1
|
Akram MZ, Everaert N, Dunisławska A. In ovo sodium butyrate administration differentially impacts growth performance, intestinal barrier function, immune response, and gut microbiota characteristics in low and high hatch-weight broilers. J Anim Sci Biotechnol 2024; 15:165. [PMID: 39643908 PMCID: PMC11624594 DOI: 10.1186/s40104-024-01122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/29/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Hatch weight (HW) affects broiler growth and low HW (LHW) often leads to suboptimal performance. Sodium butyrate (SB) has been shown to promote growth through enhanced intestinal health. This study investigated how broilers with different HW responded to in ovo SB injection and whether SB could enhance gut health and performance in LHW chicks. Ross 308 broiler eggs were injected on incubation d 12 with physiological saline (control) or SB at 0.1% (SB1), 0.3% (SB3), or 0.5% (SB5). Post-hatch, male chicks from each treatment were categorized as high HW (HHW) or LHW and assigned to 8 groups in a 4 × 2 factorial design. Production parameters were recorded periodically. Intestinal weight, length, and gene expression related to gut barrier function and immune response were examined on d 14 and 42. Cecal microbiota dynamics and predicted functionality were analyzed using 16S rRNA gene sequencing. RESULTS SB treatments did not affect hatchability. HHW-control group exhibited consistently better weight gain and FCR than LHW-control group. SB dose-dependently influenced performance and gut health in both HW categories, with greater effects in LHW broilers at 0.3%. LHW-SB3 group attained highest body weight on d 42, exceeding controls but not significantly differing from HHW-SB3 group. LHW-SB3 group showed upregulation of gut-barrier genes CLDN1 in ileum, TJP1 in jejunum and anti-inflammatory cytokine IL-10 in both jejunum and ileum on d 14. Additionally, LHW-SB3 group upregulated mucin-producing MUC6 gene in ileum, while HHW-SB5 group increased pro-inflammatory IL-12p40 cytokine in caecum on d 42. LHW-SB3 group demonstrated shorter relative intestinal lengths, while HHW-SB5 had longer lengths. HHW-control group had higher bacterial diversity and growth-promoting bacteria while LHW-control group harbored the potential pathogen Helicobacter. SB reshaped gut microbiota biodiversity, composition, and predicted metabolic pathways in both HW categories. The LHW-SB3 group exhibited highest alpha diversity on d 14 and most beneficial bacteria at all timepoints. HHW-SB5 group presented increased pathogenic Escherichia-Shigella and Campylobacter on d 42. CONCLUSIONS HW significantly affects subsequent performance and SB has differential effects based on HW. LHW chicks benefited more from 0.3% SB, showing improvements in growth, intestinal development, health, and gut microbiota characteristics.
Collapse
Affiliation(s)
- Muhammad Zeeshan Akram
- Department of Biosystems, Nutrition and Animal-Microbiota Ecosystems Laboratory, KU Leuven, Heverlee, 3001, Belgium
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Nadia Everaert
- Department of Biosystems, Nutrition and Animal-Microbiota Ecosystems Laboratory, KU Leuven, Heverlee, 3001, Belgium
| | - Aleksandra Dunisławska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz, 85-084, Poland.
| |
Collapse
|
2
|
Yang QL, Yang L, Qu XY, Xiao DF. Effects of dietary supplementation by modified palygorskite and essential oil/palygorskite complex on growth performance and intestinal flora composition of broilers with diarrhea. Poult Sci 2024; 103:104379. [PMID: 39476614 PMCID: PMC11550367 DOI: 10.1016/j.psj.2024.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 11/13/2024] Open
Abstract
With the development trend of the industry, it can be seen that the substitution of antibiotics and reduction of zinc oxiden is still the hot spot of the industry. Diarrhea and inflammation occur frequently during livestock and poultry production, which is difficult to control. This experiment aimed to explore the effects and mechanisms of dietary supplementation of modified palygorskite (Mpal) and essential oil/ palygorskite composite (EO-PGS) on disease resistance and intestinal inflammatory damage in diarrhea broiler. In this experiment, there were a total of 420 broilers of 10-day-old selected and divided into 7 groups (n = 60), which were the nondiarrhea group fed with basal diet (normal control, NC), the diarrhea group fed with basal diet (diarrhea control, DC), and the rest were the diarrhea test group (diarrhea), supplemented with 1 kg/t, 2 kg/t and 4 kg/t of essential oils/ palygorskite complex (EO-PGS 1kg/T, EO-PGS 2kg/T, EO-PGS 4kg/T) in the basal diet, respectively, and 2 kg/t, 4 kg/t modified palygorskite group (Mpal 2kg/T, Mpal 4kg/T) in the basal diets, respectively. The experiment lasted for 8 d. The results showed that compared to normal broilers, the diarrhea index of diarrhea broilers remained around 2.0 with persistent mild diarrhea during the test period. The duodenal epithelial cells were damaged and shed, goblet cells increased, inflammatory cells infiltrated, diffuse congestion and hemorrhage in lamina propria, the serum lipopolysaccharides (LPS) content, and malondialdehyde (MDA) content increased significantly (P < 0.05). The serum superoxide dismutase (SOD) activity and immunoglobulin-M (IgM) levels significantly decreased, while serum immunoglobulin-G (IgG) and complement 3 (C3) levels significantly increased (P < 0.05). The expression of inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nuclear factor κB (NF-κB) in duodenal epithelial cells was significantly upregulated on d 5 (P < 0.05). The abundance of Bacteroides in the duodenum of diarrhea broilers was significantly decreased, while the abundance of Proteobacteria was significantly increased (P < 0.05). Feeding diets supplemented with EO-PSG and 4 kg/t Mpal increased the average weight of diarrhea broilers (P < 0.05), reduced diarrhea index, improved immunity by increasing serum IgG, IgM, C3 and complement 4 (C4) levels (P < 0.05), enhanced the activity of serum antioxidant enzyme glutathione peroxidase (GSH-PX) and SOD activity, reduced serum MDA content, serum LPS levels, and decreased the expression of proinflammatory factors in the duodenal epithelial cell on d 5 (P < 0.05), alleviated duodenal epithelial cell injury, hemorrhage, inflammation infiltration and intestinal injury of diarrhea broilers from d 5 to d 8. Meanwhile, supplemented with EO-PSG and Mpal in diets regulated the intestinal microbiota, significantly increased the abundance of Bacteroidetes and decreased the abundance of Proteobacteria at the phylum level (P < 0.05). Microbial richness and diversity of microbiota were significantly increased by feeding the diet supplemented with 2 kg/t EO-PGS. In the beta diversity of the intestinal flora of the diets supplemented with 4 kg/t Mpal and 2 kg/t EO-PGS, the microbial community composition could be relatively easily distinguished with NC and DC groups. As a result of LEfSe analysis, the diets supplemented with 2 kg/t EO-PGS f_Clostridiaceae and g_Coprococcus were enriched in the caecum of diarrhea broilers, and the diets supplemented with 4 kg/t Mpal o_Bacteroidales, f_Rikenllaceae and g_Peptococcus were enriched in caecum of diarrhea broilers, between normal and diarrhea broilers (P<0.05). In conclusion, dietary supplementation with EO-PGS and Mpal could improve disease resistance and alleviate intestinal inflammatory damage in diarrhea broilers, but the effect of 2 kg/t Mpal was not significant. It was recommended that 2 kg/t EO-PGS or 4 kg/t Mpal be added to the broilers' diet according to the degree of diarrhea, and continuous feeding for more than 5 d.
Collapse
Affiliation(s)
- Qing-Li Yang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China; Yuelushan Laboratory, Hunan, Changsha 410128, China
| | - Lei Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xiang-Yong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ding-Fu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China; Yuelushan Laboratory, Hunan, Changsha 410128, China.
| |
Collapse
|
3
|
Chen C, Qu M, Li G, Wan G, Liu P, Omar SM, Mei W, Hu Z, Zhou Q, Xu L. Dietary Tributyrin Improves Growth Performance, Meat Quality, Muscle Oxidative Status, and Gut Microbiota in Taihe Silky Fowls under Cyclic Heat Stress. Animals (Basel) 2024; 14:3041. [PMID: 39457971 PMCID: PMC11504407 DOI: 10.3390/ani14203041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Heat stress adversely affects poultry production and meat quality, leading to economic losses. This study aimed to investigate the effects of adding tributyrin on growth performance, meat quality, muscle oxidative status, and gut microbiota of Taihe silky fowls under cyclic heat stress (CHS) conditions. In this study, 120-day-old Taihe silky fowls (male) were randomly divided into six dietary treatments. These treatments included a normal control treatment (NC, fed a basal diet), a heat stress control treatment (HS, fed a basal diet), and HS control treatments supplemented with 0.04%, 0.08%, 0.16%, and 0.32% tributyrin, respectively. The NC treatment group was kept at 24 ± 1 °C, while the HS treatment birds were exposed to 34 ± 1 °C for 8 h/d for 4 weeks. Results showed that CHS decreased growth performance and compromised the meat quality of broilers (p < 0.05). However, tributyrin supplementation improved ADG and FCR in broilers exposed to CHS (p < 0.05). Additionally, tributyrin supplementation resulted in increased shear force value and GSH-Px activity, as well as a decrease in drip loss, ether extract content, and MDA content of the breast muscle in broilers under CHS (p < 0.05). Furthermore, tributyrin supplementation up-regulated the mRNA expressions of Nrf2, NQO1, HO-1, SOD, and GSH-Px of the breast muscle in broilers exposed to CHS (p < 0.05). Based on these positive effects, the study delved deeper to investigate the impact of 0.16% tributyrin supplementation (HS + 0.16%T) on the cecum microbiota. The HS + 0.16%T treatment showed an increase in the relative abundance of Rikenellaceae_RC9_gut_group (p < 0.05) and a trend towards an increase in Lactobacillus (p = 0.096) compared to the HS treatment. The results indicate that supplementation successfully improved the growth performance and meat quality of Taihe silky fowls. Furthermore, tributyrin supplementation, particularly at levels of 0.16%, improved meat quality by enhancing muscle antioxidant capacity, which is believed to be associated with activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (C.C.); (M.Q.); (G.L.); (G.W.); (P.L.); (S.M.O.); (W.M.); (Z.H.); (Q.Z.)
| |
Collapse
|
4
|
Wang L, Tang D. Akkermania muciniphila: a rising star in tumor immunology. Clin Transl Oncol 2024; 26:2418-2430. [PMID: 38653927 DOI: 10.1007/s12094-024-03493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Tumor is accompanied by complex and dynamic microenvironment development, and the interaction of all its components influences disease progression and response to treatment. Once the tumor microenvironment has been eradicated, various mechanisms can induce the tumors. Microorganisms can maintain the homeostasis of the tumor microenvironment through immune regulation, thereby inhibiting tumor development. Akkermania muciniphila (A. muciniphila), an anaerobic bacterium, can induce tumor immunity, regulate the gastrointestinal microenvironment through metabolites, outer membrane proteins, and some cytokines, and enhance the curative effect through combined immunization. Therefore, a comprehensive understanding of the complex interaction between A. muciniphila and human immunity will facilitate the development of immunotherapeutic strategies in the future and enable patients to obtain a more stable clinical response. This article reviews the most recent developments in the tumor immunity of A. muciniphila.
Collapse
Affiliation(s)
- Leihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
5
|
Dunisławska A, Biesek J, Adamski M. Growth performance, carcass composition, and qualitative meat features of broiler chickens after galactooligosaccharides and sodium butyrate in ovo administration. Poult Sci 2024; 103:104094. [PMID: 39096828 PMCID: PMC11345557 DOI: 10.1016/j.psj.2024.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024] Open
Abstract
The study aimed to analyze the growth performance, feed indicators, and quantitative and qualitative physicochemical features of carcass and meat from broiler chickens after rearing, stimulated in ovo on d 12 of incubation with various substances. In the experiment, 1,200 hatching eggs from meat-type hen Ross 308 parental flock were incubated. On d 12, the injection was performed. Group CON-0 was noninjected. Group CON-S was injected with saline. In the GOS group, the procedure was performed in ovo with galactooligosaccharides (dissolved 3.5 mg of GOS in 0.2 mL of NaCl). In the SB group, butyric acid sodium salt was administered in a 0.3% SB dissolved in 0.2 mL NaCl. After hatching, 336, 1-day-old chicks per group were transferred to the broiler house and kept in 7 pens with 12 chickens per group for 42 d. The body weight and feed intake indicators were calculated. Next, 40 birds were selected (n = 10 per group) and taken to analyze carcass composition and meat quality (pH, color, WHC, drip loss, chemical composition). Compared to the experimental groups, the highest body weight indicators were found in groups CON-0 and CON-S. The feed conversion ratio was the lowest in the SB group on d 36 to 42 (P < 0.05). The European Efficiency Production Factor in groups GOS and SB was lower than in group CON-S (P = 0.005). The GOS group showed higher pH24hours in the pectoral muscles than the CON-S group (P = 0.011). The leg muscles showed better WHC in the CON-S, GOS, and SB groups than in the CON-0 group (P < 0.001). A lower intramuscular fat of the pectoral and leg muscle content was demonstrated, especially in the SB group. Injection of galactooligosaccharides and sodium butyrate in ovo adversely affected broiler production but did not alter carcass composition. It varied pectoral muscles' pH and chemical composition and improved water holding capacity and chemical composition in leg muscles.
Collapse
Affiliation(s)
- Aleksandra Dunisławska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland.
| | - Marek Adamski
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| |
Collapse
|
6
|
Lin WC, Hoe BC, Li X, Lian D, Zeng X. Glucose Metabolism-Modifying Natural Materials for Potential Feed Additive Development. Pharmaceutics 2024; 16:1208. [PMID: 39339244 PMCID: PMC11435105 DOI: 10.3390/pharmaceutics16091208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Glucose, a primary energy source derived from animals' feed ration, is crucial for their growth, production performance, and health. However, challenges such as metabolic stress, oxidative stress, inflammation, and gut microbiota disruption during animal production practices can potentially impair animal glucose metabolism pathways. Phytochemicals, probiotics, prebiotics, and trace minerals are known to change the molecular pathway of insulin-dependent glucose metabolism and improve glucose uptake in rodent and cell models. These compounds, commonly used as animal feed additives, have been well studied for their ability to promote various aspects of growth and health. However, their specific effects on glucose uptake modulation have not been thoroughly explored. This article focuses on glucose metabolism is on discovering alternative non-pharmacological treatments for diabetes in humans, which could have significant implications for developing feed additives that enhance animal performance by promoting insulin-dependent glucose metabolism. This article also aims to provide information about natural materials that impact glucose uptake and to explore their potential use as non-antibiotic feed additives to promote animal health and production. Further exploration of this topic and the materials involved could provide a basis for new product development and innovation in animal nutrition.
Collapse
Affiliation(s)
- Wei-Chih Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Boon-Chin Hoe
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Xianming Li
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Daizheng Lian
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Champati A, Bhanja SK, Rokade JJ, Nayak N, Yadav AS, Biswas A, Sharma D, Chakma J, Sky, Mishra J, Saha SK, Agrawal RK, Singh M. Evaluation of in-feed supplementation of formic acid and thymol as non-antibiotic growth promoters and assessing their effect on antimicrobial resistant E.coli isolated in Turkey. Vet Res Commun 2024; 48:1741-1754. [PMID: 38539029 DOI: 10.1007/s11259-024-10353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/10/2024] [Indexed: 06/04/2024]
Abstract
With the rampant usage of antibiotics as growth promoters (AGPs) in poultry sector, there has been alarming concerns of antimicrobial resistant microbes such as Escherichia coli. Diversification of poultry farming due to consumer demand for safer products with higher protein content, turkey production is gaining popularity. Feed additives such as formic acid (FA) and thymol (TH) are effectively replacing AGPs due to their antimicrobial action. This directed the researchers to find alternatives to antibiotics such as thymol and formic acid because of their strong antimicrobial, anti-oxidative, digestive-stimulating properties. To assess the efficacy of FA and TH as growth promoters and their effect on the antimicrobial resistance (AMR) load, the current study (0-12 weeks) was conducted in CARI VIRAT turkey poults (n = 256; unsexed) those were randomly distributed into eight treatment groups: control(T1), AGP (T2), graded levels of FA (T3 to T5) @ 2.5, 5 and 7.5 ml/kg and TH (T6 to T8) @ 120, 240 and 350 mg/kg. Cloacal swab samples were collected at 0, 4th, 8th and 12th week interval and processed further for isolation, identification and assessment of resistance profile of E. coli. The final body weight, cumulative gain and FCR were significantly (p < 0.05) better for birds under supplementation. The Total plate count (TPC) and coliforms showcased a significant (p < 0.001) reduction in the FA and TH supplement groups as compared to control and AGP group. The resistance profile indicated E. coli isolates from AGP group with significantly (p < 0.001) highest resistivity against antibiotics (viz. chloramphenicol, tetracycline, nalidixic acid, chlortetracycline) while isolates from FA (T5) and TH (T8) groups were the least resistant. blaAmpC gene was significantly (p < 0.001) harbored in T2 isolates whereas least detected in T5 and T8. It was inferred that formic acid (7.5 ml/kg) and thymol (360 mg/kg) can effectively replace AGPs and lower AMR burden in poultry.
Collapse
Affiliation(s)
- Abhijeet Champati
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Subrat Kumar Bhanja
- ICAR-Directorate of Poultry Research, Regional Station, Bhubaneswar, Odisha, 751003, India.
| | - Jaydip Jaywant Rokade
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Nibedita Nayak
- ICAR-Central Coastal Agricultural Research Institute, Goa, 403402, India
| | - Ajit Singh Yadav
- Indian Council of Agricultural Research (ICAR), New Delhi, 110001, India
| | - Avishek Biswas
- ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250001, India
| | - Divya Sharma
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Juli Chakma
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Sky
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Jyotiprabha Mishra
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Subodh Kumar Saha
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Ravi Kant Agrawal
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Mukesh Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
8
|
Melaku M, Su D, Zhao H, Zhong R, Ma T, Yi B, Chen L, Zhang H. The New Buffer Salt-Protected Sodium Butyrate Promotes Growth Performance by Improving Intestinal Histomorphology, Barrier Function, Antioxidative Capacity, and Microbiota Community of Broilers. BIOLOGY 2024; 13:317. [PMID: 38785799 PMCID: PMC11117952 DOI: 10.3390/biology13050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
In this study, a commercial sodium butyrate protected by a new buffer salt solution (NSB) was tested to determine whether it can be used as an antibiotic alternative in broiler production. A total of 192 1-day-old broilers were randomly allocated to three dietary treatments: soybean meal diet (CON), antibiotic diet (ANT, basal diet + 100 mg/kg aureomycin), and NSB (basal diet + 800 mg/kg NSB). The growth performance, serum anti-inflammatory cytokines, intestinal morphology, gut barrier function, antioxidative parameters, SCFAs' content, and cecal microbiota were analyzed. The result showed that NSB significantly improved ADFI and ADG (p < 0.01), and decreased FCR (p < 0.01). Serum anti-inflammatory cytokine IL-10 was up-regulated (p < 0.01), and pro-inflammatory TNF-α was down-regulated (p < 0.05) by NSB supplementation. H&E results showed that VH and the VH/CD ratio significantly increased (p < 0.05) in the jejunum and ileum in the NSB group. Furthermore, ZO-1 (p < 0.01), claudin-1 (p < 0.01), and occludin (p < 0.05) in the jejunum and claudin-1 (p < 0.01) and mucin-2 (p < 0.05) in the ileum were significantly up-regulated in the NSB group. Additionally, SOD (p < 0.05) and the T-AOC/MDA ratio (p < 0.01) in the jejunum and SOD in the ileum were significantly increased (p < 0.05) in the NSB group. The MDA level also significantly increased (p < 0.01) in the ANT group in the jejunum. Propionic acid (p < 0.05) and butyric acid (p < 0.01) content significantly increased in the NSB group in the jejunum and ileum segments. The 16S rRNA sequencing results showed no significant difference (p > 0.05) in alpha and beta diversity among the groups. LEFSe analysis also indicated that Peptostreptococcaceae, Colidextribacter, Firmicutes, Oscillospira, and Erysipelatoclostridiaceae, which promote SCFA production (p < 0.05), were identified as dominant taxon-enriched bacterial genera in the NSB group. The Spearman correlation analysis revealed that Colidextribacter with ADFI, ADG, VH, claudin-1 (p < 0.05), and unclassified_f__Peptostreptococcaceae with ADFI, IL-10, and ZO-1 were positively correlated (p < 0.05). Furthermore, ADFI and ADG with IL-10, claudin-1, SOD, T-AOC, and butyric acid (p < 0.05), and similarly, ADG with VH (p < 0.05), showed a positive correlation. In conclusion, NSB enhanced the growth performance by improving jejunum and ileum morphology, and serum anti-inflammatory cytokines, and by regulating the intestinal barrier function and antioxidant capacity, SCFAs' content, and cecum microbiota, showing its potential use as an alternative to antibiotics in poultry nutrition.
Collapse
Affiliation(s)
- Mebratu Melaku
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
- Department of Animal Science, College of Agriculture, Woldia University, Woldia P.O. Box 400, Ethiopia
| | - Dan Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Huaibao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Teng Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Bao Yi
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| |
Collapse
|
9
|
Gerunova LK, Gerunov TV, P'yanova LG, Lavrenov AV, Sedanova AV, Delyagina MS, Fedorov YN, Kornienko NV, Kryuchek YO, Tarasenko AA. Butyric acid and prospects for creation of new medicines based on its derivatives: a literature review. J Vet Sci 2024; 25:e23. [PMID: 38568825 PMCID: PMC10990906 DOI: 10.4142/jvs.23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.
Collapse
Affiliation(s)
- Lyudmila K Gerunova
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Taras V Gerunov
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Lydia G P'yanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Alexander V Lavrenov
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Anna V Sedanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Maria S Delyagina
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation.
| | - Yuri N Fedorov
- Laboratory of Immunology, All-Russian Research and Technological Institute of Biological Industry, pos. Biokombinata, Shchelkovskii Region, Moscow Province 141142, Russian Federation
| | - Natalia V Kornienko
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Yana O Kryuchek
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Anna A Tarasenko
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| |
Collapse
|
10
|
Yang C, Wang S, Li Q, Zhang R, Xu Y, Feng J. Effects of Probiotic Lactiplantibacillus plantarum HJLP-1 on Growth Performance, Selected Antioxidant Capacity, Immune Function Indices in the Serum, and Cecal Microbiota in Broiler Chicken. Animals (Basel) 2024; 14:668. [PMID: 38473053 DOI: 10.3390/ani14050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 03/14/2024] Open
Abstract
This research study aimed to investigate the effects of Lactiplantibacillus plantarum (L. plantarum) on growth performance, oxidation resistance, immunity, and cecal microbiota in broilers. This work classed three hundred and sixty 1-day-old male broilers into three groups randomly, including a control group (CON, basal diet) and antibiotic (ANT, 75 mg kg-1 chlortetracycline added into basal diet) and probiotic groups (LP, 5 × 108 CFU kg-1Lactiplantibacillus plantarum HJLP-1 contained within basal diet). Animals were then fed for 42 days, and each group comprised eight replicates with 15 broilers. Compared with CON, L. plantarum supplementation significantly improved the average daily weight gain (AWDG) (p < 0.05) while reducing the feed-gain ratio over the entire supplemental period (p < 0.05). Birds fed L. plantarum had markedly lower serum ammonia and xanthine oxidase levels (p < 0.05) than those in the ANT and CON groups. Significant improvements (p < 0.05) in superoxide dismutase, catalase, and serum IgM and IgY contents in broilers fed L. plantarum were also observed when compared with those in the CON and ANT groups. Both L. plantarum and antibiotics decreased pro-inflammatory factor IL-1β levels significantly (p < 0.05), while only L. plantarum promoted anti-inflammatory factor IL-10 levels in the serum (p < 0.05) compared with CON. L. plantarum (p < 0.05) increased acetic acid and butyric acid concentrations in cecal contents when compared to those in CON and ANT. Among the differences revealed via 16S rRNA analysis, L. plantarum markedly improved the community richness of the cecal microbiota. At the genus level, the butyric acid-producing bacteria Ruminococcus and Lachnospiraceae were found in higher relative abundance in samples of L. plantarum-treated birds. In conclusion, dietary L. plantarum supplementation promoted the growth and health of broilers, likely by inducing a shift in broiler gut microbiota toward short-chain fatty acid (SCFA)-producing bacteria. Therefore, L. plantarum has potential as an alternative to antibiotics in poultry breeding.
Collapse
Affiliation(s)
- Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Shuting Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Jie Feng
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Li W, Lan T, Ding Q, Ren Z, Tang Z, Tang Q, Peng X, Xu Y, Sun Z. Effect of Low Protein Diets Supplemented with Sodium Butyrate, Medium-Chain Fatty Acids, or n-3 Polyunsaturated Fatty Acids on the Growth Performance, Immune Function, and Microbiome of Weaned Piglets. Int J Mol Sci 2023; 24:17592. [PMID: 38139420 PMCID: PMC10743886 DOI: 10.3390/ijms242417592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to investigate the effects of low-protein (LP) diets supplemented with sodium butyrate (SB), medium-chain fatty acids (MCT), or n-3 polyunsaturated fatty acids (n-3 PUFA) on the growth performance, immune function, and the microbiome of weaned piglets. A total of 120 healthy weaned piglets ((Landrace × Large White × Duroc); 7.93 ± 0.7 kg initial body weight), were randomly divided into five groups. Each group consisted of six replications with four piglets per replication. Dietary treatments included control diet (CON); LP diet (LP); LP + 0.2% SB diet (LP + SB); LP + 0.2% MCT diet (LP + MCT); and LP + PUFA diet (LP + PUFA). The experimental period lasted for 4 weeks. Compared with the CON diet, LP, LP + SB, LP + MCT, and LP + PUFA diets decreased the final weight and average daily gain (ADG) of piglets (p < 0.05). There were lower (p < 0.05) concentrations of IL-8 and higher (p < 0.05) Glutathione peroxidase (GSH-Px) activity in the plasma of piglets fed with LP + SB, LP + MCT, and LP + PUFA diets than those fed with the LP diet. The piglets in the LP + SB and LP + PUFA groups had lower IKK-alpha (IKKa) mRNA expression in the colonic mucosa compared with those in the CON and LP groups (p < 0.05). The mRNA expression of TLR4 in the colonic mucosa of piglets in the LP + SB, LP + MCT, and LP + PUFA groups was decreased when compared with the CON and LP groups (p < 0.05). The LP + MCT diets increased the gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosa of piglets compared with CON, LP, and LP + SB diets (p < 0.05). The abundance of Erysipelotrichaceae in the colonic microbiome of piglets in the LP group was higher than that in the other four groups (p < 0.05). Collectively, this study showed that LP diets supplemented with SB, MCT, or n-3 PUFA reduced plasma inflammatory factor levels, increased plasma GSH-Px activity, and declined mRNA expression of TLR4 and IKKa in the colonic epithelium, whereas it reduced the abundance of Erysipelotrichaceae in the colon of piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (W.L.)
| |
Collapse
|
12
|
Edmonds MS, Weber TE. Efficacy of water application of a humic substance, butyric acid, vitamins C, D, and E and/or electrolytes on performance and mortality in health-challenged nursery pigs¹. Transl Anim Sci 2023; 7:txad115. [PMID: 37901202 PMCID: PMC10601446 DOI: 10.1093/tas/txad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Health challenges continue to be rampant in nursery pigs which has led to increased industry-wide mortality trends. Therefore, the objective of these three studies was to evaluate a water supplement (HV; HydraVantage, Kent Nutrition Group, Muscatine, IA) which is a proprietary blend of a humic substance, butyric acid, and vitamins C, D, and E, as well as an electrolyte blend on nursery pig performance and mortality. Experiment 1 consisted of 196 crossbred weanling pigs (7 pigs per pen with 14 pens per treatment) which were randomly allotted by BW to two treatments consisting of control (water for 33 d) or HV at 15 g/L of stock solution and proportioned through a medicator (1:128) for 11 d followed by water for 22 d. There were no performance differences. However, mortality was reduced (P < 0.01) from 6.12% for the control to 0.00% for HV. In experiment 2, there were 488 weanling pigs (6 to 10 pigs/pen with 14 pens per treatment) which were randomly allotted by BW to four treatments in a 34-d trial. Treatment 1 was control (water), and treatments 2 and 4 were HV at 15 g/L of stock solution for 11 and 34 d, respectively. Treatment 3 utilized HV at 15 g/L stock solution during days 0 to 11 with 7.5 g HV/L stock solution utilized during days 11 to 21 followed by water. No performance differences were observed among the four treatments. Mortality was 10.89%, 4.82%, 5.54%, and 7.26% for treatments 1 to 4, respectively, with treatment 1 having a higher mortality (P < 0.05) compared to treatments 2 to 4. In experiment 3, a 2 × 2 factorial study was conducted (7 pigs per pen with 14 pens per treatment) in which the treatments were: 1) water; 2) HV at 15 g/L stock solution for 34 d; 3) electrolytes at 241 g/L stock solution for 34 d; and 4) HV at 15 g/L of stock solution and electrolytes at 226 g/L of stock for 34 d. Overall pen gain tended to be improved (P = 0.09) with supplemental HV. Moreover, mortality was reduced (P = 0.06) by 36% (16.86% mortality for treatments 1 and 3 vs. 10.73% mortality for treatments 2 and 4). Supplemental electrolytes had no effect on mortality. These data suggest that HV has a positive effect by reducing mortality in nursery pigs undergoing health challenges.
Collapse
Affiliation(s)
- Michael S Edmonds
- Nutrition and Product Development, Kent Nutrition Group, Inc., Muscatine, IA 52761, USA
| | - Thomas E Weber
- Innovative Solutions, Kent Nutrition Group, Inc., Muscatine, IA 52761, USA
| |
Collapse
|
13
|
Bawish BM, Zahran MFS, Ismael E, Kamel S, Ahmed YH, Hamza D, Attia T, Fahmy KNE. Impact of buffered sodium butyrate as a partial or total dietary alternative to lincomycin on performance, IGF-1 and TLR4 genes expression, serum indices, intestinal histomorphometry, Clostridia, and litter hygiene of broiler chickens. Acta Vet Scand 2023; 65:44. [PMID: 37770986 PMCID: PMC10540366 DOI: 10.1186/s13028-023-00704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Sodium butyrate (SB) is a short-chain fatty acid and a safe antibiotic alternative. During 35 days, this study compared the impact of coated SB (Butirex C4) and lincomycin (Lincomix) on broiler growth, gut health, and litter hygiene in 1200 one-day-old Ross-308 broiler chicks that were randomly assigned into 5-dietary groups with 5-replications each. Groups divided as follows: T1: Basal diet (control), T2: Basal diet with buffered SB (1 kg/ton starter feed, 0.5 kg/ton grower-finisher feeds), T3: Basal diet with 100 g/ton lincomycin, T4: Basal diet with buffered SB (0.5 kg/ton starter feed, 0.25 kg/ton grower-finisher feeds) + 50 g/ton lincomycin, and T5: Basal diet with buffered SB (1 kg/ton starter feed, 0.5 kg/ton grower-finisher feeds) + 50 g/ton lincomycin. Birds were housed in a semi-closed deep litter house, where feed and water were available ad libitum. Results were statistically analyzed using ANOVA and Tukey's post hoc tests. RESULTS Combined dietary supplementation with SB and lincomycin (T4 and T5) significantly enhanced body weights, weight gains, feed conversion ratio, and profitability index. Also, carcasses in T4 and T5 exhibited the highest dressing, breast, thigh, and liver yields. T5 revealed the best blood biochemical indices, while T3 showed significantly elevated liver and kidney function indices. T4 and T5 exhibited the highest expression levels of IGF-1 and TLR4 genes, the greatest villi length of the intestinal mucosa, and the lowest levels of litter moisture and nitrogen. Clostridia perfringens type A alpha-toxin gene was confirmed in birds' caeca, with the lowest clostridial counts defined in T4. CONCLUSIONS Replacing half the dose of lincomycin (50 g/ton) with 0.5 or 1 kg/ton coated SB as a dietary supplement mixture showed the most efficient privileges concerning birds' performance and health.
Collapse
Affiliation(s)
- Basma Mohamed Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, 12211, Egypt
| | | | - Elshaimaa Ismael
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, 12211, Egypt.
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dalia Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Taha Attia
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Sadat City, Minoufiya, 23897, Egypt
| | - Khaled Nasr Eldin Fahmy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
14
|
Novoa Rama E, Bailey M, Kumar S, Leone C, den Bakker HC, Thippareddi H, Singh M. Characterizing the gut microbiome of broilers raised under conventional and no antibiotics ever practices. Poult Sci 2023; 102:102832. [PMID: 37343348 PMCID: PMC10404755 DOI: 10.1016/j.psj.2023.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Meat from broilers raised without the use of antibiotics is becoming increasingly popular among consumers. Consequently, interest in the microbial profiling of chickens produced under nonconventional practices is growing, however, research on this topic is lacking. The current study was designed to characterize the dynamics of gut microbial populations of broilers raised under conventional and no antibiotics ever (NAE) practices. Four commercial farms (2 conventional and 2 NAE) were included in this study. On each farm, cecal (n = 224) and ileal (n = 224) contents were collected from birds at different stages during the grow out of a single flock and following transportation to the processing facility. Cecal microbiota was dominated by the genera Escherichia and Enterococcus upon hatching in both conventional and NAE flocks, shifting with time toward predominantly Faecalibacterium and Bacteroides. The composition of cecal microbial communities of NAE broilers was different than that of conventional chickens (P ≤ 0.05). Conventional broilers harbored a rich, but less diverse cecal microbiota than NAE, while the ileal microbiota was primarily populated with genera previously named Lactobacillus, which exhibited a higher abundance in NAE broilers (P ≤ 0.05). In both production systems, the microbiota followed a similar temporal succession that was more evident in the ceca. Transportation to the processing plant impacted the microbial composition of the ileum (P ≤ 0.05), characterized by an increase in the relative abundance of Psychrobacter. Finally, differential abundance analysis showed a positive correlation between Campylobacter and Enorma within the cecum microbiota, and a negative correlation with Salmonella.
Collapse
Affiliation(s)
- Estefanía Novoa Rama
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| | - Matthew Bailey
- Department of Poultry Science, Auburn University, Auburn, AL, USA
| | - Sanjay Kumar
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Cortney Leone
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Henk C den Bakker
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA; Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA, USA.
| | | | - Manpreet Singh
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| |
Collapse
|
15
|
Szabó RT, Kovács-Weber M, Zimborán Á, Kovács L, Erdélyi M. Effects of Short- and Medium-Chain Fatty Acids on Production, Meat Quality, and Microbial Attributes-A Review. Molecules 2023; 28:4956. [PMID: 37446617 DOI: 10.3390/molecules28134956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
The non-therapeutic use of antimicrobials in poultry production contributes to the spread of drug-resistant pathogens in both birds and humans. Antibiotics are known to enhance feed efficiency and promote the growth and weight gain of poultry. New regulatory requirements and consumer preferences have led to a reduced use of antibiotics in poultry production and to the discovery of natural alternatives to antibiotic growth promoters. This interest is not only focused on the direct removal or inhibition of causative microorganisms but also on the prevention of diseases caused by enteric pathogens using a range of feed additives. A group of promising feed additives is composed of short- and medium-chain fatty acids (SCFAs and MCFAs) and their derivatives. MCFAs possess antibacterial, anticoccidial, and antiviral effects. In addition, it has been proven that these acids act in synergy if they are used together with organic acids, essential oils, or probiotics. These fatty acids also benefit intestinal health integrity and homeostasis in broilers. Other effects have been documented as well, such as an increase in intestinal angiogenesis and the gene expression of tight junctions. The aim of this review is to provide an overview of SCFAs and MCFAs as alternatives to antibiotic growth promoters and to summarize the current findings in the literature to show their possible benefits on production, meat quality, and gut health in poultry.
Collapse
Affiliation(s)
- Rubina Tünde Szabó
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Mária Kovács-Weber
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Ágnes Zimborán
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Levente Kovács
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Márta Erdélyi
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| |
Collapse
|
16
|
Miao S, Li Y, Mu T, Wang X, Zhao W, Li R, Dong X, Zou X. Dietary Coated Sodium Butyrate Ameliorates Hepatic Lipid Accumulation and Inflammation via Enhancing Antioxidative Function in Post-Peaking Laying Hens. Metabolites 2023; 13:metabo13050650. [PMID: 37233691 DOI: 10.3390/metabo13050650] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
During the aging process of laying hens, hepatic oxidative stress damage and lipid accumulation are prone to occur, leading to the deterioration of egg quality and a decline in production properties. This research was designed to explore the effects of different levels of coated sodium butyrate (CSB) addition on oxidation resistance, inflammatory reaction, lipid metabolism and hepatic oxidative damage-related gene expression in aged laying hens. A total of 720 healthy 52 weeks old Huafeng laying hens were arbitrarily divided into 5 groups of 6 replicates with 24 birds each and fed a basal diet supplemented with 0, 250, 500, 750 and 1000 mg/kg CSB for 8 weeks, respectively. The CSB quadratically upgraded GSH-Px activities and downgraded MDA content in the liver and serum. The LDL-C, NEFA and TG contents decreased quadratically in CSB groups and significantly reduced the fatty vacuoles as well as the formation of fat granules in the liver (p < 0.05). Meanwhile, the CSB quadratically upregulated the gene expression of IL-10, Nrf2 and HO1, but downregulated the gene expression of IFN-γ, TNF-α and Keap1 in a quadratic manner (p < 0.05). Moreover, the CSB quadratically degraded the mRNA level of fatty acid synthesis but increased the gene level of key enzymes of fatty acid catabolism (p < 0.05). In conclusion, dietary CSB supplementation has a favorable effect in protecting against liver injury and alleviating lipid accumulation and inflammation by enhancing hepatic antioxidative function in aged laying hens.
Collapse
Affiliation(s)
- Sasa Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianming Mu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoming Wang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenyan Zhao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ru Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyang Dong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoting Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Zeng T, Sun H, Huang M, Guo R, Gu T, Cao Y, Li C, Tian Y, Chen L, Li G, Lu L. Dietary supplementation of coated sodium butyrate improves growth performance of laying ducks by regulating intestinal health and immunological performance. Front Immunol 2023; 14:1142915. [PMID: 36969242 PMCID: PMC10034168 DOI: 10.3389/fimmu.2023.1142915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionThis study was conducted to assess the effects of dietary supplementation of coated sodium butyrate (CSB) on the growth performance, serum antioxidant, immune performance, and intestinal microbiota of laying ducks.MethodsA total of 120 48-week-old laying ducks were randomly divided into 2 treatment groups: the control group (group C fed a basal diet) and the CSB-treated group (group CSB fed the basal diet + 250 g/t of CSB). Each treatment consisted of 6 replicates, with 10 ducks per replicate, and the trial was conducted for 60 days.ResultsCompared with the group C, the group CSB showed a significant increase in the laying rate (p<0.05) of the 53-56 week-old ducks. Additionally, the serum total antioxidant capacity, superoxide dismutase activity and immunoglobulin G level were significantly higher (p<0.05), while the serum malondialdehyde content and tumor necrosis factor (TNF)-a level were significantly lower (p<0.05) in the serum of the group CSB compared to the group C. Moreover, the expression of IL-1b and TNF-a in the spleen of the group CSB was significantly lower (p<0.05) compared to that of the group C. In addition, compared with the group C, the expression of Occludin in the ileum and the villus height in the jejunum were significantly higher in the group CSB (p<0.05). Furthermore, Chao1, Shannon, and Pielou-e indices were higher in the group CSB compared to the group C (p<0.05). The abundance of Bacteroidetes in the group CSB was lower than that in the group C (p<0.05), while the abundances of Firmicutes and Actinobacteria were higher in the group CSB compared to the group C (p<0.05).ConclusionsOur results suggest that the dietary supplementation of CSB can alleviate egg-laying stress in laying ducks by enhancing immunity and maintaining the intestinal health of the ducks.
Collapse
Affiliation(s)
- Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Manman Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongbing Guo
- College of Animal Science, Zhejiang A&F University, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chengfeng Li
- Hubei Shendan Health Food Co., Ltd., Xiaogan, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Lizhi Lu,
| |
Collapse
|
18
|
Cao Y, Xun M, Ren S, Wang J. Effects of dietary organic acids and probiotics on laying performance, egg quality, serum antioxidants and expressions of reproductive genes of laying ducks in the late phase of production. Poult Sci 2022; 101:102189. [PMID: 36240638 PMCID: PMC9576561 DOI: 10.1016/j.psj.2022.102189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
Five hundred and forty Cheery Valley ducks were used to investigate the effects of dietary supplementation of acidifier and compound probiotics, individually or in combination, on production performance, egg quality, immune and oxidative status, expression of reproductive, and calcium binding related genes from 42 wk to 48 wk of age. Ducks were randomly allocated to 9 treatment groups with 6 replicates and 10 ducks per replicate for each group. A 3 × 3 factorial arrangement, with 3 dietary inclusion levels of acidifier and probiotics (0, 2, and 3 g/kg acidifier; 0, 1, and 2 g/kg probiotics) were used. The acidifier used was mainly consisted of Benzoic acid, Fumaric acid, phosphoric acid, and formic acid. The main components of the probiotics were Bacillus subtilis and Clostridium butyricum. Dietary supplementation of probiotics improved the daily feed intake, egg production rate, and body weight of ducks (P < 0.05), and diet acidifier also increased the daily feed intake compared to the control (P < 0.01). Egg quality was improved by diet inclusion of probiotics, including Haugh unit, albumen height, egg shape index (P < 0.01), and eggshell hardness (P = 0.05). A significant increase in Haught unit and yolk weight was observed in ducks fed diet added with acidifier (P < 0.05). Acidifier supplementation reduced the total antioxidant capacity (T-AOC), immunoglobulin A (IgA), and IgG content and the catalase (CAT) activity in the serum (P < 0.05), in accompanied with an increased malondialdehyde (MDA) concentration (P < 0.05). Serum total superoxide dismutase (T-SOD) activities were improved by dietary inclusion of probiotics (P < 0.05). There was an interaction effects on serum IgA and IgG contents between acidifier and probiotics (P < 0.05). Diet supplementation of probiotics improved the ovary follicle-stimulating hormone receptor (FSHR) and estrogen receptor (ER) gene expressions (P < 0.01), while dietary acidifier reduced the transcription levels of FSHR and luteinizing hormone receptor (LHR) (P < 0.01) in ovary. In the uterus of the oviduct, expressions of FSHR, and carbonic anhydrase 2 (CA2) were also increased by diet probiotics (P < 0.01), and diet acidifier reduced the gene expressions of calbindin-D28k (CaBP-D28k) and CA2 (P < 0.05). Significant interaction effects between diet acidifier and probiotics were obtained on gene expressions of FSHR, LHR, and ovalbumin (OVAL) in the ovary (P < 0.05), and LHR, CaBP-D28k, and CA2 (P < 0.05) in the uterus. It can be concluded that production performance and egg quality of laying ducks can be improved in the late phase of reproduction by dietary inclusion of probiotics, while the organic acid mixture caused a decline in serum antioxidant and immune capacity of the ducks.
Collapse
Affiliation(s)
- Yun Cao
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Mingyi Xun
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Shanmao Ren
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Jian Wang
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China.
| |
Collapse
|
19
|
Qin D, Ma Y, Wang Y, Hou X, Yu L. Contribution of Lactobacilli on Intestinal Mucosal Barrier and Diseases: Perspectives and Challenges of Lactobacillus casei. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111910. [PMID: 36431045 PMCID: PMC9696601 DOI: 10.3390/life12111910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The intestine barrier, the front line of normal body defense, relies on its structural integrity, microbial composition and barrier immunity. The intestinal mucosal surface is continuously exposed to a complex and dynamic community of microorganisms. Although it occupies a relatively small proportion of the intestinal microbiota, Lactobacilli has been discovered to have a significant impact on the intestine tract in previous studies. It is undeniable that some Lactobacillus strains present probiotic properties through maintaining the micro-ecological balance via different mechanisms, such as mucosal barrier function and barrier immunity, to prevent infection and even to solve some neurology issues by microbiota-gut-brain/liver/lung axis communication. Notably, not only living cells but also Lactobacillus derivatives (postbiotics: soluble secreted products and para-probiotics: cell structural components) may exert antipathogenic effects and beneficial functions for the gut mucosal barrier. However, substantial research on specific effects, safety and action mechanisms in vivo should be done. In clinical application of humans and animals, there are still doubts about the precise evaluation of Lactobacilli's safety, therapeutic effect, dosage and other aspects. Therefore, we provide an overview of central issues on the impacts of Lactobacillus casei (L. casei) and their products on the intestinal mucosal barrier and some diseases and highlight the urgent need for further studies.
Collapse
Affiliation(s)
- Da Qin
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yixuan Ma
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xilin Hou
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| | - Liyun Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| |
Collapse
|
20
|
Pham MT, Tran TD, Zayabaatar E. Leuconostoc mesenteroides utilizes glucose fermentation to produce electricity and ameliorates high-fat diet-induced abdominal fat mass. Arch Microbiol 2022; 204:670. [PMID: 36241916 DOI: 10.1007/s00203-022-03281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
Abstract
Bacteria capable of producing electricity in intestinal microbiota have been discovered. However, no studies have explored butyric acid which generated by electrogenic bacteria on the host organism have significant physiological impacts on certain organs. We found that the capacity for electrical current generation by the commensal gut Leuconostoc mesenteroides EH-1 (L. mesenteroides EH-1) during glucose fermentation. The electricity production was essential for the gut colonization of L. mesenteroides EH-1 since the inhibition of electricity production by cyclophilin A inhibitor (TMN355) significantly diminished the number of bacteria attached to the human gut epithelial cell surface. The adipocyte differentiation contributes to the increased 4-hydroxy-2-nonenal (4-HNE), considered as a biomarker of reactive oxygen species (ROS). The effect of intestinal electrogenic microbiota in the high-fat diet (HFD)-induced 4-HNE and abdominal fat accumulation in mice was investigated in this study. The oral administration of glucose with a butyric acid-producing L. mesenteroides EH-1 bacterium attenuated the expression of 4-HNE and abdominal fat. The level of 4-HNE and abdominal fat depot were markedly increased in mice administered with cyclophilin A inhibitor-pretreated bacteria or GLPG-0974, an antagonist of free fatty acid receptor 2 (Ffar2). Our studies suggest a novel means by which the probiotic bacteria can modulate fat mass deposition and oxidative stress via the cyclophilin A-mediated electron production and the butyric acid-activated Ffar2 pathway.
Collapse
Affiliation(s)
- Minh Tan Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Thi Dung Tran
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Enkhbat Zayabaatar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
21
|
Saint-Martin V, Quéré P, Trapp S, Guabiraba R. Uncovering the core principles of the gut-lung axis to enhance innate immunity in the chicken. Front Immunol 2022; 13:956670. [PMID: 36268022 PMCID: PMC9577073 DOI: 10.3389/fimmu.2022.956670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Research in mammals has evidenced that proper colonization of the gut by a complex commensal microbial community, the gut microbiota (GM), is critical for animal health and wellbeing. It greatly contributes to the control of infectious processes through competition in the microbial environment while supporting proper immune system development and modulating defence mechanisms at distant organ sites such as the lung: a concept named ‘gut-lung axis’. While recent studies point to a role of the GM in boosting immunity and pathogen resilience also in poultry, the mechanisms underlying this role are largely unknown. In spite of this knowledge gap, GM modulation approaches are today considered as one of the most promising strategies to improve animal health and welfare in commercial poultry production, while coping with the societal demand for responsible, sustainable and profitable farming systems. The majority of pathogens causing economically important infectious diseases in poultry are targeting the respiratory and/or gastrointestinal tract. Therefore, a better understanding of the role of the GM in the development and function of the mucosal immune system is crucial for implementing measures to promote animal robustness in commercial poultry production. The importance of early gut colonization in the chicken has been overlooked or neglected in industrial poultry production systems, where chicks are hampered from acquiring a complex GM from the hen. Here we discuss the concept of strengthening mucosal immunity in the chicken through GM modulation approaches favouring immune system development and functioning along the gut-lung axis, which could be put into practice through improved farming systems, early-life GM transfer, feeding strategies and pre-/probiotics. We also provide original data from experiments with germ-free and conventional chickens demonstrating that the gut-lung axis appears to be functional in chickens. These key principles of mucosal immunity are likely to be relevant for a variety of avian diseases and are thus of far-reaching importance for the poultry sector worldwide.
Collapse
|
22
|
Dietary Garlic Powder Alleviates Lipopolysaccharide-Induced Inflammatory Response and Oxidative Stress through Regulating the Immunity and Intestinal Barrier Function in Broilers. Animals (Basel) 2022; 12:ani12172281. [PMID: 36078001 PMCID: PMC9454656 DOI: 10.3390/ani12172281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary This research was performed to determine the positive effects of GP on growth and intestinal function in lipopolysaccharide (LPS) challenged broilers. Results show that LPS challenge enhanced the weight loss rate, decreased the immunity and antioxidant capability, increased the intestinal permeability in broilers. When compared with LPS group, broilers fed with GP exhibited improved weight loss rate and jejunum villus height, enhanced ileum antioxidant function, and ameliorated intestinal barrier function. The LPS-challenged broilers in GP group had higher immunity than that of broilers in antibiotics group. In conclusion, GP supplementation could act as a natural alternative to antibiotic additive to alleviate the LPS-induced weight loss rate, inflammatory responses, and oxidative stress in broilers by improving the immunity and intestinal function. Abstract Garlic powder (GP) has the outstanding antibacterial, antifungal, antiviral, anti-parasitic and antioxidant characteristics because of its various contained bioactive components, such as alliin, allicin, and polysaccharide, etc. It has been widely used as a native medicine and shown to prevent a variety of diseases. This research was performed to determine the positive effects of GP on growth and intestinal function in lipopolysaccharide (LPS) challenged broilers. A total of 480 one-day-old male Ross 308 broilers of similar initial body weight were randomly divided into four groups with 8 replicates per treatment and 15 chicks each replicate. LPS challenge enhanced the weight loss rate, decreased the immunity and antioxidant capability, increased the intestinal permeability in broilers. When compared with LPS group, broilers fed with GP exhibited improved weight loss rate and jejunum villus height, enhanced ileum antioxidant function, and ameliorated intestinal barrier function. The LPS-challenged broilers in GP group had higher immunity than that of broilers in antibiotics group. GP supplementation could act as a natural alternative to antibiotic additive to alleviate the LPS-induced weight loss rate, inflammatory responses, and oxidative stress in broilers by improving the immunity and intestinal function.
Collapse
|
23
|
Drovetski SV, Schmidt BK, Lai JE, Gross MS, Hladik ML, Matterson KO, Karouna-Renier NK. Exposure to crop production alters cecal prokaryotic microbiota, inflates virulome and resistome in wild prairie grouse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119418. [PMID: 35526643 DOI: 10.1016/j.envpol.2022.119418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Chemically intensive crop production depletes wildlife food resources, hinders animal development, health, survival, and reproduction, and it suppresses wildlife immune systems, facilitating emergence of infectious diseases with excessive mortality rates. Gut microbiota is crucial for wildlife's response to environmental stressors. Its composition and functionality are sensitive to diet changes and environmental pollution associated with modern crop production. In this study we use shotgun metagenomics (median 8,326,092 sequences/sample) to demonstrate that exposure to modern crop production detrimentally affects cecal microbiota of sharp-tailed grouse (Tympanuchus phasianellus: 9 exposed, 18 unexposed and greater prairie chickens (T. cupido; 11, 11). Exposure to crop production had greater effect on microbiota richness (t = 6.675, P < 0.001) and composition (PERMANOVA r2 = 0.212, P = 0.001) than did the host species (t = 4.762, P < 0.001; r2 = 0.070, P = 0.001) or their interaction (t = 3.449; r2 = 0.072, both P = 0.001), whereas sex and age had no effect. Although microbiota richness was greater in exposed (T. cupido chao1 = 152.8 ± 20.5; T. phasianellus 115.3 ± 17.1) than in unexposed (102.9 ± 15.1 and 101.1 ± 17.2, respectively) birds, some beneficial bacteria dropped out of exposed birds' microbiota or declined and were replaced by potential pathogens. Exposed birds also had higher richness and load of virulome (mean ± standard deviation; T. cupido 24.8 ± 10.0 and 10.1 ± 5.5, respectively; T. phasianellus 13.4 ± 6.8/4.9 ± 2.8) and resistome (T. cupido 46.8 ± 11.7/28.9 ± 10.2, T. phasianellus 38.3 ± 16.7/18.9 ± 14.2) than unexposed birds (T. cupido virulome: 14.2 ± 13.5, 4.5 ± 4.2; T. cupido resistome: 31.6 ± 20.2 and 13.1 ± 12.0; T. phasianellus virulome: 5.2 ± 4.7 and 1.4 ± 1.5; T. phasianellus resistome: 13.7 ± 16.1 and 4.0 ± 6.4).
Collapse
Affiliation(s)
- Serguei V Drovetski
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD, 20705, USA.
| | - Brian K Schmidt
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA.
| | - Jonas E Lai
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD, 20705, USA.
| | - Michael S Gross
- U.S. Geological Survey, California Water Science Center, Sacramento, CA, 95819, USA.
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA, 95819, USA.
| | - Kenan O Matterson
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD, 20705, USA.
| | - Natalie K Karouna-Renier
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD, 20705, USA.
| |
Collapse
|
24
|
Mátis G, Mackei M, Boomsma B, Fébel H, Nadolna K, Szymański Ł, Edwards JE, Neogrády Z, Kozłowski K. Dietary Protected Butyrate Supplementation of Broilers Modulates Intestinal Tight Junction Proteins and Stimulates Endogenous Production of Short Chain Fatty Acids in the Caecum. Animals (Basel) 2022; 12:ani12151940. [PMID: 35953929 PMCID: PMC9367590 DOI: 10.3390/ani12151940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Short chain fatty acid (SCFA) butyrate has various beneficial effects on the gut microbiota as well as on the overall health status and metabolism of the host organism. The modulatory role of butyrate on gut barrier integrity reflected by tight junction protein expression has been already described in mammalian species. However, there is limited information available regarding chickens. Therefore, the main aim of this study was to monitor the effects of protected butyrate on claudin barrier protein and monocarboxylate transporter 1 abundance in different gastrointestinal segments of chickens as well as the growth performance of broiler chickens. The effect of protected butyrate on the caecal microbiota was monitored by quantifying the concentrations of total eubacteria and key enzymes of butyrate production. Furthermore, intestinal SCFA concentrations were also measured. Based on the data obtained, protected butyrate increased the overall performance as well as the barrier integrity of various gut segments. Protected butyrate also positively affected the SCFA concentration and composition. These findings provide valuable insight into the complex effects of protected butyrate on broiler gut health, highlighting the beneficial effects in improving intestinal barrier integrity and performance parameters.
Collapse
Affiliation(s)
- Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (G.M.); (M.M.); (Z.N.)
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (G.M.); (M.M.); (Z.N.)
| | - Bart Boomsma
- Palital Feed Additives B.V., De Tweede Geerden, 5334 LH Velddriel, The Netherlands; (B.B.); (J.E.E.)
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gesztenyés Str. 1, H-2053 Herceghalom, Hungary;
| | - Katarzyna Nadolna
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Oczapowskiego 5, 10-719 Olsztyn, Poland; (K.N.); (Ł.S.)
| | - Łukasz Szymański
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Oczapowskiego 5, 10-719 Olsztyn, Poland; (K.N.); (Ł.S.)
| | - Joan E. Edwards
- Palital Feed Additives B.V., De Tweede Geerden, 5334 LH Velddriel, The Netherlands; (B.B.); (J.E.E.)
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (G.M.); (M.M.); (Z.N.)
| | - Krzysztof Kozłowski
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Oczapowskiego 5, 10-719 Olsztyn, Poland; (K.N.); (Ł.S.)
- Correspondence:
| |
Collapse
|
25
|
Wen K, Liu L, Zhao M, Geng T, Gong D. The Changes in Microbiotic Composition of Different Intestinal Tracts and the Effects of Supplemented Lactobacillus During the Formation of Goose Fatty Liver. Front Microbiol 2022; 13:906895. [PMID: 35923413 PMCID: PMC9339986 DOI: 10.3389/fmicb.2022.906895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Intestinal bacteria play an important role in the formation of fatty liver in animals by participating in the digestion and degradation of nutrients, producing various metabolites, and altering the barrier effect of the intestine. However, changes in the gut microbiota during the formation of goose fatty liver are unclear. In this study, 80 healthy Landes geese with similar body weights at 70 days of age were randomly divided into two groups: the control group (n = 48; fed ad libitum) and the overfeeding group (n = 32; overfed). The intestinal contents were collected at 0, 12, and 24 days of overfeeding. The 16S rRNA and metagenomic sequencing analyses showed that the dominant phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. At the genus level, Phyllobacterium, Bacteroides, Helicobacter, Lactobacillus, Enterococcus, and Romboutsia were the dominant genera in the goose intestine, and most of them were probiotics. In the control group, the relative abundance of Firmicutes in the jejunum and ileum gradually decreased with time, while that of Proteobacteria increased, whereas in the overfeeding group, the relative abundance of Firmicutes in the jejunum and ileum decreased and then increased with time, while that of Proteobacteria showed an opposite trend. In addition, supplementing Lactobacillus to the diet reduced body weight and fatty liver weight in overfed geese, but increased the weight of abdominal fat, suggesting that Lactobacillus supplementation might affect the transport of nascent fat from the liver to abdominal fat. In conclusion, the species of intestinal-dominant bacteria in the geese are relatively stable, but their relative abundance and function are affected by a number of factors. Overfeeding promotes the metabolism of nutrients in the jejunum and ileum and increases bacterial adaptability to environmental changes by enhancing their ability to process environmental and genetic information more efficiently. These findings suggest that the effect of overfeeding on the composition of intestinal microbiota may indirectly influence the formation of goose fatty liver through the gut/liver axis.
Collapse
Affiliation(s)
- Kang Wen
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Long Liu
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Minmeng Zhao
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tuoyu Geng
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Tuoyu Geng
| | - Daoqing Gong
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Daoqing Gong
| |
Collapse
|
26
|
Zhang B, Zhong Q, Liu N, Song P, Zhu P, Zhang C, Sun Z. Dietary Glutamine Supplementation Alleviated Inflammation Responses and Improved Intestinal Mucosa Barrier of LPS-Challenged Broilers. Animals (Basel) 2022; 12:ani12131729. [PMID: 35804628 PMCID: PMC9265045 DOI: 10.3390/ani12131729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary In commercial intense industry, birds have to undergo a series of physical, social and microbial stress. LPS, a structural substance of gram-negative bacterial membrane and an effective immune stimulator for human and animal immune system, can impair growth performance, elevate the production of inflammatory cytokines and destroy the morphology of broilers’ small intestine. Moreover, LPS challenge also can reduce the expression levels of tight junction proteins and ruin the integrity of mucosal barrier of broilers. However, glutamine is considered to be conditionally essential for gut homeostasis and barrier function and maybe a useful strategy to attenuate immunological stress and improve intestine function in response to stressful conditions. Our study showed that 1% Gln supplementation improved the growth performance, alleviated the inflammatory responses and ameliorated the intestinal permeability and the integrity of intestinal mucosa barrier of LPS-challenged broilers. Abstract The present study was conducted to investigate the effects of glutamine (Gln) supplementation on intestinal inflammatory reaction and mucosa barrier of broilers administrated with lipopolysaccharide (LPS) stimuli. A total of 120 1-d-old male broilers were randomly divided into four treatments in a 2 × 2 experimental arrangement, containing immune challenge (injected with LPS in a dose of 0 or 500 μg/kg of body weight) and dietary treatments (supplemented with 1.22% alanine or 1% Gln). The results showed that growth performance of broilers intra-abdominally injected with LPS was impaired, and Gln administration alleviated the adverse effects on growth performance induced by LPS challenge. Furthermore, Gln supplementation reduced the increased concentration of circulating tumor necrosis factor-α, interleukin-6 and interleukin-1β induced by LPS challenge. Meanwhile, D-lactic acid and diamine oxidase concentration in plasma were also decreased by Gln supplementation. In addition, the shorter villus height, deeper crypt depth and the lower ratio of villus height to crypt depth of duodenum, jejunum and ileum induced by LPS stimulation were reversed by Gln supplementation. Gln administration beneficially increased LPS-induced reduction in the expression of intestine tight junction proteins such as zonula occludens protein 1 (ZO-1), claudin-1 and occludin except for the ZO-1 in duodenum and occludin in ileum. Moreover, Gln supplementation downregulated the mRNA expression of toll-like receptor 4, focal adhesion kinase, myeloid differentiation factor 88 and IL-1R-associated kinase 4 in TLR4/FAK/MyD88 signaling pathway. Therefore, it can be concluded that Gln administration could attenuate LPS-induced inflammatory responses and improve intestinal barrier damage of LPS-challenged broilers.
Collapse
Affiliation(s)
- Bolin Zhang
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Qingzhen Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China;
| | - Ning Liu
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Peiyong Song
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Peng Zhu
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Caichao Zhang
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China; (B.Z.); (N.L.); (P.S.); (P.Z.); (C.Z.)
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China;
- Correspondence:
| |
Collapse
|
27
|
Xiao G, Zheng L, Yan X, Yang Y, Qi Q, Gong L, Zhang H. Effects of Dietary Glycerol Monobutyrate Supplementation on Egg Performance, Biochemical Indices, and Gut Microbiota of Aged Hens. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.896705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This experiment aimed to determine the effect of dietary supplementation with glycerol monobutyrate (GMB) on egg-laying performance, biochemical indicators, and gut microflora at the late stage of laying hens. A total of 252 healthy Dawu Golden Phoenix laying hens with no difference in body weight were selected and randomly divided into two groups: (1) control group (CG), corn-soybean meal diet, (2) 500 mg glycerol monobutyrate/kg added to the basal diet. Six replicates were set up for each treatment group, with 21 birds per replicate. The trial started at week 55 and lasted for 8 weeks. Compared to the control group, the supplementation with GMB increased egg weight (P = 0.03), shell thickness (P = 0.03) and decreased egg breaking rate (P = 0.04). There was no significant difference in egg production rate, feed-to-egg ratio, egg shape index, eggshell strength, and Haugh unit between the two groups. In addition, dietary GMB decreased the levels of aspartate aminotransferase (P = 0.03) and total bilirubin (P = 0.02) in serum, and increased total antioxidant capacity (P = 0.03) and total superoxide dismutase (P = 0.02). However, alpha diversity indices (Ace, Chao1, Shannon, Simpson, goods_coverage, and PD_whole tree) were not different between the two groups. Notably, dietary GMB significantly decreased the abundances of Proteobacteria at the phylum level and the abundances of Enterobacter at the genus level (P < 0.01), but there was no significant difference in the composition of other cecal microbiota. In summary, the present study revealed that supplementation with 500 mg/kg glycerol monobutyrate improved egg weight, eggshell quality, and antioxidant capacity in serum, but its effect on cecal microbiota composition was limited.
Collapse
|
28
|
Khan RU, Naz S, Raziq F, Qudratullah Q, Khan NA, Laudadio V, Tufarelli V, Ragni M. Prospects of organic acids as safe alternative to antibiotics in broiler chickens diet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32594-32604. [PMID: 35195862 PMCID: PMC9072444 DOI: 10.1007/s11356-022-19241-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Genetically, modern broilers are fast-growing birds which attain the market age at the age of 5 weeks. To maintain optimum production, antibiotics have been commonly included in the diets as growth promoters. However, due to the increase in antimicrobial resistance, their uses have been banned worldwide. To keep the optimum level of production and health in broiler industry, the use of alternative growth promoters such as probiotics, prebiotics, enzymes, and organic acids has been proposed. Chemically, organic acids are weak acids and only partially dissociate. They are considered safe and have been used for preservation of food for centuries. Nowadays, organic acids have been reported for antibacterial, immune potentiating, and growth promoters in broilers. In this review, the effects of dietary inclusion of organic acids on growth, nutrient digestibility, intestinal integrity, immune system, and antibacterial activity in broilers are discussed.
Collapse
Affiliation(s)
- Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Shabana Naz
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Fazal Raziq
- Livestock and Dairy Development, Peshawar, Pakistan
| | - Qudratullah Qudratullah
- Department of Surgery and Pet Centre, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Nazir Ahmad Khan
- Department of Animal Nutrition, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Vito Laudadio
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Bari, Italy.
| | - Marco Ragni
- Department of Agro-Environmental and Territorial Science, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
29
|
Jia L, Hsu CY, Zhang X, Li X, Schilling MW, Peebles ED, Kiess AS, Zhang L. Effects of dietary bacitracin or Bacillus subtilis on the woody breast myopathy-associated gut microbiome of Eimeria spp. challenged and unchallenged broilers. Poult Sci 2022; 101:101960. [PMID: 35690000 PMCID: PMC9192972 DOI: 10.1016/j.psj.2022.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Study suggested that dysbiosis of the gut microbiota may affect the etiology of woody breast (WB). In the current study, the cecal microbiota and WB in chickens fed three different diets were investigated. A total of 504 male chicks were used in a randomized complete block design with a 3 (Diet) × 2 (Challenge) factorial arrangement of treatments with 6 replicates per treatment, 6 treatments per block, and 14 birds per treatment. The experimental diets were a control diet (corn-soybean meal basal diet), an antibiotic diet (basal diet + 6.075 mg bacitracin/kg feed), and a probiotic diet (basal diet + 2.2 × 108 CFU Bacillus subtilis PB6/kg feed). On d 14, birds that were assigned to the challenge treatment received a 20 × live cocci vaccine. On d 41, breast muscle hardness in live birds was palpated and grouped into normal (NB) and WB phenotypes. Cecal contents were collected and their bacterial compositions were analyzed and compared. The genomic DNA of the cecal contents was extracted and the V3 and V4 regions of 16S rRNA gene were amplified and sequenced via an Illumina MiSeq platform. There were no differences (P > 0.05) in Shannon and Chao 1 indexes between the challenges, diets, and phenotypes (NB vs. WB). However, there was a difference (P = 0.001) in the beta diversity of the samples between the challenged and nonchallenged groups. Relative bacterial abundance differed (false discovery rate, FDR < 0.05) between the challenge treatments, but there were no significant differences (FDR > 0.05) among the three diets or two phenotypes. Predicted energy metabolism, nucleotide metabolism, and amino acid and coenzyme biosynthesis activities only differed (q-value < 0.05) between challenged and nonchallenged groups. The cocci challenge altered the gut microbial composition on Butyricicoccus pullicaecorum, Sporobacter termitidis, and Subdoligranulum variabile, but the dietary antibiotic and probiotic treatments did not impact gut microbial composition. No strong association was found between WB myopathy and gut microbial composition in this study.
Collapse
|
30
|
Chemically Protected Sodium Butyrate Improves Growth Performance and Early Development and Function of Small Intestine in Broilers as One Effective Substitute for Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11020132. [PMID: 35203735 PMCID: PMC8868412 DOI: 10.3390/antibiotics11020132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/14/2023] Open
Abstract
The purpose of this study was to investigate the effects of chemically protected sodium butyrate (CSB) on growth performance and the early development and function of small intestine in broilers as one potential substitute for antibiotics. A total of 192 one-day-old Arbor Acres male broilers were randomly assigned into three dietary treatment groups (eight replicates per treatment): the control (CON) diet; ANT diet, CON diet supplemented with the antibiotics (enramycin, 8 mg/kg and aureomycin, 100 mg/kg); CSB diet, CON diet supplemented with 1000 mg/kg CSB, respectively. The results showed that dietary CSB and antibiotics addition significantly improved the growth performance of broilers by increasing the body weight gain (BWG) and feed conversion ratio (FCR) during different stages (p < 0.05). On day 21, the supplement of CSB in diet improved the structure of small intestine (duodenum, jejunum, and ileum) in broilers by increasing the ratio of villus height to crypt depth (VH/CD) (p < 0.05) and enhanced the butyric acid (BA) (p < 0.05) and total short chain fatty acids (SCFA) concentrations of small intestine (jejunum and ileum) compared with the CON and ANT diets. Besides that, the superoxide dismutase (SOD), total antioxidant capacity (TAC) and TAC to malondialdehyde (TAC/MDA) ratio of the ileal and jejunal mucosa were significantly higher (p < 0.05) in the CSB and ANT than in the CON. In addition, the supplement of CSB in diet markedly significantly enhanced α-amylase, lipase, and trypsin activities of the ileum (p < 0.05) as compared to the ANT diet. 16S rRNA gene sequencing indicated that CSB markedly increased the microbiota diversity of ileum in broilers at 21 days of age as compared to CON and ANT (p < 0.05). Furthermore, we found that Firmicutes was the predominant phyla and Lactobacillus was the major genus in the ileum of broilers. Compared with the ANT diet, the supplement of CSB in diet increased the relative abundance of some genera microbiota (e.g., Candidatus_Arthromitus, Romboutsia) by decreasing the relative abundance of Lactobacillus. Moreover, Akkermansia in the CSB was the highest in comparison to that in the CON and ANT. In addition, Kitasatospora that belongs to the phylum Actinobacteriota was only found in ileum of broilers fed the ANT diet. In summary, the supplement of 1000 mg/kg CSB in the diet improved the growth performance by promoting early development and function of the small intestine, which is associated with the regulation of intestinal flora and reestablishment of micro-ecological balance in broilers. Thus, CSB has great potential value as one of effective substitutes for in-feed antibiotics in the broiler industry.
Collapse
|
31
|
Uyanga VA, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Dietary L-citrulline influences body temperature and inflammatory responses during nitric oxide synthase inhibition and endotoxin challenge in chickens. Stress 2022; 25:74-86. [PMID: 34962227 DOI: 10.1080/10253890.2021.2023495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Recent studies have revealed the role of L-citrulline (L-CIT) in thermoregulation, but very little is known about the mechanisms involved. In this study, nitric oxide synthase inhibition and endotoxin-induced fever were used to investigate the effects of L-CIT on body temperature and inflammatory responses. In experiment 1, NW-nitro-L-arginine methyl ester (L-NAME, 150 mg/kg BW), was i. p. injected into chicks fed with basal (CON) or L-CIT diets for 14 days. In experiment 2, Lipopolysaccharide (LPS, 2 mg/kg BW) was i. p. injected following 21d feeding with CON or L-CIT diets. In experiment 3, chickens were injected with either L-NAME, LPS, or L-NAME + LPS following 26 days feeding with CON or L-CIT diets. The rectal (RT), ear (ET), and core body temperature (CBT) of chickens were examined. Results showed that L-NAME effectively decreased the RT, ET, CBT, and plasma NO concentration. In contrast, LPS increased NO levels and initiated hyperthermia by increasing RT, ET, CBT, and PGE2 levels. L-CIT diet reduced the mean CBT in experiment 1 and diminished the NO level, PGE2 level, and mean RT in experiment 3. Co-administration of L-CIT + LPS upregulated IL-6 expression, whereas, LPS injection alone induced IL-10, IL-1β, and TLR4 gene expressions. Therefore, this study reveals that L-CIT-induced hypothermia was related to NO inhibition and a decrease in PGE2 concentration. Conversely, LPS induced hyperthermia was associated with an increase in both NO and PGE2 concentrations.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, China
| | - Jingpeng Zhao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, China
| | - Xiaojuan Wang
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, China
| | - Hongchao Jiao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, China
| | - Okanlawon M Onagbesan
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta P.M.B, Nigeria
| | - Hai Lin
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, China
| |
Collapse
|
32
|
Ebeid TA, Al-Homidan IH. Organic acids and their potential role for modulating the gastrointestinal tract, antioxidative status, immune response, and performance in poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.1988803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tarek A. Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Ibrahim H. Al-Homidan
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
33
|
Liu L, Li Q, Yang Y, Guo A. Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry. Front Vet Sci 2021; 8:736739. [PMID: 34733901 PMCID: PMC8558227 DOI: 10.3389/fvets.2021.736739] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites generated by bacterial fermentation of dietary fiber (DF) in the hindgut. SCFAs are mainly composed of acetate, propionate and butyrate. Many studies have shown that SCFAs play a significant role in the regulation of intestinal health in poultry. SCFAs are primarily absorbed from the intestine and used by enterocytes as a key substrate for energy production. SCFAs can also inhibit the invasion and colonization of pathogens by lowering the intestinal pH. Additionally, butyrate inhibits the expression of nitric oxide synthase (NOS), which encodes inducible nitric oxide synthase (iNOS) in intestinal cells via the PPAR-γ pathway. This pathway causes significant reduction of iNOS and nitrate, and inhibits the proliferation of Enterobacteriaceae to maintain overall intestinal homeostasis. SCFAs can enhance the immune response by stimulating cytokine production (e.g. TNF-α, IL-2, IL-6, and IL-10) in the immune cells of the host. Similarly, it has been established that SCFAs promote the differentiation of T cells into T regulatory cells (Tregs) and expansion by binding to receptors, such as Toll-like receptors (TLR) and G protein-coupled receptors (GPRs), on immune cells. SCFAs have been shown to repair intestinal mucosa and alleviate intestinal inflammation by activating GPRs, inhibiting histone deacetylases (HDACs), and downregulating the expression of pro-inflammatory factor genes. Butyrate improves tight-junction-dependent intestinal barrier function by promoting tight junction (TJ) assembly. In recent years, the demand for banning antibiotics has increased in poultry production. Therefore, it is extremely important to maintain the intestinal health and sustainable production of poultry. Taking nutrition strategies is important to regulate SCFA production by supplementing dietary fiber and prebiotics, SCFA-producing bacteria (SPB), and additives in poultry diet. However, excessive SCFAs will lead to the enteritis in poultry production. There may be an optimal level and proportion of SCFAs in poultry intestine, which benefits to gut health of poultry. This review summarizes the biological functions of SCFAs and their role in gut health, as well as nutritional strategies to regulate SCFA production in the poultry gut.
Collapse
Affiliation(s)
- Lixuan Liu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Qingqing Li
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Kunming Xianghao Technology Co., Ltd., Kunming, China
| | - Yajin Yang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
34
|
Wang K, Chen X, Zuo L, Pan C, Liu G, Zhang X, Du J, Zhang C, Zhang B, Wang Z, Li M, Zhang A, Jiang N. Dietary sodium butyrate protects lipopolysaccharide-induced inflammatory response in lambs through inhibiting TLR4/NF-κB signalling pathway. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1955627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kexin Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Xiang Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Lijun Zuo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Chunyuan Pan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Gan Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Xinyu Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Jiahua Du
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Cunhao Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Bofu Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Zhao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Muyang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Aizhong Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Ning Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| |
Collapse
|
35
|
Wang J, Zhang H, Bai S, Zeng Q, Su Z, Zhuo Y, Mao X, Yin H, Feng B, Liu J, Zhang K, Ding X. Dietary tributyrin improves reproductive performance, antioxidant capacity, and ovary function of broiler breeders. Poult Sci 2021; 100:101429. [PMID: 34555757 PMCID: PMC8458981 DOI: 10.1016/j.psj.2021.101429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/02/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
The objective of this experiment was to investigate the influence of dietary tributyrin on reproduction performance and ovary function of broiler breeders with different egg laying rate. Two hundred fifty-six AA broiler breeders (48-wk-old) were allocated to 4 treatment in a 2 × 2 factorial arrangement with the main effects of tributyrin supplementation (0 and 1,000 mg/kg tributyrin [TRI]) and 2 egg laying rate levels (average [AR, 81.01 ± 0.79%] and low [LR, 70.98 ± 0.95%]). The results shown that the LR breeders presented higher egg weight, but lower egg laying rate, qualified egg rate and feed efficiency than the AR breeders (P(laying) < 0.05). Also, the superoxidase dismutase (SOD) activity in magnum was lower while malondialdehyde (MDA) was higher in ovary and magnum of LR breeders than that in the AR breeders (P(laying) < 0.05). Dietary supplementation with tributyrin significantly enhanced egg weight (P(TRI) < 0.05), increased albumen height as well as Haugh unit (HU) in AR breeders (P(interaction) < 0.05), and also had higher total antioxidant capacity (T-AOC) and lower MDA in ovary (P(TRI) < 0.05). The cell apoptosis rate and proapoptosis related gene expression (caspase 8, 9 and Bax) in the ovary of LR breeders was higher, while anti-apoptosis related gene (Bcl-2) expression were lower in LR breeders when compared with the AR breeders (P(laying) < 0.05). Dietary supplementation with tributyrin decreased the cell apoptosis rate and downregulated caspase 9 expression in LR breeders (P(Interaction) < 0.05), up-regulated the Bcl-2 expression in both 2 breeders (P(TRI) < 0.05). These findings suggest that the breeders with lower egg laying rate also characterized by deteriorate ovary function indicated by lower antioxidant capacity and higher cell apoptosis rate. Dietary supplementation with tributyrin increased egg albumen quality, decreased ovarian proapoptosis related gene expression to improve reproductive tract function; and the positive effect on egg albumen quality is more pronounced in average reproductive breeders.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongye Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhuowei Su
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huadong Yin
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
36
|
The effect of different medium chain fatty acids, calcium butyrate, and salinomycin on performance, nutrient utilization and gastrointestinal tract of chicken of Polish Green Legged Partridge hen. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The present study aimed to determine the effect of diets supplemented by feed additives, on the growth performance and digestive tract functioning in chicken of green-legged partridge hen (GLPH). Two types of diets were used. The both “low-digestible” (LD) diet characterized by high level of crude fibre and lard, and “high-digestible” (HD) diet characterized by low content of crude fibre and soybean oil were supplemented by different additives such as 0,34% DM (dry matter) salinomycin, 0,30 % DM medium-chain triglycerides (MCT), 1,00 % DM calcium butyrate (CB), or 0,85 % DM medium-chain fatty acids (MCFA). The experiment was conducted on 960 one-day-old male chickens of GLPH, randomly divided into 10 treatment groups. One group consisted of 12 replications (each with 8 birds). Chickens fed HD diet presented significantly higher body weight gain (BWG) in 15-56 days and also 0-56 days of experiment and lower feed conversion ratio (FCR) during whole time (0-56 days) of experiment (P < 0.05). Addition of CB and MCFA did not affect the differences in BWG (15-56; 0-56 days) and FCR (15-56 days) in comparison with the control diet. Significant interaction between the type of diet and additives (P < 0.05) was observed for feed intake (FI) throughout the experiment. The highest FI was found on LD diet with CB. On LD diet, all additives resulted in significantly worse nitrogen retention, however, on HD diet, it was observed only for salinomycin. The additives had no impact on fat digestibility when chickens were fed HD diet. There was significant (P < 0.05) lower-fat digestibility when LD diet with MCT, CB, and MCFA was used. The greatest value of nitrogen-corrected apparent metabolizable energy (AMEN) was found on HD diet (P < 0.05). The addition of MCT, CB, and MCFA increased the percentage share of ileum, and MCT also significantly increased the percentage share of the liver. The lactic acid bacteria and C. perfringens counts were lower on HD diet (P<0,05). The addition of MCT and CB increased the count of lactic acid bacteria in ceaca (P<0,05). Many interactions between experimental factors in this experiment showed that the efficacy of using different feed additives depends on the type of diet. The results suggest that MCFA may be the most beneficial feed additive for GLPH chicken as an alternative for antibiotic growth promoters (AGP).
Collapse
|
37
|
Liu Y, Liu C, An K, Gong X, Xia Z. Effect of Dietary Clostridium butyricum Supplementation on Growth Performance, Intestinal Barrier Function, Immune Function, and Microbiota Diversity of Pekin Ducks. Animals (Basel) 2021; 11:ani11092514. [PMID: 34573480 PMCID: PMC8471152 DOI: 10.3390/ani11092514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary In poultry farming, the use of prophylactic antibiotics can lead to increased resistance, so probiotics are a good alternative. Clostridium butyricum (C. butyricum) has been widely used to improve the gut health of animals. Therefore, we carried out the current study of Pekin ducks supplemented with C. butyricum for a period of 42 days. Here, we found a clear increase in the growth performance of Pekin ducks supplemented with C. butyricum. Moreover, a high level of secretory IgA, IgM, IgG, IL-4, and IL-10 and comparatively higher short-chain fatty acids (SCFAs) and intestinal tight junction changes were found in Pekin ducks supplemented with C. butyricum. The gut microbial diversity of Pekin ducks supplemented with C. butyricum was clearly different than that of Pekin ducks fed a non-C. butyricum diet. In conclusion, our findings suggest that 400 mg/kg C. butyricum supplementation improved the intestinal health of Pekin ducks by increasing the α-diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems indicating that 400 mg/kg C. butyricum might be a preferable antibiotic alternative for commercial application. Abstract Clostridium butyricum (C. butyricum) is increasingly being used to test the promotion of the gut health of animals. However, the modes of action for such applications for waterfowl remain unclear. Thus, we investigated whether or not intestinal barrier function, immune-related gene expression, and the diversity of the intestinal microbiota in Pekin ducks varied under C. butyricum supplementation. A total of 500 ducks were randomly assigned into five treatments supplemented with basal diets containing: either 0 (group Control), 200 (group CB200), 400 (group CB400) and 600 (group CB600) mg/kg C. butyricum or 150 mg/kg aureomycin (group A150) for 42 days. In comparison with the control group, C. butyricum supplementation enhanced the growth performance and intestinal villus height of Pekin ducks at 42 d. Serum immune indexes and fecal short-chain fatty acids (SCFAs) were all improved at both 21 d and 42 d after C. butyricum addition. The mRNA expression levels of Mucin2, Zonula occludens-1 (ZO-1), Caudin-3, and Occludin increased at 21 d and 42 d and the mRNA expression levels of IL-4 and IL-10 only increased at 42 d after C. butyricum addition. Dietary C. butyricum also resulted in an increase in the number of diversities of operational taxonomic units (OTUs), and an increase in the α-diversity of intestinal microbiota. The addition of C. butyricum altered the composition of the intestinal microbiota from 21 d to 42 d. The relative abundance of Firmicutes and Bacteroidetes showed little changes among groups; however, the relative abundance of Firmicutes/Bacteroidetes were found to have been significantly different between the 21 d and 42 d. C. butyricum administration improved the intestinal health of Pekin ducks by increasing the diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems. The optimal dietary supplementation dosage was recommended as 400 mg/kg in the diet.
Collapse
Affiliation(s)
- Yanhan Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
- Shandong Provincial Center for Animal Disease Control, Ji’nan 250100, China;
| | - Cun Liu
- Shandong Provincial Center for Animal Disease Control, Ji’nan 250100, China;
| | - Keying An
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
| | - Xiaowei Gong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
- Correspondence: ; Tel.: +86-10-62733781
| |
Collapse
|
38
|
Dabbou S, Lauwaerts A, Ferrocino I, Biasato I, Sirri F, Zampiga M, Bergagna S, Pagliasso G, Gariglio M, Colombino E, Narro CG, Gai F, Capucchio MT, Gasco L, Cocolin L, Schiavone A. Modified Black Soldier Fly Larva Fat in Broiler Diet: Effects on Performance, Carcass Traits, Blood Parameters, Histomorphological Features and Gut Microbiota. Animals (Basel) 2021; 11:ani11061837. [PMID: 34205603 PMCID: PMC8233813 DOI: 10.3390/ani11061837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Black soldier fly (Hermetia illucens L.; BSF) is gaining interest as a functional feed additive, due to the high amount of medium-chain fatty acids (MCFAs) and monoglycerides, which provide antimicrobial activities and stimulate gastrointestinal health through inhibition of potentially pathogenic bacteria. The present study evaluated the effect of BSF and modified BSF larvae fat in broiler chicken’s diet. Overall results were comparable among the studied diets, suggesting that modified BSF larvae fat showed a positive modulation of fecal microbiota by a positive reduction in potentially pathogenic bacteria such as Clostridium and Corynebacterium, without affecting intestinal morphology or showing any adverse histopathological alternations. Abstract In this study, a total of 200 male broiler chickens (Ross 308) were assigned to four dietary treatments (5 pens/treatment and 10 birds/pen) for two feeding phases: starter (0–11 days of age) and grower-finisher (11–33 days of age). A basal diet containing soy oil (SO) as added fat was used as control group (C), tested against three experimental diets where the SO was partially substituted by BSF larvae fat (BSF) or one of two types of modified BSF larvae fat (MBSF1 and MBSF2, respectively). The two modified BSF larvae fats had a high and low ratio of monobutyrin to monoglycerides of medium chain fatty acid, respectively. Diet did not influence the growth or slaughter performance, pH, color, or the chemical composition of breast and thigh muscles, gut morphometric indices, or histopathological alterations in all the organs. As far as fecal microbiota are concerned, MBSF1 and MBSF2 diets reduced the presence of Clostridium and Corynebacterium, which can frequently cause infection in poultry. In conclusion, modified BSF larva fat may positively modulate the fecal microbiota of broiler chickens without influencing the growth performance and intestinal morphology or showing any adverse histopathological alternations.
Collapse
Affiliation(s)
- Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38010 San Michele all’Adige, Italy;
| | | | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (I.B.); (L.G.); (L.C.)
- Correspondence:
| | - Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (I.B.); (L.G.); (L.C.)
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Via del Florio 2, Ozzano dell’Emilia, 40064 Bologna, Italy; (F.S.); (M.Z.)
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Via del Florio 2, Ozzano dell’Emilia, 40064 Bologna, Italy; (F.S.); (M.Z.)
| | - Stefania Bergagna
- Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (S.B.); (G.P.)
| | - Giulia Pagliasso
- Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (S.B.); (G.P.)
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (M.G.); (E.C.); (M.T.C.); (A.S.)
| | - Elena Colombino
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (M.G.); (E.C.); (M.T.C.); (A.S.)
| | - Carlos Garcés Narro
- Faculty of Veterinary Medicine, Universidad CEU Cardenal Herrera, CEU Universities, Alfara de Patriarca, E-46115 Valencia, Spain;
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy;
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (M.G.); (E.C.); (M.T.C.); (A.S.)
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (I.B.); (L.G.); (L.C.)
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (I.B.); (L.G.); (L.C.)
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (M.G.); (E.C.); (M.T.C.); (A.S.)
| |
Collapse
|
39
|
Hansen VL, Kahl S, Proszkowiec-Weglarz M, Jiménez SC, Vaessen SFC, Schreier LL, Jenkins MC, Russell B, Miska KB. The effects of tributyrin supplementation on weight gain and intestinal gene expression in broiler chickens during Eimeria maxima-induced coccidiosis. Poult Sci 2021; 100:100984. [PMID: 33652244 PMCID: PMC7921011 DOI: 10.1016/j.psj.2021.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/26/2020] [Accepted: 01/01/2021] [Indexed: 12/16/2022] Open
Abstract
Butyrate is a feed additive that has been shown to have antibacterial properties and improve gut health in broilers. Here, we examined the performance and gene expression changes in the ileum of tributyrin–supplemented broilers infected with coccidia. Ninety-six, Ross 708 broilers were fed either a control corn–soybean–based diet (−BE) or a diet supplemented with 0.25% (w/w) tributyrin (+BE). Birds were further divided into groups that were inoculated with Eimeria maxima oocysts (EM) or sham-inoculated (C) on day 21 posthatch. At 7 d postinfection (7 d PI), the peak of pathology in E. maxima infection, tributyrin-supplemented birds had significantly improved feed conversion ratios (FCR, P < 0.05) and body weight gain (BWG, P < 0.05) compared with -BE-infected birds, despite both groups having similar feed intake (FI, P > 0.05). However, at 10 d post-infection (10 d PI) no significant effects of feed type or infection were observed. Gene expression in the ileum was examined for insights into possible effects of infection and tributyrin supplementation on genes encoding proteins related to immunity, digestion, and gut barrier integrity. Among immune-related genes examined, IL-1B and LEAP2 were only significantly affected at 7 d PI. Transcription of genes related to digestion (APN, MCT1, FABP2, and MUC2) were primarily influenced by infection at 7 d PI and tributyrin supplementation (FABP2 and MUC2) at 10 d PI. With exception of ZO1, tight junction genes were affected by either infection or feed type at 7 d PI. At 10 d PI, only CLDN1 was not affected by either infection or feed type. Overall tributyrin shows promise as a supplement to improve performance during coccidiosis in broiler chickens; however, its effect on gene expression and mode of action requires further research.
Collapse
Affiliation(s)
- Victoria L Hansen
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Stanislaw Kahl
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Stephanie C Jiménez
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | | | - Lori L Schreier
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Mark C Jenkins
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Beverly Russell
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Katarzyna B Miska
- Animal Biosciences and Biotechnology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| |
Collapse
|
40
|
Borda-Molina D, Mátis G, Mackei M, Neogrády Z, Huber K, Seifert J, Camarinha-Silva A. Caeca Microbial Variation in Broiler Chickens as a Result of Dietary Combinations Using Two Cereal Types, Supplementation of Crude Protein and Sodium Butyrate. Front Microbiol 2021; 11:617800. [PMID: 33505386 PMCID: PMC7829199 DOI: 10.3389/fmicb.2020.617800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 01/10/2023] Open
Abstract
The intestinal microbiome can influence the efficiency and the health status of its host’s digestive system. Indigestible non-starch polysaccharides (NSP) serve as substrates for bacterial fermentation, resulting in short-chain fatty acids like butyrate. In broiler’s nutrition, dietary crude protein (CP) and butyrate’s presence is of particular interest for its impact on intestinal health and growth performance. In this study, we evaluated the effect on the microbial ecology of the ceca of dietary supplementations, varying the cereal type (maize and wheat), adequate levels of CP and supplementation of sodium butyrate on broiler chickens with 21 days. The overall structure of bacterial communities was statistically affected by cereal type, CP, and sodium butyrate (p = 0.001). Wheat in the diet promoted the presence of Lactobacillaceae, Bifidobacteriaceae and Bacteroides xylanisolvens, which can degrade complex carbohydrates. Maize positively affected the abundance of Bacteroides vulgatus. The addition of CP promoted the family Rikenellaceae, while sodium butyrate as feed supplement was positively related to the family Lachnospiraceae. Functional predictions showed an effect of the cereal type and a statistical significance across all supplementations and their corresponding interactions. The composition of diets affected the overall structure of broilers’ intestinal microbiota. The source of NSP as a substrate for bacterial fermentation had a stronger stimulus on bacterial communities than CP content or supplementation of butyrate.
Collapse
Affiliation(s)
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
41
|
Liu W, La ALTZ, Evans A, Gao S, Yu Z, Bu D, Ma L. Supplementation with sodium butyrate improves growth and antioxidant function in dairy calves before weaning. J Anim Sci Biotechnol 2021; 12:2. [PMID: 33397482 PMCID: PMC7780688 DOI: 10.1186/s40104-020-00521-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background There is increasing research interest in using short-chain fatty acids (SCFAs) including butyrate as potential alternatives to antibiotic growth promoters in animal production. This study was conducted to evaluate the effects of supplementation of sodium butyrate (SB) in liquid feeds (milk, milk replacer, and the mixture of both) on the growth performance, rumen fermentation, and serum antioxidant capacity and immunoglobins in dairy calves before weaning. Forty healthy female Holstein calves (4-day-old, 40 ± 5 kg of body weight) were housed in individual hutches and randomly allocated to 1 of 4 treatment groups (n = 10 per group) using the RAND function in Excel. The control group was fed no SB (SB0), while the other three groups were supplemented with 15 (SB15), 30 (SB30), or 45 (SB45) g/d of SB mixed into liquid feeds offered. The calves were initially fed milk only (days 2 to 20), then a mixture of milk and milk replacer (days 21 to 23), and finally milk replacer only (days 24 to 60). Results The SB supplementation enhanced growth and improved feed conversion into body weight gain compared with the SB0 group, and the average daily gain increased quadratically with increasing SB supplementation. No significant effect on rumen pH; concentrations of NH3-N, individual and total VFAs; or acetate: propionate (A:P) ratio was found during the whole experimental period. Serum glutathione peroxidase activity increased linearly with the increased SB supplementation, while the serum concentration of maleic dialdehyde linearly decreased. Serum concentrations of immunoglobulin A, immunoglobulin G, or immunoglobulin M were not affected by the SB supplementation during the whole experimental period. Conclusions Under the conditions of this study, SB supplementation improved growth performance and antioxidant function in pre-weaned dairy calves. We recommended 45 g/d as the optimal level of SB supplementation mixed into liquid feeds (milk or milk replacer) to improve the growth and antioxidant function of dairy calves before weaning.
Collapse
Affiliation(s)
- Wenhui Liu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - A La Teng Zhu La
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Alexander Evans
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shengtao Gao
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Dengpan Bu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China. .,Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing, 100193, People's Republic of China.
| | - Lu Ma
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
42
|
Rajput DS, Zeng D, Khalique A, Rajput SS, Wang H, Zhao Y, Sun N, Ni X. Pretreatment with probiotics ameliorate gut health and necrotic enteritis in broiler chickens, a substitute to antibiotics. AMB Express 2020; 10:220. [PMID: 33336284 PMCID: PMC7746796 DOI: 10.1186/s13568-020-01153-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Necrotic enteritis (NE) is being considered as one of the most important intestinal diseases in the recent poultry production systems, which causes huge economic losses globally. NE is caused by Clostridium perfringens, a pathogenic bacterium, and normal resident of the intestinal microflora of healthy broiler chickens. Gastrointestinal tract (GIT) of broiler chicken is considered as the most integral part of pathogen's entrance, their production and disease prevention. Interaction between C. perfringens and other pathogens such as Escherichia coli and Salmonella present in the small intestine may contribute to the development of NE in broiler chickens. The antibiotic therapy was used to treat the NE; however European Union has imposed a strict ban due to the negative implications of drug resistance. Moreover, antibiotic growth promoters cause adverse effects on human health as results of withdrawal of antibiotic residues in the chicken meat. After restriction on use of antibiotics, numerous studies have been carried out to investigate the alternatives to antibiotics for controlling NE. Thus, possible alternatives to prevent NE are bio-therapeutic agents (Probiotics), prebiotics, organic acids and essential oils which help in nutrients digestion, immunity enhancement and overall broiler performance. Recently, probiotics are extensively used alternatives to antibiotics for improving host health status and making them efficient in production. The aim of review is to describe a replacement to antibiotics by using different microbial strains as probiotics such as bacteria and yeasts etc. having bacteriostatic properties which inhibit growth of pathogens and neutralize the toxins by different modes of action.
Collapse
|
43
|
Tachibana T, Takahashi M, Takeda K, Ogino M, Khan MSI, Makino R, Cline MA. Effect of zymosan on feed passage in the digestive tract in chicks. Br Poult Sci 2020; 62:414-423. [PMID: 33314959 DOI: 10.1080/00071668.2020.1863336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. The purpose of the present study was to examine whether zymosan, which is a component of fungi, affects feed passage through the digestive tract in chicks (Gallus gallus).2. Intraperitoneal (IP) injection of 2.5 mg zymosan significantly reduced the crop-emptying rate and this effect was similar to that of 100 µg lipopolysaccharide (LPS). Zymosan affected phenol red transit from the proventriculus.3. Zymosan significantly affected the gene expression of interleukin-1β (IL-1β), IL-6, IL-8 and histidine decarboxylase in various regions of the digestive tract.4. The present study suggested that zymosan retarded feed passage through the digestive tract in chick and interleukins and histamine may be participating in this process.
Collapse
Affiliation(s)
- T Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - M Takahashi
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - K Takeda
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - M Ogino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - M S I Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Japan
| | - R Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
44
|
Effects of monobutyrin supplementation on egg production, biochemical indexes, and gut microbiota of broiler breeders. Poult Sci 2020; 100:100907. [PMID: 33518348 PMCID: PMC7936130 DOI: 10.1016/j.psj.2020.11.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
The objective of the present study was to determine the effect of monobutyrin supplementation on egg production, biochemical indexes, and gut microbiota of broiler breeders at the late stage of production. A total of 180 healthy Qingyuan partridge broilers were randomly assigned to 2 groups: 1) corn-soybean meal-based diet and 2) basal diet supplemented with 250 mg monobutyrin/kg. Each treatment group had 6 replicates/cages with 15 birds within each replicate. The experiment started at week 33 and lasted for 8 wk. Egg production rate, feed conversion rate, shell breaking strength, and shell thickness were not different between control and treatment groups. Supplementation of monobutyrin increased egg weight and tended to decrease egg breaking rate of Qingyuan partridge chickens. Supplementation of monobutyrin did not affect any of the biochemical indexes except total protein concentration. The 4 antioxidant parameters measured were not affected either. Alpha diversity indexes (Shannon, Simpson, Chao1, Ace, and Good's Coverage) and composition of cecal microbiota were not affected by monobutyrin supplementation. Overall, supplementation of monobutyrin at 250 mg/kg level improved egg quality, but its effect on cecal microbiota composition was limited.
Collapse
|
45
|
Barnas MR, Tracy BP, Karpol A, Lewis EA, McNaughton JL, May EB, Dekich MA. Tolerance of Cobb-500 broilers to a supplemental Clostridium fermentation solubles broth in the diet. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
46
|
Pascual A, Trocino A, Birolo M, Cardazzo B, Bordignon F, Ballarin C, Carraro L, Xiccato G. Dietary supplementation with sodium butyrate: growth, gut response at different ages, and meat quality of female and male broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1824590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Antón Pascual
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Angela Trocino
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Marco Birolo
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Legnaro, Padova, Italy
| | - Barbara Cardazzo
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Francesco Bordignon
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
- Institute of Animal Science and Technology, Polytechnic University of Valencia, Valencia, Spain
| | - Cristina Ballarin
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Lisa Carraro
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Gerolamo Xiccato
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Legnaro, Padova, Italy
| |
Collapse
|
47
|
Roushdy EM, Zaglool AW, Hassan FAM. Thermal stress consequences on growth performance, immunological response, antioxidant status, and profitability of finishing broilers: transcriptomic profile change of stress-related genes. Trop Anim Health Prod 2020; 52:3685-3696. [PMID: 32978744 DOI: 10.1007/s11250-020-02405-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/14/2020] [Indexed: 01/03/2023]
Abstract
The current study was conducted to investigate the impact of thermal stress on growth performance, blood biomarkers, metabolic hormones, immunological response, antioxidant activity, and expression of stress-related genes in broilers. One hundred and fifty one-day-old chicks (Ross 308) were utilized in this work. On the 21st day of age, birds were subjected to three environmentally controlled treatments with five replicate pens of 10 birds per each, representing an initial density of 10 birds/m2-control: reared in a thermoneutral condition; THS1 and THS2: exposed to 4 and 6 h of daily thermal stress at 40 ± 1 °C, respectively, until the 42 days of age. The results demonstrated that thermal stress for 4 and 6 h significantly reduced (P < 0.001) daily weight gain, daily feed intake, blood leukocyte and lymphocyte counts, serum immunoglobulins (IgM, IgA, IgG), and insulin-like growth factor-1 (IGF-1), while serum levels of aspartate aminotransferase, alanine aminotransferase, glucose, cholesterol, low-density lipoprotein, and lactate dehydrogenase were elevated relative to the thermoneutral group. Additionally, the corticosterone level and the ratio of heterophil:lymphocyte increased significantly (P < 0.001) in thermal-stressed groups. The antioxidant enzymes were affected by thermal stress as represented by a significant decrease in the activity of serum catalase (CAT) and glutathione peroxidase (GSH-Px) along with an increase in malonaldehyde concentration. Thermal stress affected gene expression by upregulating heat shock protein 70, heat shock factors 1 and 3, nuclear factor kappa B, interleukin-4, and uncoupling protein, and downregulating GSH-Px, CAT, and IGF-1 transcript levels. However, no changes were observed in interleukin-2 expression levels. It can be concluded that thermal stress destructively influences productivity, physiological status, and gene expression by upregulating heat shock protein 70, heat shock factors 1 and 3, nuclear factor kappa B, interleukin-4, and uncoupling protein, and downregulating GSH-Px, CAT, and IGF-1 transcript levels of broiler chickens.
Collapse
Affiliation(s)
- Elshimaa M Roushdy
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Asmaa W Zaglool
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Fardos A M Hassan
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
48
|
Ouattara DA, Remolue L, Becker J, Perret M, Bunescu A, Hennig K, Biliaut E, Badin A, Giacomini C, Reynier F, Andreoni C, Béquet F, Lecine P, De Luca K. An integrated transcriptomics and metabolomics study of the immune response of newly hatched chicks to the cytosine-phosphate-guanine oligonucleotide stimulation. Poult Sci 2020; 99:4360-4372. [PMID: 32867980 PMCID: PMC7598132 DOI: 10.1016/j.psj.2020.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/26/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
The immunological immaturity of the innate immune system during the first-week post-hatch enables pathogens to infect chickens, leading to the death of the animals. Current preventive solutions to improve the resistance of chicks to infections include vaccination, breeding, and sanitation. Other prophylactic solutions have been investigated, such as the stimulation of animal health with immunostimulants. Recent studies showed that administration of immune-modulators to one-day-old chicks, or in ovo, significantly reduces mortality in experimental bacterial or viral infection challenge models. Owing to a lack of molecular biomarkers required to evaluate chicken immune responses and assess the efficacy of vaccines or immune-modulators, challenge models are still used. One way to reduce challenge experiments is to define molecular signatures through omics approaches, resulting in new methodologies to rapidly screen candidate molecules or vaccines. This study aims at identifying a dual transcriptomics and metabolomics blood signature after administration of CpG-ODN (cytosine-phosphate-guanine oligodeoxynucleotides), a reference immune-stimulatory molecule. A clinical study was conducted with chicks and transcriptomics and metabolomics analyses were performed on whole-blood and plasma samples, respectively. Differentially expressed genes and metabolites with different abundance were identified in chicks treated with CpG-ODN. The results showed that CpG-ODN activated the innate immune system, within hours after administration, and its effect lasted over time, as metabolomics and transcriptomics profiles still varied 6 D after administration. In conclusion, through an integrated clinical omics approach, we deciphered in part the mode of action of CpG-ODN in post-hatch chicks.
Collapse
Affiliation(s)
| | - Lydie Remolue
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | - Jérémie Becker
- BIOASTER Microbiology Technology Institute, Lyon 69007, France
| | - Magali Perret
- BIOASTER Microbiology Technology Institute, Lyon 69007, France
| | - Andrei Bunescu
- BIOASTER Microbiology Technology Institute, Lyon 69007, France
| | - Kristin Hennig
- BIOASTER Microbiology Technology Institute, Lyon 69007, France
| | - Emeline Biliaut
- BIOASTER Microbiology Technology Institute, Lyon 69007, France
| | | | | | | | | | - Frédéric Béquet
- BIOASTER Microbiology Technology Institute, Lyon 69007, France.
| | - Patrick Lecine
- BIOASTER Microbiology Technology Institute, Lyon 69007, France
| | | |
Collapse
|
49
|
Wang B, Deng B, Yong F, Zhou H, Qu C, Zhou Z. Comparison of the fecal microbiomes of healthy and diarrheic captive wild boar. Microb Pathog 2020; 147:104377. [PMID: 32653436 DOI: 10.1016/j.micpath.2020.104377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/20/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Diarrhea caused by Enterotoxigenic Escherichia coli (ETEC) is one of the most common clinical diseases observed in captive wild boars, is usually caused by an imbalance in the gut microbiome, and is responsible for piglets significant mortality. However, little research has been undertaken into the structure and function of the intestinal microbial communities in wild boar with diarrhea influenced by enterotoxigenic E. coli. In this study, fecal samples were collected and 16S-rRNA gene sequencing was used to compare the intestinal microbiome of healthy captive wild boar and wild boar with diarrhea on the same farm. We found that the intestinal microbial diversity of healthy wild boar (HWB) was relatively high, while that of diarrheic wild boar (DWB) was significantly lower. Line Discriminant Analysis Effect Size showed that at the genus level, the abundance of Escherichia-Shigella and Fusobacterium was significantly higher in DWB. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis showed that the expression of genes in pathways including infectious diseases: bacterial, metabolism of amino acids, membrane transport, and signal transduction was significantly higher in DWB. In summary, this study provides a theoretical basis for the design of appropriate means of diarrhea treatment in captive wild boar.
Collapse
Affiliation(s)
- Bi Wang
- Wildlife Resource College, Northeast Forestry University, Harbin, China
| | - Bo Deng
- Livestock Service Center of Wujia Town, Rongchang District, Chongqing, China
| | - Fan Yong
- Nanjing Institute of Environmental Sciences of Ministry of Ecology and Environment, Nanjing, China
| | - Huixia Zhou
- Shehong Agricultural Product Quality and Safety Inspection Station, Suining, China
| | - Chunpu Qu
- School of Forestry, Northeast Forestry University, Harbin, China.
| | - Zhengyan Zhou
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, China; Institute of Herpetology, Shenyang Normal University, Shenyang, China.
| |
Collapse
|
50
|
Lan R, Zhao Z, Li S, An L. Sodium butyrate as an effective feed additive to improve performance, liver function, and meat quality in broilers under hot climatic conditions. Poult Sci 2020; 99:5491-5500. [PMID: 33142467 PMCID: PMC7647702 DOI: 10.1016/j.psj.2020.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/31/2020] [Accepted: 06/13/2020] [Indexed: 11/09/2022] Open
Abstract
This study was conducted to investigate the effects of dietary sodium butyrate (SB) supplementation on growth performance, liver function, antioxidant capacity, carcass characteristics, and meat quality in broilers under hot climatic conditions. A total of 288 one-day-old Arbor Acres broilers were randomly allocated to 4 dietary treatments as follow: CON, control diet without SB; T1, control diet with 300 mg/kg SB; T2, control diet with 600 mg/kg SB; and T3, control diet with 1,200 mg/kg SB. Each treatment had 6 replication pens and 12 broilers per pen. The results indicated that the BW on day 35; ADG from day 1 to 21, day 22 to 35, and day 1 to 35; and ADFI from day 22 to 35 linearly (P < 0.05) increased with SB supplementation. Interestingly, alanine aminotransferase and aspartate aminotransferase content in serum were linearly (P < 0.05) decreased by SB supplementation. There was linear (P < 0.05) improvement in activity of superoxide dismutase and catalase in the liver, whereas the content of malondialdehyde was linearly (P < 0.05) decreased with the inclusion of SB. Increasing SB level linearly (P < 0.05) increased CP composition and decreased drip loss percentage on day 1 and 3 of breast muscle. Furthermore, there was linear (P < 0.05) improvement in activity of superoxide dismutase, glutathione peroxidase, and catalase, whereas the content of malondialdehyde showed decreasing trend (P < 0.10) with the inclusion of SB in breast muscle. In conclusion, SB can be used as an effective feed additive to improve growth performance, liver function, and meat quality of broilers under hot climatic conditions.
Collapse
Affiliation(s)
- Ruixia Lan
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Zhihui Zhao
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Siqi Li
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Lilong An
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China.
| |
Collapse
|