some recommendations for reliable translation of mtDNA-CN as a biomarker. Future Directions: Further research is required to elucidate the role of mtDNA-CN in the association between T2D and cancer. If established, early lifestyle interventions, such as physical activity and diet control that improve mitochondrial function, may help preventing cancer in patients with T2D. Antioxid. Redox Signal. 37, 1168-1190.
Collapse
Affiliation(s)
- Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Sakshi Vats
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Yanni Li
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
29
|
Repression of the iron exporter ferroportin may contribute to hepatocyte iron overload in individuals with type 2 diabetes. Mol Metab 2022; 66:101644. [PMID: 36436807 PMCID: PMC9719871 DOI: 10.1016/j.molmet.2022.101644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Hyperferremia and hyperferritinemia are observed in patients and disease models of type 2 diabetes mellitus (T2DM). Likewise, patients with genetic iron overload diseases develop diabetes, suggesting a tight link between iron metabolism and diabetes. The liver controls systemic iron homeostasis and is a central organ for T2DM. Here, we investigate how the control of iron metabolism in hepatocytes is affected by T2DM. METHODS Perls Prussian blue staining was applied to analyze iron distribution in liver biopsies of T2DM patients. To identify molecular mechanisms underlying hepatocyte iron accumulation we established cellular models of insulin resistance by treatment with palmitate and insulin. RESULTS We show that a subset of T2DM patients accumulates iron in hepatocytes, a finding mirrored in a hepatocyte model of insulin resistance. Iron accumulation can be explained by the repression of the iron exporter ferroportin upon palmitate and/or insulin treatment. While during palmitate treatment the activation of the iron regulatory hormone hepcidin may contribute to reducing ferroportin protein levels in a cell-autonomous manner, insulin treatment decreases ferroportin transcription via the PI3K/AKT and Ras/Raf/MEK/ERK signaling pathways. CONCLUSION Repression of ferroportin at the transcriptional and post-transcriptional level may contribute to iron accumulation in hepatocytes observed in a subset of patients with T2DM.
Collapse
|
30
|
Davis Sanders O, Rajagopal L, Chase Barton C, Archa Rajagopal J, Lopez O, Lopez K, Malik F. Does oxidative DNA damage trigger histotoxic hypoxia via PARP1/AMP-driven mitochondrial ADP depletion-induced ATP synthase inhibition in Alzheimer's disease? Mitochondrion 2022; 67:59-64. [PMID: 36367519 DOI: 10.1016/j.mito.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/01/2022] [Accepted: 10/23/2022] [Indexed: 11/08/2022]
Abstract
The low cerebral metabolic rate of oxygen despite the relatively preserved perfusion in Alzheimer's disease (AD) patients' medial temporal lobes suggest histotoxic hypoxia due to mitochondrial dysfunction that is independent of, but could precede, insulin resistance. Neuropathological, metabolomic, and preclinical evidence are consistent with the notion that this mitochondrial dysfunction may be contributed to by oxidative stress and DNA damage, leading to poly-(ADP-ribose)-polymerase-1 (PARP1) activation and consequent AMP accumulation, clogging of mitochondrial adenine nucleotide transporters (ANTs), matrix ADP deprivation, and ATP synthase inhibition. Complementary mechanisms may include mitochondrial-protein poly-ADP-ribosylation and mitochondrial-biogenesis suppression via PARPs outcompeting Sirtuin-1 (SIRT1) for nicotinamide-adenine-dinucleotide (NAD+).
Collapse
Affiliation(s)
- Owen Davis Sanders
- University of Nebraska Medical Center, 42(nd) and Emile St., Omaha, NE 68198, USA.
| | - Lekshmy Rajagopal
- Seven Hills Hospital, Marol Maroshi Rd, Shivaji Nagar JJC, Marol, Andheri East, Mumbai, Maharashtra 400059, India
| | - Chandler Chase Barton
- Oregon Health and Sciences University, 3181 S.W. Sam Jackson Park Rd. Portland, Oregon 97239-3098, USA
| | | | - Olga Lopez
- Florida International University, Herbert Wertheim College of Medicine, 11200 SW 8th St, Miami, FL 33199, USA
| | - Kalei Lopez
- Florida International University, Herbert Wertheim College of Medicine, 11200 SW 8th St, Miami, FL 33199, USA
| | - Fayeza Malik
- Florida International University, Herbert Wertheim College of Medicine, 11200 SW 8th St, Miami, FL 33199, USA
| |
Collapse
|
31
|
Krinsley JS, Rule P, Brownlee M, Roberts G, Preiser JC, Chaudry S, Dionne K, Heluey-Rodrigues C, Umpierrez GE, Hirsch IB. Acute and Chronic Glucose Control in Critically Ill Patients With Diabetes: The Impact of Prior Insulin Treatment. J Diabetes Sci Technol 2022; 16:1483-1495. [PMID: 34396800 PMCID: PMC9631540 DOI: 10.1177/19322968211032277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Emerging data highlight the interactions of preadmission glycemia, reflected by admission HbA1c levels, glycemic control during critical illness, and mortality. The association of preadmission insulin treatment with outcomes is unknown. METHODS This observational cohort study includes 5245 patients admitted to the medical-surgical intensive care unit of a university-affiliated teaching hospital. Three groups were analyzed: patients with diabetes with prior insulin treatment (DM-INS, n = 538); patients with diabetes with no prior insulin treatment (DM-No-INS, n = 986); no history of diabetes (NO-DM, n = 3721). Groups were stratified by HbA1c level: <6.5%; 6.5%-7.9% and >8.0%. RESULTS Among the three strata of HbA1c, mean blood glucose (BG), coefficient of variation (CV), and hypoglycemia increased with increasing HbA1c, and were higher for DM-INS than for DM-No-INS. Among patients with HbA1c < 6.5%, mean BG ≥ 180 mg/dL and CV > 30% were associated with lower severity-adjusted mortality in DM-INS compared to patients with mean BG 80-140 mg/dL and CV < 15%, (P = .0058 and < .0001, respectively), but higher severity-adjusted mortality among DM-No-INS (P = .0001 and < .0001, respectively) and NON-DM (P < .0001 and < .0001, respectively). Among patients with HbA1c ≥ 8.0%, mean BG ≥ 180 mg/dL was associated with lower severity-adjusted mortality for both DM-INS and DM-No-INS than was mean BG 80-140 mg/dL (p < 0.0001 for both comparisons). CONCLUSIONS Significant differences in mortality were found among patients with diabetes based on insulin treatment and HbA1c at home and post-admission glycemic control. Prospective studies need to confirm an individualized approach to glycemic control in the critically ill.
Collapse
Affiliation(s)
- James S. Krinsley
- Division of Critical Care, Department
of Medicine, Stamford Hospital, and the Columbia Vagelos College of Physicians and
Surgeons, Stamford, CT, USA
- James S Krinsley MD, FCCM, FCCP, Division
of Critical Care, Department of Medicine, Stamford Hospital, and the Columbia
Vagelos College of Physicians and Surgeons, 1 Hospital Plaza, Stamford, CT
06902, USA. Emails: ;
| | | | - Michael Brownlee
- Einstein Diabetes Research Center,
Professor of Medicine and Pathology Emeritus, Albert Einstein College of Medicine,
Bronx, NY, USA
| | | | | | - Sherose Chaudry
- Division of Critical Care, Department
of Medicine, Stamford Hospital, and the Columbia Vagelos College of Physicians and
Surgeons, Stamford, CT, USA
| | - Krista Dionne
- Division of Critical Care, Department
of Medicine, Stamford Hospital, and the Columbia Vagelos College of Physicians and
Surgeons, Stamford, CT, USA
| | - Camilla Heluey-Rodrigues
- Division of Critical Care, Department
of Medicine, Stamford Hospital, and the Columbia Vagelos College of Physicians and
Surgeons, Stamford, CT, USA
| | | | - Irl B. Hirsch
- University of Washington Medicine
Diabetes Institute, Seattle, WA, USA
| |
Collapse
|
32
|
Chen Y, Yang F, Chu Y, Yun Z, Yan Y, Jin J. Mitochondrial transplantation: opportunities and challenges in the treatment of obesity, diabetes, and nonalcoholic fatty liver disease. Lab Invest 2022; 20:483. [PMID: 36273156 PMCID: PMC9588235 DOI: 10.1186/s12967-022-03693-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022]
Abstract
Metabolic diseases, including obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD), are rising in both incidence and prevalence and remain a major global health and socioeconomic burden in the twenty-first century. Despite an increasing understanding of these diseases, the lack of effective treatments remains an ongoing challenge. Mitochondria are key players in intracellular energy production, calcium homeostasis, signaling, and apoptosis. Emerging evidence shows that mitochondrial dysfunction participates in the pathogeneses of metabolic diseases. Exogenous supplementation with healthy mitochondria is emerging as a promising therapeutic approach to treating these diseases. This article reviews recent advances in the use of mitochondrial transplantation therapy (MRT) in such treatment.
Collapse
Affiliation(s)
- Yifei Chen
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,School of Medicine, Jiangsu University, ZhenjiangJiangsu Province, 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,School of Medicine, Jiangsu University, ZhenjiangJiangsu Province, 212013, China
| | - Ying Chu
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,Central Laboratory, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China
| | - Zhihua Yun
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China. .,Central Laboratory, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.
| | - Jianhua Jin
- Department of Oncology, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.
| |
Collapse
|
33
|
Li D, Liang C, Zhang T, Marley JL, Zou W, Lian M, Ji D. Pathogenic mitochondrial DNA 3243A>G mutation: From genetics to phenotype. Front Genet 2022; 13:951185. [PMID: 36276941 PMCID: PMC9582660 DOI: 10.3389/fgene.2022.951185] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial DNA (mtDNA) m.3243A>G mutation is one of the most common pathogenic mtDNA variants, showing complex genetics, pathogenic molecular mechanisms, and phenotypes. In recent years, the prevention of mtDNA-related diseases has trended toward precision medicine strategies, such as preimplantation genetic diagnosis (PGD) and mitochondrial replacement therapy (MRT). These techniques are set to allow the birth of healthy children, but clinical implementation relies on thorough insights into mtDNA genetics. The genotype and phenotype of m.3243A>G vary greatly from mother to offspring, which compromises genetic counseling for the disease. This review is the first to systematically elaborate on the characteristics of the m.3243A>G mutation, from genetics to phenotype and the relationship between them, as well as the related influencing factors and potential strategies for preventing disease. These perceptions will provide clarity for clinicians providing genetic counseling to m.3243A>G patients.
Collapse
Affiliation(s)
- Danyang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Chunmei Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Tao Zhang
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jordan Lee Marley
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Muqing Lian
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- *Correspondence: Dongmei Ji,
| |
Collapse
|
34
|
Zhao J, Sui X, Shi Q, Su D, Lin Z. Effects of antioxidant intervention in patients with polycystic ovarian syndrome: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e30006. [PMID: 35960093 PMCID: PMC9371494 DOI: 10.1097/md.0000000000030006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The role of antioxidant intervention in polycystic ovary syndrome (PCOS) patients has been increasingly investigated in recent years. In order to further clarify whether antioxidant therapy is beneficial for PCOS patients and the emphasis of its effects, this study provides a systematic review and meta-analysis of randomized controlled trials examining the effect of antioxidant intervention on PCOS. METHODS Enrolled study designs related to antioxidant interventions and PCOS, published from 1999 to 2020, were searched from EMBASE, PubMed, and Web of Science databases to sort out proven studies on antioxidant interventions and PCOS. Data were reported as weighted mean difference (WMD) or standard mean difference with associated confidence intervals of 95%. The analysis was conducted using Stata version 16.0. RESULTS Twenty-three studies were included in total. Antioxidant intervention had a positive impact on homeostasis model assessment of insulin resistance (WMD = -0.37, P = .011) and Triglycerides (WMD = -25.51, P < .001). And antioxidant intervention did not improve testosterone levels significantly (WMD = -0.20, P = .2611). Subgroup analysis showed that except for the D-chiro-inosito subgroup, no difference in body mass index was observed between the intervention group and the control group. CONCLUSIONS This meta-analysis demonstrates the efficacy of antioxidant intervention in patients with PCOS, demonstrating that antioxidant intervention has a significant effect on insulin resistance and lipid metabolism improvement. However, antioxidant intervention therapy has no discernible impact on testosterone levels or body mass index. Omega-3 may be a more effective antioxidant intervention for PCOS. In addition, this meta-analysis provides important reference opinions and treatment recommendations for PCOS.
Collapse
Affiliation(s)
- Junde Zhao
- Shandong University of Traditional Chinese Medicine, JinanShandong, China
| | - Xiaohui Sui
- Shandong University of Traditional Chinese Medicine, JinanShandong, China
| | - Qingyu Shi
- Shandong University of Finance and Economics, JinanShandong, China
| | - Dan Su
- People’s Hospital of Lixia District of Jinan, Jinan, Shandong, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, JinanShandong, China
- *Correspondence: Zhiheng Lin, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, Shandong, China (e-mail: )
| |
Collapse
|
35
|
EFR3 and phosphatidylinositol 4-kinase IIIα regulate insulin-stimulated glucose transport and GLUT4 dispersal in 3T3-L1 adipocytes. Biosci Rep 2022; 42:231469. [PMID: 35735144 PMCID: PMC9272592 DOI: 10.1042/bsr20221181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localization of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane.
Collapse
|
36
|
Zhang Q, Ren J, Wang F, Pan M, Cui L, Li M, Qu F. Mitochondrial and glucose metabolic dysfunctions in granulosa cells induce impaired oocytes of polycystic ovary syndrome through Sirtuin 3. Free Radic Biol Med 2022; 187:1-16. [PMID: 35594990 DOI: 10.1016/j.freeradbiomed.2022.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022]
Abstract
Mitochondrial function and glucose metabolism play important roles in bidirectional signaling between granulosa cells (GCs) and oocytes. However, the factors associated with mitochondrial function and glucose metabolism of GCs in polycystic ovary syndrome (PCOS) are poorly understood, and their potential downstream effects on oocyte quality are still unknown. The aim of this study was to investigate whether there are alterations in mitochondrial-related functions and glucose metabolism in ovarian GCs of women with PCOS and the role of Sirtuin 3 (SIRT3) in this process. Here, we demonstrated that women with PCOS undergoing in vitro fertilization and embryo transfer had significantly lower rates of metaphase II oocytes, two-pronuclear fertilization, cleavage, and day 3 good-quality embryos. Germinal vesicle- and metaphase I-stage oocytes from women with PCOS exhibited increased mitochondrial reactive oxygen species (ROS), decreased mitochondrial membrane potential, and downregulation of glucose-6-phosphate dehydrogenase. GCs from women with PCOS presented significant alterations in mitochondrial morphology, amount, and localization, decreased membrane potential, reduced adenosine triphosphate (ATP) synthesis, increased mitochondrial ROS and oxidative stress, and insufficient oxidative phosphorylation (OXPHOS) together with decreased glycolysis. SIRT3 expression was significantly decreased in GCs of PCOS patients, and knockdown of SIRT3 in KGN cells could mimic the alterations in mitochondrial functions and glucose metabolism in PCOS GCs. SIRT3 knockdown changed the acetylation status of NDUFS1, which might induce altered mitochondrial OXPHOS, the generation of mitochondrial ROS, and eventually defects in the cellular insulin signaling pathway. These findings suggest that SIRT3 deficiency in GCs of PCOS patients may contribute to mitochondrial dysfunction, elevated oxidative stress, and defects in glucose metabolism, which potentially induce impaired oocytes in PCOS.
Collapse
Affiliation(s)
- Qing Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Jun Ren
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Manman Pan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Long Cui
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Mingqian Li
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
37
|
Fasciolo G, Napolitano G, Aprile M, Cataldi S, Costa V, Ciccodicola A, Di Meo S, Venditti P. Hepatic Insulin Resistance in Hyperthyroid Rat Liver: Vitamin E Supplementation Highlights a Possible Role of ROS. Antioxidants (Basel) 2022; 11:antiox11071295. [PMID: 35883786 PMCID: PMC9311543 DOI: 10.3390/antiox11071295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/24/2023] Open
Abstract
Thyroid hormones are normally involved in glycaemic control, but their excess can lead to altered glucose metabolism and insulin resistance (IR). Since hyperthyroidism-linked increase in ROS results in tissue oxidative stress that is considered a hallmark of conditions leading to IR, it is conceivable a role of ROS in the onset of IR in hyperthyroidism. To verify this hypothesis, we evaluated the effects of vitamin E on thyroid hormone-induced oxidative damage, insulin resistance, and on gene expression of key molecules involved in IR in the rat liver. The factors involved in oxidative damage, namely the total content of ROS, the mitochondrial production of ROS, the activity of antioxidant enzymes, the in vitro susceptibility to oxidative stress, have been correlated to insulin resistance indices, such as insulin activation of hepatic Akt and plasma level of glucose, insulin and HOMA index. Our results indicate that increased levels of oxidative damage ROS content and production and susceptibility to oxidative damage, parallel increased fasting plasma level of glucose and insulin, reduced activation of Akt and increased activation of JNK. This last result suggests a role for JNK in the insulin resistance induced by hyperthyroidism. Furthermore, the variation of the genes Pparg, Ppara, Cd36 and Slc2a2 could explain, at least in part, the observed metabolic phenotypes.
Collapse
Affiliation(s)
- Gianluca Fasciolo
- Dipartimento di Biologia, Università di Napoli Federico II, 80126 Naples, Italy; (G.F.); (S.D.M.)
| | - Gaetana Napolitano
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, Centro Direzionale, Isola C4, 80143 Naples, Italy; (G.N.); (A.C.)
| | - Marianna Aprile
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, National Research Council, Pietro Castellino Street 111, 80131 Naples, Italy; (M.A.); (S.C.); (V.C.)
| | - Simona Cataldi
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, National Research Council, Pietro Castellino Street 111, 80131 Naples, Italy; (M.A.); (S.C.); (V.C.)
| | - Valerio Costa
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, National Research Council, Pietro Castellino Street 111, 80131 Naples, Italy; (M.A.); (S.C.); (V.C.)
| | - Alfredo Ciccodicola
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, Centro Direzionale, Isola C4, 80143 Naples, Italy; (G.N.); (A.C.)
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, National Research Council, Pietro Castellino Street 111, 80131 Naples, Italy; (M.A.); (S.C.); (V.C.)
| | - Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli Federico II, 80126 Naples, Italy; (G.F.); (S.D.M.)
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli Federico II, 80126 Naples, Italy; (G.F.); (S.D.M.)
- Correspondence: ; Tel.: +39-081-2535080
| |
Collapse
|
38
|
Song BR, Alam MB, Lee SH. Terpenoid-Rich Extract of Dillenia indica L. Bark Displays Antidiabetic Action in Insulin-Resistant C2C12 Cells and STZ-Induced Diabetic Mice by Attenuation of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11071227. [PMID: 35883721 PMCID: PMC9312268 DOI: 10.3390/antiox11071227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) plays a key role in the pathogenesis and clinical outcome of patients with multiple diseases and diabetes. In this study, we examined the antidiabetic effects of a terpenoid-rich extract from Dillenia indica L. bark (TRDI) in palmitic acid-induced insulin resistance (PA-IR) in C2C12 myotube and a streptozotocin (STZ)-induced diabetic mice model and explored the possible underlying mechanism. TRDI showed potential DPPH- and ABTS-radical scavenging effects with a half-maximal inhibitory concentration (IC50) value of 9.76 ± 0.50 µg/mL and 17.47 ± 1.31 µg/mL, respectively. Furthermore, TRDI strongly mitigated α-glucosidase activity with an IC50 value of 3.03 ± 1.01 µg/mL, which was 92-fold higher than the positive control, acarbose (IC50 = 279.49 ± µg/mL). TRDI stimulated the insulin receptor substrarte-1 (INS-1), downregulated phosphoinositide-dependent kinase-1 (PDK1) and protein kinase B (Akt) in both normal and PA-IR C2C12 cells as well as in STZ-induced diabetic mice, enhanced glucose transporter 4 (GLUT4) translocation to the plasma membrane (PM), and increased glucose absorption. Furthermore, TRDI administration significantly reduced PA-induced reactive oxygen species (ROS) formation in C2C12 cells and increased the protein level of numerous antioxidant enzymes such as superoxide dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase-1 (GPx-1) and thioredoxin reductase (TrxR) both in vitro and in vivo. Furthermore, TRDI facilitated nuclear factor erythroid 2 related factor 2 (Nrf2) nuclear translocation and increased HO-1 expression in PA-IR C2C12 cells and STZ-induced diabetic mice. However, for the inhibition of Nrf2, TRDI failed to resist the effects of IR. Thus, this study provides new evidence to support the use of TRDI for diabetes treatment.
Collapse
Affiliation(s)
- Bo-Rim Song
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (B.-R.S.); (M.B.A.)
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (B.-R.S.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (B.-R.S.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7754
| |
Collapse
|
39
|
Blackwood SJ, Horwath O, Moberg M, Pontén M, Apró W, Ekblom MM, Larsen FJ, Katz A. Extreme Variations in Muscle Fiber Composition Enable Detection of Insulin Resistance and Excessive Insulin Secretion. J Clin Endocrinol Metab 2022; 107:e2729-e2737. [PMID: 35405014 DOI: 10.1210/clinem/dgac221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 12/16/2022]
Abstract
CONTEXT Muscle fiber composition is associated with peripheral insulin action. OBJECTIVE We investigated whether extreme differences in muscle fiber composition are associated with alterations in peripheral insulin action and secretion in young, healthy subjects who exhibit normal fasting glycemia and insulinemia. METHODS Relaxation time following a tetanic contraction was used to identify subjects with a high or low expression of type I muscle fibers: group 1 (n = 11), area occupied by type I muscle fibers = 61.0 ± 11.8%, and group 2 (n = 8), type I area = 36.0 ± 4.9% (P < 0.001). Biopsies were obtained from the vastus lateralis muscle and analyzed for mitochondrial respiration on permeabilized fibers, muscle fiber composition, and capillary density. An intravenous glucose tolerance test was performed and indices of glucose tolerance, insulin sensitivity, and secretion were determined. RESULTS Glucose tolerance was similar between groups, whereas whole-body insulin sensitivity was decreased by ~50% in group 2 vs group 1 (P = 0.019). First-phase insulin release (area under the insulin curve during 10 minutes after glucose infusion) was increased by almost 4-fold in group 2 vs group 1 (P = 0.01). Whole-body insulin sensitivity was correlated with percentage area occupied by type I fibers (r = 0.54; P = 0.018) and capillary density in muscle (r = 0.61; P = 0.005) but not with mitochondrial respiration. Insulin release was strongly related to percentage area occupied by type II fibers (r = 0.93; P < 0.001). CONCLUSIONS Assessment of muscle contractile function in young healthy subjects may prove useful in identifying individuals with insulin resistance and enhanced glucose-stimulated insulin secretion prior to onset of clinical manifestations.
Collapse
Affiliation(s)
- Sarah J Blackwood
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Oscar Horwath
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Marcus Moberg
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marjan Pontén
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Maria M Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Filip J Larsen
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Abram Katz
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
40
|
Ye H, He Y, Zheng C, Wang F, Yang M, Lin J, Xu R, Zhang D. Type 2 Diabetes Complicated With Heart Failure: Research on Therapeutic Mechanism and Potential Drug Development Based on Insulin Signaling Pathway. Front Pharmacol 2022; 13:816588. [PMID: 35308248 PMCID: PMC8927800 DOI: 10.3389/fphar.2022.816588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 01/16/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and heart failure (HF) are diseases characterized by high morbidity and mortality. They often occur simultaneously and increase the risk of each other. T2DM complicated with HF, as one of the most dangerous disease combinations in modern medicine, is more common in middle-aged and elderly people, making the treatment more difficult. At present, the combination of blood glucose control and anti-heart failure is a common therapy for patients with T2DM complicated with HF, but their effect is not ideal, and many hypoglycemic drugs have the risk of heart failure. Abnormal insulin signaling pathway, as a common pathogenic mechanism in T2DM and HF, could lead to pathological features such as insulin resistance (IR), myocardial energy metabolism disorders, and vascular endothelial disorders. The therapy based on the insulin signaling pathway may become a specific therapeutic target for T2DM patients with HF. Here, we reviewed the mechanisms and potential drugs of insulin signaling pathway in the treatment of T2DM complicated with HF, with a view to opening up a new perspective for the treatment of T2DM patients with HF and the research and development of new drugs.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Wang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ming Yang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
41
|
Rabbani N, Xue M, Thornalley PJ. Hexokinase-2-Linked Glycolytic Overload and Unscheduled Glycolysis-Driver of Insulin Resistance and Development of Vascular Complications of Diabetes. Int J Mol Sci 2022; 23:ijms23042165. [PMID: 35216280 PMCID: PMC8877341 DOI: 10.3390/ijms23042165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
The recent discovery of the glucose-induced stabilization of hexokinase-2 (HK2) to proteolysis in cell dysfunction in model hyperglycemia has revealed a likely key initiating factor contributing to the development of insulin resistance and vascular complications in diabetes. Consequently, the increased flux of glucose metabolism without a change in the expression and activity of glycolytic enzymes produces a wave of increased glycolytic intermediates driving mitochondrial dysfunction and increased reactive oxygen species (ROS) formation, the activation of hexosamine and protein kinase C pathways, the increased formation of methylglyoxal-producing dicarbonyl stress, and the activation of the unfolded protein response. This is called HK2-linked glycolytic overload and unscheduled glycolysis. The conditions required to sustain this are GLUT1 and/or GLUT3 glucose uptake and the expression of HK2. A metabolic biomarker of its occurrence is the abnormally increased deposition of glycogen, which is produced by metabolic channeling when HK2 becomes detached from mitochondria. These conditions and metabolic consequences are found in the vasculature, kidneys, retina, peripheral nerves, and early-stage embryo development in diabetes and likely sustain the development of diabetic vascular complications and embryopathy. In insulin resistance, HK2-linked unscheduled glycolysis may also be established in skeletal muscle and adipose tissue. This may explain the increased glucose disposal by skeletal uptake in the fasting phase in patients with type 2 diabetes mellitus, compared to healthy controls, and the presence of insulin resistance in patients with type 1 diabetes mellitus. Importantly, glyoxalase 1 inducer—trans-resveratrol and hesperetin in combination (tRES-HESP)—corrected HK2-linked glycolytic overload and unscheduled glycolysis and reversed insulin resistance and improved vascular inflammation in overweight and obese subjects in clinical trial. Further studies are now required to evaluate tRES-HESP for the prevention and reversal of early-stage type 2 diabetes and for the treatment of the vascular complications of diabetes.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, Qatar University Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| | - Mingzhan Xue
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| |
Collapse
|
42
|
Sanders OD, Rajagopal L, Rajagopal JA. The oxidatively damaged DNA and amyloid-β oligomer hypothesis of Alzheimer's disease. Free Radic Biol Med 2022; 179:403-412. [PMID: 34506904 DOI: 10.1016/j.freeradbiomed.2021.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 01/13/2023]
Abstract
The amyloid-β (Aβ) oligomer hypothesis of Alzheimer's disease (AD) still dominates the field, yet the clinical trial evidence does not robustly support it. A falsifiable prediction of the hypothesis is that Aβ oligomer levels should be elevated in the brain regions and at the disease stages where and when neuron death and synaptic protein loss begin and are the most severe, but we review previous evidence to demonstrate that this is not consistently the case. To rescue the Aβ oligomer hypothesis from falsification, we propose the novel ad-hoc hypothesis that the exceptionally vulnerable hippocampus may normally produce Aβ peptides even in healthily aging individuals, and hippocampal oxidatively damaged DNA, pathogen DNA, and metal ions such as zinc may initiate and drive Aβ peptide aggregation into oligomers and spreading, neuron death, synaptic dysfunction, and other aspects of AD neurodegeneration. We highlight additional evidence consistent with the underwhelming efficacy of Aβ oligomer-lowering agents, such as aducanumab, and of antioxidants, such as vitamin E, versus the so far isolated case report that DNase-I treatment for 2 months resulted in a severe AD patient's Mini-Mental State Exam score increasing from 3 to 18, reversing his diagnosis to moderate AD, according to the Mini-Mental State Exam.
Collapse
Affiliation(s)
| | - Lekshmy Rajagopal
- Seven Hills Hospital, Marol Maroshi Rd, Shivaji Nagar JJC, Marol, Andheri East, Mumbai, Maharashtra, 400059, India
| | | |
Collapse
|
43
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
44
|
Zare E, Kafshbani P, Chenaghlou M, Noori M, Ghaemmaghami Z, Amin A, Taghavi S, Naderi N. Prognostic significance of insulin resistance in pulmonary hypertension. ESC Heart Fail 2022; 9:318-326. [PMID: 34904389 PMCID: PMC8788000 DOI: 10.1002/ehf2.13752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/31/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
AIMS The relationship between insulin resistance (IR) and glucose intolerance with pulmonary hypertension (PH) has been suggested in recent investigations. In the present study, we aimed to show the prevalence of IR and its correlation with haemodynamic variables as well as its prognostic significance in this group of patients. METHODS AND RESULTS Among 100 new and returning patients with PH, scheduled for right heart catheterization (RHC), 59 non-diabetic patients were enrolled. The homeostasis model assessment of insulin resistance (HOMA-IR) was used to assess IR. The study population were followed up for a median (interquartile range) of 48 (23-48) months for all-cause mortalities. Most of the study population [mean (standard deviation) age of 45.9 (17.3)] were classified as class I of PH classification (47.5%). Overall, 27% of our study population had IR considering the Iranian cut points of HOMA-IR. The prevalence of IR in non-diabetic, non-metabolic syndrome patients with precapillary PH (PAH) was 34.2%, which was higher than the prevalence of IR in non-diabetic, non-metabolic syndrome Iranian population (24.1%). There was no difference between IR and insulin sensitive (IS) groups regarding demographic and clinical findings, 6 min walk test, and laboratory and haemodynamic data in univariable and multivariable analyses. The mortality rate in the follow-up period was 44.1%. The survival of patient with IR was slightly lower than IS patients; however, IR was not an independent predictor of death. CONCLUSIONS The glucose metabolism is dysregulated in patients with PH, and IR may increase the risk of adverse events among these patients.
Collapse
Affiliation(s)
- Elahe Zare
- Yazd Cardiovascular Research CenterShahid Sadoughi University of Medical SciencesYazdIran
| | - Parvaneh Kafshbani
- Rajaie Cardiovascular Research CenterIran University of Medical SciencesTehranIran
| | - Maryam Chenaghlou
- Cardiovascular Research CenterTabriz University of Medical SciencesTehranIran
| | - Mehdi Noori
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Zahra Ghaemmaghami
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Ahmad Amin
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Sepideh Taghavi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nasim Naderi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
45
|
Role of Creatine Supplementation in Conditions Involving Mitochondrial Dysfunction: A Narrative Review. Nutrients 2022; 14:nu14030529. [PMID: 35276888 PMCID: PMC8838971 DOI: 10.3390/nu14030529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Creatine monohydrate (CrM) is one of the most widely used nutritional supplements among active individuals and athletes to improve high-intensity exercise performance and training adaptations. However, research suggests that CrM supplementation may also serve as a therapeutic tool in the management of some chronic and traumatic diseases. Creatine supplementation has been reported to improve high-energy phosphate availability as well as have antioxidative, neuroprotective, anti-lactatic, and calcium-homoeostatic effects. These characteristics may have a direct impact on mitochondrion's survival and health particularly during stressful conditions such as ischemia and injury. This narrative review discusses current scientific evidence for use or supplemental CrM as a therapeutic agent during conditions associated with mitochondrial dysfunction. Based on this analysis, it appears that CrM supplementation may have a role in improving cellular bioenergetics in several mitochondrial dysfunction-related diseases, ischemic conditions, and injury pathology and thereby could provide therapeutic benefit in the management of these conditions. However, larger clinical trials are needed to explore these potential therapeutic applications before definitive conclusions can be drawn.
Collapse
|
46
|
Carpéné C, Boulet N, Grolleau JL, Morin N. High doses of catecholamines activate glucose transport in human adipocytes independently from adrenoceptor stimulation or vanadium addition. World J Diabetes 2022; 13:37-53. [PMID: 35070058 PMCID: PMC8771263 DOI: 10.4239/wjd.v13.i1.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/26/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND When combined with vanadium salts, catecholamines strongly activate glucose uptake in rat and mouse adipocytes.
AIM To test whether catecholamines activate glucose transport in human adipocytes.
METHODS The uptake of 2-deoxyglucose (2-DG) was measured in adipocytes isolated from pieces of abdominal subcutaneous tissue removed from women undergoing reconstructive surgery. Pharmacological approaches with amine oxidase inhibitors, adrenoreceptor agonists and antioxidants were performed to unravel the mechanisms of action of noradrenaline or adrenaline (also named epinephrine).
RESULTS In human adipocytes, 45-min incubation with 100 µmol/L adrenaline or noradrenaline activated 2-DG uptake up to more than one-third of the maximal response to insulin. This stimulation was not reproduced with millimolar doses of dopamine or serotonin and was not enhanced by addition of vanadate to the incubation medium. Among various natural amines and adrenergic agonists tested, no other molecule was more efficient than adrenaline and noradrenaline in stimulating 2-DG uptake. The effect of the catecholamines was not impaired by pargyline and semicarbazide, contrarily to that of benzylamine or methylamine, which are recognized substrates of semicarbazide-sensitive amine oxidase. Hydrogen peroxide at 1 mmol/L activated hexose uptake but not pyrocatechol or benzoquinone, and only the former was potentiated by vanadate. Catalase and the phosphoinositide 3-kinase inhibitor wortmannin inhibited adrenaline-induced activation of 2-DG uptake.
CONCLUSION High doses of catecholamines exert insulin-like actions on glucose transport in human adipocytes. At submillimolar doses, vanadium did not enhance this catecholamine activation of glucose transport. Consequently, this dismantles our previous suggestion to combine the metal ion with catecholamines to improve the benefit/risk ratio of vanadium-based antidiabetic approaches.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Toulouse 31432, France
| | - Nathalie Boulet
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, Toulouse 31432, France
| | | | - Nathalie Morin
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, Paris 75006, France
| |
Collapse
|
47
|
Jakubiak GK, Osadnik K, Lejawa M, Osadnik T, Goławski M, Lewandowski P, Pawlas N. "Obesity and Insulin Resistance" Is the Component of the Metabolic Syndrome Most Strongly Associated with Oxidative Stress. Antioxidants (Basel) 2021; 11:79. [PMID: 35052583 PMCID: PMC8773170 DOI: 10.3390/antiox11010079] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MS) is not a homogeneous entity, but this term refers to the coexistence of factors that increase the risk for the development of type 2 diabetes and cardiovascular disease. There are different versions of the criteria for the diagnosis of MS, which makes the population of patients diagnosed with MS heterogeneous. Research to date shows that MS is associated with oxidative stress (OS), but it is unclear which MS component is most strongly associated with OS. The purpose of the study was to investigate the relationship between the parameters of OS and the presence of individual elements of MS in young adults, as well as to identify the components of MS by means of principal components analysis (PCA) and to investigate how the parameters of OS correlate with the presence of individual components. The study included 724 young adults with or without a family history of coronary heart disease (population of the MAGNETIC study). Blood samples were taken from the participants of the study to determine peripheral blood counts, biochemical parameters, and selected parameters of OS. In addition, blood pressure and anthropometric parameters were measured. In subjects with MS, significantly lower activity of superoxide dismutase (SOD), copper- and zinc-containing SOD (CuZnSOD), and manganese-containing SOD (MnSOD) were found, along with significantly higher total antioxidant capacity (TAC) and significantly lower concentration of thiol groups per gram of protein (PSH). We identified three components of MS by means of PCA: "Obesity and insulin resistance", "Dyslipidemia", and "Blood pressure", and showed the component "Obesity and insulin resistance" to have the strongest relationship with OS. In conclusion, we documented significant differences in some parameters of OS between young adults with and without MS. We showed that "Obesity and insulin resistance" is the most important component of MS in terms of relationship with OS.
Collapse
Affiliation(s)
- Grzegorz K. Jakubiak
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 Street, 41-808 Zabrze, Poland; (K.O.); (M.L.); (T.O.); (N.P.)
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland
| | - Kamila Osadnik
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 Street, 41-808 Zabrze, Poland; (K.O.); (M.L.); (T.O.); (N.P.)
| | - Mateusz Lejawa
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 Street, 41-808 Zabrze, Poland; (K.O.); (M.L.); (T.O.); (N.P.)
| | - Tadeusz Osadnik
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 Street, 41-808 Zabrze, Poland; (K.O.); (M.L.); (T.O.); (N.P.)
| | - Marcin Goławski
- Student Research Group, Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 Street, 41-808 Zabrze, Poland; (M.G.); (P.L.)
| | - Piotr Lewandowski
- Student Research Group, Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 Street, 41-808 Zabrze, Poland; (M.G.); (P.L.)
| | - Natalia Pawlas
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 Street, 41-808 Zabrze, Poland; (K.O.); (M.L.); (T.O.); (N.P.)
| |
Collapse
|
48
|
Tong Y, Xu S, Huang L, Chen C. Obesity and insulin resistance: Pathophysiology and treatment. Drug Discov Today 2021; 27:822-830. [PMID: 34767960 DOI: 10.1016/j.drudis.2021.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
The prevalence of obesity is a major cause of many chronic metabolic disorders, including type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), and cancer. Insulin resistance is often associated with metabolic unhealthy obesity (MUO). Therapeutic approaches aiming to improve insulin sensitivity are believed to be central for the prevention and treatment of MUO. However, current antiobesity drugs are reported as multitargeted and their insulin-sensitizing effects remain unclear. In this review, we discuss current understanding of the mechanisms of insulin resistance from the aspects of endocrine disturbance, inflammation, oxidative, and endoplasmic reticulum stress (ERS). We then summarize the antiobesity drugs, focusing on their effects on insulin sensitivity. Finally, we discuss strategies for obesity treatment.
Collapse
Affiliation(s)
- Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Sai Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
49
|
Morelli NR, Maes M, Bonifacio KL, Vargas HO, Nunes SOV, Barbosa DS. Increased nitro-oxidative toxicity in association with metabolic syndrome, atherogenicity and insulin resistance in patients with affective disorders. J Affect Disord 2021; 294:410-419. [PMID: 34320448 DOI: 10.1016/j.jad.2021.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/05/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is a strong comorbidity between mood disorders and metabolic syndrome (MetS). Increased levels of reactive oxygen and nitrogen species (RONS) and nitro-oxidative stress toxicity (NOSTOX) partially underpin this comorbidity. AIMS To examine the associations of RONS/NOSTOX biomarkers with MetS after adjusting for the significant effects of mood disorders (major depression, and bipolar type 1 and 2), generalized anxiety disorder (GAD), tobacco use disorder (TUD), and male sex. METHODS The study included subjects with (n=65) and without (n=107) MetS and measured levels of superoxide dismutase 1 (SOD1), lipid hydroperoxides (LOOH), nitric oxide metabolites (NOx), malondialdehyde (MDA), and advanced oxidation protein products (AOPP) and computed z unit-weighted composite scores which reflect RONS/NOSTOX. The study included 105 patients with mood disorders, 46 with GAD, and 95 with TUD. RESULTS MetS was associated with increased levels of MDA and AOPP, independently from mood disorders, TUD, sex and GAD. Atherogenicity and insulin resistance (IR) were significantly associated with a NOSTOX composite score. Mood disorders, TUD, GAD, male sex and MetS independently contribute to increased RONS/NOSTOX. The RONS/NOSTOX profile of MetS was different from that of GAD, which showed increased SOD1 and NOx levels. TUD was accompanied by increased SOD1, LOOH and MDA, and male sex by increased LOOH and AOPP. CONCLUSIONS MetS is characterized by increased lipid peroxidation with aldehyde formation and chlorinative stress, and atherogenicity and IR are strongly mediated by RONS/NOSTOX. Partially shared RONS/NOSTOX pathways underpin the comorbidity of MetS with mood disorders, GAD, and TUD.
Collapse
Affiliation(s)
- Nayara Rampazzo Morelli
- Health Sciences Graduation Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil.
| | - Michael Maes
- Health Sciences Graduation Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv and Technological Center for Emergency Medicine, Plovdiv, Bulgaria; IMPACT Strategic Research Centre, Deakin University, Geelong, Vic, Australia.
| | - Kamila Landucci Bonifacio
- Health Sciences Graduation Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil.
| | - Heber Odebrecht Vargas
- Health Sciences Graduation Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil.
| | | | - Décio Sabbatini Barbosa
- Health Sciences Graduation Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
50
|
The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol 2021; 22:751-771. [PMID: 34285405 DOI: 10.1038/s41580-021-00390-6] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Insulin resistance, defined as a defect in insulin-mediated control of glucose metabolism in tissues - prominently in muscle, fat and liver - is one of the earliest manifestations of a constellation of human diseases that includes type 2 diabetes and cardiovascular disease. These diseases are typically associated with intertwined metabolic abnormalities, including obesity, hyperinsulinaemia, hyperglycaemia and hyperlipidaemia. Insulin resistance is caused by a combination of genetic and environmental factors. Recent genetic and biochemical studies suggest a key role for adipose tissue in the development of insulin resistance, potentially by releasing lipids and other circulating factors that promote insulin resistance in other organs. These extracellular factors perturb the intracellular concentration of a range of intermediates, including ceramide and other lipids, leading to defects in responsiveness of cells to insulin. Such intermediates may cause insulin resistance by inhibiting one or more of the proximal components in the signalling cascade downstream of insulin (insulin receptor, insulin receptor substrate (IRS) proteins or AKT). However, there is now evidence to support the view that insulin resistance is a heterogeneous disorder that may variably arise in a range of metabolic tissues and that the mechanism for this effect likely involves a unified insulin resistance pathway that affects a distal step in the insulin action pathway that is more closely linked to the terminal biological response. Identifying these targets is of major importance, as it will reveal potential new targets for treatments of diseases associated with insulin resistance.
Collapse
|