1
|
Rashidi-Alavijeh J, Nuruzade N, Frey A, Huessler EM, Hörster A, Zeller AC, Schütte A, Schmidt H, Willuweit K, Lange CM. Implications of anaemia and response to anaemia treatment on outcomes in patients with cirrhosis. JHEP Rep 2023; 5:100688. [PMID: 36926273 PMCID: PMC10011825 DOI: 10.1016/j.jhepr.2023.100688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Background & Aims Anaemia is frequently observed in patients with cirrhosis and was identified as a predictor of adverse outcomes, such as increased mortality and occurrence of acute-on-chronic liver failure. To date, the possible effects of iron supplementation on these adverse outcomes are not well described. We therefore aimed to assess the role of iron supplementation in patients with cirrhosis and its capability to improve prognosis. Methods Laboratory diagnostics were performed in consecutive outpatients with cirrhosis admitted between July 2018 and December 2019 to the University Hospital Essen. Associations with transplant-free survival were assessed in regression models. Results A total of 317 outpatients with cirrhosis were included, of whom 61 received a liver transplant (n = 19) or died (n = 42). In multivariate Cox regression analysis, male sex (hazard ratio [HR] = 3.33, 95% CI [1.59, 6.99], p = 0.001), model for end-stage liver disease score (HR = 1.19, 95% CI [1.11, 1.27], p <0.001) and the increase of haemoglobin levels within 6 months (ΔHb6) (HR = 0.72, 95% CI [0.63, 0.83], p <0.001) were associated with transplant-free survival. Regarding the prediction of haemoglobin increase, intake of rifaximin (beta = 0.50, SD beta = 0.19, p = 0.007) and iron supplementation (beta = 0.79, SD beta = 0.26, p = 0.003) were significant predictors in multivariate analysis. Conclusions An increase of haemoglobin levels is associated with improvement of transplant-free survival in patients with cirrhosis. Because the prediction of haemoglobin increase significantly depends on rifaximin and iron supplementation, application of these two medications can have an important impact on the outcome of these patients. Impact and implications Anaemia is very common in patients with cirrhosis and is known to be a predictor of negative outcomes, but little is known about the effect of iron substitution in these individuals. In our cohort, increase of haemoglobin levels improved transplant-free survival of patients with cirrhosis. The increase of haemoglobin levels was mainly induced by iron supplementation and was even stronger in the case of concomitant use of iron and rifaximin. Clinical trial registration UME-ID-10042.
Collapse
Key Words
- ACLF, acute-on-chronic liver failure
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- AP, alkaline phosphatase
- AST, aspartate aminotransferase
- CRP, C-reactive protein
- Haemoglobin
- INR, international normalised ratio
- Iron deficiency
- Iron supplementation
- LT, liver transplantation
- Liver transplantation
- MELD, model for end-stage liver disease
- NASH, non-alcoholic steatohepatitis
- NSBBs, non-selective beta blockers
- PBC, primary biliary cholangitis
- PSC, primary sclerosing cholangitis
- Rifaximin
- SSC, secondary sclerosing cholangitis
- TIPS, transjugular intrahepatic portosystemic shunt
- aPTT, activated partial thromboplastin time
- ΔHb3, difference of haemoglobin levels after 3 months
- ΔHb6, difference of haemoglobin levels after 6 months
Collapse
Affiliation(s)
- Jassin Rashidi-Alavijeh
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Duisburg, Germany
| | - Nargiz Nuruzade
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Duisburg, Germany
| | - Alexandra Frey
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Duisburg, Germany
| | - Eva-Maria Huessler
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Duisburg, Germany
| | - Anne Hörster
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Duisburg, Germany
| | - Amos Cornelius Zeller
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Duisburg, Germany
| | - Andreas Schütte
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Duisburg, Germany
| | - Hartmut Schmidt
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Duisburg, Germany
| | - Katharina Willuweit
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Duisburg, Germany
| | - Christian Markus Lange
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
2
|
Aglago EK, Cross AJ, Riboli E, Fedirko V, Hughes DJ, Fournier A, Jakszyn P, Freisling H, Gunter MJ, Dahm CC, Overvad K, Tjønneland A, Kyrø C, Boutron-Ruault MC, Rothwell JA, Severi G, Katzke V, Srour B, Schulze MB, Wittenbecher C, Palli D, Sieri S, Pasanisi F, Tumino R, Ricceri F, Bueno-de-Mesquita B, Derksen JWG, Skeie G, Jensen TE, Lukic M, Sánchez MJ, Amiano P, Colorado-Yohar S, Barricarte A, Ericson U, van Guelpen B, Papier K, Knuppel A, Casagrande C, Huybrechts I, Heath AK, Tsilidis KK, Jenab M. Dietary intake of total, heme and non-heme iron and the risk of colorectal cancer in a European prospective cohort study. Br J Cancer 2023; 128:1529-1540. [PMID: 36759722 PMCID: PMC10070394 DOI: 10.1038/s41416-023-02164-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Iron is an essential micronutrient with differing intake patterns and metabolism between men and women. Epidemiologic evidence on the association of dietary iron and its heme and non-heme components with colorectal cancer (CRC) development is inconclusive. METHODS We examined baseline dietary questionnaire-assessed intakes of total, heme, and non-heme iron and CRC risk in the EPIC cohort. Sex-specific multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using Cox regression. We modelled substitution of a 1 mg/day of heme iron intake with non-heme iron using the leave one-out method. RESULTS Of 450,105 participants (318,680 women) followed for 14.2 ± 4.0 years, 6162 (3511 women) developed CRC. In men, total iron intake was not associated with CRC risk (highest vs. lowest quintile, HRQ5vs.Q1:0.88; 95%CI:0.73, 1.06). An inverse association was observed for non-heme iron (HRQ5vs.Q1:0.80, 95%CI:0.67, 0.96) whereas heme iron showed a non-significant association (HRQ5vs.Q1:1.10; 95%CI:0.96, 1.27). In women, CRC risk was not associated with intakes of total (HRQ5vs.Q1:1.11, 95%CI:0.94, 1.31), heme (HRQ5vs.Q1:0.95; 95%CI:0.84, 1.07) or non-heme iron (HRQ5vs.Q1:1.03, 95%CI:0.88, 1.20). Substitution of heme with non-heme iron demonstrated lower CRC risk in men (HR:0.94; 95%CI: 0.89, 0.99). CONCLUSIONS Our findings suggest potential sex-specific CRC risk associations for higher iron consumption that may differ by dietary sources.
Collapse
Affiliation(s)
- Elom K Aglago
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Veronika Fedirko
- Department of Epidemiology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - David J Hughes
- Cancer Biology and Therapeutics Group (CBT), Conway Institute, School of Biomolecular and Biomedical Science (SBBS), University College Dublin, Dublin, Ireland
| | - Agnes Fournier
- Centre de Recherche en Epidémiologie et Santé des Populations, Université Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Kyrø
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marie-Christine Boutron-Ruault
- Centre de Recherche en Epidémiologie et Santé des Populations, Université Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Joseph A Rothwell
- Centre de Recherche en Epidémiologie et Santé des Populations, Université Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations, Université Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer research Center (DKFZ), Heidelberg, Germany
| | - Bernard Srour
- Division of Cancer Epidemiology, German Cancer research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network, ISPRO, Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian, 120133, Milano, Italy
| | - Fabrizio Pasanisi
- Internal Medicine and Clinical Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE-ONLUS, 97100, Ragusa, Italy
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Unit of Epidemiology, Regional Health Service, ASL TO3, Grugliasco, TO, Italy
| | - Bas Bueno-de-Mesquita
- Former senior scientist, Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Jeroen W G Derksen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Guri Skeie
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Torill Enget Jensen
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Marko Lukic
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastián, Spain
- Biodonostia Health Research Institute, Epidemiology and Public Health Area, San Sebastián, Spain
| | - Sandra Colorado-Yohar
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Aurelio Barricarte
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ulrika Ericson
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Bethany van Guelpen
- Department of Radiation Sciences, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Anika Knuppel
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Corinne Casagrande
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
3
|
Khan AZ, Badar S, O'Callaghan KM, Zlotkin S, Roth DE. Fecal Iron Measurement in Studies of the Human Intestinal Microbiome. Curr Dev Nutr 2022; 6:nzac143. [PMID: 36475017 PMCID: PMC9718653 DOI: 10.1093/cdn/nzac143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 04/22/2024] Open
Abstract
Iron is an essential micronutrient for humans and their intestinal microbiota. Host intestinal cells and iron-dependent bacteria compete for intraluminal iron, so the composition and functions of the gut microbiota may influence iron availability. Studies of the effects of the microbiota or probiotic interventions on host iron absorption may be particularly relevant to settings with high burdens of iron deficiency and gastrointestinal infections, since inflammation reduces iron bioavailability and unabsorbed intraluminal iron may modify the composition of the microbiota. The quantification of stool iron content may serve as an indicator of the amount of intraluminal iron to which the intestinal microbiota is exposed, which is particularly relevant for studies of the effect of iron on the intestinal microbiome, where fecal samples collected for purposes of microbiome characterization can be leveraged for stool iron analysis. However, few studies are available to guide researchers in the selection and implementation of stool iron assays, particularly because cross-comparison of available methods is limited in literature. This review aims to describe the available stool iron quantification methods and highlight their potential application in studies of iron-microbiome relationships, with a focus on pediatric research. MS-based methods offer high sensitivity and precision, but the need for expensive equipment and the high per-sample and maintenance costs may limit their widespread use. Conversely, colorimetric assays offer lower cost, ease of use, and rapid turnaround times but have thus far been optimized primarily for blood-derived matrices rather than stool. Further research efforts are needed to validate and standardize methods for stool iron assessment and to determine if the incorporation of such analyses in human microbiome studies 1) yields insights into the interactions between intestinal microbiota and iron and 2) contributes to the development of interventions that mitigate iron deficiency and promote a healthy microbiome.
Collapse
Affiliation(s)
- Afreen Z Khan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Sayema Badar
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Karen M O'Callaghan
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Stanley Zlotkin
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Daniel E Roth
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Dasgupta S, Maricic I, Tang J, Wandro S, Weldon K, Carpenter CS, Eckmann L, Rivera-Nieves J, Sandborn W, Knight R, Dorrestein P, Swafford AD, Kumar V. Class Ib MHC-Mediated Immune Interactions Play a Critical Role in Maintaining Mucosal Homeostasis in the Mammalian Large Intestine. Immunohorizons 2021; 5:953-971. [PMID: 34911745 PMCID: PMC10026853 DOI: 10.4049/immunohorizons.2100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Lymphocytes within the intestinal epithelial layer (IEL) in mammals have unique composition compared with their counterparts in the lamina propria. Little is known about the role of some of the key colonic IEL subsets, such as TCRαβ+CD8+ T cells, in inflammation. We have recently described liver-enriched innate-like TCRαβ+CD8αα regulatory T cells, partly controlled by the non-classical MHC molecule, Qa-1b, that upon adoptive transfer protect from T cell-induced colitis. In this study, we found that TCRαβ+CD8αα T cells are reduced among the colonic IEL during inflammation, and that their activation with an agonistic peptide leads to significant Qa-1b-dependent protection in an acute model of colitis. Cellular expression of Qa-1b during inflammation and corresponding dependency in peptide-mediated protection suggest that Batf3-dependent CD103+CD11b- type 1 conventional dendritic cells control the protective function of TCRαβ+CD8αα T cells in the colonic epithelium. In the colitis model, expression of the potential barrier-protective gene, Muc2, is enhanced upon administration of a Qa-1b agonistic peptide. Notably, in steady state, the mucin metabolizing Akkermansia muciniphila was found in significantly lower abundance amid a dramatic change in overall microbiome and metabolome, increased IL-6 in explant culture, and enhanced sensitivity to dextran sulfate sodium in Qa-1b deficiency. Finally, in patients with inflammatory bowel disease, we found upregulation of HLA-E, a Qa-1b analog with inflammation and biologic non-response, in silico, suggesting the importance of this regulatory mechanism across species.
Collapse
Affiliation(s)
- Suryasarathi Dasgupta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Igor Maricic
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jay Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Stephen Wandro
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Kelly Weldon
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Carolina S Carpenter
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Lars Eckmann
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jesus Rivera-Nieves
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - William Sandborn
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA; and
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Peter Dorrestein
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
| | - Austin D Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA;
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| |
Collapse
|
5
|
Sowers TD, Bone SE, Noerpel MR, Blackmon MD, Karna RR, Scheckel KG, Juhasz AL, Diamond GL, Thomas DJ, Bradham KD. Plumbojarosite Remediation of Soil Affects Lead Speciation and Elemental Interactions in Soil and in Mice Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15950-15960. [PMID: 34806356 PMCID: PMC9606633 DOI: 10.1021/acs.est.1c06067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lead (Pb) contamination of soils is of global concern due to the devastating impacts of Pb exposure in children. Because early-life exposure to Pb has long-lasting health effects, reducing exposure in children is a critical public health goal that has intensified research on the conversion of soil Pb to low bioavailability phases. Recently, plumbojarosite (PLJ) conversion of highly available soil Pb was found to decrease Pb relative bioavailability (RBA <10%). However, there is sparse information concerning interactions between Pb and other elements when contaminated soil, pre- and post-remediation, is ingested and moves through the gastrointestinal tract (GIT). Addressing this may inform drivers of effective chemical remediation strategies. Here, we utilize bulk and micro-focused Pb X-ray absorption spectroscopy to probe elemental interactions and Pb speciation in mouse diet, cecum, and feces samples following ingestion of contaminated soils pre- and post-PLJ treatment. RBA of treated soils was less than 1% with PLJ phases transiting the GIT with little absorption. In contrast, Pb associated with organics was predominantly found in the cecum. These results are consistent with transit of insoluble PLJ to feces following ingestion. The expanded understanding of Pb interactions during GIT transit complements our knowledge of elemental interactions with Pb that occur at higher levels of biological organization.
Collapse
Affiliation(s)
- Tyler D Sowers
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Sharon E Bone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew R Noerpel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Matthew D Blackmon
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Ranju R Karna
- Bennett Aerospace, Inc., Engineer Research and Development Center, USACE, Vicksburg, Mississippi 39183, United States
| | - Kirk G Scheckel
- Center for Environmental Solutions & Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Gary L Diamond
- SRC, Inc., North Syracuse, New York 13212, United States
| | - David J Thomas
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Karen D Bradham
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
6
|
Zhang YY, Stockmann R, Ng K, Ajlouni S. Opportunities for plant-derived enhancers for iron, zinc, and calcium bioavailability: A review. Compr Rev Food Sci Food Saf 2020; 20:652-685. [PMID: 33443794 DOI: 10.1111/1541-4337.12669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Understanding of the mechanism of interactions between dietary elements, their salts, and complexing/binding ligands is vital to manage both deficiency and toxicity associated with essential element bioavailability. Numerous mineral ligands are found in both animal and plant foods and are known to exert bioactivity via element chelation resulting in modulation of antioxidant capacity or micobiome metabolism among other physiological outcomes. However, little is explored in the context of dietary mineral ligands and element bioavailability enhancement, particularly with respect to ligands from plant-derived food sources. This review highlights a novel perspective to consider various plant macro/micronutrients as prospective bioavailability enhancing ligands of three essential elements (Fe, Zn, and Ca). We also delineate the molecular mechanisms of the ligand-binding interactions underlying mineral bioaccessibility at the luminal level. We conclude that despite current understandings of some of the structure-activity relationships associated with strong mineral-ligand binding, the physiological links between ligands as element carriers and uptake at targeted sites throughout the gastrointestinal (GI) tract still require more research. The binding behavior of potential ligands in the human diet should be further elucidated and validated using pharmacokinetic approaches and GI models.
Collapse
Affiliation(s)
- Yianna Y Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,CSIRO Agriculture & Food, Werribee, VIC, Australia
| | | | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Said Ajlouni
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Sousa Gerós A, Simmons A, Drakesmith H, Aulicino A, Frost JN. The battle for iron in enteric infections. Immunology 2020; 161:186-199. [PMID: 32639029 PMCID: PMC7576875 DOI: 10.1111/imm.13236] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for almost all living organisms, but can be extremely toxic in high concentrations. All organisms must therefore employ homeostatic mechanisms to finely regulate iron uptake, usage and storage in the face of dynamic environmental conditions. The critical step in mammalian systemic iron homeostasis is the fine regulation of dietary iron absorption. However, as the gastrointestinal system is also home to >1014 bacteria, all of which engage in their own programmes of iron homeostasis, the gut represents an anatomical location where the inter-kingdom fight for iron is never-ending. Here, we explore the molecular mechanisms of, and interactions between, host and bacterial iron homeostasis in the gastrointestinal tract. We first detail how mammalian systemic and cellular iron homeostasis influences gastrointestinal iron availability. We then focus on two important human pathogens, Salmonella and Clostridia; despite their differences, they exemplify how a bacterial pathogen must navigate and exploit this web of iron homeostasis interactions to avoid host nutritional immunity and replicate successfully. We then reciprocally explore how iron availability interacts with the gastrointestinal microbiota, and the consequences of this on mammalian physiology and pathogen iron acquisition. Finally, we address how understanding the battle for iron in the gastrointestinal tract might inform clinical practice and inspire new treatments for important diseases.
Collapse
Affiliation(s)
- Ana Sousa Gerós
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Alison Simmons
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Hal Drakesmith
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Anna Aulicino
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Joe N. Frost
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Fujiwara Y, Lee JY, Banno H, Imai S, Tokumoto M, Hasegawa T, Seko Y, Nagase H, Satoh M. Cadmium induces iron deficiency anemia through the suppression of iron transport in the duodenum. Toxicol Lett 2020; 332:130-139. [PMID: 32645461 DOI: 10.1016/j.toxlet.2020.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/05/2020] [Accepted: 07/05/2020] [Indexed: 11/30/2022]
Abstract
Cadmium (Cd) is an environmental contaminant that triggers toxic effects in various tissues such as the kidney, liver, and lung. Cd can also cause abnormal iron metabolism, leading to anemia. Iron homeostasis is regulated by intestinal absorption. However, whether Cd affects the iron absorption pathway is unclear. We aimed to elucidate the relationship between the intestinal iron transporter system and Cd-induced iron deficiency anemia. C57BL/6J female and male mice, 129/Sv female mice, and DBA/2 female mice were given a single oral dose of CdCl2 by gavage. After 3 or 24 h, Cd decreased serum iron concentrations and inhibited the expression of iron transport-related genes in the duodenum. In particular, Cd decreased the levels of divalent metal transporter 1 and ferroportin 1 in the duodenum. In addition, human colon carcinoma Caco-2 cells were treated with CdCl2. After 72 h, Cd decreased the expression of iron transport-related factors in Caco-2 cells with a pattern similar to that seen in the murine duodenum. These findings suggest that Cd inhibits iron absorption through direct suppression of iron transport in duodenal enterocytes and contributes to abnormal iron metabolism.
Collapse
Affiliation(s)
- Yasuyuki Fujiwara
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan; Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Hiroki Banno
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Shunji Imai
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Maki Tokumoto
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Tatsuya Hasegawa
- Department of Environmental Biochemistry, Mount Fuji Research Institute, Yamanashi, 403-0005, Japan
| | - Yoshiyuki Seko
- Department of Environmental Biochemistry, Mount Fuji Research Institute, Yamanashi, 403-0005, Japan
| | - Hisamitsu Nagase
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan; School of Pharmacy, Gifu University of Medical Science, Gifu, 501-3892, Japan
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan.
| |
Collapse
|
9
|
Minor EA, Kupec JT, Nickerson AJ, Narayanan K, Rajendran VM. Increased DMT1 and FPN1 expression with enhanced iron absorption in ulcerative colitis human colon. Am J Physiol Cell Physiol 2019; 318:C263-C271. [PMID: 31721611 DOI: 10.1152/ajpcell.00128.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron deficiency anemia is a common complication of ulcerative colitis (UC) that can profoundly impact quality of life. Most iron absorption occurs in the duodenum via divalent metal transporter 1 (DMT1)-mediated uptake and ferroportin-1 (FPN1)-mediated export across the apical and basolateral membranes, respectively. However, the colon also contains iron transporters and can participate in iron absorption. Studies have shown increased duodenal DMT1 and FPN1 in patients with UC, but there is conflicting evidence about whether expression is altered in UC colon. We hypothesized that expression of colonic DMT1 and FPN1 will also increase to compensate for iron deficiency. Quantitative RT-PCR and Western blot analyses were performed on duodenal and colonic segmental (right colon, transverse colon, left colon, and rectum) biopsies obtained during colonoscopy. DMT1 mRNA and protein abundances in colonic segments were approximately equal to those in the duodenum, whereas colonic FPN1 mRNA and protein abundances of colonic segments were about one-quarter of those of the duodenum. DMT1 specific mRNA and protein abundances were increased twofold, whereas FPN1 mRNA and protein expressions were increased fivefold in UC distal colon. Immunofluorescence studies revealed enhanced expression of apical membrane- and basolateral membrane-localized DMT1 and FPN1 in UC human colon, respectively. Increased DMT1 expression was associated with enhanced 2-(3-carbamimidoylsulfanylmethyl-benzyl)-isothiourea (CISMBI, DMT1 specific inhibitor)-sensitive 59Fe uptake in UC human colon. We conclude from these results that patients with active UC have increased expression of colonic iron transporters and increased iron absorption, which may be targeted in the treatment of UC-related anemia.
Collapse
Affiliation(s)
- Emily A Minor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Justin T Kupec
- Department of Medicine, Digestive Diseases Section, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Andrew J Nickerson
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Karthikeyan Narayanan
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Medicine, Digestive Diseases Section, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
10
|
Rousseau S, Kyomugasho C, Celus M, Hendrickx MEG, Grauwet T. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Crit Rev Food Sci Nutr 2019; 60:826-843. [PMID: 30632768 DOI: 10.1080/10408398.2018.1552243] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant-based foods gain more importance since they play a key role in sustainable, low-meat and healthy diets. In developing countries, these food products, especially legumes and cereals, are important staple foods. Nevertheless, the question arises on how efficient they are to deliver minerals and if it is useful to encourage their consumption to reduce the prevalence of mineral deficiencies? This review paper focuses on the discrepancy between the mineral content and the amount of minerals that can be released and absorbed from plant-based foods during human digestion which can be attributed to several inherent factors such as the presence of mineral antinutrients (phytic acid, polyphenols and dietary fiber) and physical barriers (surrounding macronutrients and cell wall). Further, this review paper summarizes the effects of different processing techniques (milling, soaking, dehulling, fermentation, germination and thermal processing) on mineral bioaccessibility and bioavailability of plant-based foods. The positive impact of these techniques mostly relies on the fact that antinutrients levels are reduced due to removal of fractions rich in antinutrients and/or due to their leaching into the processing liquid. Although processing can have a positive effect, it also can induce leaching out of minerals and a reduced mineral bioaccessibility and bioavailability.
Collapse
Affiliation(s)
- Sofie Rousseau
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Clare Kyomugasho
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Miete Celus
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Marc E G Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
de Lima Correia Silva M, da Graça Leite Speridião P, Oyama LM, de Morais MB. Effect of fructo-oligosaccharide supplementation in soya beverage on the intestinal absorption of calcium and iron in newly weaned rats. Br J Nutr 2018; 120:1338-1348. [PMID: 30499425 DOI: 10.1017/s0007114518002714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Studies have shown the positive effects of prebiotics on the intestinal absorption of Ca and Fe. The present study evaluated the effect of fructo-oligosaccharide (FOS) supplementation in soya beverage (SB) on absorption mechanisms of Ca and Fe in recently weaned rats. Male Wistar rats were divided into four groups: lactose-free cows' milk (CM), lactose-free CM with FOS (0·8 g/100 ml) (CMF), SB and soya beverage with FOS (0·8 g/100 ml) (SBF). These rats were euthanised after 1 week of treatment. Organ weight, pH of the caecal content and absorption mechanisms of Ca and Fe were evaluated. The results showed that the weight of the caecal contents increased in the CMF and SBF groups, and the pH of the caecal contents was lower in these groups. The Hb levels of the CMF and SB groups were higher when compared with that of the CM group and lower in relation to the SBF group. The apparent Ca and Fe absorption and apparent Ca retention in the CM group were higher when compared with the SB group, whereas in the CMF group, they were higher in relation to the SBF group. Divalent metal transporter 1 (DMT1) protein expression in the duodenum was higher in the SBF group than in the SB and CMF groups. SB resulted in lower intestinal Ca absorption and higher Hb concentration, despite the lower apparent Fe absorption in relation to CM. Supplementation with FOS provided beneficial effects on Hb and DMT1 protein expression in the duodenum, in addition to improving the absorption process.
Collapse
Affiliation(s)
- Maisa de Lima Correia Silva
- 1Departamento de Pediatria,Disciplina de Gastroenterologia Pediátrica,Universidade Federal de São Paulo,Rua Coronel Lisboa826,04020-000 São Paulo,SP,Brazil
| | - Patrícia da Graça Leite Speridião
- 1Departamento de Pediatria,Disciplina de Gastroenterologia Pediátrica,Universidade Federal de São Paulo,Rua Coronel Lisboa826,04020-000 São Paulo,SP,Brazil
| | - Lila Missae Oyama
- 2Departamento de Fisiologia,Disciplina de Fisiologia da Nutrição,Universidade Federal de São Paulo,Rua Botucatu 862,2° andar,04023-060 São Paulo,SP, Brazil
| | | |
Collapse
|
12
|
Gut Microbiota and Iron: The Crucial Actors in Health and Disease. Pharmaceuticals (Basel) 2018; 11:ph11040098. [PMID: 30301142 PMCID: PMC6315993 DOI: 10.3390/ph11040098] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Iron (Fe) is a highly ample metal on planet earth (~35% of the Earth’s mass) and is particularly essential for most life forms, including from bacteria to mammals. Nonetheless, iron deficiency is highly prevalent in developing countries, and oral administration of this metal is so far the most effective treatment for human beings. Notably, the excessive amount of unabsorbed iron leave unappreciated side effects at the highly interactive host–microbe interface of the human gastrointestinal tract. Recent advances in elucidating the molecular basis of interactions between iron and gut microbiota shed new light(s) on the health and pathogenesis of intestinal inflammatory diseases. We here aim to present the dynamic modulation of intestinal microbiota by iron availability, and conversely, the influence on dietary iron absorption in the gut. The central part of this review is intended to summarize our current understanding about the effects of luminal iron on host–microbe interactions in the context of human health and disease.
Collapse
|
13
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
14
|
Ginanjar E, Indrawati L, Setianingsih I, Atmakusumah D, Harahap A, Timan IS, Marx JJM. Iron Absorption in Iron-Deficient Women, Who Received 65 mg Fe with an Indonesian Breakfast, Is Much Better from NaFe(III)EDTA than from Fe(II)SO₄, with an Acceptable Increase of Plasma NTBI. A Randomized Clinical Trial. Pharmaceuticals (Basel) 2018; 11:ph11030085. [PMID: 30201907 PMCID: PMC6161297 DOI: 10.3390/ph11030085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Plasma non-transferrin-bound iron (NTBI) is potentially harmful due to the generation of free radicals that cause tissue damage in vascular and other diseases. Studies in iron-replete and iron-deficient subjects, receiving a single oral test dose of Fe(II)SO4 or NaFe(III)EDTA with water, revealed that FeSO4 was well absorbed when compared with NaFeEDTA, while only the Fe(II) compound showed a remarkable increase of NTBI. As NaFeEDTA is successfully used for food fortification, a double-blind randomized cross-over trial was conducted in 11 healthy women with uncomplicated iron deficiency. All subjects received a placebo, 6.5 mg FeSO4, 65 mg FeSO4, 6.5 mg NaFeEDTA, and 65 mg NaFeEDTA with a traditional Indonesian breakfast in one-week intervals. Blood tests were carried out every 60 min for five hours. NTBI detection was performed using the fluorescein-labeled apotransferrin method. Plasma iron values were highly increased after 65 mg NaFeEDTA, twice as high as after FeSO4. A similar pattern was seen for NTBI. After 6.5 mg of NaFeEDTA and FeSO4, NTBI was hardly detectable. NaFeEDTA was highly effective for the treatment of iron deficiency if given with a meal, inhibiting the formation of nonabsorbable Fe-complexes, while NTBI did not exceed the range of normal values for iron-replete subjects.
Collapse
Affiliation(s)
- Eka Ginanjar
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia.
| | - Lilik Indrawati
- Department of Clinical Pathology, Faculty of Medicine, University of Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia.
| | | | - Djumhana Atmakusumah
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia.
| | - Alida Harahap
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia.
| | - Ina S Timan
- Department of Clinical Pathology, Faculty of Medicine, University of Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia.
| | - Joannes J M Marx
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands.
| |
Collapse
|
15
|
Severe Iron Metabolism Defects in Mice With Double Knockout of the Multicopper Ferroxidases Hephaestin and Ceruloplasmin. Cell Mol Gastroenterol Hepatol 2018; 6:405-427. [PMID: 30182051 PMCID: PMC6120670 DOI: 10.1016/j.jcmgh.2018.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Multicopper ferroxidases (MCFs) facilitate intestinal iron absorption and systemic iron recycling, likely by a mechanism involving the oxidization of Fe2+ from the iron exporter ferroportin 1 for delivery to the circulating Fe3+ carrier transferrin. Hephaestin (HEPH), the only MCF known to be expressed in enterocytes, aids in the basolateral transfer of dietary iron to the blood. Mice lacking HEPH in the whole body (Heph-/- ) or intestine alone (Hephint/int ) exhibit defects in dietary iron absorption but still survive and grow. Circulating ceruloplasmin (CP) is the only other known MCF likely to interact with enterocytes. Our aim was to assess the effects of combined deletion of HEPH and CP on intestinal iron absorption and homeostasis in mice. METHODS Mice lacking both HEPH and CP (Heph-/-Cp-/- ) and mice with whole-body knockout of CP and intestine-specific deletion of HEPH (Hephint/intCp-/- ) were generated and phenotyped. RESULTS Heph-/-Cp-/- mice were severely anemic and had low serum iron, but they exhibited marked iron loading in duodenal enterocytes, the liver, heart, pancreas, and other tissues. Hephint/intCp-/- mice were moderately anemic (similar to Cp-/- mice) but were iron loaded only in the duodenum and liver, as in Hephint/int and Cp-/- mice, respectively. Both double knockout models absorbed iron in radiolabeled intestinal iron absorption studies, but the iron was inappropriately distributed, with an abnormally high percentage retained in the liver. CONCLUSIONS These studies indicate that HEPH and CP, and likely MCFs in general, are not essential for intestinal iron absorption but are required for proper systemic iron distribution. They also point to important extra-intestinal roles for HEPH in maintaining whole-body iron homeostasis.
Collapse
Key Words
- CP, ceruloplasmin
- Cp-/-, mice lacking CP in the whole body
- DAB, 3,3′-diaminobenzidine
- FDR, false discovery rate
- FPN1, ferroportin 1
- GI, gastrointestinal
- HCI, hydrochloric acid
- HEPH, hephaestin
- Heph-/-, mice lacking HEPH in the whole body
- Heph-/-Cp-/- or DKO, double-knockout mice lacking both HEPH and CP
- Hephfl/fl, mice with floxed Heph alleles
- Hephfl/flCp-/-, mice with floxed Heph alleles and lacking CP in the whole body
- Hephint/int, mice lacking HEPH in the intestine alone
- Hephint/intCp-/-, mice lacking HEPH in the intestine alone and lacking CP in the whole body
- Hephsla/slaCp-/-, mice lacking CP in the whole body and expressing only the sla mutant form of HEPH
- Intestinal Iron Absorption
- Iron Deficiency Anemia
- Iron Overload
- MCF, multicopper ferroxidase
- NTBI, non-transferrin bound iron
- Non-Transferrin Bound Iron
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- SD, standard deviation
- TBST, Tris-buffered saline with 0.1% Tween-20
- TF, transferrin
- TIBC, total iron binding capacity
- WT, wild-type
- sla, sex-linked anemia
Collapse
|
16
|
Intake of Polydextrose Alters Hematology and the Profile of Short Chain Fatty Acids in Partially Gastrectomized Rats. Nutrients 2018; 10:nu10060792. [PMID: 29925762 PMCID: PMC6024616 DOI: 10.3390/nu10060792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Polydextrose (PDX) ingestion may increase the intestinal absorption of iron. This study evaluated the effects of 7.5% polydextrose supplementation on markers of iron uptake, transport and storage in partially gastrectomized rats. Half of a batch of 40 male Wistar rats (250 g) underwent Billroth II partial gastrectomy with anterior truncal vagotomy (GXT), while the other half underwent sham gastrectomy (SHAM). At 7 postoperative days, the animals were subdivided into four groups (n = 10): Sham Control and GXT Control (no polydextrose); Sham PDX and GXT PDX (with 7.5% PDX). The animals were euthanized after 60 day of PDX treatment. Organ weight, cecal pH, the characterization and quantification of short-chain fatty acids (SCFA), hematological parameters, hepatic iron content and the expression of ferroportin (FPT) in the jejunum, cecum, colon and liver were evaluated. PDX caused changes in the cecum of the supplemented animals, where there was a decrease in pH, increase in cecal wall and marked production of SCFA, especially acetic and propionic acids (p < 0.05). Hepatic iron levels were lower in GXT animals. PDX increased hemoglobin (HGB) values by 29.2% and hematocrit (HCT) by 55.8% in the GXT PDX group compared to the GXT Control group. The GXT PDX group had lower hepatic FPT expression (p < 0.05). PDX led to increased SCFA concentration in the supplemented animals. Considering that SCFAs play a central role in the increasing nutrients uptake, this mechanism may be involved in altering the hematology profile observed in these animals but not enough to reverse iron deficiency anemia in post-gastrectomy rats.
Collapse
|
17
|
Collins JF, Flores SR, Wang X, Anderson GJ. Mechanisms and Regulation of Intestinal Iron Transport. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018:1451-1483. [DOI: 10.1016/b978-0-12-809954-4.00060-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Weinborn V, Valenzuela C, Olivares M, Arredondo M, Weill R, Pizarro F. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans. Food Funct 2017; 8:1994-1999. [PMID: 28485415 DOI: 10.1039/c6fo01833e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used 55Fe and 59Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.
Collapse
Affiliation(s)
- Valerie Weinborn
- Department of Food Science and Technology, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | | | | | | | | | | |
Collapse
|
19
|
Zhang LY, Liao XD, Zhang LY, Lu L, Luo XG. Kinetics of iron absorption by in situ ligated small intestinal loops of broilers involved in iron transporters. J Anim Sci 2017; 94:5219-5229. [PMID: 28046154 DOI: 10.2527/jas.2016-0713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Two experiments were conducted with 28-d-old commercial male broilers to study the kinetics of iron (Fe) absorption and the effect of Fe treatment on divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1) mRNA levels in in situ ligated segments from different small intestinal regions of broilers. In Exp. 1, we compared Fe absorption in 3 small intestinal segments at different post-perfusion time points after perfusion with 0.45 m of Fe as Fe sulfate (FeSO ∙ 7HO), and found that the Fe absorption in the duodenum at 30, 45, and 60 min was greater ( < 0.006) than that in the jejunum, and at 60 min, the Fe absorption in the duodenum was greater ( = 0.034) than that in the ileum. In addition, the Fe absorption at 30 min was more than 85.0% of the maximum absorption in each segment. In Exp. 2, a kinetic study of Fe absorption was performed with the duodenal, jejunal, and ileal loops perfused with solutions containing 0 (control), 0.11, 0.22, 0.45, 0.80, 1.79, or 3.58 m of Fe as FeSO 7HO. The Fe concentrations in perfusates were measured at 30 min after perfusion, and in the control group and the group treated with 0.45 m Fe as FeSO 7HO, the DMT1 and FPN1 mRNA levels in the ligated duodenum, jejunum, and ileum were analyzed. The kinetic curves of Fe absorption showed that Fe absorption in the duodenum and jejunum depended on a saturated carrier-mediated process. The maximum absorption rate in the duodenal segment was greater ( < 0.0001) than that in the jejunum (42.75 vs. 8.16 nmol × cm × min), and the Michaelis-Menten constant value was higher ( < 0.0001) in the duodenum than in the jejunum (6.16 vs. 1.31 m). In the ileum, however, the Fe absorption was a non-saturated diffusion process, and the diffusive constant was 3.54 × 10 cm × min. The DMT1 and FPN1 mRNA levels in the duodenum were greater ( < 0.0001) than those in the jejunum and ileum, and greater ( < 0.009) in the jejunum than in the ileum. No differences ( > 0.25) were detected in the DMT1 and FPN1 mRNA levels of the duodenum or jejunum and the DMT1 mRNA level of the ileum between the control and the 0.45 m Fe group, but Fe perfusion increased ( < 0.03) FPN1 mRNA level in the ileum. The above results indicate that the duodenum is the main site of Fe absorption in the small intestine of broilers, and Fe absorption in the duodenum and jejunum is a saturated carrier-mediated process, but a non-saturated diffusion process in the ileum.
Collapse
|
20
|
Carvalho L, Brait D, Vaz M, Lollo P, Morato P, Oesterreich S, Raposo J, Freitas K. Partially Hydrolyzed Guar Gum Increases Ferroportin Expression in the Colon of Anemic Growing Rats. Nutrients 2017; 9:nu9030228. [PMID: 28273797 PMCID: PMC5372891 DOI: 10.3390/nu9030228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/28/2017] [Indexed: 11/29/2022] Open
Abstract
Studies have reported a positive effect of prebiotics on the bioavailability of iron. This study evaluated the effect of partially hydrolyzed guar gum (PHGG) on iron absorption mechanisms in anemic rats. Male Wistar rats were fed 75g American Institute of Nutrition Rodent Diets for growth, pregnancy and lactation (AIN93-G) without iron for three weeks in order to induce iron deficiency anemia. Then they were fed a control diet (n = 12; without fiber) or a diet with 7.5% of PHGG (n = 12), both without iron. Food intake, body growth and the feed efficiency coefficient (FEC) were measured. The animals were euthanized after two weeks of treatment. The weight of the organs, the pH of the cecal content, and the hepatic iron and ferroportin expression in the cecum, duodenum, and liver were assessed. The intake of PHGG reduced food intake without affecting body growth, and there was a difference between the groups regarding the FEC (p = 0.026), with the highest value found in the PHGG group. The weight of the cecal content increased (p ≤ 0.001) and the pH of the cecal content was significantly lower in the PHGG group. The intake of PHGG significantly increased ferroportin expression in the cecum;however, the difference was not significant in the duodenum and the liver. PHGG seems to have a positive influence on iron absorption through transporter expression, and structural and physiological changes in the colon of anemic growing animals.
Collapse
Affiliation(s)
- Luciana Carvalho
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Débora Brait
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Márcia Vaz
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Pablo Lollo
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Priscila Morato
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Silvia Oesterreich
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Jorge Raposo
- School of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Karine Freitas
- Center of Biological Sciences and Health, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79825-070, Brazil.
| |
Collapse
|
21
|
Nakanishi T, Hasuike Y, Nanami M, Yahiro M, Kuragano T. Novel iron-containing phosphate binders and anemia treatment in CKD: oral iron intake revisited. Nephrol Dial Transplant 2015; 31:1588-94. [PMID: 26142396 DOI: 10.1093/ndt/gfv268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/05/2015] [Indexed: 01/01/2023] Open
Abstract
Recent reports have shown that novel phosphate binders containing iron are not only efficacious for the treatment of hyperphosphatemia but also may reduce the need for erythropoiesis-stimulating agents and intravenous (IV) iron for anemia management in patients on maintenance hemodialysis (MHD). Possible healthcare cost savings, which have not been demonstrated in a long-term study, may be an additional advantage of using such multi-pronged treatment strategies for the control of both hyperphosphatemia and iron needs. It is currently assumed that oral iron supplementation is less efficient than the IV route in patients with chronic kidney disease (CKD). The unexpected efficacy of novel iron-containing phosphate binders, such as ferric citrate, in repleting insufficient iron stores and improving the anemia of CKD could change this view. Previous assumptions of self-controlled iron uptake by 'mucosal block' or hepcidin, or else by impaired intestinal iron absorption due to CKD-associated inflammation cannot be reconciled with recent observations of the effects of ferric citrate administration. Citrate in the intestinal lumen may partly contribute to the acceleration of iron absorption. Animal experiments and clinical studies have also shown that oral iron overload can cause excessive iron accumulation despite high hepcidin levels, which are not able to block iron absorption completely. However, like with IV iron agents, no long-term safety data exist with respect to the effects of iron-containing phosphate binders on 'hard' patient outcomes. Future randomized prospective studies in patients with CKD are necessary to establish the safety of oral iron-containing phosphate binders for the control of both hyperphosphatemia and renal anemia.
Collapse
Affiliation(s)
- Takeshi Nakanishi
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yukiko Hasuike
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masayoshi Nanami
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mana Yahiro
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takahiro Kuragano
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
22
|
Byelinska IV, Lynchak OV, Rybalchenko TV, Yablonska SV, Bahurynska OM, Rybalchenko VK. Morphofunctional parameters of blood cells of a rat with 1,2-dimethylhydrazine-induced colon carcinogenesis. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715030044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Effects of prebiotic supplementation on the expression of proteins regulating iron absorption in anaemic growing rats. Br J Nutr 2015; 113:901-8. [PMID: 25745840 DOI: 10.1017/s0007114514004334] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prebiotics may increase intestinal Fe absorption in anaemic growing rats. The present study evaluated the effects of high-performance (HP) inulin and oligofructose on factors that regulate Fe absorption in anaemic rats during the growth phase. Male Wistar rats aged 21 d of age were fed AIN-93G ration without Fe for 2 weeks to induce Fe-deficiency anaemia. The rats were fed on day 35 a control diet, or a diet with 10 % HP inulin, or a diet with 10 % oligofructose, without Fe supplementation. The animals were euthanised after 2 weeks, and segments of the duodenum, caecum, colon and liver were removed. The expression levels of proteins in the intestinal segments were assessed using Western blotting. The levels of serum, urine and liver hepcidin and the concentrations of IL-10, IL-6 and TNF-α in the caecum, colon and liver were measured using the ELISA test. HP inulin increased the expression of the divalent metal transporter 1 protein in the caecum by 162 % (P= 0·04), and the expression of duodenal cytochrome b reductase in the colon by 136 % (P= 0·02). Oligofructose decreased the expression of the protein ferroportin in the duodenum (P= 0·02), the concentrations of IL-10 (P= 0·044), IL-6 (P= 0·036) and TNF-α (P= 0·004) in the caecum, as well as the level of urinary hepcidin (P< 0·001). These results indicate that prebiotics may interfere with the expression of various intestinal proteins and systemic factors involved in the regulation of intestinal Fe absorption in anaemic rats during the growth phase.
Collapse
|
24
|
Latunde-Dada GO, Li X, Parodi A, Edwards CH, Ellis PR, Sharp PA. Micromilling enhances iron bioaccessibility from wholegrain wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11222-11227. [PMID: 25380143 DOI: 10.1021/jf503474f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cereals constitute important sources of iron in human diet; however, much of the iron in wheat is lost during processing for the production of white flour. This study employed novel food processing techniques to increase the bioaccessibility of naturally occurring iron in wheat. Iron was localized in wheat by Perl's Prussian blue staining. Soluble iron from digested wheat flour was measured by a ferrozine spectrophotometric assay. Iron bioaccessibility was determined using an in vitro simulated peptic-pancreatic digestion, followed by measurement of ferritin (a surrogate marker for iron absorption) in Caco-2 cells. Light microscopy revealed that iron in wheat was encapsulated in cells of the aleurone layer and remained intact after in vivo digestion and passage through the gastrointestinal tract. The solubility of iron in wholegrain wheat and in purified wheat aleurone increased significantly after enzymatic digestion with Driselase, and following mechanical disruption using micromilling. Furthermore, following in vitro simulated peptic-pancreatic digestion, iron bioaccessibility, measured as ferritin formation in Caco-2 cells, from micromilled aleurone flour was significantly higher (52%) than from whole aleurone flour. Taken together our data show that disruption of aleurone cell walls could increase iron bioaccessibility. Micromilled aleurone could provide an alternative strategy for iron fortification of cereal products.
Collapse
Affiliation(s)
- G O Latunde-Dada
- Diabetes and Nutritional Sciences Division and ‡Biopolymers Group, Faculty of Life Sciences and Medicine, King's College London , Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Kortman GAM, Raffatellu M, Swinkels DW, Tjalsma H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev 2014; 38:1202-34. [PMID: 25205464 DOI: 10.1111/1574-6976.12086] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Iron is abundantly present on earth, essential for most microorganisms and crucial for human health. Human iron deficiency that is nevertheless highly prevalent in developing regions of the world can be effectively treated by oral iron administration. Accumulating evidence indicates that excess of unabsorbed iron that enters the colonic lumen causes unwanted side effects at the intestinal host-microbiota interface. The chemical properties of iron, the luminal environment and host iron withdrawal mechanisms, especially during inflammation, can turn the intestine in a rather stressful milieu. Certain pathogenic enteric bacteria can, however, deal with this stress at the expense of other members of the gut microbiota, while their virulence also seems to be stimulated in an iron-rich intestinal environment. This review covers the multifaceted aspects of nutritional iron stress with respect to growth, composition, metabolism and pathogenicity of the gut microbiota in relation to human health. We aim to present an unpreceded view on the dynamic effects and impact of oral iron administration on intestinal host-microbiota interactions to provide leads for future research and other applications.
Collapse
Affiliation(s)
- Guus A M Kortman
- Department of Laboratory Medicine, The Radboud Institute for Molecular Life Sciences (RIMLS) of the Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
26
|
Fructo-oligosaccharides and iron bioavailability in anaemic rats: the effects on iron species distribution, ferroportin-1 expression, crypt bifurcation and crypt cell proliferation in the caecum. Br J Nutr 2014; 112:1286-95. [PMID: 25192308 DOI: 10.1017/s0007114514002165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study investigated the effects of fructo-oligosaccharides (FOS) on the bioavailability of Fe from ferric pyrophosphate (FP), a water-insoluble compound, in Fe-deficient anaemic rats that were subjected to a Hb repletion assay. Male Wistar rats (n 64) were fed adequate or low (8 mg/kg) Fe diets for 15 d followed by 1 or 2 weeks of Fe repletion with diets providing 35 mg Fe/kg as ferrous sulphate (FS), FP or FP that was mixed with 7·5% FOS in the form of yacon flour or Raftilose P95 (RAF), a purified source of FOS. The effects of FOS were observed within the 1st week of the repletion period. Fe bioavailability was improved by FOS supplementation, as measured by Hb regeneration efficiency and hepatic Fe stores, which were more pronounced in the RAF group. Moreover, RAF supplementation resulted in a higher biological value relative to that of the FP group. FOS supplementation resulted in caecal enlargement, in addition to acidification and Fe species redistribution in the caecal contents relative to the control rats. These effects occurred concomitantly with decreased ferroportin (FPN)-1 expression in the caecal mucosa, which was similar in magnitude to that observed in the FS group. Caecum mucosal morphometry was influenced by FOS supplementation, whereas crypt fission and cell proliferation were highest in the caecum of the RAF group. These results reinforce the effects of FOS as Fe bioavailability enhancers in anaemic rats that are sustained by early changes in their caecal environment (decreased mucosal FPN-1 expression and increased Fe absorbability, crypt fission and cellularity).
Collapse
|
27
|
Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: Implications for in vivo cadmium toxicity. Toxicol Lett 2014; 226:228-35. [DOI: 10.1016/j.toxlet.2014.01.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 12/30/2022]
|
28
|
Intestinal iron homeostasis and colon tumorigenesis. Nutrients 2013; 5:2333-51. [PMID: 23812305 PMCID: PMC3738976 DOI: 10.3390/nu5072333] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/29/2013] [Accepted: 06/07/2013] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC.
Collapse
|
29
|
Petry N, Egli I, Chassard C, Lacroix C, Hurrell R. Inulin modifies the bifidobacteria population, fecal lactate concentration, and fecal pH but does not influence iron absorption in women with low iron status. Am J Clin Nutr 2012; 96:325-31. [PMID: 22743314 DOI: 10.3945/ajcn.112.035717] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bioavailability of nonheme iron is influenced by the concentration of inhibitors and enhancers in the diet. The fructans inulin and oligofructose have been shown to improve iron absorption in animals through colonic uptake, but this has not been confirmed in humans. OBJECTIVE The aim of the intervention study was to evaluate the influence of inulin on iron absorption, bifidobacteria, total bacteria, short-chain fatty acids (SCFAs), and fecal pH in women with low iron status (plasma ferritin <25 μg/L). DESIGN The subjects (n = 32) consumed inulin or placebo 3 times/d (∼20 g/d) for 4 wk, separated by a 2-wk washout period. Iron absorption was measured after 3 wk of inulin and placebo consumption from a standard test meal by using stable-iron-isotope techniques. Fecal bacteria were measured by quantitative polymerase chain reaction, and fecal acids by HPLC. RESULTS Mean fractional iron absorption in the inulin (15.2%; 95% CI: 8.0%, 28.9%) and placebo (13.3%; 95% CI: 8.1%, 24.3%) periods did not differ significantly (P = 0.10). Inulin decreased fecal pH (P < 0.001) and increased fecal bifidobacteria (P < 0.001) and fecal lactate (P < 0.001) but had no effect on fecal SCFAs and total bacteria. Changes in lactate and acetate concentrations were positively correlated with changes in propionate (P < 0.001) and butyrate (P < 0.02) concentrations, respectively. Iron absorption correlated with fecal pH in the placebo period (P < 0.01) but not in the inulin period (P = 0.37). CONCLUSION Although inulin showed prebiotic activity, we were unable to show an increase in iron absorption in women with low iron status. This trial was registered at clinicaltrials.gov as NCT0148309.
Collapse
Affiliation(s)
- Nicolai Petry
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Effects of acute and chronic inflammation on proteins involved in duodenal iron absorption in mice: a time-course study. Br J Nutr 2012; 108:1994-2001. [PMID: 22360813 DOI: 10.1017/s0007114512000189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In order to understand better the molecular mechanisms involved in the pathogenesis of anaemia of inflammation, we carried out a time-course study on the effects of turpentine-induced acute and chronic inflammation on duodenal proteins involved in Fe absorption in mice. Expression levels of these proteins and hepatic hepcidin and serum Fe levels were determined in inflamed mice. In acutely inflamed mice, significantly increased expression of ferritin was the earliest change observed, followed by decreased divalent metal transporter 1 expression in the duodenum and increased hepcidin expression in the liver. Ferroportin expression increased subsequently, despite high levels of hepcidin. Hypoferraemia, which developed at early time periods studied, was followed by increased serum Fe levels at later points. The present results thus show that acute inflammation induced several changes in the expression of proteins involved in duodenal Fe absorption, contributing to the development of hypoferraemia. Resolution of inflammation caused attenuation of many of these effects. Effects in chronically inflamed mice were less consistent. The present results also suggest that inflammation-induced increases in ferritin appeared to override the effects of hepcidin on the expression levels of ferroportin in enterocytes.
Collapse
|
31
|
Ho YH, Sung TC, Chen CS. Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB. Mol Cell Proteomics 2011; 11:M111.014720. [PMID: 22138548 DOI: 10.1074/mcp.m111.014720] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Natural antimicrobial peptides provide fundamental protection for multicellular organisms from microbes, such as Lactoferricin B (Lfcin B). Many studies have shown that Lfcin B penetrates the cell membrane and has intracellular activities. To elucidate the intracellular behavior of Lfcin B, we first used Escherichia coli K12 proteome chips to identify the intracellular targets of Lfcin B. The results showed that Lfcin B binds to two response regulators, BasR and CreB, of the two-component system. For further analysis, we conducted several in vitro and in vivo experiments and utilized bioinformatics methods. The electrophoretic mobility shift assays and kinase assays indicate that Lfcin B inhibits the phosphorylation of the response regulators (BasR and CreB) and their cognate sensor kinases (BasS and CreC). Antibacterial assays showed that Lfcin B reduced E. coli's tolerance to environmental stimuli, such as excessive ferric ions and minimal medium conditions. This is the first study to show that an antimicrobial peptide inhibits the growth of bacteria by influencing the phosphorylation of a two-component system directly.
Collapse
Affiliation(s)
- Yu-Hsuan Ho
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan
| | | | | |
Collapse
|
32
|
Iron bioavailability from ferric pyrophosphate in rats fed with fructan-containing yacon (Smallanthus sonchifolius) flour. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.11.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Duodenal cytochrome b (Cybrd 1) and HIF-2α expression during acute hypoxic exposure in mice. Eur J Nutr 2011; 50:699-704. [DOI: 10.1007/s00394-011-0175-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/09/2011] [Indexed: 02/07/2023]
|
34
|
Abstract
Fe deficiency in women contributes significantly to maternal and child morbidity in India. The intestinal bacterial flora may facilitate absorption of Fe from the caecum and proximal colon. The present study investigated the possibility that intestinal microbiota of anaemic young women may differ from that of women with normal Hb levels. The microbiota was quantified by real-time PCR in faeces of eight anaemic (Hb ≤ 100 g/l) and twenty-six normohaemic (Hb ≥ 120 g/l) women aged 18–25 years. Sequences of 16S ribosomal DNA (rDNA) specific to Bifidobacterium genus, Lactobacillus acidophilus group, Bacteroides–Prevotella–Porphyromonas group, Clostridium leptum group and Eubacterium rectale were amplified and expressed (as relative difference) relative to the universally conserved bacterial 16S rDNA sequences. Dietary intakes of energy, carbohydrate, fibre and Fe were ascertained by maintenance of a diet diary for a week. Faecal lactobacilli were significantly lower in anaemic women (median 6·6 × 10− 8, relative difference compared with total bacteria) than in the reference group (2·9 × 10− 6; P = 0·001, unpaired t test with logarithmic transformation). There was no difference between the two groups with respect to any of the other bacteria that were examined. Intakes of energy, carbohydrate, fibre, Fe and milk were similar in both the groups. Fe deficiency in young women in south India was associated with low levels of lactobacilli in the faeces. The relationship between lactobacilli and Fe deficiency needs to be explored further.
Collapse
|
35
|
Collins JF, Hua P, Lu Y, Ranganathan PN. Alternative splicing of the Menkes copper Atpase (Atp7a) transcript in the rat intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2009; 297:G695-707. [PMID: 19679821 PMCID: PMC2763807 DOI: 10.1152/ajpgi.00203.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal Menkes copper Atpase (Atp7a) gene is strongly induced by iron deficiency in the rat intestine. We sought to develop an in vitro model to understand the mechanism of this induction by performing molecular studies in native rat intestine and in intestinal epithelial (IEC-6) cells. IEC-6 cells express Atp7a, and induction was noted with iron deprivation. 5' Rapid amplification of cDNA ends and PCR experiments revealed three splice variants in rat intestine and IEC-6 cells; all variants were strongly induced during iron deprivation (five- to sevenfold). The splice variants presumably encode proteins that would either contain the extreme NH(2) terminus of the protein (containing copper binding domain 1) or not. We thus hypothesized that more than one version of Atp7a protein exists. Antibodies against this NH(2)-terminal region of the protein were developed (named N-term) and used along with previously reported antibodies (against more COOH-terminal regions, termed 54-10) to perform immunoblotting and immunolocalization studies. Results with the 54-10 antiserum revealed an Atp7a protein variant of approximately 190 kDa that localized to the trans-Golgi network of IEC-6 cells and trafficked to the plasma membrane with copper loading. Using the N-term antiserum, however, we noted protein of approximately 97 and 64 kDa. The 97-kDa protein was cytosolic and nuclear, whereas the 64-kDa protein was nuclear specific. Immunolocalization analyses with the N-term antiserum showed strong staining of nuclei in IEC-6 and Caco-2 cells and in rat intestine. We conclude that novel Atp7a protein variants may exist in rat and human intestinal epithelial cells, with different intracellular locations and potentially distinct physiological functions.
Collapse
Affiliation(s)
- James F. Collins
- Food Science and Human Nutrition Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Ping Hua
- Food Science and Human Nutrition Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Yan Lu
- Food Science and Human Nutrition Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - P. N. Ranganathan
- Food Science and Human Nutrition Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| |
Collapse
|
36
|
Chung B, Chaston T, Marks J, Srai SK, Sharp PA. Hepcidin decreases iron transporter expression in vivo in mouse duodenum and spleen and in vitro in THP-1 macrophages and intestinal Caco-2 cells. J Nutr 2009; 139:1457-62. [PMID: 19549758 DOI: 10.3945/jn.108.102905] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepcidin is thought to control iron metabolism by interacting with the iron efflux transporter ferroportin. In macrophages, there is compelling evidence that hepcidin directly regulates ferroportin protein expression. However, the effects of hepcidin on intestinal ferroportin levels are less conclusive. In this study, we compared the effects of hepcidin on iron transporter expression in the spleen and duodenum of mice treated with hepcidin over a 24- to 72-h period and observed a marked decrease in the expression of ferroportin in both duodenal enterocytes and splenic macrophages following treatment. Changes in transporter protein expression were associated with significant decreases in duodenal iron transport and serum iron. In THP-1 macrophages, ferroportin protein levels were decreased by 300 and 1000 nmol/L hepcidin. In contrast, ferroportin protein expression was unaltered in intestinal Caco-2 cells following exposure to hepcidin. However, iron efflux from Caco-2 cells was significantly inhibited in the presence of hepcidin, suggesting that the peptide could block ferroportin function in these cells. We conclude that hepcidin regulates the release of iron from both enterocytes and macrophages. However, taken together with our previous work, it is apparent that macrophages are more sensitive than enterocytes to a hepcidin challenge.
Collapse
Affiliation(s)
- Bomee Chung
- Nutritional Sciences Division, King's College London, London SE1 9NH, UK
| | | | | | | | | |
Collapse
|
37
|
Laftah AH, Latunde-Dada GO, Fakih S, Hider RC, Simpson RJ, McKie AT. Haem and folate transport by proton-coupled folate transporter/haem carrier protein 1 (SLC46A1). Br J Nutr 2009; 101:1150-6. [PMID: 18782461 DOI: 10.1017/s0007114508066762] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Haem carrier protein 1 (HCP1) was originally identified and characterised as a mammalian haem transporter. However, recent evidence has shown that it is also a proton-coupled folate transporter (PCFT) and mutations in the gene cause hereditary folate deficiency in humans. We therefore investigated haem and folate transport characteristics of PCFT/HCP1 both in vivo and in vitro in CD-1 mice and in the presence or absence of a blocking antibody for PCFT/HCP1, and also in cultured cells (which express PCFT/HCP1 endogenously) to elucidate the specificity and selectivity of PCFT/HCP1. The in vivo study showed that the addition of folic acid inhibited 59Fe-labelled haem transport in hypoxic mice but had no effect in normal mice. Using in vitro methods, the results showed increased [3H]folate uptake into everted duodenum from hypoxic mice but uptake was reduced by the addition of haem or PCFT/HCP1 antibodies to the medium. Caco-2 cells transiently transfected with small interfering RNA (siRNA) PCFT/HCP1 duplex oligos resulted in a 69 % reduction in PCFT/HCP1 mRNA when compared with the control siRNA. Both haem and folate uptake were significantly (P < 0.05) reduced in cells transfected with PCFT/HCP1 siRNA; however, the magnitude of reduction with folic acid uptake was greater (48 %) than that of haem (22.5 %). Overall the data support PCFT/HCP1 as a primary folate transporter with a lower affinity for haem. PCFT/HCP1 could therefore play a physiological role in Fe nutrition and the data highlight the potential for the interaction of folate and haem at the level of intestinal absorption.
Collapse
Affiliation(s)
- Abas H Laftah
- Division of Nutritional Sciences, School of Biomedical and Health Sciences, King's College London, Franklin Wilkins Building, London SE1 9NH, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Li Z, Lai Z, Ya K, Fang D, Ho YW, Lei Y, Ming QZ. Correlation between the expression of divalent metal transporter 1 and the content of hypoxia-inducible factor-1 in hypoxic HepG2 cells. J Cell Mol Med 2008; 12:569-79. [PMID: 18419598 PMCID: PMC3822544 DOI: 10.1111/j.1582-4934.2007.00145.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transferrin and transferrin receptor are two key proteins of iron metabolism that have been identified to be hypoxia-inducible genes. Divalent metal transporter 1 (DMT1) is also a key transporter of iron under physiological conditions. In addition, in the 5' regulatory region of human DMT1 (between -412 and -570), there are two motifs (CCAAAGTGCTGGG) that are similar to hypoxia-inducible factor-1 (HIF-1) binding sites. It was therefore speculated that DMT1 might also be a hypoxia-inducible gene. We investigated the effects of hypoxia and hypoxia/re-oxygenation on the expression of DMT1 and the content of HIF-1alpha in HepG2 cells. As we expected, a very similar tendency in the responses of the expression of HIF-1alpha, DMT1+IRE (iron response element) and DMT1-IRE proteins to chemical (CoCl(2)) or physical hypoxia was observed. A highly significant correlation was found between the expression of DMT1 proteins and the contents of HIF-1 in hypoxic cells. After the cells were exposed to hypoxia and subsequent normoxia, no HIF-1alpha could be detected and a significant decrease in DMT1+IRE expression (P<0.05), but not in DMT1-IRE protein (versus the hypoxia group), was observed. The findings implied that the HIF-1 pathway might have a role in the regulation of DMT1+IRE expression during hypoxia.
Collapse
Affiliation(s)
- Zhu Li
- Institute for Nautical Medicine and Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Tako E, Glahn RP, Welch RM, Lei X, Yasuda K, Miller DD. Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Br J Nutr 2008; 99:472-80. [PMID: 17868492 DOI: 10.1017/s0007114507825128] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Inulin, a linear β fructan, is present in a variety of plants including chicory root and wheat. It exhibits prebiotic properties and has been shown to enhance mineral absorption and increase beneficial bacteria in the colon. The aim of the present study was to assess the effect of dietary inulin on the gene expression of selected intestinal Fe transporters and binding proteins. Anaemic piglets at age 5 weeks were allocated to a standard maize–soya diet (control) or the same diet supplemented with inulin at a level of 4 %. After 6 weeks, the animals were killed and caecum contents and sections of the duodenum and colon were removed. Segments of the genes encoding for the pig divalent metal transporter 1 (DMT1) and duodenal cytochrome-b reductase (Dcytb) were isolated and sequenced. Semi-quantitative RT-PCR analyses were performed to evaluate the expression of DMT1, Dcytb, ferroportin, ferritin, transferrin receptor (TfR) and mucin genes. DMT1, Dcytb, ferroportin, ferritin and TfR mRNA levels in duodenal samples were significantly higher in the inulin group (P ≤ 0·05) compared with the control. In colon, DMT1, TfR and ferritin mRNA levels significantly increased in the inulin group. Additionally, the caecal content microflora was examined using 16S rDNA targeted probes from bacterial DNA. TheLactobacillusandBifidobacteriumpopulations were significantly increased in the inulin group (P ≤ 0·05) compared with the control group. These results indicate that dietary inulin might trigger an up regulation of genes encoding for Fe transporters in the enterocyte. The specific mechanism for this effect remains to be elucidated.
Collapse
Affiliation(s)
- E Tako
- Department of Food Science, Cornell University, Itacha, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Pitarresi G, Tripodo G, Cavallaro G, Palumbo FS, Giammona G. Inulin–iron complexes: A potential treatment of iron deficiency anaemia. Eur J Pharm Biopharm 2008; 68:267-76. [PMID: 17574404 DOI: 10.1016/j.ejpb.2007.05.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 05/04/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
The aim of this work was that to synthesize macromolecular derivatives based on inulin able to complex iron and useful in the treatment of iron deficiency anaemia. Carboxylated or thiolated/carboxylated inulin derivatives were obtained by single or double step reactions, respectively. The first one was obtained by reaction of inulin (INU) with succinic anhydride (SA) alone obtaining INU-SA derivative; the second one was obtained by the reaction of INU with succinic anhydride and subsequent reaction of INU-SA with cysteine; both derivatives were treated with ferric chloride in order to obtain the INU-SA-Fe(III) and INU-SA-Cys-Fe(III) complexes. Both complexes showed an excellent biodegradability in the presence of inulinase and pronounced mucoadhesion properties; in particular, thiolated derivative INU-SA-Cys showed greater mucoadhesive properties than polyacrylic acid chosen, as a positive reference polymer, and a good iron release profile in condition mimicking the intestinal tract. These results suggest the potential employment of such systems in the oral treatment of iron deficiency anaemia or as supplement of iron in foods.
Collapse
Affiliation(s)
- Giovanna Pitarresi
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy.
| | | | | | | | | |
Collapse
|
41
|
Ludwiczek S, Rosell FI, Ludwiczek ML, Mauk AG. Recombinant Expression and Initial Characterization of the Putative Human Enteric Ferric Reductase Dcytb. Biochemistry 2007; 47:753-61. [DOI: 10.1021/bi701793a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susanne Ludwiczek
- Department of Biochemistry and Molecular Biology and the UBC Centre for Blood Research, Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Federico I. Rosell
- Department of Biochemistry and Molecular Biology and the UBC Centre for Blood Research, Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Martin L. Ludwiczek
- Department of Biochemistry and Molecular Biology and the UBC Centre for Blood Research, Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - A. Grant Mauk
- Department of Biochemistry and Molecular Biology and the UBC Centre for Blood Research, Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
42
|
Freestone PPE, Walton NJ, Haigh RD, Lyte M. Influence of dietary catechols on the growth of enteropathogenic bacteria. Int J Food Microbiol 2007; 119:159-69. [PMID: 17850907 DOI: 10.1016/j.ijfoodmicro.2007.07.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/12/2007] [Accepted: 07/22/2007] [Indexed: 11/29/2022]
Abstract
The dietary constituents that may act, in the broadest sense, as co-factors to enable bacterial enteropathogens to replicate in gastrointestinal environments are still largely unknown. Recent work has demonstrated that certain non-nutritional components of food, such as the catecholamines, can contribute to the ability of Gram-negative pathogens to replicate in iron-restrictive media that may be reflective of gastrointestinal environments. The present report examines whether other, non-catecholamine, dietary catechols, which occur widely in plant foods, can also influence enteropathogen growth in an iron-restrictive environment such as might be found in the gastrointestinal tract. In the present study, we have examined the ability of a range of catechol-rich foodstuffs, ranging from beverages (tea and coffee) to fruit and vegetable extracts, as well as purified preparations of commonly consumed dietary catechols (catechins, chlorogenic acid, caffeic acid and tannic acid), to modulate the growth of the Gram-negative enteric pathogens Escherichia coli O157:H7 and Salmonella enterica SV Enteriditis. Time-dependent growth in response to dietary catechols (0.05-5.0% v/v of beverage or fruit/vegetable extracts; 10-200 microM of purified catechols) was examined in an iron-replete, rich medium as well as in an iron-limited, basal medium designed to reflect the iron-restricted environment that is more characteristic of human and animal tissues. Results obtained in iron-replete, rich medium demonstrated dose-dependent bacteriostatic effects for certain catechols, consistent with previous studies. However, in iron-restricted medium, all of the dietary catechols produced marked growth stimulation of up to 4 logs greater than non-supplemented controls. Mechanistic studies measuring the uptake of radiolabelled (55)Fe from (55)Fe-labelled lactoferrin and transferrin in bacteria grown in the presence or absence of dietary catechols demonstrated that the ability of catechols to stimulate bacterial growth was dependent on the provision of iron from iron-sequestering glycoproteins. Urea gel analysis of transferrin incubated in the presence of the dietary catechols confirmed that these compounds were directly chelating and removing transferrin-complexed iron. Analysis using E. coli O157:H7 entA and tonB mutants further showed that a functional siderophore synthesis and uptake system was required for the growth-stimulatory response. In contrast to previous studies, which have reported the anti-microbial activity of dietary catechols, the present study demonstrates that these non-nutritional components of foods can, under iron-restrictive conditions, provide iron and enable the growth of enteric bacterial pathogens.
Collapse
Affiliation(s)
- Primrose P E Freestone
- Department of Infection, Immunology and Inflammation, University of Leicester School of Medicine, Leicester, UK
| | | | | | | |
Collapse
|
43
|
Blachier F, Vaugelade P, Robert V, Kibangou B, Canonne-Hergaux F, Delpal S, Bureau F, Blottière H, Bouglé D. Comparative capacities of the pig colon and duodenum for luminal iron absorption. Can J Physiol Pharmacol 2007; 85:185-92. [PMID: 17487259 DOI: 10.1139/y07-007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Iron deficiency is the most common human nutritional disorder in the world. Iron absorptive capacity of the small intestine is known to be much limited and therefore large quantities of iron salts must be used to treat iron deficiency. As a result, significant amounts of iron may reach the large intestine. This study compared the capacities of the small and large intestine to transfer luminal iron to the venous blood in relationship with the expression in epithelial cells of proteins involved in iron absorption using a pig model. Intracaecal injection of iron sulphate corresponding with 2.5 and 5.0 mg elemental iron per kg body mass resulted in modest, transient, but significant (p<0.05) increases in iron concentration in the portal blood plasma. By comparing portal blood plasma iron concentrations following injection in the duodenal and caecal lumen, we calculated that 5 h after injection, iron colonic absorption represented approximately 14% of duodenal absorption. Caecal and proximal colon mucosa accumulated iron to a much lower extent than the duodenal mucosa. Isolated colonocytes were found to express divalent metal transporter (DMT1) and ferritin, but to a lesser extent than the duodenal enterocytes. Ferroportin was highly expressed in colonocytes. In these cells as well as in enterocytes ferroportin was found to be glycosylated. In short term experiments and at a concentration in the range of that measured in the aqueous phases recovered from the large intestine luminal content after iron injection, iron sulphate did not alter colonocyte viability. We concluded that the colonic epithelial cells that express proteins involved in iron absorption are able to transfer luminal iron to the venous blood even if its relative participation in the overall intestinal absorption appears to be modest under our experimental conditions.
Collapse
Affiliation(s)
- François Blachier
- Laboratoire de Nutrition et Sécurité Alimentaire, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Latunde-Dada GO, Takeuchi K, Simpson RJ, McKie AT. Haem carrier protein 1 (HCP1): Expression and functional studies in cultured cells. FEBS Lett 2006; 580:6865-70. [PMID: 17156779 DOI: 10.1016/j.febslet.2006.11.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 11/19/2006] [Indexed: 11/28/2022]
Abstract
Haem released from digestion and breakdown of meat products provides an important source of dietary iron, which is readily absorbed in the proximal intestine. The recent cloning and characterization of a haem carrier protein 1 (HCP 1) has provided a candidate intestinal haem transporter. The current studies describe the expression and functional analysis of HCP1 in cultured Caco-2 cells, a commonly used model of human intestinal cells. HCP1 mRNA expression in other cell types was also studied. The uptake of (55)Fe labeled haem was determined in cells under different experimental conditions and HCP1 expression was measured by RT-PCR and immunohistochemistry. mRNA and protein expressions increased in Caco-2 cells transduced with HCP1 adenoviral plasmid, and consequently (55)Fe haem uptake was higher in these cells. Haem uptake was also increased in fully differentiated Caco-2 cells compared to undifferentiated cells. Preincubation of cells with desferrioxamine (DFO, to deplete cells of iron) had no effect on HCP1 expression or haem uptake. Treatment with CdCl(2) (to induce haem oxygenase, HO-1) enhanced HCP1 expression and increased haem uptake into the cells. HCP1 expression and function were found to be adaptive to the rate of haem degradation by HO-1. Furthermore, HCP1 expression in different cells implies a functional role in tissues other than the duodenum.
Collapse
Affiliation(s)
- Gladys O Latunde-Dada
- Department of Biochemistry, School of Biomedical and Health Sciences, Franklin Wilkins Building, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | | | | | | |
Collapse
|
45
|
Yasuda K, Roneker KR, Miller DD, Welch RM, Lei XG. Supplemental dietary inulin affects the bioavailability of iron in corn and soybean meal to young pigs. J Nutr 2006; 136:3033-8. [PMID: 17116716 DOI: 10.1093/jn/136.12.3033] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Iron deficiency represents one of the most common global nutritional disorders in humans. Our objective was to determine whether and how supplemental inulin improved utilization of iron intrinsically present in a corn and soybean meal diet by young pigs for hemoglobin repletion. In Expt. 1, 3 groups (n = 8/group) of pigs were fed a corn and soybean meal-based diet (BD, without inorganic iron addition) or BD + 2 or 4% inulin (Synergy 1: a mixture of oligofructose and long-chain inulin HP, Orafti) for 5 wk. Final blood hemoglobin concentrations and the overall hemoglobin repletion efficiency of pigs were positively (r = 0.55 and 0.69, P < 0.01) correlated with dietary inulin concentrations. Compared with pigs fed the BD, those fed 4% inulin demonstrated a 28% improvement (P < 0.01) in hemoglobin repletion efficiency and 15% (P < 0.01) improvement in the final blood hemoglobin concentration. In Expt. 2, 12 weanling pigs (n = 6/group) were fed the BD or the BD + 4% inulin for 6 wk. Pigs fed 4% inulin had higher (P < 0.05) soluble Fe concentrations in the digesta of the proximal, mid, and distal colon, and lower (P < 0.05) sulfide concentrations in the digesta of the distal colon. Supplemental inulin had virtually no effect on pH or phytase activity of digesta from any of the tested segments. In conclusion, supplementing 4% inulin improved utilization of intrinsic iron in the corn and soybean meal diet by young pigs, and this benefit was associated with soluble Fe and sulfide concentrations but not pH or phytase activity in the digesta.
Collapse
Affiliation(s)
- Koji Yasuda
- Department of Animal Science, U.S. Plant, Soil, and Nutrition Laboratory, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
46
|
de Cássia Freitas K, Amancio OMS, Ferreira Novo N, Fagundes-Neto U, de Morais MB. Partially hydrolyzed guar gum increases intestinal absorption of iron in growing rats with iron deficiency anemia. Clin Nutr 2006; 25:851-8. [PMID: 16678310 DOI: 10.1016/j.clnu.2006.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 02/23/2006] [Accepted: 02/26/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the effect of partially hydrolyzed guar gum (PHGG) dietary fiber towards intestinal iron absorption, for dietary intake and on the growth of rats with iron deficiency anemia in comparison to those fed on a diet with cellulose and without dietary fiber. MATERIALS AND METHODS Male Wistar rats (n=24) weaned at 21 days were fed with AIN93-G diet without iron for 2 weeks in order to induce iron deficiency anemia. At 36 days old, the anemic rats were divided into three groups: (1) PHGG group-100g of PHGG per kg of diet; (2) Cellulose group-100g of cellulose per kg of diet; (3) Control group-diet without dietary fiber. All the diets had 25mg of elemental iron/kg of diet added to lead to recovery from iron deficiency anemia. RESULTS The final hemoglobin values in g/dl, for the PHGG group, the cellulose group and the control group were, respectively: 11.3+/-1.2, 8.6+/-0.7 and 8.1+/-0.9 (P<0.001). The levels of hepatic iron, in mug/g of dry tissue, in the same order, were: 322.2+/-66.6, 217.2+/-59.1 and 203.7+/-42.4 (P<0.001). Apparent iron intestinal absorption was, respectively: 67.5+/-8.9%, 35.4+/-15.3% and 31.3+/-24.9% (P<0.001). The three groups consumed similar quantities of diet. The changes in weight and in body length were similar in the three groups studied. CONCLUSION PHGG led to greater intestinal absorption of iron, regeneration of hemoglobin and hepatic levels of iron than diet with cellulose and diet control.
Collapse
Affiliation(s)
- Karine de Cássia Freitas
- Pediatric Gastroenterology Department, Paulista School of Medicine (UNIFESP-EPM), Federal University of Sao Paulo, Rua Pedro de Toledo, 441, Sao Paulo-SP, CEP 04039-031, Brazil
| | | | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND Only 10% of dietary iron is absorbed in the duodenum which implies that 90% (approximately 9 mg day(-1)) reaches the lower small intestine and colon. Therefore the purpose of this study was to assess the iron transport capacity of the rat proximal colon and to determine whether iron absorption is regulated by changes in dietary iron content. MATERIALS AND METHODS Rats were fed for 14 days on either iron adequate (44 mg Fe kg(-1) diet) or iron-deficient (< 0.5 mg Fe kg(-1) diet) diets. The 59Fe transport across the colonic epithelium and its subsequent appearance in the blood were measured in vivo. In separate studies the colon was excised and used to measure divalent metal transporter expression. RESULTS Divalent metal transporter (DMT1) was expressed at the apical membrane of the surface epithelium in rat proximal colon. In animals fed an iron-deficient diet, DMT1 mRNA and protein expression were increased. This was accompanied by a significant increase in tissue 59Fe uptake. CONCLUSIONS The proximal colon can absorb non-haem iron from the intestinal lumen. The purpose of this mechanism remains to be elucidated.
Collapse
Affiliation(s)
- K L Johnston
- School of Biomedical & Molecular Sciences, University of Surrey, Guildford, UK
| | | | | | | | | | | |
Collapse
|
48
|
Gleeson F, Ryan E, Barrett S, Russell J, Kelleher B, Crowe J. Duodenal Dcytb and hephaestin mRNA expression are not significantly modulated by variations in body iron homeostasis. Blood Cells Mol Dis 2005; 35:303-8. [PMID: 16137899 DOI: 10.1016/j.bcmd.2005.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 06/13/2005] [Accepted: 06/16/2005] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS While the upregulation of duodenal cytochrome b (Dcytb) within duodenal enterocytes is reported in patients with iron deficiency, the expression of hephaestin (Hp) remains controversial in altered iron metabolism states, including HFE associated hereditary hemochromatosis (HH). The effect of iron depletion therapy on the expression of these molecules is unclear. This study examines the duodenal expression of these two molecules in HH patients (prior to and following phlebotomy), in patients with iron deficiency (ID) and in healthy controls. METHODS Using quantitative real-time polymerase chain reaction (qRT-PCR), Dcytb and Hp mRNA expression levels were measured in duodenal tissue of C282Y homozygous HH patients, in ID patients negative for the C282Y mutation with a serum ferritin concentration less than 20 mug/l, and in controls negative for C282Y and H63D mutations with normal iron indices. RESULTS Dcytb and Hp mRNA expression levels were not significantly different in either non-phlebotomized and phlebotomized HH patients or individuals with iron deficiency when compared with controls. There was no significant correlation between the gene expression levels and their respective serum ferritin or TS% values in any of the investigated groups. In HH patients, there was no significant association between gene expression and the degree of hepatic parenchymal siderosis identified by Perl's iron stain. Dcytb and Hp mRNA levels were significantly correlated to each other when all cohorts were analyzed together and separately. CONCLUSIONS These findings demonstrate that the duodenal ferroreductase Dcytb and ferroxidase Hp mRNA expression are not significantly altered by variations in iron homeostasis. The effect of phlebotomy-induced erythropoiesis did not alter either gene transcript mRNA expression.
Collapse
Affiliation(s)
- F Gleeson
- Centre for Liver Disease, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | | | | | | | | | | |
Collapse
|