1
|
Mou Z, Spencer J, McGrath JS, Harries LW. Comprehensive analysis of alternative splicing across multiple transcriptomic cohorts reveals prognostic signatures in prostate cancer. Hum Genomics 2023; 17:97. [PMID: 37924098 PMCID: PMC10623736 DOI: 10.1186/s40246-023-00545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) plays a crucial role in transcriptomic diversity and is a hallmark of cancer that profoundly influences the development and progression of prostate cancer (PCa), a prevalent and potentially life-limiting cancer among men. Accumulating evidence has highlighted the association between AS dysregulation and the onset and progression of PCa. However, a comprehensive and integrative analysis of AS profiles at the event level, utilising data from multiple high-throughput cohorts and evaluating the prognosis of PCa progression, remains lacking and calls for thorough exploration. RESULTS We identified a differentially expressed retained intron event in ZWINT across three distinct cohorts, encompassing an original array-based dataset profiled by us previously and two RNA sequencing (RNA-seq) datasets. Subsequent in-depth analyses of these RNA-seq datasets revealed 141 altered events, of which 21 demonstrated a significant association with patients' biochemical recurrence-free survival (BCRFS). We formulated an AS event-based prognostic signature, capturing six pivotal events in genes CYP4F12, NFATC4, PIGO, CYP3A5, ALS2CL, and FXYD3. This signature effectively differentiated high-risk patients diagnosed with PCa, who experienced shorter BCRFS, from their low-risk counterparts. Notably, the signature's predictive power surpassed traditional clinicopathological markers in forecasting 5-year BCRFS, demonstrating robust performance in both internal and external validation sets. Lastly, we constructed a novel nomogram that integrates patients' Gleason scores with pathological tumour stages, demonstrating improved prognostication of BCRFS. CONCLUSIONS Prediction of clinical progression remains elusive in PCa. This research uncovers novel splicing events associated with BCRFS, augmenting existing prognostic tools, thus potentially refining clinical decision-making.
Collapse
Affiliation(s)
- Zhuofan Mou
- Clinical and Biomedical Sciences, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Barrack Road, Exeter, EX2 5DW, UK
| | - Jack Spencer
- Translational Research Exchange at Exeter, Living Systems Institute, University of Exeter, Exeter, UK
| | - John S McGrath
- Clinical and Biomedical Sciences, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Barrack Road, Exeter, EX2 5DW, UK
- Royal Devon University Healthcare NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Lorna W Harries
- Clinical and Biomedical Sciences, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
2
|
Ongun MC, Tonyali NV, Kaplan O, Deger I, Celebier M, Basci Akduman NE, Sahin D, Yucel A, Babaoglu MO. Effects of genetic polymorphisms of CYP2J2, CYP2C9, CYP2C19, CYP4F2, CYP4F3 and CYP4A11 enzymes in preeclampsia and gestational hypertension. Placenta 2023; 137:88-95. [PMID: 37141740 DOI: 10.1016/j.placenta.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION The aim of this study was to investigate the effects of cytochrome P450 (CYP) 2J2, CYP2C9, CYP2C19 and CYP4F2, CYP4F3 and CYP4A11 genetic polymorphisms in preeclampsia and gestational hypertension (GHT) patients in a sample of Turkish population. MATERIALS-METHODS Patients (n = 168; 110 GHT and 58 preeclampsia) and healthy pregnant women (n = 155, controls) participated in the study. For genotyping, polymerase chain reaction (PCR) and restriction analysis (RFLP) were used. Substance levels were measured using LC-MS. RESULTS Plasma DHET levels in GHT and preeclampsia patients were significantly lower than those in the control group (62.7%, 66.3% vs.100.0%, respectively, p < 0.0001). An increase in CYP2J2*7 allele frequency was observed in the preeclampsia group, as compared to GHT group (12.1% vs. 4.5%; odds ratio, O.R. = 2.88, p < 0.01). The frequencies of CYP2C19*2 and*17 alleles were higher in GHT group as compared to the control group (17.7% vs. 11.6%, O.R. = 1.99, p < 0.01; and 28.6% vs.18.4%, O.R. = 2.03, p < 0.01, respectively). An increased frequency of CYP4F3 rs3794987 G allele was found in GHT group as compared to the control group (48.0% vs. 38.0%; O.R. = 1.53, p < 0.01). DISCUSSION DHET plasma levels were significantly reduced in hypertensive pregnant groups as compared to the control group. The allele frequency distributions for CYP2J2*7, CYP2C19 *2, *17 and CYP4F3 rs3794987 were significantly different in hypertensive pregnant patients as compared to the healthy control subjects. Our results may suggest that investigated genetic polymorphisms may be useful in diagnosis and clinical management of GHT and preeclampsia patients.
Collapse
Affiliation(s)
- Mert C Ongun
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey.
| | | | - Ozan Kaplan
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Ilter Deger
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey
| | - Mustafa Celebier
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | | | - Dilek Sahin
- University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Aykan Yucel
- University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Melih O Babaoglu
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey
| |
Collapse
|
3
|
Xia J, Hui N, Tian L, Liang C, Zhang J, Liu J, Wang J, Ren X, Xie X, Wang K. Development of vericiguat: The first soluble guanylate cyclase (sGC) stimulator launched for heart failure with reduced ejection fraction (HFrEF). Biomed Pharmacother 2022; 149:112894. [PMID: 35367763 DOI: 10.1016/j.biopha.2022.112894] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
In recent years, with improvements in treatments for heart failure (HF), the survival period of patients has been extended. However, the emergence of some patients with repeated hospitalizations due to their worsening conditions and low survival rates followed. Currently, few drugs are available for such patients. Vericiguat was first drug approved for the treatment of symptomatic patients with chronic HF with reduced ejection fraction (HFrEF) to reduce the occurrence of worsening HF. This article provides comprehensive information about vericiguat in terms of drug design and development, structure-activity relationship (SAR), synthesis, pharmacological efficacy, and clinical practice. In addition, insights into the current vericiguat trials and treatments of HF are also discussed.
Collapse
Affiliation(s)
- Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China.
| | - Nan Hui
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jie Zhang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jifang Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jun Wang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory of Traditional Chinese and Tibetan Medicine of Qinghai Province, Qinghai Provincial Drug Inspection and Testing Institute, Xining 810000, PR China.
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China.
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd. Xi'an, 710025, PR China.
| | - Kun Wang
- Children's Center, the Affiliated Taian City Centeral Hospital of Qingdao University, Taian, Shandong, 271000, PR China.
| |
Collapse
|
4
|
Groeger S, Herrmann JM, Chakraborty T, Domann E, Ruf S, Meyle J. Porphyromonas gingivalis W83 Membrane Components Induce Distinct Profiles of Metabolic Genes in Oral Squamous Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23073442. [PMID: 35408801 PMCID: PMC8998328 DOI: 10.3390/ijms23073442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontitis, a chronic inflammatory disease is caused by a bacterial biofilm, affecting all periodontal tissues and structures. This chronic disease seems to be associated with cancer since, in general, inflammation intensifies the risk for carcinoma development and progression. Interactions between periodontal pathogens and the host immune response induce the onset of periodontitis and are responsible for its progression, among them Porphyromonas gingivalis (P. gingivalis), a Gram-negative anaerobic rod, capable of expressing a variety of virulence factors that is considered a keystone pathogen in periodontal biofilms. The aim of this study was to investigate the genome-wide impact of P. gingivalis W83 membranes on RNA expression of oral squamous carcinoma cells by transcriptome analysis. Human squamous cell carcinoma cells (SCC-25) were infected for 4 and 24 h with extracts from P. gingivalis W83 membrane, harvested, and RNA was extracted. RNA sequencing was performed, and differential gene expression and enrichment were analyzed using GO, KEGG, and REACTOME. The results of transcriptome analysis were validated using quantitative real-time PCR with selected genes. Differential gene expression analysis resulted in the upregulation of 15 genes and downregulation of 1 gene after 4 h. After 24 h, 61 genes were upregulated and 278 downregulated. GO, KEGG, and REACTONE enrichment analysis revealed a strong metabolic transcriptomic response signature, demonstrating altered gene expressions after 4 h and 24 h that mainly belong to cell metabolic pathways and replication. Real-time PCR of selected genes belonging to immune response, signaling, and metabolism revealed upregulated expression of CCL20, CXCL8, NFkBIA, TNFAIP3, TRAF5, CYP1A1, and NOD2. This work sheds light on the RNA transcriptome of human oral squamous carcinoma cells following stimulation with P. gingivalis membranes and identifies a strong metabolic gene expression response to this periodontal pathogen. The data provide a base for future studies of molecular and cellular interactions between P. gingivalis and oral epithelium to elucidate the basic mechanisms of periodontitis and the development of cancer.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.M.H.); (J.M.)
- Department of Orthodontics, Justus-Liebig-University of Giessen, 35392 Giessen, Germany;
- Correspondence:
| | - Jens Martin Herrmann
- Department of Periodontology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.M.H.); (J.M.)
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany;
- DZIF—Germen Centre for Infection Research, Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany;
| | - Eugen Domann
- DZIF—Germen Centre for Infection Research, Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany;
- Institute of Hygiene and Environmental Medicine, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Justus-Liebig-University of Giessen, 35392 Giessen, Germany;
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.M.H.); (J.M.)
| |
Collapse
|
5
|
Banoth S, Tangutur AD, Anthappagudem A, Ramaiah J, Bhukya B. Cloning and in vivo metabolizing activity study of CYP3A4 on amiodarone drug residues: A possible probiotic and therapeutic option. Pharmacotherapy 2020; 127:110128. [DOI: 10.1016/j.biopha.2020.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
|
6
|
Tian LX, Tang X, Zhu JY, Zhang W, Tang WQ, Yan J, Xu X, Liang HP. Cytochrome P450 1A1 enhances Arginase-1 expression, which reduces LPS-induced mouse peritonitis by targeting JAK1/STAT6. Cell Immunol 2020; 349:104047. [PMID: 32019673 DOI: 10.1016/j.cellimm.2020.104047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/29/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
The polarization of macrophages is critical to inflammation and tissue repair, with unbalanced macrophage polarization associated with critical dysfunctions of the immune system. Cytochrome P450 1A1 (CYP1A1) is a hydroxylase mainly controlled by the inflammation-limiting aryl hydrocarbon receptor (AhR), which plays a critical role in mycoplasma infection, oxidative stress injury, and cancer. Arginase-1 (Arg-1) is a surrogate for polarized alternative macrophages and is important to the production of nitric oxide (NO) by the modulation of arginine. In the present study, we found CYP1A1 to be upregulated in IL-4-stimulated mouse peritoneal macrophages (PMs) and human peripheral blood monocytes. Using CYP1A1-overexpressing RAW264.7 cells (CYP1A1/RAW) we found that CYP1A1 augmented Arg-1 expression by strengthening the activation of the JAK1/STAT6 signaling pathway in macrophages treated with IL-4. 15(S)-HETE, a metabolite of CYP1A1 hydroxylase, was elevated in IL-4-induced CYP1A1/RAW cells. Further, in macrophages, the loss-of-CYP1A1-hydroxylase activity was associated with reduced IL-4-induced Arg-1 expression due to impaired 15(S)-HETE generation. Of importance, CYP1A1 overexpressing macrophages reduced the inflammation associated with LPS-induced peritonitis. Taken together, these findings identified a novel signaling axis, CYP1A1-15(S)-HETE-JAK1-STAT6, that may be a promising target for the proper maintenance of macrophage polarization and may also be a means by which to treat immune-related disease due to macrophage dysfunction.
Collapse
Affiliation(s)
- Li-Xing Tian
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Xin Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun-Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Zhang
- Emergency and Trauma College of Hainan Medical University, Xueyuan Road 3, Haikou, China
| | - Wan-Qi Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Hua-Ping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
7
|
Shi X, Lin X, Zhu Y, Ma Y, Li Y, Xu X, Zhou G, Li C. Effects of Dietary Protein from Different Sources on Biotransformation, Antioxidation, and Inflammation in the Rat Liver. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8584-8592. [PMID: 30060650 DOI: 10.1021/acs.jafc.8b01717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the effects of different sources of meat protein on liver metabolic enzymes were investigated. Rats were fed for 90 days with semisynthetic diets in which casein was fully replaced by isolated soybean, fish, chicken, pork, or beef proteins. Then, liver proteomics was performed using iTRAQ and LC-ESI-MS/MS. The results indicated that intake of meat protein diets significantly reduced the protein levels of CYP450s, GSTs, UGTs, and SULTs compared to those of the casein and soybean protein diet groups. The total antioxidant capacity and lipid peroxidation values did not differ between four meat protein diet groups and the casein diet group. However, GSH activity in the fish, chicken, and beef protein groups was significantly higher than those of the casein and soybean protein groups. The beef protein diet significantly upregulated the expression of immune-related proteins. The Keap1-Nrf2-ARE signaling pathway was suggested to involve the diet-mediated regulation of biotransformation, inflammation, and redox status.
Collapse
Affiliation(s)
- Xuebin Shi
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Xisha Lin
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yingying Zhu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yafang Ma
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yingqiu Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| |
Collapse
|
8
|
Graebin CS. The Pharmacological Activities of Glycyrrhizinic Acid (“Glycyrrhizin”) and Glycyrrhetinic Acid. ACTA ACUST UNITED AC 2018. [PMCID: PMC7123798 DOI: 10.1007/978-3-319-27027-2_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Role of Cytochrome P450 (CYP)1A in Hyperoxic Lung Injury: Analysis of the Transcriptome and Proteome. Sci Rep 2017; 7:642. [PMID: 28377578 PMCID: PMC5428698 DOI: 10.1038/s41598-017-00516-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/28/2017] [Indexed: 01/22/2023] Open
Abstract
Hyperoxia contributes to lung injury in experimental animals and diseases such as acute respiratory distress syndrome in humans. Cytochrome P450 (CYP)1A enzymes are protective against hyperoxic lung injury (HLI). The molecular pathways and differences in gene expression that modulate these protective effects remain largely unknown. Our objective was to characterize genotype specific differences in the transcriptome and proteome of acute hyperoxic lung injury using the omics platforms: microarray and Reverse Phase Proteomic Array. Wild type (WT), Cyp1a1−/− and Cyp1a2−/− (8–10 wk, C57BL/6J background) mice were exposed to hyperoxia (FiO2 > 0.95) for 48 hours. Comparison of transcriptome changes in hyperoxia-exposed animals (WT versus knock-out) identified 171 genes unique to Cyp1a1−/− and 119 unique to Cyp1a2−/− mice. Gene Set Enrichment Analysis revealed pathways including apoptosis, DNA repair and early estrogen response that were differentially regulated between WT, Cyp1a1−/− and Cyp1a2−/− mice. Candidate genes from these pathways were validated at the mRNA and protein level. Quantification of oxidative DNA adducts with 32P-postlabeling also revealed genotype specific differences. These findings provide novel insights into mechanisms behind the differences in susceptibility of Cyp1a1−/− and Cyp1a2−/− mice to HLI and suggest novel pathways that need to be investigated as possible therapeutic targets for acute lung injury.
Collapse
|
10
|
Pharmacokinetics of diclofenac in healthy controls with wild-type phenotype for CYP2C9 shows metabolism variability. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2017. [DOI: 10.1016/j.hgmx.2017.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Grangeon A, Gravel S, Gaudette F, Turgeon J, Michaud V. Highly sensitive LC–MS/MS methods for the determination of seven human CYP450 activities using small oral doses of probe-drugs in human. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1040:144-158. [DOI: 10.1016/j.jchromb.2016.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/29/2016] [Accepted: 12/03/2016] [Indexed: 11/28/2022]
|
12
|
Tan YH, Sidik SM, Syed Husain SNA, Lye MS, Chong PP. CYP1A1 MspI Polymorphism and Cervical Carcinoma Risk in the Multi-Ethnic Population of Malaysia: a Case-Control Study. Asian Pac J Cancer Prev 2016; 17:57-64. [PMID: 26838255 DOI: 10.7314/apjcp.2016.17.1.57] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tobacco smoking is considered a risk factor for cervical cancer development due to the presence of tobacco based carcinogenic metabolites in cervical cells of female smokers. In this study, we investigated the role of the T3801C (MspI) polymorphism of CYP1A1, a gene encoding an enzyme necessary for the initiation of tobacco based carcinogen metabolism, on cervical cancer risk. The T to C substitution may alter CYP1A1 activities, potentially elevating cervical cancer risk. Since results of gene-disease association studies vary according to the study population, the multi-ethnic population of Malaysia provides an excellent representative cohort for identifying and comparing the cervical cancer risk among the 3 major ethnics in Southeast Asia in relation to CYP1A1 MspI polymorphism. MATERIALS AND METHODS A total of 195 Thin Prep Pap smear samples from HPV negative and cancer free females were randomly selected as controls while 106 formalin fixed paraffin embedded samples from females with invasive cervical cancer were randomly selected for the cases group. The polymorphisms were identified using restriction fragment length polymorphism (RFLP) PCR. RESULTS We found no significant associations between CYP1A1 MspI polymorphism and cervical cancer in the general Malaysian female population. However, upon ethnic stratification, the variant C/C genotype was significantly associated with a 4.66-fold increase in cervical cancer risk in Malay females (95% CI= 1.21-17.9; p=0.03). No significant association was observed in the Chinese and Indian females. Additionally, there were no significant associations in the dominant model and allele frequency model analysis in both the general and ethnically stratified female population of Malaysia. CONCLUSIONS Our findings suggest that the C/C genotype of CYP1A1 MspI polymorphism is associated with the development of cervical carcinoma in the Malay females of Malaysia.
Collapse
Affiliation(s)
- Yee Hock Tan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia E-mail :
| | | | | | | | | |
Collapse
|
13
|
Torpet LA, Kragelund C, Reibel J, Nauntofte B. Oral Adverse Drug Reactions to Cardiovascular Drugs. ACTA ACUST UNITED AC 2016; 15:28-46. [PMID: 14761898 DOI: 10.1177/154411130401500104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A great many cardiovascular drugs (CVDs) have the potential to induce adverse reactions in the mouth. The prevalence of such reactions is not known, however, since many are asymptomatic and therefore are believed to go unreported. As more drugs are marketed and the population includes an increasing number of elderly, the number of drug prescriptions is also expected to increase. Accordingly, it can be predicted that the occurrence of adverse drug reactions (ADRs), including the oral ones (ODRs), will continue to increase. ODRs affect the oral mucous membrane, saliva production, and taste. The pathogenesis of these reactions, especially the mucosal ones, is largely unknown and appears to involve complex interactions among the drug in question, other medications, the patient’s underlying disease, genetics, and life-style factors. Along this line, there is a growing interest in the association between pharmacogenetic polymorphism and ADRs. Research focusing on polymorphism of the cytochrome P450 system (CYPs) has become increasingly important and has highlighted the intra- and inter-individual responses to drug exposure. This system has recently been suggested to be an underlying candidate regarding the pathogenesis of ADRs in the oral mucous membrane. This review focuses on those CVDs reported to induce ODRs. In addition, it will provide data on specific drugs or drug classes, and outline and discuss recent research on possible mechanisms linking ADRs to drug metabolism patterns. Abbreviations used will be as follows: ACEI, ACE inhibitor; ADR, adverse drug reaction; ANA, antinuclear antigen; ARB, angiotensin II receptor blocker; BAB, beta-adrenergic blocker; CCB, calcium-channel blocker; CDR, cutaneous drug reaction; CVD, cardiovascular drug; CYP, cytochrome P450 enzyme; EM, erythema multiforme; FDE, fixed drug eruption; I, inhibitor of CYP isoform activity; HMG-CoA, hydroxymethyl-glutaryl coenzyme A; NAT, N-acetyltransferase; ODR, oral drug reaction; RDM, reactive drug metabolite; S, substrate for CYP isoform; SJS, Stevens-Johnson syndrome; SLE, systemic lupus erythematosus; and TEN, toxic epidermal necrolysis.
Collapse
Affiliation(s)
- Lis Andersen Torpet
- Department of Oral Medicine, Clinical Oral Physiology, Oral Pathology & Anatomy, School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 20 Norre Allé, DK-2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|
14
|
Abstract
INTRODUCTION Understanding the mechanism of DILI with MTA, and how to avoid and manage these toxicities is essential for minimising inferior cancer treatment outcomes. An organised and comprehensive overview of MTA-associated hepatotoxicity is lacking; this review aims to fill the gap. AREAS COVERED A literature review was performed based on published case reports and relevant studies or articles pertaining to the topics on PubMed. Food and Drug Administration drug information documents and search on the US National Library of Medicine LiverTox database was performed for all relevant MTA. EXPERT OPINION MTA-associated hepatotoxicity is common but rarely fatal. The pattern of hepatotoxicity is predominantly idiosyncratic. Pharmacogenomics show potential in predicting patients at risk of poorly metabolising or developing immunoallergic responses to MTA, but prospective data is scant. Preventing reactivation of viral hepatitis using anti-viral drugs, and avoidance of drug combinations at high risk of negative interactions are the most readily preventable measures for DILI.
Collapse
Affiliation(s)
- Kirsty Wai-Chung Lee
- a Sir YK Pao Center for Cancer, Department of Clinical Oncology, State Key Laboratory in Oncology in South China , The Chinese University of Hong Kong, Hong Kong Cancer Institute and Prince of Wales Hospital , Shatin , Hong Kong
| | - Stephen Lam Chan
- a Sir YK Pao Center for Cancer, Department of Clinical Oncology, State Key Laboratory in Oncology in South China , The Chinese University of Hong Kong, Hong Kong Cancer Institute and Prince of Wales Hospital , Shatin , Hong Kong.,b Institute of Digestive Disease , The Chinese University of Hong Kong , Shatin , Hong Kong
| |
Collapse
|
15
|
Helton SG, Lohoff FW. Serotonin pathway polymorphisms and the treatment of major depressive disorder and anxiety disorders. Pharmacogenomics 2016; 16:541-53. [PMID: 25916524 DOI: 10.2217/pgs.15.15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While antidepressants are widely used to treat major depressive disorder and anxiety disorders, only half of the patients will respond to antidepressant treatment and only a third of patients will experience a remission of symptoms. Identification of genetic biomarkers that predict antidepressant treatment response could thus greatly improve current clinical practice by providing guidance on which drug to use for which patient. Most antidepressant drugs for the treatment of depression and anxiety disorders have effects on the serotonergic neurotransmitter system; thus, genetic polymorphisms in the genes involved in this pathway represent logical candidates for investigation. This article reviews recent findings on the pharmacogenetics of antidepressant drugs with a focus on serotonergic pathway polymorphisms and discusses future clinical applications.
Collapse
Affiliation(s)
- Sarah G Helton
- Section on Clinical Genomics & Experimental Therapeutics (CGET), Laboratory of Clinical & Translational Studies (LCTS), National Institute on Alcohol Abuse & Alcoholism (NIAAA), NIH, Bethesda, MD 20892-1540, USA
| | | |
Collapse
|
16
|
Graebin CS. The Pharmacological Activities of Glycyrrhizinic Acid (“Glycyrrhizin”) and Glycyrrhetinic Acid. REFERENCE SERIES IN PHYTOCHEMISTRY 2016. [DOI: 10.1007/978-3-319-26478-3_15-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Patel SR, Langaee TY, Wong SS, Cavallari LH. Pyrosequencing of the CYP2C9 -1766T>C polymorphism as a means of detecting the CYP2C9*8 allele. Pharmacogenomics 2015; 15:1717-22. [PMID: 25410896 DOI: 10.2217/pgs.14.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The CYP2C9 c.449G>A (p.R150H, rs7900194) polymorphism, which confers the CYP2C9*8 allele, is common in persons of African descent and results in reduced clearance of the narrow therapeutic index drugs, warfarin and phenytoin. Because of significant homology in DNA sequence at the 449G>A locus among CYP2C genes, the 449G>A variant cannot be reliably detected via PCR-based genotyping assays that require a short PCR product, such as pyrosequencing. Herein, we propose genotyping for the CYP2C9 c.-1766T>C polymorphism via pyrosequencing as an alternative and accurate means of identifying the CYP2C9*8 allele.
Collapse
Affiliation(s)
- Shitalben R Patel
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
18
|
Rodieux F, Piguet V, Berney P, Desmeules J, Besson M. Pharmacogenetics and analgesic effects of antidepressants in chronic pain management. Per Med 2015; 12:163-175. [DOI: 10.2217/pme.14.61] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antidepressants are widely administered to chronic pain patients, but there is large interindividual variability in their efficacy and adverse effect rates that may be attributed to genetic factors. Studies have attempted to determine the impact of genetic polymorphisms in enzymes and transporters that are involved in antidepressant pharmacokinetics, for example, cytochrome P450 and P-gp. The impacts of genetic polymorphisms in the targets of antidepressants, such as the serotonin receptor or transporter, the noradrenaline transporter and the COMT and monoamine oxydase enzymes, have also been described. This manuscript discusses the current knowledge of the influence of genetic factors on the plasma concentrations, efficacy and adverse effects of the major antidepressants used in pain management.
Collapse
Affiliation(s)
- Frédérique Rodieux
- Clinical Pharmacology & Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | - Valérie Piguet
- Clinical Pharmacology & Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | - Patricia Berney
- Clinical Pharmacology & Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | - Jules Desmeules
- Clinical Pharmacology & Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | - Marie Besson
- Clinical Pharmacology & Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| |
Collapse
|
19
|
Abstract
OPINION STATEMENT Managing inflammatory bowel disease (IBD) in a world of immunomodulators and biologics is complex enough, but managing the elderly IBD patient is further confounded by multiple comorbidities, polypharmacy with drug-drug interactions, and cognitive mobility/motility disturbances. Social and insurance coverage issues also always lurk in the background. All of these factors summate into a daunting challenge for the clinician. In this review, we aim to describe important considerations when prescribing to an elderly patient with IBD, taking into account costs of medications, drug interactions, the aging body's effect on pharmacokinetics, and the effect of aging on the immune system. Adverse effects and drug-drug interactions are expounded upon in detail specific for the aging adult with IBD in an effort to assist the clinician in the decision-making process.
Collapse
Affiliation(s)
- Marina Kim
- Department of Internal Medicine, Albany Medical Center, 47 New Scotland Ave, Albany, NY, 12208, USA,
| | | | | |
Collapse
|
20
|
Lingappan K, Jiang W, Wang L, Wang G, Couroucli XI, Shivanna B, Welty SE, Barrios R, Khan MF, Nebert DW, Roberts LJ, Moorthy B. Mice deficient in the gene for cytochrome P450 (CYP)1A1 are more susceptible than wild-type to hyperoxic lung injury: evidence for protective role of CYP1A1 against oxidative stress. Toxicol Sci 2014; 141:68-77. [PMID: 24893714 PMCID: PMC4200035 DOI: 10.1093/toxsci/kfu106] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/21/2014] [Indexed: 11/14/2022] Open
Abstract
Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome in adults and bronchopulmonary dysplasia in premature infants. Cytochrome P450 (CYP)1A1 has been shown to modulate hyperoxic lung injury. The mechanistic role(s) of CYP1A1 in hyperoxic lung injury in vivo is not known. In this investigation, we hypothesized that Cyp1a1(-/-) mice would be more susceptible to hyperoxic lung injury than wild-type (WT) mice, and that the protective role of CYP1A1 is in part due to CYP1A1-mediated decrease in the levels of reactive oxygen species-mediated lipid hydroperoxides, e.g., F2-isoprostanes/isofurans, leading to attenuation of oxidative damage. Eight- to ten-week-old male WT (C57BL/6J) or Cyp1a1(-/-) mice were exposed to hyperoxia (>95% O2) or room air for 24-72 h. The Cyp1a1(-/-) mice were more susceptible to oxygen-mediated lung damage and inflammation than WT mice, as evidenced by increased lung weight/body weight ratio, lung injury, neutrophil infiltration, and augmented expression of IL-6. Hyperoxia for 24-48 h induced CYP1A expression at the mRNA, protein, and enzyme levels in liver and lung of WT mice. Pulmonary F2-isoprostane and isofuran levels were elevated in WT mice after hyperoxia for 24 h. On the other hand, Cyp1a1(-/-) mice showed higher levels after 48-72 h of hyperoxia exposure compared to WT mice. Our results support the hypothesis that CYP1A1 protects against hyperoxic lung injury by decreasing oxidative stress. Future research could lead to the development of novel strategies for prevention and/or treatment of acute lung injury.
Collapse
Affiliation(s)
- Krithika Lingappan
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| | - Weiwu Jiang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| | - Lihua Wang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| | - Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Xanthi I Couroucli
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| | - Binoy Shivanna
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| | - Stephen E Welty
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| | - Roberto Barrios
- Department of Pathology, The Methodist Research Organization, Houston, Texas, 77030
| | - M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Daniel W Nebert
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, 45267
| | - L Jackson Roberts
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Bhagavatula Moorthy
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
21
|
Hussein AG, Pasha HF, El-Shahat HM, Gad DM, Toam MM. CYP1A1 gene polymorphisms and smoking status as modifier factors for lung cancer risk. Gene 2014; 541:26-30. [PMID: 24613751 DOI: 10.1016/j.gene.2014.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/20/2014] [Accepted: 03/02/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Lung cancer remains the most prevalent malignancy worldwide. Susceptibility to lung cancer has been shown to be modulated by inheritance of polymorphic genes. Several metabolic enzymes are currently under investigation for their possible role in lung cancer susceptibility, including members of the cytochrome P450 (CYP) superfamily. The aim of this work was to identify the correlation between CYP1A1 m1 and m2 polymorphisms and lung cancer risk and figure its interactions with smoking as genetic modifiers in the etiology of lung cancer in the Egyptian population. MATERIALS AND METHODS One hundred and ten patients with lung cancer and one hundred and ten controls were enrolled in the study. CYP1A1 m1 and m2 polymorphisms were determined using polymerase chain reaction restriction fragment length polymorphism. RESULTS Subjects carrying TC and CC genotypes of CYP1A1 m1 and AG and GG genotypes of CYP1A1 m2 were significantly more likely to develop lung cancer especially squamous cell carcinoma. The proportion of lung cancer attributable to the interaction of smoking and CYP1A1 m1 and CYP1A1 m2 polymorphisms was 32% and 52% respectively. CONCLUSION Our results revealed that CYP1A1 m1 and m2 polymorphisms contribute to smoking related lung cancer risk in the Egyptian population.
Collapse
Affiliation(s)
- Atef G Hussein
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Heba F Pasha
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Hanan M El-Shahat
- Chest Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa M Gad
- Chest Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mostafa M Toam
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
22
|
Kebeish R, Azab E, Peterhaensel C, El-Basheer R. Engineering the metabolism of the phenylurea herbicide chlortoluron in genetically modified Arabidopsis thaliana plants expressing the mammalian cytochrome P450 enzyme CYP1A2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8224-32. [PMID: 24920432 DOI: 10.1007/s11356-014-2710-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/27/2014] [Indexed: 05/20/2023]
Abstract
Transgenic Arabidopsis thaliana plants were generated by introduction of the human P450 CYP1A2 gene, which metabolizes a number of herbicides, insecticides and industrial chemicals. Transgenic A. thaliana plants expressing CYP1A2 gene showed remarkable resistance to the phenylurea herbicide chlortoluron (CTU) supplemented either in plant growth medium or sprayed on foliar parts of the plants. HPLC analyses showed a strong reduction in CTU accumulation in planta supporting the tolerance of transgenic lines to high concentrations of CTU. Besides increased herbicide tolerance, expression of CYP1A2 resulted in no other visible phenotype in transgenic plants. Our data indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. Moreover, these transgenic plants appear to be useful for herbicide resistance as well as phytoremediation of environmental contaminants.
Collapse
Affiliation(s)
- Rashad Kebeish
- Plant Biotechnology Laboratory (PBL), Botany Department, Faculty of Science, Zagazig University, El-Gamaa Street, 44519, Zagazig, Egypt,
| | | | | | | |
Collapse
|
23
|
Horita N, Miyazawa N, Yoshiyama T, Tsukahara T, Takahashi R, Tsukiji J, Kato H, Kaneko T, Ishigatsubo Y. Decreased activities of daily living is a strong risk factor for liver injury by anti-tuberculosis drugs. Respirology 2013; 18:474-9. [DOI: 10.1111/resp.12008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/13/2012] [Accepted: 09/12/2012] [Indexed: 01/24/2023]
Affiliation(s)
- Nobuyuki Horita
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama; Japan
| | - Naoki Miyazawa
- Department of Respiratory Medicine; Saiseikai Yokohamashi Nanbu Hospital; Yokohama; Japan
| | | | - Toshinori Tsukahara
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama; Japan
| | - Ryohei Takahashi
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama; Japan
| | - Jun Tsukiji
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama; Japan
| | - Hideaki Kato
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama; Japan
| | - Takeshi Kaneko
- Respiratory Disease Center; Yokohama City University Medical Center; Yokohama; Japan
| | - Yoshiaki Ishigatsubo
- Department of Internal Medicine and Clinical Immunology; Yokohama City University Graduate School of Medicine; Yokohama; Japan
| |
Collapse
|
24
|
Silva AD, Sartori D, Macedo F, Ribeiro L, Fungaro M, Mantovani M. Effects of β-glucan extracted from Agaricus blazei on the expression of ERCC5, CASP9, and CYP1A1 genes and metabolic profile in HepG2 cells. Hum Exp Toxicol 2013; 32:647-54. [DOI: 10.1177/0960327112468173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The polysaccharide β-glucan has biological properties that stimulate the immune system and can prevent chronic pathologies, including cancer. It has been shown to prevent damage to DNA caused by the chemical and physical agents to which humans are exposed. However, the mechanism of β-glucan remains poorly understood. The objective of the present study was to verify the protective effect of β-glucan on the expression of the genes ERCC5 (involved in excision repair of DNA damage), CASP9 (involved in apoptosis), and CYP1A1 (involved in the metabolism of xenobiotics) using real-time polymerase chain reaction and perform metabolic profile measurements on the HepG2 cells. Cells were exposed to only benzo[a]pyrene (B[a]P), β-glucan, or a combination of B[a]P with β-glucan. The results demonstrated that 50 µg/mL β-glucan significantly repressed the expression of the ERCC5 gene when compared with the untreated control cells in these conditions. No change was found in the CASP9 transcript level. However, the CYP1A1 gene expression was also induced by HepG2 cells exposed to B[a]P only or in association with β-glucan, showing its effective protector against damage caused by B[a]P, while HepG2 cells exposed to only β-glucan did not show CYP1A1 modulation. The metabolic profiles showed moderate bioenergetic metabolism with an increase in the metabolites involved in bioenergetic metabolism (alanine, glutamate, creatine and phosphocholine) in cells treated with β-glucan and to a lesser extent treated with B[a]P. Thus, these results demonstrate that the chemopreventive activity of β-glucan may modulate bioenergetic metabolism and gene expression.
Collapse
Affiliation(s)
| | - D. Sartori
- Universidade Estadual de Londrina, Londrina, Brazil
| | - F.C. Macedo
- Universidade Estadual de Londrina, Londrina, Brazil
| | - L.R. Ribeiro
- Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | | | | |
Collapse
|
25
|
Abstract
INTRODUCTION Although chronic opioid therapy is usually initiated using short-acting opioids, many patients with chronic pain are subsequently converted to long-acting and extended-release preparations. In clinical practice, optimal management requires careful individualization of dosage in order to achieve an appropriate balance of efficacy and adverse effects. After successful initiation and stabilization of opioid treatment, subsequent changes in regimen may still be required to maintain efficacy with an acceptable adverse effect profile. METHODS This is a qualitative review of the available literature from June 2012 or earlier on opioid rotation for the management of chronic pain in the clinical setting. The PubMed database was searched using various search terms, and additional articles were identified through manual search of the bibliographies of articles identified through the PubMed search. Papers were selected based on relevance to the topic. RESULTS When considering opioid rotation, clinicians must take into account not only the significant differences in potency among opioid drugs but also the considerable interpatient variability in response to opioids. The estimate of relative potency used in calculating an appropriate starting dose when switching from one opioid to another has been codified on equianalgesic dose tables. To reduce the risk of unintentional overdose, a two-step calculation has been proposed, which incorporates an initial reduction (typically 25-50%) in the equianalgesic dose followed by a second evaluation based on the severity of pain at the time of rotation along with other medical or psychosocial factors that might alter the effectiveness and tolerability of the new drug. Given the uncertainty of accurately predicting a patient's response to treatment, each initial exposure to a new opioid should be considered a discrete clinical trial to assess the degree of response. Systematic reviews of opioid rotation have documented the re-establishment of adequate pain control or reduced adverse effects in 50-80% of patients. CONCLUSIONS Although continued research is needed to refine equianalgesic doses further, opioid rotation is an important and necessary practice in patients with chronic cancer or noncancer pain that is refractory to the initially used opioid.
Collapse
|
26
|
Narasimhan S, Lohoff FW. Pharmacogenetics of antidepressant drugs: current clinical practice and future directions. Pharmacogenomics 2012; 13:441-64. [DOI: 10.2217/pgs.12.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While antidepressants are widely used to treat mood and anxiety disorders, only half of the patients will respond to antidepressant treatment and only one-third of patients experience a full remission of symptoms. The identification of genetic biomarkers that predict antidepressant-treatment response can improve current clinical practice. This is an emerging field known as pharmacogenetics, which comprises of genetic studies on both the pharmacokinetics and pharmacodynamics of treatment response. Recent studies on antidepressant-treatment response have focused on both aspects of pharmacogenetics research, identifying new candidate genes that may predict better treatment response for patients. This paper reviews recent findings on the pharmacogenetics of antidepressant drugs and future clinical applications. Ultimately, these studies should lead to the use of genetic testing to guide the use of antidepressants in clinical practice.
Collapse
Affiliation(s)
- Sneha Narasimhan
- University of Pennsylvania School of Medicine, Department of Psychiatry , Center for Neurobiology & Behavior, Translational Research Laboratories, 125 South 31st Street, Room 2213, Philadelphia, PA 19104, USA
| | - Falk W Lohoff
- University of Pennsylvania School of Medicine, Department of Psychiatry , Center for Neurobiology & Behavior, Translational Research Laboratories, 125 South 31st Street, Room 2213, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Porcelli S, Fabbri C, Spina E, Serretti A, De Ronchi D. Genetic polymorphisms of cytochrome P450 enzymes and antidepressant metabolism. Expert Opin Drug Metab Toxicol 2011; 7:1101-15. [PMID: 21736534 DOI: 10.1517/17425255.2011.597740] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The cytochrome P450 (CYP) enzymes are the major enzymes responsible for Phase I reactions in the metabolism of several substances, including antidepressant medications. Thus, it has been hypothesized that variants in the CYP network may influence antidepressant efficacy and safety. Nonetheless, data on this field are still contradictory. The authors aim to give an overview of the published studies analyzing the influence of CYP highly polymorphic loci on antidepressant treatment in order to translate the acquired knowledge to a clinical level. AREAS COVERED The authors collected and compared experimental works and reviews published from the 1980s to the present and included in the Medline database. The included studies pertain to the effects of CYP gene polymorphisms on antidepressant pharmacokinetic parameters and clinical outcomes (response and drug-related adverse effects), with a focus on applications in clinical practice. The authors focused mainly on in vivo studies in humans (patients or healthy volunteers). EXPERT OPINION Great variability in antidepressant metabolism among individuals has been demonstrated. Thus, with the current interest in individualized medicine, several genetic tests to detect CYP variants have been produced. They provide a potentially useful way to anticipate some clinical outcomes of antidepressant treatment, although they will only be extensively used in clinical practice if precise and specific treatment options and guidelines based on genetic tests can be provided.
Collapse
|
28
|
Crisafulli C, Fabbri C, Porcelli S, Drago A, Spina E, De Ronchi D, Serretti A. Pharmacogenetics of antidepressants. Front Pharmacol 2011; 2:6. [PMID: 21687501 PMCID: PMC3108562 DOI: 10.3389/fphar.2011.00006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/04/2011] [Indexed: 12/28/2022] Open
Abstract
Up to 60% of depressed patients do not respond completely to antidepressants (ADs) and up to 30% do not respond at all. Genetic factors contribute for about 50% of the AD response. During the recent years the possible influence of a set of candidate genes as genetic predictors of AD response efficacy was investigated by us and others. They include the cytochrome P450 superfamily, the P-glycoprotein (ABCB1), the tryptophan hydroxylase, the catechol-O-methyltransferase, the monoamine oxidase A, the serotonin transporter (5-HTTLPR), the norepinephrine transporter, the dopamine transporter, variants in the 5-hydroxytryptamine receptors (5-HT1A, 5-HT2A, 5-HT3A, 5-HT3B, and 5-HT6), adrenoreceptor beta-1 and alpha-2, the dopamine receptors (D2), the G protein beta 3 subunit, the corticotropin releasing hormone receptors (CRHR1 and CRHR2), the glucocorticoid receptors, the c-AMP response-element binding, and the brain-derived neurotrophic factor. Marginal associations were reported for angiotensin I converting enzyme, circadian locomotor output cycles kaput protein, glutamatergic system, nitric oxide synthase, and interleukin 1-beta gene. In conclusion, gene variants seem to influence human behavior, liability to disorders and treatment response. Nonetheless, gene × environment interactions have been hypothesized to modulate several of these effects.
Collapse
|
29
|
Kamdem LK, Flockhart DA, Desta Z. In vitro cytochrome P450-mediated metabolism of exemestane. Drug Metab Dispos 2010; 39:98-105. [PMID: 20876785 DOI: 10.1124/dmd.110.032276] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exemestane is a potent and irreversible steroidal aromatase inhibitor drug used for the treatment of estrogen receptor-positive breast cancer. Our aim was to identify and assess the contribution of the specific cytochromes P450 (P450s) responsible for exemestane primary in vitro metabolism. With the use of high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analytical techniques, 17-hydroexemestane (MI) formation and 6-hydroxymethylexemestane (MII) formation were found to be the predominant exemestane metabolic pathways. In a bank of 15 well characterized human liver microsomes with known P450 isoform-specific activities, the MI formation rate correlated significantly with CYP1A2 (Spearman r = 0.60, p = 0.02) and CYP4A11 (Spearman r = 0.67, p = 0.01) isoform-specific activities, whereas the MII production rate significantly correlated with CYP2B6 (Spearman r = 0.57, p = 0.03) and CYP3A (Spearman r = 0.76, p = 0.005) isoform-specific activities. Recombinant CYP1A1 metabolized exemestane to MI with a catalytic efficiency (Cl(int)) of 150 nl/pmol P450 × min that was at least 3.5-fold higher than those of other P450s investigated. Recombinant CYP3A4 catalyzed MII formation from exemestane with a catalytic efficiency of 840 nl/pmol P450 × min that was at least 4-fold higher than those of other P450s investigated. Among a panel of 10 chemical inhibitors tested, only ketoconazole and troleandomycin (CYP3A-specific chemical inhibitors) significantly inhibited the formation of MII by 45 and 95%, respectively. None of them markedly inhibited the formation of MI. In summary, exemestane seems to be metabolized to MI by multiple P450s that include CYP4A11 and CYP1A1/2, whereas its oxidation to MII is primarily mediated by CYP3A.
Collapse
Affiliation(s)
- Landry K Kamdem
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
30
|
Gene expression of P-glycoprotein and cytochrome P450 3A4 in peripheral blood mononuclear cells and correlation with expression in liver. Transplant Proc 2010; 42:834-6. [PMID: 20430184 DOI: 10.1016/j.transproceed.2010.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long-term immunosuppression in renal transplant recipients generally includes calcineurin inhibitors (CNIs), which demonstrate marked interindividual diversity and a narrow therapeutic range. In the clinical setting, it is important to reach therapeutic drug concentrations to prevent allograft rejection. The same immunosuppressant dosage leads to different drug concentrations. Therefore, we investigated factors that influence the metabolism of immunosuppressant agents. The CNIs are substrates of cytochrome P450 (CYP450) and P-glycoprotein. The CYP450 3A genotype significantly influences CNI concentration. Differences in expression of these proteins may explain interindividual pharmacokinetic variations. However, it is risky and impractical to obtain specimens from the liver in renal transplant recipients. Therefore, we investigated the correlation of gene expression between peripheral blood mononuclear cells (PBMCs) and liver parenchyma. We observed that the correlation of relative P-glycoprotein gene expression between PBMCs and liver is not significant (r2=0.03; P=.65). In addition, the correlation of CYP450 3A4 gene expression between PBMCs and liver is not strong (r2=0.23; P=.42). The expression level of CYP450 3A5 is too low to be detected in the sample from PBMCs.
Collapse
|
31
|
Bigoniya P, Shukla A, Singh C. Evaluation of Hepatic Microsomal Enzyme Functional Integrity on Picroliv Pretreatment Against CCl4 Induced Hepatotoxicity. INT J PHARMACOL 2010. [DOI: 10.3923/ijp.2010.200.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Mota P, Moura DS, Vale MG, Coimbra H, Carvalho L, Regateiro F. Polimorfismos dos alelos m1 e m2 do gene CYP1A1: Susceptibilidade genética para o cancro do pulmão. REVISTA PORTUGUESA DE PNEUMOLOGIA 2010. [DOI: 10.1016/s0873-2159(15)30008-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Extracting evidence from forensic DNA analyses: future molecular biology directions. Biotechniques 2009; 46:339-40, 342-50. [PMID: 19480629 DOI: 10.2144/000113136] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Molecular biology tools have enhanced the capability of the forensic scientist to characterize biological evidence to the point where it is feasible to analyze minute samples and achieve high levels of individualization. Even with the forensic DNA field's maturity, there still are a number of areas where improvements can be made. These include: enabling the typing of samples of limited quantity and quality; using genetic information and novel markers to provide investigative leads; enhancing automation with robotics, different chemistries, and better software tools; employing alternate platforms for typing DNA samples; developing integrated microfluidic/microfabrication devices to process DNA samples with higher throughput, faster turnaround times, lower risk of contamination, reduced labor, and less consumption of evidentiary samples; and exploiting high-throughput sequencing, particularly for attribution in microbial forensics cases. Knowledge gaps and new directions have been identified where molecular biology will likely guide the field of forensics. This review aims to provide a roadmap to guide those interested in contributing to the further development of forensic genetics.
Collapse
|
34
|
Acikgöz A, Karim N, Giri S, Schmidt-Heck W, Bader A. Two compartment model of diazepam biotransformation in an organotypical culture of primary human hepatocytes. Toxicol Appl Pharmacol 2009; 234:179-91. [DOI: 10.1016/j.taap.2008.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
|
35
|
Genetic effects and biotoxicity monitoring of occupational styrene exposure. Clin Chim Acta 2009; 399:8-23. [PMID: 18845133 DOI: 10.1016/j.cca.2008.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 11/22/2022]
|
36
|
Brown CM, Reisfeld B, Mayeno AN. Cytochromes P450: A Structure-Based Summary of Biotransformations Using Representative Substrates. Drug Metab Rev 2008. [DOI: 10.1080/03602530701836662] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Lieb W, Bolbrinker J, Döring A, Hense HW, Erdmann J, Schunkert H, Kreutz R. No association of the CYP3A5*1 allele with blood pressure and left ventricular mass and geometry: the KORA/MONICA Augsburg echocardiographic substudy. Clin Sci (Lond) 2007; 111:365-72. [PMID: 16822233 DOI: 10.1042/cs20060075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A polymorphism in the cytochrome P450 3A CYP3A5 enzyme has been implicated in BP (blood pressure) control and arterial hypertension. Carriers of the CYP3A5*1 allele had high, whereas homozygous carriers of the CYP3A5*3 allele exhibit low, CYP3A5 expression in the kidney, where CYP3A5 represents the major CYP3A enzyme. The aim of the present study was to investigate the association of the CYP3A5*1 allele with BP, arterial hypertension, LVM [(left ventricular) mass] and LV geometry in a large Caucasian-population-based cohort. We compared BP, LVM and the prevalence of hypertension between carriers (CYP3A5*1/*1 and CYP3A5*1/*3 genotypes) and non-carriers (CYP3A5*3/*3 genotype) of the CYP3A5*1 allele in the echocardiographic substudy of the third MONICA (MONItoring trends and determinants in CArdiovascular disease) Augsburg survey. After exclusion of 269 individuals who were taking antihypertensive medication, 530 women and 554 men were available for analysis, revealing allele frequencies of 5.8 and 94.2% for the CYP3A5*1 and CYP3A5*3 alleles respectively. Overall, the presence of the CYP3A5*1 allele exhibited no effect on systolic or diastolic BP in either gender. One-third of the individuals in this cohort were hypertensive (BP > or =140/90 mmHg), and the genotype distribution between normotensive and hypertensive individuals revealed no association between CYP3A5*1 and hypertension after adjustment for age, BMI and gender (odds ratio, 1.02; P=0.92). Moreover, no effect of CYP3A5*1 on LVM, thickness of the septal and posterior wall and LV end-diastolic diameter was found. We conclude that CYP3A5*1 exhibits no significant effect on BP, LVM and LV geometry in the KORA/MONICA echocardiographic substudy.
Collapse
Affiliation(s)
- Wolfgang Lieb
- Medizinische Klinik 2, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Pérez-Cadahía B, Valdiglesias V, Pásaro E, Méndez J, Laffon B. Genetic Polymorphism in Cytochrome P450 1B1 in a Spanish Population. Basic Clin Pharmacol Toxicol 2007; 101:70-2. [PMID: 17577319 DOI: 10.1111/j.1742-7843.2007.00086.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Ben-Zaken Cohen S, Paré PD, Man SFP, Sin DD. The growing burden of chronic obstructive pulmonary disease and lung cancer in women: examining sex differences in cigarette smoke metabolism. Am J Respir Crit Care Med 2007; 176:113-20. [PMID: 17413125 DOI: 10.1164/rccm.200611-1655pp] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Smoking-related lung diseases such as chronic obstructive pulmonary disease (COPD) and lung cancer are growing epidemics in women in the United States and elsewhere. Although some of this disturbing trend in women can be attributed to changing smoking habits, there is emerging evidence that women may be biologically more susceptible to the harmful effects of cigarette smoke than are men. Estrogen and related compounds may up-regulate the expression of cytochrome P450 (CYP) enzymes in lungs and liver, which are involved in the metabolism of various constituents of cigarette smoke. Although metabolism of foreign substances is usually beneficial in eliminating potential toxins from the body, in some instances the metabolic process can transform harmless substances into toxic chemicals through a process called metabolic bioactivation. One important xenobiotic substrate for CYP enzymes in cigarette smoke is polycyclic aromatic hydrocarbon, which in its native form is relatively harmless in small doses but upon bioactivation by CYP enzymes, can become very toxic substances for the lungs. In this article, we explore CYP and other related pathways as potential mechanisms and targets of future research and novel discoveries to curb the growing epidemic of COPD and lung cancer in women.
Collapse
Affiliation(s)
- Sigal Ben-Zaken Cohen
- James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research, St. Paul's Hospital, and the Department of Medicine, The University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | | | | | | |
Collapse
|
40
|
Yoshitsugu H, Nishimura M, Tateno C, Kataoka M, Takahashi E, Soeno Y, Yoshizato K, Yokoi T, Naito S. Evaluation of human CYP1A2 and CYP3A4 mRNA expression in hepatocytes from chimeric mice with humanized liver. Drug Metab Pharmacokinet 2007; 21:465-74. [PMID: 17220562 DOI: 10.2133/dmpk.21.465] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated and compared the expression of human CYPs mRNA in primary cultures of cryopreserved human hepatocytes and in chimeric mice constructed by transplanting hepatocytes from the same human donors. Analysis was performed by real-time reverse-transcription polymerase chain reaction. Initial expression levels for the 12 human CYPs mRNA in chimeric mouse hepatocytes were higher than those in human hepatocytes, but a low correlation coefficient was observed (r=0.690). After 24 h of culture, the correlation remained low (r=0.699). The medium was replaced with fresh medium without human epidermal growth factor, and after 48 h of culture, expression of the 12 human CYPs mRNA were very similar in human hepatocytes and chimeric mouse hepatocytes, and a higher correlation coefficient was observed (r=0.809). After 72 h of culture, the correlation remained high (r=0.873). The ratio of human CYP1A2 mRNA to beta-actin mRNA in chimeric mouse hepatocytes decreased quickly during the first 24 h of culture, and then remained constant. Expression profiles of human CYP1A2 mRNA in chimeric mouse hepatocytes were similar to those in human hepatocytes after exposure of beta-naphthoflavone. CYP3A4 mRNA expression was increased significantly by rifampicin (Rif) exposure in human hepatocytes, whereas Rif-induced increases in CYP3A4 mRNA expression in chimeric mouse hepatocytes was seen for two of the three donors. In conclusion, we demonstrated that expression and induction of human CYPs in human hepatocytes can be reproduced in chimeric mouse hepatocytes.
Collapse
Affiliation(s)
- Hiroki Yoshitsugu
- Division of Pharmacology, Drug Safety and Metabolism, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Brown A, Henderson A, Lane C, Lansdell M, Maw G, Monaghan S. Small molecule inhibitors of IgE synthesis. Bioorg Med Chem Lett 2006; 16:4697-9. [PMID: 16814547 DOI: 10.1016/j.bmcl.2006.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/09/2006] [Accepted: 05/16/2006] [Indexed: 11/17/2022]
Abstract
A novel series of small molecule inhibitors of IgE synthesis are described. Compounds were optimized for potency, metabolic stability and absence of genetic toxicology.
Collapse
Affiliation(s)
- Alan Brown
- Discovery Chemistry, Pfizer Global Research and Development, Sandwich, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Mikstacka R, Rimando AM, Szalaty K, Stasik K, Baer-Dubowska W. Effect of natural analogues of trans-resveratrol on cytochromes P4501A2 and 2E1 catalytic activities. Xenobiotica 2006; 36:269-85. [PMID: 16684708 DOI: 10.1080/00498250500485057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim was to assess the inhibitory effect of a series of naturally occurring trans-resveratrol analogues on cytochromes P450, namely CYP1A2 and CYP2E1, in vitro in order to analyse any structure-activity relationships. 3,5-Dimethoxy-4'-hydroxy-trans-stilbene (pterostilbene), 3,4',5-trimethoxy-trans-stilbene (TMS), 3,4'-dihydroxy-5-methoxy-trans-stilbene (3,4'-DH-5-MS) and 3,5-dihydroxy-4'-methoxy-trans-stilbene (3,5-DH-4'-MS) inhibited the activity of CYP1A2, with K(i) = 0.39, 0.79, 0.94 and 1.04 microM, respectively. Piceatannol (3,3',4,5'-tetrahydroxy-trans-stilbene) was the least potent inhibitor of CYP1A2 with a K(i) = 9.67 microM. Piceatannol and TMS in the concentration range 1-100 microM did not inhibit CYP2E1 activity. The activity of this enzyme likewise was not significantly influenced by pterostilbene and 3,5-DH-4'-MS with IC(50) > 100 microM, whereas 3,4'-DH-5-MS appeared to be a moderately potent, competitive inhibitor of CYP2E1 (K(i) = 42.6 microM). Structure-activity relationship analysis leads to the conclusion that the substitution of hydroxy groups of resveratrol with methoxy groups increases the inhibition of CYP1A2, yet the number and position of methylation are not essential. However, the 4'-hydroxy group in trans-resveratrol and its analogues may play an important role in the interaction with a binding site of CYP2E1.
Collapse
Affiliation(s)
- R Mikstacka
- Department of Pharmaceutical Biochemistry, University of Medical Sciences, Poznań, Poland.
| | | | | | | | | |
Collapse
|
43
|
Argikar UA, Cloyd JC, Birnbaum AK, Leppik IE, Conway J, Kshirsagar S, Oetting WS, Klein EC, Remmel RP. Paradoxical urinary phenytoin metabolite (S)/(R) ratios in CYP2C19*1/*2 patients. Epilepsy Res 2006; 71:54-63. [PMID: 16815679 DOI: 10.1016/j.eplepsyres.2006.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 05/22/2006] [Indexed: 11/18/2022]
Abstract
Phenytoin (PHT) is primarily metabolized to 5-(4'-hydroxyphenyl)-5-phenylhydantoin (p-HPPH), accounting for 67-88% of an administered dose in humans. p-HPPH is formed by the cytochrome (CYP) 450 enzymes CYP2C9 and CYP2C19, then glucuronidated and excreted into the urine. CYP2C9 catalyses the prochiral formation of (R) and (S)-p-HPPH, and is approximately 40 times more stereoselective towards the formation of the (S) isomer whereas CYP2C19 is not stereoselective. Because of differential stereoselectivity, polymorphisms in the genes can alter the (S)/(R)-p-HPPH ratios. Genotyping for CYP2C9 and CYP2C19 was accomplished by a Taqman based assay. Twelve and twenty-four hour urine samples were collected from 45 epilepsy patients taking PHT under steady-state conditions and (S)/(R) ratios of p-HPPH were determined by chiral HPLC separation. The mean urinary (S)/(R) ratio in the 12-24h urine collection in subjects homozygous for CYP2C9*1/*1, CYP2C19*1/*1 was 24.2+/-3.1(n=21), whereas ratios in CYP2C9*1/*2 and CYP2C9*1/*3 subjects, were 11.1+/-3.3(n=7) and 2.7+/-0.6(n=2), respectively. One CYP2C9*2/*3 patient had a ratio of 2.1. Unexpectedly, CYP2C9*1/*1, CYP2C19*1/*2 subjects had a mean (S)/(R) ratio as low as 12.9+/-1.7(n=12). Our results are generally consistent with single dose PHT studies. However, the (S)/(R)-p-HPPH ratios for the CYP2C9*1/*1, CYP2C19*1/*2 subjects, expected to be in the range of 30-40, were only 12.9, suggesting some undetected linkage disequilibrium between CYP2C9 and CYP2C19 genes that could affect PHT elimination. Furthermore, our study suggests that measurement of urine ratios cannot be used as a marker for genotype determination.
Collapse
Affiliation(s)
- Upendra A Argikar
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Guo J, Nikolic D, Chadwick LR, Pauli GF, van Breemen RB. IDENTIFICATION OF HUMAN HEPATIC CYTOCHROME P450 ENZYMES INVOLVED IN THE METABOLISM OF 8-PRENYLNARINGENIN AND ISOXANTHOHUMOL FROM HOPS (HUMULUS LUPULUS L.). Drug Metab Dispos 2006; 34:1152-9. [PMID: 16611861 DOI: 10.1124/dmd.105.008250] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The female flowers of hops (Humulus lupulus L.) are used in the brewing of beer and are under investigation for use in dietary supplements for the management of menopausal symptoms in women. Hop extracts contain the weakly estrogenic compound isoxanthohumol (IX), proestrogenic xanthohumol, and the potent estrogen 8-prenylnaringenin (8PN). Because IX can be metabolized in the human liver to form 8PN, the specific cytochrome P450 (P450) enzymes responsible for this O-demethylation reaction were identified. In addition, the enzymes that convert IX and 8PN to their most abundant metabolites were identified because these metabolic pathways might also affect the estrogenicity of hop preparations. Specifically, the P450 enzymes that catalyze the oxidation of the prenyl side chains of IX and 8PN into trans- or cis-alcohols were investigated. Human liver microsomes and monoclonal antibodies that inhibit specific P450 enzymes were used in combination with liquid chromatography/mass spectrometry to identify the enzymes responsible for these transformations. CYP2C19 was found to catalyze the formation of both cis- and trans-alcohols of the prenyl side chain of 8PN with K(m) values of 14.8 +/- 3.2 and 16.6 +/- 4.6 microM, respectively. CYP2C8 converted 8PN regioselectively to the trans-alcohol of the prenyl group with a K(m) of 3.7 +/- 0.9 microM. Finally, CYP1A2 was found to catalyze the O-demethylation of IX to generate 8PN, with a K(m) value of 17.8 +/- 3.7 microM. These results suggest that the estrogenicity of hop constituents in vivo will depend in part on metabolic conversion that may show individual variation.
Collapse
Affiliation(s)
- Jian Guo
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements Research, IL 60612-7231, USA
| | | | | | | | | |
Collapse
|
45
|
Madabushi R, Frank B, Drewelow B, Derendorf H, Butterweck V. Hyperforin in St. John's wort drug interactions. Eur J Clin Pharmacol 2006; 62:225-33. [PMID: 16477470 DOI: 10.1007/s00228-006-0096-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 01/06/2006] [Indexed: 11/27/2022]
Abstract
Recently, interactions of herbal medicines with synthetic drugs came into focus of particular interest. In the past 3 years, more than 50 papers were published regarding interactions between St. John's wort (Hypericum perforatum L.; SJW) and prescription drugs. Co-medication with SJW resulted in decreased plasma concentrations of a number of drugs including amitriptyline, cyclosporine, digoxin, indinavir, irinotecan, warfarin, phenprocoumon, alprazolam, dextrometorphane, simvastatin, and oral contraceptives. Sufficient evidence from interaction studies and case reports indicate that SJW is a potent inducer of cytochrome P450 enzymes (particularly CYP3A4) and/or P-glycoprotein. Recent studies could show that the degree of enzyme induction by SJW correlates strongly with the amount of hyperforin found in the product. Products that do not contain substantial amounts of hyperforin (<1%) have not been shown to produce clinically relevant enzyme induction. On the other hand, some evidence suggests that hyperforin may also contribute to the antidepressant activity of SJW. However, clinical studies using SJW preparations with a low hyperforin amount (<1%) clearly demonstrated the superiority of this plant extract over placebo and its equivalence to imipramine and fluoxetine in the treatment of mild to moderate forms of depression. In the present paper clinical significant SJW interactions are critically evaluated against the background of hyperforin.
Collapse
Affiliation(s)
- Rajanikanth Madabushi
- Department of Pharmaceutics, College of Pharmacy, University of Florida, P.O. 100494, Gainesville, 32610, USA
| | | | | | | | | |
Collapse
|
46
|
Kreutz R, Zuurman M, Kain S, Bolbrinker J, de Jong PE, Navis G. The role of the cytochrome P450 3A5 enzyme for blood pressure regulation in the general Caucasian population. Pharmacogenet Genomics 2005; 15:831-7. [PMID: 16272955 DOI: 10.1097/01213011-200512000-00001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 3A (CYP3A) enzymes are important for drug metabolism in gut and liver. The CYP3A5 isoenzyme is also expressed in the kidney and has been implicated in renal sodium reabsorption and blood pressure regulation. Its expression and activity is strongly linked to a polymorphism (i.e. 6986G > A). Thus, appreciable expression is found in carriers of the CYP3A5*1 (6986A) but not in homozygous carriers of the CYP3A5*3 (6986G) allele. We tested whether the presence of CYP3A5*1 affects blood pressure in Caucasian individuals who were enrolled in the Prevention of REnal and Vascular ENd stage Disease (PREVEND) study. In addition, we evaluated whether the genetic effect of CYP3A5*1 on blood pressure is modulated by sodium intake. CYP3A5*1 was found in 13.3% (901 individuals) of the cohort (6777 individuals). Diastolic blood pressure was not affected by CYP3A5*1. Overall, systolic and pulse pressure were significantly lower in carriers of CYP3A5*1, both after univariate analysis adjusted for age (P = 0.012 and P = 0.008) and in logistic regression analysis (P = 0.015 and P = 0.012). The effect on systolic blood pressure was significantly modulated by sodium intake (P = 0.038). In separate analysis according to gender, CYP3A5*1 accounted for a significant age adjusted decrease in systolic blood pressure (-1.6 mmHg, P = 0.04) and pulse pressure (-1.2 mmHg, P = 0.04) in females but not in men. The present study demonstrates that the CYP3A5*1 allele affects systolic blood pressure and pulse pressure in the general population. Its role in hypertensive disease and potential gender differences should be investigated in further studies.
Collapse
Affiliation(s)
- Reinhold Kreutz
- Department of Clinical Pharmacology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Shiraga T, Tozuka Z, Ishimura R, Kawamura A, Kagayama A. Identification of cytochrome P450 enzymes involved in the metabolism of FK228, a potent histone deacetylase inhibitor, in human liver microsomes. Biol Pharm Bull 2005; 28:124-9. [PMID: 15635176 DOI: 10.1248/bpb.28.124] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FK228 (FR901228, depsipeptide) is a potent histone deacetylase inhibitor currently in phase II clinical trials for cancer treatment. In the present study, the cytochrome P450 (P450) enzymes responsible for FK228 metabolism in human liver microsomes were investigated. Incubation with human liver microsomes in the presence of an NADPH-generating system revealed that FK228 is metabolized to at least 10 different metabolites. Km and Vmax values for FK228 disappearance were 20.3 microM and 561.9 pmol/min/mg protein, respectively. Further studies were performed at a substrate concentration of 10 microM (half the Km value for FK228 disappearance). FK228 disappearance activities in human liver microsomes from 12 individuals strongly correlated (r2=0.957) with testosterone 6beta-hydroxylase activities, a marker enzyme activity of CYP3A4/5, but not with other P450 enzyme-specific activities (CYP1A2, 2A6, 2C8, 2C9, 2C19, 2D6, and 4A). Among 14 recombinant heterologously expressed human P450s examined, CYP3A4 exhibited the highest activity of FK228 disappearance. CYP3A5, 1A1, 2B6, and 2C19 showed 16.8%, 5.2%, 1.6%, and 1.3% of the activity of CYP3A4, respectively. Other P450s showed no significant metabolic activity toward FK228. In addition, FK228 disappearance in human liver microsomes was markedly inhibited by ketoconazole, a potent CYP3A4 inhibitor, and an anti-CYP3A4 antibody. These results indicate that the metabolism of FK228 in human liver microsomes is catalyzed mainly by CYP3A enzymes, particularly CYP3A4.
Collapse
Affiliation(s)
- Toshifumi Shiraga
- Biopharmaceutical and Pharmacokinetic Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Osaka, Japan.
| | | | | | | | | |
Collapse
|
48
|
Cotreau MM, von Moltke LL, Greenblatt DJ. The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin Pharmacokinet 2005; 44:33-60. [PMID: 15634031 DOI: 10.2165/00003088-200544010-00002] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytochrome P450s (CYPs) are an important family of enzymes in the metabolism of many therapeutic agents and endogenous metabolic reactions. The CYP3A subfamily is especially prominent in these metabolic activities. This review article focuses on how the factors of age and sex may influence the in vivo activity of human CYP3A. The functional activity of CYP3A varies based on issues such as interaction with one or more substrates and between individuals and/or localisation. For CYP3A substrates, intrinsic clearance is the component of total clearance that is contributed by the enzymes. Depending on the route of administration and the contribution of hepatic blood flow to overall clearance, sensitivities to changes in CYP3A activities may differ. Additionally, age may influence the hepatic blood flow and, in turn, affect CYP3A activity. A review of the literature regarding age influences on the clearance of CYP3A substrates does suggest that age can affect the clearance of certain CYP3A substrates.CYP3A is responsible for a large number of endogenous metabolic reactions involving steroid hormones, and enzyme activity has been reported to be induced and/or inhibited in the presence of some sex steroids. Based on published studies for most CYP3A substrates, sex does not appear to influence clearance; however, with certain substrates significant sex-related differences are found. In such cases, women primarily have higher clearance than men.
Collapse
Affiliation(s)
- Monette M Cotreau
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | |
Collapse
|
49
|
Kreutz R, Zürcher H, Kain S, Martus P, Offermann G, Beige J. The effect of variable CYP3A5 expression on cyclosporine dosing, blood pressure and long-term graft survival in renal transplant patients. ACTA ACUST UNITED AC 2005; 14:665-71. [PMID: 15454731 DOI: 10.1097/00008571-200410000-00004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Cyclosporine is extensively metabolized by cytochrome-P450 3A (CYP3A) enzymes in the liver and intestine including the CYP3A5 isoenzyme. CYP3A5 is also expressed in the kidney and has been implicated in blood pressure regulation. Appreciable expression of CYP3A5 occurs in carriers of the CYP3A5*1 allele, while the CYP3A5*3 allele is associated with low expression. We tested whether the presence of the CYP3A5*1 allele in renal transplant recipients and in donor kidneys influences cyclosporine dose requirements, blood pressure and long-term graft survival in renal transplant patients during chronic treatment with a cyclosporine-based immunosuppressive regimen. METHODS We studied 399 Caucasian patients from our single-center registry with stable graft function for more than 10 weeks after transplantation. The genotypes for CYP3A5*1/*3 were determined by a TaqMan PCR method. Cyclosporine dose requirements, blood pressure and graft survival were analyzed in relation to the presence or absence of the CYP3A5*1 allele in recipients and donor kidneys. RESULTS The CYP3A5*1 allele was found in 15.5% of the recipients and in 11.8% of the donor kidneys. The recipient CYP3A5*1 allele had no effect on cyclosporine dose and blood concentrations at trough with and without dose-adjustment. Blood pressure, number of antihypertensive compounds used for treatment and graft survival evaluated by Kaplan-Meier curves and Cox regression analysis were also not affected by the CYP3A5*1 allele either in recipients or donor kidneys. CONCLUSIONS Cyclosporine dose requirements, blood pressure and long-term renal graft survival are not influenced by the CYP3A5*1 allele in Caucasian patients.
Collapse
Affiliation(s)
- Reinhold Kreutz
- Abteilung Klinische Pharmakologie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Flanagan JU, Maréchal JD, Ward R, Kemp CA, McLaughlin LA, Sutcliffe MJ, Roberts GCK, Paine MJI, Wolf CR. Phe120 contributes to the regiospecificity of cytochrome P450 2D6: mutation leads to the formation of a novel dextromethorphan metabolite. Biochem J 2004; 380:353-60. [PMID: 14992686 PMCID: PMC1224184 DOI: 10.1042/bj20040062] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 02/13/2004] [Accepted: 03/01/2004] [Indexed: 11/17/2022]
Abstract
Although the residues that determine the preference of CYP2D6 (cytochrome P450 2D6) for compounds containing a basic nitrogen are well characterized, the contribution of other active site residues to substrate binding and orientation is less well understood. Our structural model of CYP2D6 identifies the aromatic residue Phe120 as a likely major feature of the active site. To examine the role of Phe120, mutants of CYP2D6 in which this residue has been substituted by alanine, leucine, tyrosine, serine, histidine, tryptophan or methionine residues have been prepared in bacterial membranes co-expressing human cytochrome NADPH cytochrome P450 oxidoreductase. The mutants have been characterized using the prototypical bufuralol 1' hydroxylase and dextromethorphan O- and N-demethylase activities of CYP2D6. Larger effects on K(m) values are observed for dextromethorphan O-demethylation than for bufuralol 1' hydroxylation, indicating that the Phe120 side chain is more important in dextromethorphan than in bufuralol binding. A role for this side chain in determining the regiospecificity of substrate oxidation was indicated by changes in the relative rates of O- and N-demethylation of dextromethorphan and, notably, by the formation of 7-hydroxy dextromethrophan, a novel dextromethorphan metabolite, in mutants in which it had been substituted. Computational studies of dextromethorphan binding to the active site of the Phe120-->Ala mutant were carried out to throw light on the way in which the removal of this side chain leads to different modes of ligand binding.
Collapse
Affiliation(s)
- Jack U Flanagan
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|