1
|
Bostancı M, Kaptaner B, Doğan A. Thyroid-disrupting effects of bisphenol S in male Wistar albino rats: Histopathological lesions, follicle cell proliferation and apoptosis, and biochemical changes. Toxicol Ind Health 2024; 40:559-580. [PMID: 39138139 DOI: 10.1177/07482337241267247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this presented study, the aim was to investigate the toxic effects of bisphenol S (BPS), one of the bisphenol A analogues, on the thyroid glands of male Wistar albino rats. Toward this aim, the rats (n = 28) were given a vehicle (control) or BPS at 3 different doses, comprising 20, 100, and 500 mg/kg of body weight (bw) via oral gavage for 28 days. According to the results, BPS led to numerous histopathological changes in the thyroid tissue. The average proliferation index values among the thyroid follicular cells (TFCs) displayed increases in all of the BPS groups, and significant differences were observed in the BPS-20 and BPS-100 groups. The average apoptotic index values in the TFCs were increased significantly in the BPS-500 group. The serum thyroid-stimulating hormone and serum free thyroxine levels did not show significant changes after exposure to BPS; however, the serum free triiodothyronine levels displayed significant decreases in all 3 of the BPS groups. BPS was determined to cause significant increases in the antioxidant enzyme activities of catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, as well as a significantly decreased content of reduced glutathione. The malondialdehyde level in the thyroid tissue was elevated significantly in the BPS-500 group. The data obtained herein revealed that BPS has thyroid-disrupting potential based on structural changes, follicle cell responses, and biochemical alterations including a decreased serum free triiodothyronine level and increased oxidative stress.
Collapse
Affiliation(s)
- Müşerref Bostancı
- Department of Biology, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, Tuşba, Türkiye
| | - Burak Kaptaner
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, Tuşba, Türkiye
| | - Abdulahad Doğan
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Tuşba, Türkiye
| |
Collapse
|
2
|
Marty MS, Sauer UG, Charlton A, Ghaffari R, Guignard D, Hallmark N, Hannas BR, Jacobi S, Marxfeld HA, Melching-Kollmuss S, Sheets LP, Urbisch D, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny-part III: how is substance-mediated thyroid hormone imbalance in pregnant/lactating rats or their progeny related to neurodevelopmental effects? Crit Rev Toxicol 2022; 52:546-617. [PMID: 36519295 DOI: 10.1080/10408444.2022.2130166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review investigated which patterns of thyroid- and brain-related effects are seen in rats upon gestational/lactational exposure to 14 substances causing thyroid hormone imbalance by four different modes-of-action (inhibition of thyroid peroxidase, sodium-iodide symporter and deiodinase activities, enhancement of thyroid hormone clearance) or to dietary iodine deficiency. Brain-related parameters included motor activity, cognitive function, acoustic startle response, hearing function, periventricular heterotopia, electrophysiology and brain gene expression. Specific modes-of-action were not related to specific patterns of brain-related effects. Based upon the rat data reviewed, maternal serum thyroid hormone levels do not show a causal relationship with statistically significant neurodevelopmental effects. Offspring serum thyroxine together with offspring serum triiodothyronine and thyroid stimulating hormone appear relevant to predict the likelihood for neurodevelopmental effects. Based upon the collated database, thresholds of ≥60%/≥50% offspring serum thyroxine reduction and ≥20% and statistically significant offspring serum triiodothyronine reduction indicate an increased likelihood for statistically significant neurodevelopmental effects; accuracies: 83% and 67% when excluding electrophysiology (and gene expression). Measurements of brain thyroid hormone levels are likely relevant, too. The extent of substance-mediated thyroid hormone imbalance appears more important than substance mode-of-action to predict neurodevelopmental impairment in rats. Pertinent research needs were identified, e.g. to determine whether the phenomenological offspring thyroid hormone thresholds are relevant for regulatory toxicity testing. The insight from this review shall be used to suggest a tiered testing strategy to determine whether gestational/lactational substance exposure may elicit thyroid hormone imbalance and potentially also neurodevelopmental effects.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy-Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ramhøj L, Svingen T, Mandrup K, Hass U, Lund SP, Vinggaard AM, Hougaard KS, Axelstad M. Developmental exposure to the brominated flame retardant DE-71 reduces serum thyroid hormones in rats without hypothalamic-pituitary-thyroid axis activation or neurobehavioral changes in offspring. PLoS One 2022; 17:e0271614. [PMID: 35853081 PMCID: PMC9295973 DOI: 10.1371/journal.pone.0271614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are legacy flame retardants for which human exposure remains ubiquitous. This is of concern since these chemicals can perturb development and cause adverse health effects. For instance, DE-71, a technical mixture of PBDEs, can induce liver toxicity as well as reproductive and developmental toxicity. DE-71 can also disrupt the thyroid hormone (TH) system which may induce developmental neurotoxicity indirectly. However, in developmental toxicity studies, it remains unclear how DE-71 exposure affects the offspring’s thyroid hormone system and if this dose-dependently relates to neurodevelopmental effects. To address this, we performed a rat toxicity study by exposing pregnant dams to DE-71 at 0, 40 or 60 mg/kg/day during perinatal development from gestational day 7 to postnatal day 16. We assessed the TH system in both dams and their offspring, as well as potential hearing and neurodevelopmental effects in prepubertal and adult offspring. DE-71 significantly reduced serum T4 and T3 levels in both dams and offspring without a concomitant upregulation of TSH, thus inducing a hypothyroxinemia-like effect. No discernible effects were observed on the offspring’s brain function when assessed in motor activity boxes and in the Morris water maze, or on offspring hearing function. Our results, together with a thorough review of the literature, suggest that DE-71 does not elicit a clear dose-dependent relationship between low serum thyroxine (T4) and effects on the rat brain in standard behavioral assays. However, low serum TH levels are in themselves believed to be detrimental to human brain development, thus we propose that we lack assays to identify developmental neurotoxicity caused by chemicals disrupting the TH system through various mechanisms.
Collapse
Affiliation(s)
- Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail:
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Karen Mandrup
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulla Hass
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Søren Peter Lund
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Davidsen N, Ramhøj L, Lykkebo CA, Kugathas I, Poulsen R, Rosenmai AK, Evrard B, Darde TA, Axelstad M, Bahl MI, Hansen M, Chalmel F, Licht TR, Svingen T. PFOS-induced thyroid hormone system disrupted rats display organ-specific changes in their transcriptomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119340. [PMID: 35460815 DOI: 10.1016/j.envpol.2022.119340] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent anthropogenic chemical that can affect the thyroid hormone system in humans and animals. In adults, thyroid hormones (THs) are regulated by the hypothalamic-pituitary-thyroid (HPT) axis, but also by organs such as the liver and potentially the gut microbiota. PFOS and other xenobiotics can therefore disrupt the TH system at various locations and through different mechanisms. To start addressing this, we exposed adult male rats to 3 mg PFOS/kg/day for 7 days and analysed effects on multiple organs and pathways simultaneously by transcriptomics. This included four primary organs involved in TH regulation, namely hypothalamus, pituitary, thyroid, and liver. To investigate a potential role of the gut microbiota in thyroid hormone regulation, two additional groups of animals were dosed with the antibiotic vancomycin (8 mg/kg/day), either with or without PFOS. PFOS exposure decreased thyroxine (T4) and triiodothyronine (T3) without affecting thyroid stimulating hormone (TSH), resembling a state of hypothyroxinemia. PFOS exposure resulted in 50 differentially expressed genes (DEGs) in the hypothalamus, 68 DEGs in the pituitary, 71 DEGs in the thyroid, and 181 DEGs in the liver. A concomitant compromised gut microbiota did not significantly change effects of PFOS exposure. Organ-specific DEGs did not align with TH regulating genes; however, genes associated with vesicle transport and neuronal signaling were affected in the hypothalamus, and phase I and phase II metabolism in the liver. This suggests that a decrease in systemic TH levels may activate the expression of factors altering trafficking, metabolism and excretion of TH. At the transcriptional level, little evidence suggests that the pituitary or thyroid gland is involved in PFOS-induced TH system disruption.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Claus Asger Lykkebo
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Indusha Kugathas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Rikke Poulsen
- Department of Environmental Science, Aarhus University, Roskilde, DK-4000, Denmark
| | | | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | | | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Roskilde, DK-4000, Denmark
| | - Frederic Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
5
|
Gilbert ME, O'Shaughnessy KL, Thomas SE, Riutta C, Wood CR, Smith A, Oshiro WO, Ford RL, Hotchkiss MG, Hassan I, Ford JL. Thyroid Disruptors: Extrathyroidal Sites of Chemical Action and Neurodevelopmental Outcome-An Examination Using Triclosan and Perfluorohexane Sulfonate. Toxicol Sci 2021; 183:195-213. [PMID: 34460931 PMCID: PMC9038230 DOI: 10.1093/toxsci/kfab080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many xenobiotics are identified as potential thyroid disruptors due to their action to reduce circulating levels of thyroid hormone, most notably thyroxine (T4). Developmental neurotoxicity is a primary concern for thyroid disrupting chemicals yet correlating the impact of chemically induced changes in serum T4 to perturbed brain development remains elusive. A number of thyroid-specific neurodevelopmental assays have been proposed, based largely on the model thyroid hormone synthesis inhibitor propylthiouracil (PTU). This study examined whether thyroid disrupting chemicals acting distinct from synthesis inhibition would result in the same alterations in brain as expected with PTU. The perfluoroalkyl substance perfluorohexane sulfonate (50 mg/kg/day) and the antimicrobial Triclosan (300 mg/kg/day) were administered to pregnant rats from gestational day 6 to postnatal day (PN) 21, and a number of PTU-defined assays for neurotoxicity evaluated. Both chemicals reduced serum T4 but did not increase thyroid stimulating hormone. Both chemicals increased expression of hepatic metabolism genes, while thyroid hormone-responsive genes in the liver, thyroid gland, and brain were largely unchanged. Brain tissue T4 was reduced in newborns, but despite persistent T4 reductions in serum, had recovered in the PN6 pup brain. Neither treatment resulted in a low dose PTU-like phenotype in either brain morphology or neurobehavior, raising questions for the interpretation of serum biomarkers in regulatory toxicology. They further suggest that reliance on serum hormones as prescriptive of specific neurodevelopmental outcomes may be too simplistic and to understand thyroid-mediated neurotoxicity we must expand our thinking beyond that which follows thyroid hormone synthesis inhibition.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Susan E Thomas
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Cal Riutta
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Carmen R Wood
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Alicia Smith
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Wendy O Oshiro
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Richard L Ford
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Michelle Gatien Hotchkiss
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Iman Hassan
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Jermaine L Ford
- Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
6
|
Matulka RA, Howell LA, Pratyusha Chennupati B, Teresa Bock J. Safety evaluation of odd-chain fatty acid algal oil. Food Chem Toxicol 2021; 156:112444. [PMID: 34332011 DOI: 10.1016/j.fct.2021.112444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
In the food industry, most fatty acid-rich oils are primarily composed of saturated even-chain fatty acids. However, saturated odd-chain fatty acids are potentially a beneficial alternative to other saturated fatty acid-containing oils. In this communication, we examine the safety of odd-chain fatty acid (OCFA) algal oil, a microalgal-sourced oil composed primarily of the saturated odd-chain fatty acids pentadecanoic acid and heptadecanoic acid. OCFA algal oil was assessed for toxicity in a 14-day palatability study and comprehensive 13-week dietary study at inclusion levels of 5%, 10%, and 15% in the diet, utilizing a DHA-rich algal oil as a comparator control. No adverse effects attributed to the consumption of OCFA algal oil were observed in either study. Therefore, we report a No Observable Adverse Effect Level (NOAEL) of 150,000 ppm (15% in the diet), equivalent to an OCFA algal oil intake of 7553.9 and 8387.7 mg/kg bw/day for male and female rats, respectively. The genotoxic potential of OCFA algal oil was also examined in an in vitro bacterial reverse mutation assay and in vivo mammalian bone marrow chromosome aberration test. OCFA algal oil was non-mutagenic in Salmonella typhimurium and Escherichia coli test strains and did not exhibit clastogenicity in vivo.
Collapse
|
7
|
Marty S, Beekhuijzen M, Charlton A, Hallmark N, Hannas BR, Jacobi S, Melching-Kollmuss S, Sauer UG, Sheets LP, Strauss V, Urbisch D, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - part II: how can key events of relevant adverse outcome pathways be addressed in toxicological assessments? Crit Rev Toxicol 2021; 51:328-358. [PMID: 34074207 DOI: 10.1080/10408444.2021.1910625] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current understanding of thyroid-related adverse outcome pathways (AOPs) with adverse neurodevelopmental outcomes in mammals has been reviewed. This served to establish if standard rodent toxicity test methods and in vitro assays allow identifying thyroid-related modes-of-action potentially leading to adverse neurodevelopmental outcomes, and the human relevance of effects - in line with the European Commission's Endocrine Disruptor Criteria. The underlying hypothesis is that an understanding of the key events of relevant AOPs provides insight into differences in incidence, magnitude, or species sensitivity of adverse outcomes. The rodent studies include measurements of serum thyroid hormones, thyroid gland pathology and neurodevelopmental assessments, but do not directly inform on specific modes-of-action. Opportunities to address additional non-routine parameters reflecting critical events of AOPs in toxicological assessments are presented. These parameters appear relevant to support the identification of specific thyroid-related modes-of-action, provided that prevailing technical limitations are overcome. Current understanding of quantitative key event relationships is often weak, but would be needed to determine if the triggering of a molecular initiating event will ultimately result in an adverse outcome. Also, significant species differences in all processes related to thyroid hormone signalling are evident, but the biological implications thereof (including human relevance) are often unknown. In conclusion, careful consideration of the measurement (e.g. timing, method) and interpretation of additional non-routine parameters is warranted. These findings will be used in a subsequent paper to propose a testing strategy to identify if a substance may elicit maternal thyroid hormone imbalance and potentially also neurodevelopmental effects in the progeny.
Collapse
Affiliation(s)
- Sue Marty
- The Dow Chemical Company, Midland, MI, USA
| | | | | | | | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | |
Collapse
|
8
|
A review of species differences in the control of, and response to, chemical-induced thyroid hormone perturbations leading to thyroid cancer. Arch Toxicol 2021; 95:807-836. [PMID: 33398420 DOI: 10.1007/s00204-020-02961-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
This review summarises the current state of knowledge regarding the physiology and control of production of thyroid hormones, the effects of chemicals in perturbing their synthesis and release that result in thyroid cancer. It does not consider the potential neurodevelopmental consequences of low thyroid hormones. There are a number of known molecular initiating events (MIEs) that affect thyroid hormone synthesis in mammals and many chemicals are able to activate multiple MIEs simultaneously. AOP analysis of chemical-induced thyroid cancer in rodents has defined the key events that predispose to the development of rodent cancer and many of these will operate in humans under appropriate conditions, if they were exposed to high enough concentrations of the affecting chemicals. There are conditions however that, at the very least, would indicate significant quantitative differences in the sensitivity of humans to these effects, with rodents being considerably more sensitive to thyroid effects by virtue of differences in the biology, transport and control of thyroid hormones in these species as opposed to humans where turnover is appreciably lower and where serum transport of T4/T3 is different to that operating in rodents. There is heated debate around claimed qualitative differences between the rodent and human thyroid physiology, and significant reservations, both scientific and regulatory, still exist in terms of the potential neurodevelopmental consequences of low thyroid hormone levels at critical windows of time. In contrast, the situation for the chemical induction of thyroid cancer, through effects on thyroid hormone production and release, is less ambiguous with both theoretical, and actual data, showing clear dose-related thresholds for the key events predisposing to chemically induced thyroid cancer in rodents. In addition, qualitative differences in transport, and quantitative differences in half life, catabolism and turnover of thyroid hormones, exist that would not operate under normal situations in humans.
Collapse
|
9
|
Gilbert ME, O'Shaughnessy KL, Axelstad M. Regulation of Thyroid-disrupting Chemicals to Protect the Developing Brain. Endocrinology 2020; 161:bqaa106. [PMID: 32615585 PMCID: PMC8650774 DOI: 10.1210/endocr/bqaa106] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Synthetic chemicals with endocrine disrupting properties are pervasive in the environment and are present in the bodies of humans and wildlife. As thyroid hormones (THs) control normal brain development, and maternal hypothyroxinemia is associated with neurological impairments in children, chemicals that interfere with TH signaling are of considerable concern for children's health. However, identifying thyroid-disrupting chemicals (TDCs) in vivo is largely based on measuring serum tetraiodothyronine in rats, which may be inadequate to assess TDCs with disparate mechanisms of action and insufficient to evaluate the potential neurotoxicity of TDCs. In this review 2 neurodevelopmental processes that are dependent on TH action are highlighted, neuronal migration and maturation of gamma amino butyric acid-ergic interneurons. We discuss how interruption of these processes by TDCs may contribute to abnormal brain circuitry following developmental TH insufficiency. Finally, we identify issues in evaluating the developmental neurotoxicity of TDCs and the strengths and limitations of current approaches designed to regulate them. It is clear that an enhanced understanding of how THs affect brain development will lead to refined toxicity testing, reducing uncertainty and improving our ability to protect children's health.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Strupp C, Quesnot N, Weber-Parmentier C, Richert L, Bomann WH, Singh P. Weight of Evidence and Human Relevance Evaluation of the Benfluralin Mode of Action in Rats (Part II): Thyroid carcinogenesis. Regul Toxicol Pharmacol 2020; 117:104736. [PMID: 32798613 DOI: 10.1016/j.yrtph.2020.104736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022]
Abstract
Benfluralin is an herbicide of the dinitroaniline class used to control grasses and weeds. In a 2 year dietary study in rats, benfluralin increased incidences of thyroid follicular adenoma and carcinoma at high dietary concentrations (≥2500 ppm). The benfluralin toxicology database suggests the mode of action (MOA) is initiated by induction of liver metabolizing enzymes, particularly thyroid hormone specific UGTs, a major pathway for T4 clearance in rats. As reported with phenobarbital, this effect triggers negative feedback regulation, increasing thyroid stimulating hormone (TSH) release into circulating blood. When sustained over time, this leads to thyroid changes such as follicular hypertrophy, hyperplasia and thyroid follicular tumors with chronic exposures. The described MOA was previously established in rat studies with various chemical activators of xenobiotic receptors in the liver. It is generally considered as non-relevant in humans, due to differences between humans and rats in T4 turnover and susceptibility to this carcinogenic MOA. A structured methodology based on the IPCS/MOA/Human Relevance framework was used in the evaluation of available benfluralin data, and the conclusion was determined that the carcinogenic potential of benfluralin in the thyroid is not relevant in humans.
Collapse
Affiliation(s)
- Christian Strupp
- Gowan, Highlands House, Basingstoke Road, Spencers Wood Reading, Berkshire, RG7 1NT, United Kingdom.
| | - Nicolas Quesnot
- Charles River Laboratories Evreux, 27005, Evreux Cedex, France.
| | | | | | - Werner H Bomann
- ToxConsult®, 9393 W 110th Street, 51 Corporate Woods, Suite 500, Overland Park, KS, 66210, USA.
| | - Pramila Singh
- Charles River Laboratories Evreux, 27005, Evreux Cedex, France.
| |
Collapse
|
11
|
Colnot T, Melching-Kollmuß S, Semino G, Dekant W. A flow scheme for cumulative assessment of pesticides for adverse liver effects. Regul Toxicol Pharmacol 2020; 116:104694. [PMID: 32621977 DOI: 10.1016/j.yrtph.2020.104694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022]
Abstract
The European Food Safety Authority (EFSA) is developing approaches to cumulative risk assessment by assigning pesticides to cumulative assessment groups (CAGs). For assignment to CAGs, EFSA relies on common toxic effects (CTEs) on the target system. The developed flow scheme for assignment to liver CAGs sequentially assesses the consistency of the CTE, its adversity, its potential to be secondary to other toxicities, its human relevance, and the relation of the NOAEL for the CTE to the overall NOAEL. If the responses to all questions are "yes", allocation to a CAG is supported; "no" stops the process.
Collapse
Affiliation(s)
| | | | | | - Wolfgang Dekant
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany.
| |
Collapse
|
12
|
Galoppo GH, Tavalieri YE, Schierano-Marotti G, Osti MR, Luque EH, Muñoz-de-Toro MM. Long-term effects of in ovo exposure to an environmentally relevant dose of atrazine on the thyroid gland of Caiman latirostris. ENVIRONMENTAL RESEARCH 2020; 186:109410. [PMID: 32283336 DOI: 10.1016/j.envres.2020.109410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The increased incidence of human thyroid disorders, particularly in women, suggests that the exposure to endocrine-disrupting compounds (EDCs) together with sex-related factors could play a role in thyroid dysregulation. Since the herbicide atrazine (ATZ) is an environmental EDC suspected to behave as a thyroid disruptor, and Caiman latirostris is a crocodilian species highly sensitive to endocrine disruption that can be exposed to ATZ, this study aimed to describe the histoarchitecture and sexually dimorphic features of the thyroid gland of C. latirostris, and to determine the long-term effects of in ovo exposure to an environmentally relevant dose of ATZ (0.2 ppm) on its thyroid gland and growth. Control caimans showed no sexual dimorphisms. In contrast, ATZ-exposed caimans showed altered embryo growth but an unaltered temporal pattern of development and a sexually dimorphic response in the body condition index growth curves postnatally, which suggests a female-related increase in fat storage. Besides, both male and female exposed caimans showed increases in the size of the thyroid stromal compartment, content of interstitial collagen, and follicular hyperplasia, and decreases in the expression of androgen receptor in the follicular epithelium. ATZ-exposed females, but not males, also showed evidences of thyroid enlargement, colloid depletion, increased follicular epithelial height and increased presence of microfollicular structures. Our results demonstrate that prenatal exposure of caimans to ATZ causes thyroid disruption and that females were more vulnerable to ATZ than males. The effects were organizational and observed long after exposure ended. These findings alert on ATZ side-effects on the growth, metabolism, reproduction and development of non-target exposed organisms, particularly females.
Collapse
Affiliation(s)
- Germán Hugo Galoppo
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Yamil Ezequiel Tavalieri
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Mario Raúl Osti
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Enrique Hugo Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| | - Mónica Milagros Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000, Santa Fe, Argentina.
| |
Collapse
|
13
|
Xenobiotica-metabolizing enzyme induction potential of chemicals in animal studies: NanoString nCounter gene expression and peptide group-specific immunoaffinity as accelerated and economical substitutions for enzyme activity determinations? Arch Toxicol 2020; 94:2663-2682. [PMID: 32451601 DOI: 10.1007/s00204-020-02777-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Xenobiotica-metabolizing enzyme (XME) induction is a relevant biological/biochemical process vital to understanding the toxicological profile of xenobiotics. Early recognition of XME induction potential of compounds under development is therefore important, yet its determination by traditional XME activity measurements is time consuming and cost intensive. A proof-of-principle study was therefore designed due to the advent of faster and less cost-intensive methods for determination of enzyme protein and transcript levels to determine whether two such methods may substitute for traditional measurement of XME activity determinations. The results of the study show that determination of enzyme protein levels by peptide group-specific immunoaffinity enrichment/MS and/or determination of gene expression by NanoString nCounter may serve as substitutes for traditional evaluation methodology and/or as an early predictor of potential changes in liver enzymes. In this study, changes of XME activity by the known standard XME inducers phenobarbital, beta-naphthoflavone and Aroclor 1254 were demonstrated by these two methods. To investigate the applicability of these methods to demonstrate XME-inducing activity of an unknown, TS was also examined and found to be an XME inducer. More specifically, TS was found to be a phenobarbital-type inducer (likely mediated by CAR rather than PXR as nuclear receptor), but not due to Ah receptor-mediated or antioxidant response element-mediated beta-naphthoflavone-type induction. The results for TS were confirmed via enzymatic activity measurements. The results of the present study demonstrate the potential applicability of NanoString nCounter mRNA quantitation and peptide group-specific immunoaffinity enrichment/MS protein quantitation for predicting compounds under development to be inducers of liver XME activity.
Collapse
|
14
|
Ramhøj L, Hass U, Gilbert ME, Wood C, Svingen T, Usai D, Vinggaard AM, Mandrup K, Axelstad M. Evaluating thyroid hormone disruption: investigations of long-term neurodevelopmental effects in rats after perinatal exposure to perfluorohexane sulfonate (PFHxS). Sci Rep 2020; 10:2672. [PMID: 32060323 PMCID: PMC7021709 DOI: 10.1038/s41598-020-59354-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormones are critical for mammalian brain development. Thus, chemicals that can affect thyroid hormone signaling during pregnancy are of great concern. Perfluorohexane sulfonate (PFHxS) is a widespread environmental contaminant found in human serum, breastmilk, and other tissues, capable of lowering serum thyroxine (T4) in rats. Here, we investigated its effects on the thyroid system and neurodevelopment following maternal exposure from early gestation through lactation (0.05, 5 or 25 mg/kg/day PFHxS), alone or in combination with a mixture of 12 environmentally relevant endocrine disrupting compounds (EDmix). PFHxS lowered thyroid hormone levels in both dams and offspring in a dose-dependent manner, but did not change TSH levels, weight, histology, or expression of marker genes of the thyroid gland. No evidence of thyroid hormone-mediated neurobehavioral disruption in offspring was observed. Since human brain development appear very sensitive to low T4 levels, we maintain that PFHxS is of potential concern to human health. It is our view that current rodent models are not sufficiently sensitive to detect adverse neurodevelopmental effects of maternal and perinatal hypothyroxinemia and that we need to develop more sensitive brain-based markers or measurable metrics of thyroid hormone-dependent perturbations in brain development.
Collapse
Affiliation(s)
- Louise Ramhøj
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Ulla Hass
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Mary E Gilbert
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carmen Wood
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Diana Usai
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Karen Mandrup
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800,, Denmark.
| |
Collapse
|
15
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
16
|
White MR, Graziano MJ, Sanderson TP. Toxicity of Pexacerfont, a Corticotropin-Releasing Factor Type 1 Receptor Antagonist, in Rats and Dogs. Int J Toxicol 2019; 38:110-120. [DOI: 10.1177/1091581819827501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pexacerfont is a corticotropin-releasing factor subtype 1 receptor antagonist that was developed for the treatment of anxiety- and stress-related disorders. This report describes the results of repeat-dose oral toxicity studies in rats (3 and 6 months) and dogs (3 months and 1 year). Pexacerfont was well tolerated in all of these studies at exposures equal to or greater than areas under the curve in humans (clinical dose of 100 mg). Microscopic changes in the liver (hepatocellular hypertrophy), thyroid glands (hypertrophy/hyperplasia and adenomas of follicular cells), and pituitary (hypertrophy/hyperplasia and vacuolation of thyrotrophs) were only observed in rats and were considered adaptive changes in response to hepatic enzyme induction and subsequent alterations in serum thyroid hormone levels. Evidence for hepatic enzyme induction in dogs was limited to increased liver weights and reduced thyroxine (T4) levels. Mammary gland hyperplasia and altered female estrous cycling were only observed in rats, whereas adverse testicular effects (consistent with minimal to moderate degeneration of the germinal epithelium) were only noted following chronic dosing in dogs. The testicular effects were reversible changes with exposure margins of 8× at the no observed adverse effect level. It is not clear whether the changes in mammary gland, estrous cycling, and testes represent secondary hormonal changes due to perturbation of the hypothalamic–pituitary–adrenal axis or are off-target effects. In conclusion, the results of chronic toxicity studies in rats and dogs show that pexacerfont has an acceptable safety profile to support further clinical testing.
Collapse
|
17
|
Bartsch R, Brinkmann B, Jahnke G, Laube B, Lohmann R, Michaelsen S, Neumann I, Greim H. Human relevance of follicular thyroid tumors in rodents caused by non-genotoxic substances. Regul Toxicol Pharmacol 2018; 98:199-208. [PMID: 30076866 DOI: 10.1016/j.yrtph.2018.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/31/2022]
Abstract
Chronic stimulation of the thyroid gland of rodents by TSH leads to thyroid follicular hyperplasia and subsequently to thyroid follicular adenomas and carcinomas. However, the interpretations of rodent thyroid tumors are contradictory. The U.S. Food and Drug Administration (FDA) concluded that findings with drugs that lead to increased levels of thyroid-stimulating hormone (TSH) in rats are not relevant to humans, whereas the U.S. Environmental Protection Agency (US EPA) concluded that chemicals that produce rodent thyroid tumors may pose a carcinogenic hazard for humans although the thyroid of rodents appears to be more sensitive to a carcinogenic stimulus than that of humans. Meanwhile, based on the CLP Criteria of the European Chemicals Agency (ECHA), rodent thyroid tumors caused by the induction of uridine-diphosphate-glucuronosyl transferases (UDGT) were assessed as not relevant to humans. To clarify these discrepant positions, the function and regulation of the thyroid gland are described and the types of thyroid tumors and the causes of their development in humans and animals are examined. Based on these data and the evidence that so far, except radiation, no chemical is known to increase the incidence of thyroid tumors in humans, it is concluded that rodent thyroid tumors resulting from continuous stimulation of the thyroid gland by increased TSH levels are not relevant to humans. Consequently, compounds that induce such tumors do not warrant classification as carcinogenic.
Collapse
Affiliation(s)
- Ruediger Bartsch
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Britta Brinkmann
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Gunnar Jahnke
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Britta Laube
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Ruth Lohmann
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Sandra Michaelsen
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Ingrid Neumann
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Helmut Greim
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany.
| |
Collapse
|
18
|
Tsubokura Y, Hasegawa R, Aso S, Kobayashi T, Koga T, Hoshuyama S, Oshima Y, Miyata K, Kusune Y, Muroi T, Hashizume N, Inoue Y, Ajimi S, Furukawa K. Combined repeated-dose and reproductive/developmental toxicity screening test of benzene, 1,1'-oxybis-, tetrapropylene derivs. in rats. Drug Chem Toxicol 2017; 41:492-500. [PMID: 29156995 DOI: 10.1080/01480545.2017.1397161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have conducted animal toxicity tests of chemicals for a chemical safety program implemented by the Ministry of Economy, Trade and Industry of Japan. Here we conducted a combined repeated-dose and reproductive/developmental toxicity screening test of benzene, 1,1'-oxybis-, tetrapropylene derivs. (BOTD). BOTD was administered to 9-week-old Crl:CD(SD) male and female rats by gavage at 0, 40, 200, or 1000 mg/kg/day. Males were treated for 42 days including mating period. Females were treated for 42-53 days through the premating, mating, pregnancy, and until Day 4 of lactation periods. Increases in prothrombin time and activated partial thromboplastin time values were observed only in males at 200 and 1000 mg/kg/day. Hypertrophy of centrilobular hepatocytes was observed with increased liver weight in both sexes at 200 and 1000 mg/kg/day, but there was no histologic evidence of hepatotoxicity. Diffuse hypertrophy of follicular cells in thyroid glands was observed in females at 200 mg/kg/day and in both sexes at 1000 mg/kg/day, with an increased blood cholesterol level in females at 1000 mg/kg/day. The conception index was decreased for females at 1000 mg/kg/day; and no abnormalities were detected in the reproductive indices of implantation, delivery, or pups' condition, although a slight increase in the pups' body weight was noted at birth. Our data indicate a no-observed-adverse-effect level of 40 mg/kg/day for repeated-dose toxicity on the basis of the prolongation of blood coagulating time, and of 200 mg/kg/day for reproductive/developmental toxicity on the basis of the decreased conception index.
Collapse
Affiliation(s)
- Yasuhiro Tsubokura
- a CERI Hita , Chemicals Evaluation and Research Institute, Japan , Hita-shi , Oita , Japan
| | - Ryuichi Hasegawa
- b Chemical Biotesting Center , Chemicals Evaluation and Research Institute, Japan , Tokyo , Japan
| | - Sunao Aso
- a CERI Hita , Chemicals Evaluation and Research Institute, Japan , Hita-shi , Oita , Japan
| | - Toshio Kobayashi
- a CERI Hita , Chemicals Evaluation and Research Institute, Japan , Hita-shi , Oita , Japan
| | - Takayuki Koga
- a CERI Hita , Chemicals Evaluation and Research Institute, Japan , Hita-shi , Oita , Japan
| | - Satsuki Hoshuyama
- a CERI Hita , Chemicals Evaluation and Research Institute, Japan , Hita-shi , Oita , Japan
| | - Yutaka Oshima
- a CERI Hita , Chemicals Evaluation and Research Institute, Japan , Hita-shi , Oita , Japan
| | - Katsumi Miyata
- a CERI Hita , Chemicals Evaluation and Research Institute, Japan , Hita-shi , Oita , Japan
| | - Yuji Kusune
- a CERI Hita , Chemicals Evaluation and Research Institute, Japan , Hita-shi , Oita , Japan
| | - Takako Muroi
- a CERI Hita , Chemicals Evaluation and Research Institute, Japan , Hita-shi , Oita , Japan
| | - Naoki Hashizume
- c CERI Kurume , Chemicals Evaluation and Research Institute, Japan , Kurume-shi , Fukuoka , Japan
| | - Yoshiyuki Inoue
- c CERI Kurume , Chemicals Evaluation and Research Institute, Japan , Kurume-shi , Fukuoka , Japan
| | - Shozo Ajimi
- a CERI Hita , Chemicals Evaluation and Research Institute, Japan , Hita-shi , Oita , Japan
| | - Kotaro Furukawa
- a CERI Hita , Chemicals Evaluation and Research Institute, Japan , Hita-shi , Oita , Japan
| |
Collapse
|
19
|
Dong Y, Zhang X, Tian H, Li X, Wang W, Ru S. Effects of polychlorinated biphenyls on metamorphosis of a marine fish Japanese flounder (Paralichthys olivaceus) in relation to thyroid disruption. MARINE POLLUTION BULLETIN 2017; 119:325-331. [PMID: 28438338 DOI: 10.1016/j.marpolbul.2017.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
This study examined the influence of environmental concentrations of Aroclor 1254 (10, 100, and 1000ng/L) on metamorphosis of Paralichthys olivaceus, and analyzed the mechanisms in relation to thyroid disruption. Results showed that 100 and 1000ng/L Aroclor 1254 delayed metamorphosis and that 1000ng/L Aroclor 1254 caused abnormal morphology. Thyroxine and triiodothyronine levels in the control group were significantly elevated at metamorphic climax, but treatment with 100 and 1000ng/L delayed the increase in thyroid hormones (THs) and retarded metamorphic processes. In larvae exposed to 1000ng/L Aroclor 1254, TH levels at metamorphic climax were significantly lower than those of the control group at the same metamorphic stage. We suggest that the effects of Aroclor 1254 on larval metamorphosis can be explained by disruption of thyroid homeostasis. These findings provide a new perspective and biological model for thyroid-disrupting chemicals (TDCs) screening and investigating interference of thyroid function by TDCs.
Collapse
Affiliation(s)
- Yifei Dong
- Marine Life Science College, Ocean University of China, Qingdao 266003, Shandong Province, PR China
| | - Xiaona Zhang
- Marine Life Science College, Ocean University of China, Qingdao 266003, Shandong Province, PR China.
| | - Hua Tian
- Marine Life Science College, Ocean University of China, Qingdao 266003, Shandong Province, PR China
| | - Xiang Li
- Marine Life Science College, Ocean University of China, Qingdao 266003, Shandong Province, PR China
| | - Wei Wang
- Marine Life Science College, Ocean University of China, Qingdao 266003, Shandong Province, PR China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, Qingdao 266003, Shandong Province, PR China.
| |
Collapse
|
20
|
Funk J, Ebeling M, Singer T, Landes C. Image analysis for TSH mRNA in situ hybridization in pituitary glands from rats with thyroid follicular cell hypertrophy after treatment with three different test compounds. Res Vet Sci 2017. [PMID: 28646742 DOI: 10.1016/j.rvsc.2017.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The goal of this in situ hybridization and image analysis technique is to study the effects of new pharmacological/chemical entities on the thyroid and pituitary gland in rats, reveal the pathogenesis of thyroid follicular cell hypertrophy and to retrospectively exclude the risk of thyroid tumor development in humans. In the present study, we describe the increase of thyroid-stimulating hormone- (TSH-) beta subunit mRNA in the pars distalis of the pituitary gland and the quantitative measurement of TSH mRNA positive cells from rats of three 4-week toxicity studies treated with three different test compounds inducing thyroid follicular cell and hepatocellular hypertrophy in rats. Compared to immunohistochemistry (IHC), in situ hybridization (ISH) for TSH was found to be more sensitive. With this technique we are able to exclude a direct effect of the test compound on the thyroid gland by showing the activation of thyrotrope cells from the pituitary gland and therefore this technique retrospectively enables us to exclude a possible risk for humans at an early stage of drug development. Also in case blood serum samples for evaluation of TSH are not available anymore or hepatocellular hypertrophy is not present (close metabolic relationship between thyroid gland and liver in rodents), the described method allows retrospective investigations on thyroid follicular cell hypertrophy or hyperplasia. This can be of high relevance in human safety assessment for certain drugs in order to exclude a primary effect on the thyroid gland especially when it comes to thyroid neoplasia in rodents as previously described.
Collapse
Affiliation(s)
- Juergen Funk
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland.
| | - Martin Ebeling
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Thomas Singer
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Christian Landes
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| |
Collapse
|
21
|
Colnot T, Dekant W. Approaches for grouping of pesticides into cumulative assessment groups for risk assessment of pesticide residues in food. Regul Toxicol Pharmacol 2017; 83:89-99. [DOI: 10.1016/j.yrtph.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 01/25/2023]
|
22
|
Tsubokura Y, Hasegawa R, Aso S, Kobayashi T, Koga T, Hoshuyama S, Oshima Y, Miyata K, Kusune Y, Muroi T, Hashizume N, Inoue Y, Ajimi S, Furukawa K. Combined repeated-dose and reproductive/developmental toxicity screening test of 1-tert-butoxy-4-chlorobenzene in rats. Drug Chem Toxicol 2016; 40:344-358. [PMID: 27790921 DOI: 10.1080/01480545.2016.1236265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We have carried out animal toxicity tests of chemicals for a chemical safety program implemented by the Ministry of Economy, Trade, and Industry of Japan. Here, we tested 1-tert-butoxy-4-chlorobenzene in a combined repeat-dose and developmental and reproductive toxicity test. The test chemical was administered daily by gavage to 9-week-old Crl:CD (SD) rats at doses of 0, 20, 100, and 500 mg/kg/d. Males were treated for 42 d beginning 14 d before mating. Females were treated from 14 d before mating to day 4 of lactation. Decreased spontaneous locomotion, decreased respiratory rate, and incomplete eyelid opening were observed at 500 mg/kg/d (both sexes), but resolved within 30 min of administration, suggesting central nervous system depression. No notable changes were observed in body weight, food consumption, functional battery tests, or blood test. Increased liver weight with centrilobular or diffuse hepatocyte hypertrophy was observed at 100 and 500 mg/kg/d (both sexes). There were no biochemical or histopathological changes related to hepatotoxicity. Increased kidney weight with basophilic tubules, tubule dilatation, and increased hyaline droplets were observed in males dosed at 100 and 500 mg/kg/d. Immunohistochemical staining indicated α2u-globulin nephropathy, a male rat-specific toxicity. Although kidney weight was also increased in females dosed at 500 mg/kg/d, it was not considered to be an adverse effect because there were no histopathological changes. Pup weights on postnatal day 0 were decreased at 500 mg/kg/d and still decreased on postnatal day 4. Our data indicated the no-observed-adverse-effect-level for repeated-dose and reproductive/developmental toxicity for 1-tert-butoxy-4-chlorobenzene was 100 mg/kg/d.
Collapse
Affiliation(s)
- Yasuhiro Tsubokura
- a CERI Hita, Chemicals Evaluation and Research Institute , Hita-shi , Oita , Japan
| | - Ryuichi Hasegawa
- b Chemical Biotesting Center, Chemicals Evaluation and Research Institute , Bunkyo-ku , Tokyo , Japan , and
| | - Sunao Aso
- a CERI Hita, Chemicals Evaluation and Research Institute , Hita-shi , Oita , Japan
| | - Toshio Kobayashi
- a CERI Hita, Chemicals Evaluation and Research Institute , Hita-shi , Oita , Japan
| | - Takayuki Koga
- a CERI Hita, Chemicals Evaluation and Research Institute , Hita-shi , Oita , Japan
| | - Satsuki Hoshuyama
- a CERI Hita, Chemicals Evaluation and Research Institute , Hita-shi , Oita , Japan
| | - Yutaka Oshima
- a CERI Hita, Chemicals Evaluation and Research Institute , Hita-shi , Oita , Japan
| | - Katsumi Miyata
- a CERI Hita, Chemicals Evaluation and Research Institute , Hita-shi , Oita , Japan
| | - Yuji Kusune
- a CERI Hita, Chemicals Evaluation and Research Institute , Hita-shi , Oita , Japan
| | - Takako Muroi
- a CERI Hita, Chemicals Evaluation and Research Institute , Hita-shi , Oita , Japan
| | - Naoki Hashizume
- c CERI Kurume, Chemicals Evaluation and Research Institute , Kurume-shi , Fukuoka , Japan
| | - Yoshiyuki Inoue
- c CERI Kurume, Chemicals Evaluation and Research Institute , Kurume-shi , Fukuoka , Japan
| | - Shozo Ajimi
- a CERI Hita, Chemicals Evaluation and Research Institute , Hita-shi , Oita , Japan
| | - Kotaro Furukawa
- a CERI Hita, Chemicals Evaluation and Research Institute , Hita-shi , Oita , Japan
| |
Collapse
|
23
|
Burns-Naas LA, Zorbas M, Jessen B, Evering W, Stevens G, Ivett JL, Ryan TE, Cook JC, Capen CC, Chen M, Furman G, Theiss JC, Webber S, Wu E, Shetty B, Gasser R, McClain RM. Increase in thyroid follicular cell tumors in nelfinavir-treated rats observed in a 2-year carcinogenicity study is consistent with a rat-specific mechanism of thyroid neoplasia. Hum Exp Toxicol 2016; 24:643-54. [PMID: 16408618 DOI: 10.1191/0960327105ht568oa] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The carcinogenic potential of nelfinavir mesylate (nelfinavir) was evaluated in a 2-year oral (gavage) study on Sprague-Dawley rats at dose levels of 0 (control), 0 (vehicle control), 100, 300 and 1000 mg/kg per day. At the end of the treatment, increased incidences of thyroid follicular cell hyperplasia and neoplasms were observed at 300 (males) and 1000 mg/kg per day (both sexes). There were no other treatment-related effects and no tumors at other sites. Results from previous studies indicated a number of effects in the liver and thyroid, as well as metabolic profiles that suggested nelfinavir might cause thyroid hyperplasia/neoplasia secondary to hormone imbalance by altering thyroid hormone disposition. To investigate this hypothesis, the effects of nelfinavir on gene expression in rat hepatocytes and liver slices (in vitro), thyroxine plasma clearance, and thyroid gland function were evaluated. Compared to controls, gene expression analyses demonstrated an increased expression of glucuronyltransferase (UDPGT) and CYP450 3A1 in nelfinavir-treated rat hepatocytes and liver slices. In rats treated with nelfinavir (1000 mg/kg per day) for 4 weeks, liver weights and centrilobular hepatocellular hypertrophy were increased and minimal to mild diffuse thyroid follicular cell hypertrophy and follicular cell hyperplasia were evident in the thyroid gland. Thyroid-stimulating hormone (TSH) levels were significantly increased (three-fold), while tri-iodothyronine (T3)/tetraiodothyronine (T4) and reverse T3(rT3) levels were unchanged, indicating that a compensated state to maintain homeostasis of T3/T4 had been achieved. Plasma 125I-thyroxine clearance was increased and the plasma thyroxine AUC0 48 was decreased (24%) compared to control. In conclusion, these data indicate that thyroid neoplasms observed in the nelfinavir-treated rats were secondary to thyroid hormone imbalance. Increased thyroxine clearance contributes to the effects of nelfinavir on thyroid gland function and is probably a result of UDPGT induction that leads to elevated TSH levels in the rat and eventual thyroid neoplasia. These results are consistent with a well-recognized rat-specific mechanism for thyroid neoplasms.
Collapse
Affiliation(s)
- L A Burns-Naas
- Pfizer Global Research and Development, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wolf DC, Allen JW, George MH, Hester SD, Sun G, Moore T, Thai SF, Delker D, Winkfield E, Leavitt S, Nelson G, Roop BC, Jones C, Thibodeaux J, Nesnow S. Toxicity Profiles in Rats Treated with Tumorigenic and Nontumorigenic Triazole Conazole Fungicides: Propiconazole, Triadimefon, and Myclobutanil. Toxicol Pathol 2016; 34:895-902. [PMID: 17178690 DOI: 10.1080/01926230601047808] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Conazoles are a class of azole based fungicides used in agriculture and as pharmaceutical products. They have a common mode of antifungal action through inhibition of ergosterol biosynthesis. Some members of this class have been shown to be hepatotoxic and will induce mouse hepatocellular tumors and/or rat thyroid follicular cell tumors. The particular mode of toxic and tumorigenic action for these compounds is not known, however it has been proposed that triadimefon-induced rat thyroid tumors arise through the specific mechanism of increased TSH. The present study was designed to identify commonalities of effects across the different conazoles and to determine unique features of the tissue responses that suggest a toxicity pathway and a mode of action for the observed thyroid response for triadimefon. Male Wistar/Han rats were treated with triadimefon (100, 500, 1800 ppm), propiconazole (100, 500, 2500 ppm), or myclobutanil (100, 500, 2000 ppm) in feed for 4, 30, or 90 days. The rats were evaluated for clinical signs, body and liver weight, histopathology of thyroid and liver, hepatic metabolizing enzyme activity, and serum T3, T4, TSH, and cholesterol levels. There was a dose-dependent increase in liver weight but not body weight for all treatments. The indication of cytochrome induction, pentoxyresorufin O-dealkylation (PROD) activity, had a dose-related increase at all time points for all conazoles. Uridine diphopho-glucuronosyl transferase (UDPGT), the T4 metabolizing enzyme measured as glucuronidation of 1-naphthol, was induced to the same extent after 30 and 90 days for all three conazoles. Livers from all high dose treated rats had centrilobular hepatocyte hypertrophy after 4 days, while only triadimefon and propiconazole treated rats had hepatocyte hypertrophy after 30 days, and only triadimefon treated rats had hepatocyte hypertrophy after 90 days. Thyroid follicular cell hypertrophy, increased follicular cell proliferation, and colloid depletion were present only after 30 days in rats treated with the high dose of triadimefon. A dose-dependent decrease in T4 was present after 4 days with all 3 compounds but only the high doses of propiconazole and triadimefon produced decreased T4 after 30 days. T3 was decreased after high-dose triadimefon after 4 days and in a dose-dependent manner for all compounds after 30 days. Thyroid hormone levels did not differ from control values after 90 days and TSH was not increased in any exposure group. A unique pattern of toxic responses was not identified for each conazole and the hypothesized mode of action for triadimefon-induced thyroid gland tumors was not supported by the data.
Collapse
Affiliation(s)
- Douglas C Wolf
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, ORD, USEPA, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hu DG, Mackenzie PI, McKinnon RA, Meech R. Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk. Drug Metab Rev 2016; 48:47-69. [DOI: 10.3109/03602532.2015.1131292] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Heinonen T, Gaus W. Cross matching observations on toxicological and clinical data for the assessment of tolerability and safety of Ginkgo biloba leaf extract. Toxicology 2015; 327:95-115. [DOI: 10.1016/j.tox.2014.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/13/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
|
27
|
Rouquié D, Tinwell H, Blanck O, Schorsch F, Geter D, Wason S, Bars R. Thyroid tumor formation in the male mouse induced by fluopyram is mediated by activation of hepatic CAR/PXR nuclear receptors. Regul Toxicol Pharmacol 2014; 70:673-80. [DOI: 10.1016/j.yrtph.2014.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/03/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
28
|
Stoffmonographie für 1,2-Cyclohexandicarbonsäure-di-isononylester (Hexamoll® DINCH®) – HBM-Werte für die Summe der Metabolite Cyclohexan-1,2-dicarbonsäure-mono-hydroxyisononylester (OH-MINCH) und Cyclohexan-1,2-dicarbonsäure-mono-carboxyisooctylester (cx-MINCH) im Urin von Erwachsenen und Kindern. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2014; 57:1451-61. [DOI: 10.1007/s00103-014-2069-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Bansal R, Tighe D, Danai A, Rawn DFK, Gaertner DW, Arnold DL, Gilbert ME, Zoeller RT. Polybrominated diphenyl ether (DE-71) interferes with thyroid hormone action independent of effects on circulating levels of thyroid hormone in male rats. Endocrinology 2014; 155:4104-12. [PMID: 25060363 PMCID: PMC4164921 DOI: 10.1210/en.2014-1154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are routinely found in human tissues including cord blood and breast milk. PBDEs may interfere with thyroid hormone (TH) during development, which could produce neurobehavioral deficits. An assumption in experimental and epidemiological studies is that PBDE effects on serum TH levels will reflect PBDE effects on TH action in tissues. To test whether this assumption is correct, we performed the following experiments. First, five concentrations of diphenyl ether (0-30 mg/kg) were fed daily to pregnant rats to postnatal day 21. PBDEs were measured in dam liver and heart to estimate internal dose. The results were compared with a separate study in which four concentrations of propylthiouracil (PTU; 0, 1, 2, and 3 ppm) was provided to pregnant rats in drinking water for the same duration as for diphenyl ether. PBDE exposure reduced serum T4 similar in magnitude to PTU, but serum TSH was not elevated by PBDE. PBDE treatment did not affect the expression of TH response genes in the liver or heart as did PTU treatment. PTU treatment reduced T4 in liver and heart, but PBDE treatment reduced T4 only in the heart. Tissue PBDEs were in the micrograms per gram lipid range, only slightly higher than observed in human fetal tissues. Thus, PBDE exposure reduces serum T4 but does not produce effects on tissues typical of low TH produced by PTU, demonstrating that the effects of chemical exposure on serum T4 levels may not always be a faithful proxy measure of chemical effects on the ability of thyroid hormone to regulate development and adult physiology.
Collapse
Affiliation(s)
- Ruby Bansal
- Department of Biology (R.B., D.T., A.D., T.Z.) and Molecular and Cellular Biology Program (T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; Bureau of Chemical Safety, Food Directorate, Health Products, and Food Branch (D.F.K.R., D.W.G., D.L.A.), Health Canada, Ottawa, Ontario, Canada K1A 0K9; and Toxicity Assessment Division (M.E.G.), US Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Witorsch RJ. Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products. Crit Rev Toxicol 2014; 44:535-55. [PMID: 24897554 DOI: 10.3109/10408444.2014.910754] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review examines the mammalian and human literature pertaining to the potential endocrine disruptive effects of triclosan (TCS). Dietary exposure to TCS consistently produces a dose-dependent decrease in serum thyroxine (T4) in rats without any consistent change in TSH or triiodothyronine (T3). Human studies reveal no evidence that the TCS exposure through personal care product use affects the thyroid system. TCS binds to both androgen and estrogen receptors in vitro with low affinity and evokes diverse responses (e.g., agonist, antagonist, or none) in steroid receptor transfected cell-based reporter assays. Two of three studies in rats have failed to show that TCS exposure suppresses male reproductive function in vivo. Three of four studies have failed to show that TCS possesses estrogenic (or uterotrophic) activity in rats. However, two studies reported that, while TCS lacks estrogenic activity, it can amplify the action of estrogen in vivo. The in vitro, in vivo, and epidemiologic studies reviewed herein show little evidence that TCS adversely affects gestation or postpartum development of offspring. Furthermore, previously reported toxicity testing in a variety of mammalian species shows little evidence that TCS adversely affects thyroid function, male and female reproductive function, gestation, or postpartum development of offspring. Finally, doses of TCS reported to produce hypothyroxinemia, and occasional effects on male and female reproduction, gestation, and offspring in animal studies are several orders of magnitude greater than the estimated exposure levels of TCS in humans. Overall, little evidence exists that TCS exposure through personal care product use presents a risk of endocrine disruptive adverse health effects in humans.
Collapse
Affiliation(s)
- Raphael J Witorsch
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
31
|
Mechanistic analysis of metabolomics patterns in rat plasma during administration of direct thyroid hormone synthesis inhibitors or compounds increasing thyroid hormone clearance. Toxicol Lett 2014; 225:240-51. [DOI: 10.1016/j.toxlet.2013.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/11/2022]
|
32
|
Richardson VM, Ferguson SS, Sey YM, DeVito MJ. In vitrometabolism of thyroxine by rat and human hepatocytes. Xenobiotica 2013; 44:391-403. [DOI: 10.3109/00498254.2013.847990] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Bigo C, Caron S, Dallaire-Théroux A, Barbier O. Nuclear receptors and endobiotics glucuronidation: the good, the bad, and the UGT. Drug Metab Rev 2013; 45:34-47. [PMID: 23330540 DOI: 10.3109/03602532.2012.751992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The recent progresses in molecular biology and pharmacology approaches allowed the characterization of a series of nuclear receptors (NRs) as efficient regulators of uridine diphosphate glucuronosyltransferase (UGT) genes activity. These regulatory processes ensure an optimized UGT expression in response to specific endo- and/or exogenous stimuli. Many of these NRs are activated by endobiotics that also are substrates for UGTs. Thus, by activating their receptors, these endogenous substances control their own conjugation, leading to the concept that glucuronidation is an important part of feed-forward/feedback mechanisms by which bioactive molecules control their own concentrations. On the other hand, numerous studies have established the pharmacological relevance of NR-UGT regulatory pathways in the response to therapeutic ligands. The present review article aims at providing a comprehensive view of the physiological and pharmacological importance of the NR regulation of the expression and activity of endobiotics-conjugating UGT enzymes. Selected examples will illustrate how the organism profits from the feed-forward/feedback mechanisms involving NR-UGT pathways, but also how such regulatory processes are involved in the initiation and/or progression of several pathological situations. Finally, we will discuss how the present pharmacopeia involves NR-dependent regulation of endobiotics glucuronidation, and whether the unexploited NR-UGT axes could serve as pharmacological targets for novel therapeutics to restore endobiotics homeostasis.
Collapse
Affiliation(s)
- Cyril Bigo
- Laboratory of Molecular Pharmacology, CHUQ Research Center and the Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | | | | | | |
Collapse
|
34
|
Yamada T, Hasegawa R, Nishikawa S, Sakuratani Y, Yamada J, Yamashita T, Yoshinari K, Yamazoe Y, Kamata E, Ono A, Hirose A, Hayashi M. New parameter that supports speculation on the possible mechanism of hypothyroidism induced by chemical substances in repeated-dose toxicity studies. J Toxicol Sci 2013; 38:291-9. [PMID: 23535408 DOI: 10.2131/jts.38.291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hypothyroidism induced by xenobiotic treatment was analyzed for possible underlying mechanism(s) on the basis of different responses of the thyroid gland and the liver, using a newly-created database of repeated-dose toxicity of 500 chemicals. Two mechanisms are proposed: direct inhibition of thyroid hormone biosynthesis in the thyroid gland, and stimulated degradation of thyroid hormone by induction of hepatic drug-metabolizing enzymes. In the database there were 10 chemicals inducing hypertrophy/hyperplasia of follicular cells in the thyroid gland and having data on thyroid glands. On the basis of the chemical structure and information available in the literature, we judged three chemicals to be typical thioamide derivatives that act directly on the thyroid gland, and the others as non-thioamide derivatives that were unlikely to have any direct action on the thyroid gland. All these chemicals were classified into two groups using the ratios of relative weight increase rate of thyroid gland versus that of the liver. These values were at least 1.7, but 3.2 or more in the most of the cases for thioamide derivatives, and 1.2 or less for non-thioamide derivatives. This background analysis suggests the feasibility of parameter-supported speculation on the possible underlying mechanism when new repeated-dose toxicity data on hypothyroidism becomes available.
Collapse
Affiliation(s)
- Takashi Yamada
- Chemical Management Center, National Institute of Technology and Evaluation, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Eisenreich KM, Dean KM, Ottinger MA, Rowe CL. Comparative effects of in ovo exposure to sodium perchlorate on development, growth, metabolism, and thyroid function in the common snapping turtle (Chelydra serpentina) and red-eared slider (Trachemys scripta elegans). Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:166-70. [PMID: 22871607 DOI: 10.1016/j.cbpc.2012.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 11/24/2022]
Abstract
Perchlorate is a surface and groundwater contaminant found in areas associated with munitions and rocket manufacturing and use. It is a thyroid-inhibiting compound, preventing uptake of iodide by the thyroid gland, ultimately reducing thyroid hormone production. As thyroid hormones influence metabolism, growth, and development, perchlorate exposure during the embryonic period may impact embryonic traits that ultimately influence hatchling performance. We topically exposed eggs of red-eared sliders (Trachemys scripta) and snapping turtles (Chelydra serpentina) to 200 and 177 μg/g of perchlorate (as NaClO(4)), respectively, to determine impacts on glandular thyroxine concentrations, embryonic growth and development, and metabolic rates of hatchlings for a period of 2 months post-hatching. In red-eared sliders, in ovo perchlorate exposure delayed hatching, increased external yolk size at hatching, increased hatchling mortality, and reduced total glandular thyroxine concentrations in hatchlings. In snapping turtles, hatching success and standard metabolic rates were reduced, liver and thyroid sizes were increased, and total glandular thyroxine concentrations in hatchlings were reduced after exposure to perchlorate. While both species were negatively affected by exposure, impacts on red-eared sliders were most severe, suggesting that the slider may be a more sensitive sentinel species for studying effects of perchlorate exposure to turtles.
Collapse
Affiliation(s)
- Karen M Eisenreich
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, PO Box 38, Solomons, MD 20688, USA
| | | | | | | |
Collapse
|
36
|
Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, Woodruff TJ, Vom Saal FS. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology 2012; 153:4097-110. [PMID: 22733974 PMCID: PMC3423612 DOI: 10.1210/en.2012-1422] [Citation(s) in RCA: 711] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action. The potential for deleterious effects of EDC must be considered relative to the regulation of hormone synthesis, secretion, and actions and the variability in regulation of these events across the life cycle. The developmental age at which EDC exposures occur is a critical consideration in understanding their effects. Because endocrine systems exhibit tissue-, cell-, and receptor-specific actions during the life cycle, EDC can produce complex, mosaic effects. This complexity causes difficulty when a static approach to toxicity through endocrine mechanisms driven by rigid guidelines is used to identify EDC and manage risk to human and wildlife populations. We propose that principles taken from fundamental endocrinology be employed to identify EDC and manage their risk to exposed populations. We emphasize the importance of developmental stage and, in particular, the realization that exposure to a presumptive "safe" dose of chemical may impact a life stage when there is normally no endogenous hormone exposure, thereby underscoring the potential for very low-dose EDC exposures to have potent and irreversible effects. Finally, with regard to the current program designed to detect putative EDC, namely, the Endocrine Disruptor Screening Program, we offer recommendations for strengthening this program through the incorporation of basic endocrine principles to promote further understanding of complex EDC effects, especially due to developmental exposures.
Collapse
Affiliation(s)
- R Thomas Zoeller
- Biology Department, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Parham F, Wise A, Axelrad DA, Guyton KZ, Portier C, Zeise L, Zoeller RT, Woodruff TJ. Adverse effects in risk assessment: modeling polychlorinated biphenyls and thyroid hormone disruption outcomes in animals and humans. ENVIRONMENTAL RESEARCH 2012; 116:74-84. [PMID: 22575326 PMCID: PMC4955584 DOI: 10.1016/j.envres.2012.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 03/19/2012] [Accepted: 04/04/2012] [Indexed: 05/02/2023]
Abstract
There is a growing need for quantitative approaches to extrapolate relationships between chemical exposures and early biological perturbations from animals to humans given increasing use of biological assays to evaluate toxicity pathways. We have developed such an approach using polychlorinated biphenyls (PCBs) and thyroid hormone (TH) disruption as a case study. We reviewed and identified experimental animal literature from which we developed a low-dose, linear model of PCB body burdens and decrements in free thyroxine (FT(4)) and total thyroxine (TT(4)), accounting for 33 PCB congeners; extrapolated the dose-response from animals to humans; and compared the animal dose-response to the dose-response of PCB body burdens and TH changes from eleven human epidemiological studies. We estimated a range of potencies for PCB congeners (over 4 orders of magnitude), with the strongest for PCB 126. Our approach to developing toxic equivalency models produced relative potencies similar to the toxicity equivalency factors (TEFs) from the World Health Organization (WHO). We generally found that the dose-response extrapolated from the animal studies tends to under-predict the dose-response estimated from human epidemiological studies. A quantitative approach to evaluating the relationship between chemical exposures and TH perturbations, based on animal data can be used to assess human health consequences of thyroid toxicity and inform decision-making.
Collapse
Affiliation(s)
- Fred Parham
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Amber Wise
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, USA
| | - Daniel A. Axelrad
- Office of Policy, U.S. Environmental Protection Agency (USEPA), Washington, DC, USA
| | - Kathryn Z. Guyton
- National Center for Environmental Assessment, Office of Research and Development, USEPA, Washington, DC, USA
| | | | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | | | - Tracey J. Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, USA
| |
Collapse
|
38
|
Aschebrook-Kilfoy B, Neta G, Brenner AV, Hutchinson A, Pfeiffer RM, Sturgis EM, Xu L, Wheeler W, Doody MM, Chanock SJ, Sigurdson AJ. Common genetic variants in metabolism and detoxification pathways and the risk of papillary thyroid cancer. Endocr Relat Cancer 2012; 19:333-44. [PMID: 22389382 PMCID: PMC3394851 DOI: 10.1530/erc-11-0372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Relationships are unclear between polymorphisms in genes involved in metabolism and detoxification of various chemicals and papillary thyroid cancer (PTC) risk as well as their potential modification by alcohol or tobacco intake. We evaluated associations between 1647 tagging single nucleotide polymorphisms (SNPs) in 132 candidate genes/regions involved in metabolism of exogenous and endogenous compounds (Phase I/II, oxidative stress, and metal binding pathways) and PTC risk in 344 PTC cases and 452 controls. For 15 selected regions and their respective SNPs, we also assessed interaction with alcohol and tobacco use. Logistic regression models were used to evaluate the main effect of SNPs (P(trend)) and interaction with alcohol/tobacco intake. Gene- and pathway-level associations and interactions (P(gene interaction)) were evaluated by combining P(trend) values using the adaptive rank-truncated product method. While we found associations between PTC risk and nine SNPs (P(trend) ≤ 0.01) and seven genes/regions (P(region)<0.05), none remained significant after correction for the false discovery rate. We found a significant interaction between UGT2B7 and NAT1 genes and alcohol intake (P(gene interaction)=0.01 and 0.02 respectively) and between the CYP26B1 gene and tobacco intake (P(gene interaction)=0.02). Our results are suggestive of interaction between the genetic polymorphisms in several detoxification genes and alcohol or tobacco intake on risk of PTC. Larger studies with improved exposure assessment should address potential modification of PTC risk by alcohol and tobacco intake to confirm or refute our findings.
Collapse
Affiliation(s)
- Briseis Aschebrook-Kilfoy
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Weber S, Halm S, Du Vall M, Whitney K, Blaich G, Bury D. N-vinylpyrrolidone dimer (VPD), a novel excipient for oral drugs: Repeat-dose oral toxicity in Sprague–Dawley rats. Toxicol Lett 2012; 210:324-31. [DOI: 10.1016/j.toxlet.2012.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 10/14/2022]
|
40
|
Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Noker PE, Butenhoff JL. Evaluation of hepatic and thyroid responses in male Sprague Dawley rats for up to eighty-four days following seven days of dietary exposure to potassium perfluorooctanesulfonate. Toxicology 2012; 293:30-40. [DOI: 10.1016/j.tox.2011.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 01/23/2023]
|
41
|
Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Butenhoff JL. Hepatocellular hypertrophy and cell proliferation in Sprague–Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPARα and CAR/PXR. Toxicology 2012; 293:16-29. [DOI: 10.1016/j.tox.2011.12.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
|
42
|
Govarts E, Nieuwenhuijsen M, Schoeters G, Ballester F, Bloemen K, de Boer M, Chevrier C, Eggesbø M, Guxens M, Krämer U, Legler J, Martínez D, Palkovicova L, Patelarou E, Ranft U, Rautio A, Petersen MS, Slama R, Stigum H, Toft G, Trnovec T, Vandentorren S, Weihe P, Kuperus NW, Wilhelm M, Wittsiepe J, Bonde JP. Birth weight and prenatal exposure to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE): a meta-analysis within 12 European Birth Cohorts. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:162-70. [PMID: 21997443 PMCID: PMC3279442 DOI: 10.1289/ehp.1103767] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 10/13/2011] [Indexed: 05/17/2023]
Abstract
OBJECTIVES Exposure to high concentrations of persistent organochlorines may cause fetal toxicity, but the evidence at low exposure levels is limited. Large studies with substantial exposure contrasts and appropriate exposure assessment are warranted. Within the framework of the EU (European Union) ENRIECO (ENvironmental Health RIsks in European Birth Cohorts) and EU OBELIX (OBesogenic Endocrine disrupting chemicals: LInking prenatal eXposure to the development of obesity later in life) projects, we examined the hypothesis that the combination of polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE) adversely affects birth weight. METHODS We used maternal and cord blood and breast milk samples of 7,990 women enrolled in 15 study populations from 12 European birth cohorts from 1990 through 2008. Using identical variable definitions, we performed for each cohort linear regression of birth weight on estimates of cord serum concentration of PCB-153 and p,p´-DDE adjusted for gestational age and a priori selected covariates. We obtained summary estimates by meta-analysis and performed analyses of interactions. RESULTS The median concentration of cord serum PCB-153 was 140 ng/L (range of cohort medians 20-484 ng/L) and that of p,p´-DDE was 528 ng/L (range of cohort medians 50-1,208 ng/L). Birth weight decreased with increasing cord serum concentration of PCB-153 after adjustment for potential confounders in 12 of 15 study populations. The meta-analysis including all cohorts indicated a birth weight decline of 150 g [95% confidence interval (CI): -250, -50 g] per 1-µg/L increase in PCB-153, an exposure contrast that is close to the range of exposures across the cohorts. A 1-µg/L increase in p,p´-DDE was associated with a 7-g decrease in birth weight (95% CI: -18, 4 g). CONCLUSIONS The findings suggest that low-level exposure to PCB (or correlated exposures) impairs fetal growth, but that exposure to p,p´-DDE does not. The study adds to mounting evidence that low-level exposure to PCBs is inversely associated with fetal growth.
Collapse
Affiliation(s)
- Eva Govarts
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lindblom P, Berg AL, Zhang H, Westerberg R, Tugwood J, Lundgren H, Marcusson-Ståhl M, Sjögren N, Blomgren B, Öhman P, Skånberg I, Evans J, Hellmold H. Tesaglitazar, a dual PPAR-α/γ agonist, hamster carcinogenicity, investigative animal and clinical studies. Toxicol Pathol 2011; 40:18-32. [PMID: 22131108 DOI: 10.1177/0192623311429972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tesaglitazar was developed as a dual peroxisome proliferator-activated receptor (PPARα/γ). To support the clinical program, a hamster carcinogenicity study was performed. The only neoplastic findings possibly related to treatment with tesaglitazar were low incidences of hemangioma and hemangiosarcoma in the liver of male animals. A high-power, two-year investigative study with interim necropsies was performed to further elucidate these findings. Treatment with tesaglitazar resulted in changes typical for exaggerated PPARα pharmacology in rodents, such as hepatocellular hypertrophy and hepatocellular carcinoma, but not an increased frequency of hemangiosarcomas. At the highest dose level, there was an increased incidence of sinusoidal dilatation and hemangiomas. No increased endothelial cell (EC) proliferation was detected in vivo, which was confirmed by in vitro administration to ECs. Immunohistochemistry and gene expression analyses indicated increased cellular stress and vascular endothelial growth factor (VEGF) expression in the liver, which may have contributed to the sinusoidal dilatation. A two-fold increase in the level of circulating VEGF was detected in the hamster at all dose levels, whereas no effect on VEGF was observed in patients treated with tesaglitazar. In conclusion, investigations have demonstrated that tesaglitazar does not produce hemangiosarcomas in hamster despite a slight effect on vascular morphology in the liver.
Collapse
|
44
|
Schnitzler JG, Celis N, Klaren PHM, Blust R, Dirtu AC, Covaci A, Das K. Thyroid dysfunction in sea bass (Dicentrarchus labrax): underlying mechanisms and effects of polychlorinated biphenyls on thyroid hormone physiology and metabolism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:438-47. [PMID: 21872555 DOI: 10.1016/j.aquatox.2011.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 05/20/2023]
Abstract
The current study examines the effect of subchronic exposure to a mixture of Aroclor standards on thyroid hormone physiology and metabolism in juvenile sea bass. The contaminant mixture was formulated to reflect the persistent organic pollution to which the European sea bass population could conceivably be exposed (0.3, 0.6 and 1.0 μg Σ7PCBs per g food pellets) and higher (10 μg Σ7PCBs per g food pellets). After 120 days of exposure, histomorphometry of thyroid tissue, muscular thyroid hormone concentration and activity of enzymes involved in metabolism of thyroid hormones were assessed. Mean concentrations of 8, 86, 142, 214 and 2279 ng g(-1)ww (Σ7 ICES PCB congeners) were determined after 120 days exposure. The results show that the effects of PCB exposures on the thyroid system are dose-dependent. Exposure to environmentally relevant doses of PCB (0.3-1.0 μg Σ7PCBs per g food pellets) induced a larger variability of the follicle diameter and stimulated hepatic T(4) outer ring deiodinase. Muscular thyroid hormone levels were preserved thanks to the PCB induced changes in T(4) dynamics. At 10 times higher concentrations (10 μg Σ7PCBs per g food pellets) an important depression of T(3) and T(4) levels could be observed which are apparently caused by degenerative histological changes in the thyroid tissue.
Collapse
Affiliation(s)
- Joseph G Schnitzler
- Mare Centre, Laboratory for Oceanology B6c, Liège University, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
45
|
Woodruff TJ. Bridging epidemiology and model organisms to increase understanding of endocrine disrupting chemicals and human health effects. J Steroid Biochem Mol Biol 2011; 127:108-17. [PMID: 21112393 PMCID: PMC6628916 DOI: 10.1016/j.jsbmb.2010.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Concerning temporal trends in human reproductive health has prompted concern about the role of environmentally mediated risk factors. The population is exposed to chemicals present in air, water, food and in a variety of consumer and personal care products, subsequently multiple chemicals are found human populations around the globe. Recent reviews find that endocrine disrupting chemicals (EDCs) can adversely affect reproductive and developmental health. However, there are still many knowledge gaps. This paper reviews some of the key scientific concepts relevant to integrating information from human epidemiologic and model organisms to understand the relationship between EDC exposure and adverse human health effects. Additionally, areas of new insights which influence the interpretation of the science are briefly reviewed, including: enhanced understanding of toxicity pathways; importance of timing of exposure; contribution of multiple chemical exposures; and low dose effects. Two cases are presented, thyroid disrupting chemicals and anti-androgens chemicals, which illustrate how our knowledge of the relationship between EDCs and adverse human health effects is strengthened and data gaps reduced when we integrate findings from animal and human studies.
Collapse
Affiliation(s)
- Tracey J Woodruff
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, Oakland, CA 94612, United States.
| |
Collapse
|
46
|
Marginal iodide deficiency and thyroid function: Dose–response analysis for quantitative pharmacokinetic modeling. Toxicology 2011; 283:41-8. [DOI: 10.1016/j.tox.2011.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 11/19/2022]
|
47
|
Ettlin RA, Kuroda J, Plassmann S, Prentice DE. Successful drug development despite adverse preclinical findings part 1: processes to address issues and most important findings. J Toxicol Pathol 2010; 23:189-211. [PMID: 22272031 PMCID: PMC3234634 DOI: 10.1293/tox.23.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/06/2010] [Indexed: 01/08/2023] Open
Abstract
Unexpected adverse preclinical findings (APFs) are not infrequently encountered during drug development. Such APFs can be functional disturbances such as QT prolongation, morphological toxicity or carcinogenicity. The latter is of particular concern in conjunction with equivocal genotoxicity results. The toxicologic pathologist plays an important role in recognizing these effects, in helping to characterize them, to evaluate their risk for man, and in proposing measures to mitigate the risk particularly in early clinical trials. A careful scientific evaluation is crucial while termination of the development of a potentially useful drug must be avoided. This first part of the review discusses processes to address unexpected APFs and provides an overview over typical APFs in particular classes of drugs. If the mode of action (MoA) by which a drug candidate produces an APF is known, this supports evaluation of its relevance for humans. Tailor-made mechanistic studies, when needed, must be planned carefully to test one or several hypotheses regarding the potential MoA and to provide further data for risk evaluation. Safety considerations are based on exposure at no-observed-adverse-effect levels (NOAEL) of the most sensitive and relevant animal species and guide dose escalation in clinical trials. The availability of early markers of toxicity for monitoring of humans adds further safety to clinical studies. Risk evaluation is concluded by a weight of evidence analysis (WoE) with an array of parameters including drug use, medical need and alternatives on the market. In the second part of this review relevant examples of APFs will be discussed in more detail.
Collapse
Affiliation(s)
- Robert A. Ettlin
- Ettlin Consulting Ltd., 14 Mittelweg, 4142 Muenchenstein,
Switzerland
| | - Junji Kuroda
- KISSEI Pharmaceutical Co., Ltd., 2320–1 Maki, Hotaka, Azumino,
Nagano 399-8305, Japan
| | - Stephanie Plassmann
- PreClinical Safety (PCS) Consultants Ltd., 7 Gartenstrasse, 4132
Muttenz, Switzerland
| | - David E. Prentice
- PreClinical Safety (PCS) Consultants Ltd., 7 Gartenstrasse, 4132
Muttenz, Switzerland
| |
Collapse
|
48
|
A possible mechanism for the decrease in serum thyroxine level by phenobarbital in rodents. Toxicol Appl Pharmacol 2010; 249:238-46. [DOI: 10.1016/j.taap.2010.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/03/2010] [Accepted: 09/27/2010] [Indexed: 11/17/2022]
|
49
|
Pakharukova M, Smetanina M, Kaledin V, Obut T, Merkulova T. The increased CAR-dependent metabolism of thyroid hormones in mice with high cancer susceptibility. Life Sci 2010; 87:439-44. [PMID: 20816995 DOI: 10.1016/j.lfs.2010.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 08/07/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
AIM our aim was to compare activation of the constitutive androstane receptor (CAR), hepatic expression of its target genes, and the serum thyroid hormone levels in C3H/He, C57BL/6J, and CC57BR/Mv mice following phenobarbital treatment. These differences, if present, could help to explain the different susceptibility to phenobarbital-induced liver tumor promotion among these strains of mice. MAIN METHODS CAR DNA-binding activity and CAR content in nuclear protein extracts from mouse livers were assessed using the electrophoretic mobility shift assay and immunoblotting. Serum thyroid hormone concentrations were determined by radioimmunoassay. Real-time PCR was used to measure the hepatic expression level of CAR target genes. KEY FINDINGS we found a 2.3-fold increase of CAR DNA-binding activity in response to phenobarbital in the sensitive C3H/He mice, but no change in the relatively resistant C57BL/6J and CC57BR/Mv mice. Phenobarbital treatment caused a significant decrease in triiodothyronine and free thyroxine concentrations (17% and 40%, respectively) in the sensitive C3H/He mice by the end of 60-day treatment, while in the resistant mice, these changes were not observed. In the sensitive C3H/He mice only, the expression of a CAR target gene encoding sulfotransferase Sult2a1, the thyroid hormone inactivation enzyme, increased by 260-fold after phenobarbital administration. The expression of another CAR target gene, Mdm2, was also increased by phenobarbital treatment in C3H/He mice. SIGNIFICANCE we have shown that phenobarbital activates CAR and increases the expression of its target genes thereby accelerating the metabolism of thyroid hormones only in mice susceptible to liver tumor promotion by phenobarbital, but not in relatively resistant animals.
Collapse
|
50
|
Richardson TA, Klaassen CD. Disruption of thyroid hormone homeostasis in Ugt1a-deficient Gunn rats by microsomal enzyme inducers is not due to enhanced thyroxine glucuronidation. Toxicol Appl Pharmacol 2010; 248:38-44. [PMID: 20655938 DOI: 10.1016/j.taap.2010.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/10/2010] [Accepted: 07/14/2010] [Indexed: 11/25/2022]
Abstract
Microsomal enzyme inducers (MEI) that increase UDP-glucuronosyltransferases (UGTs) are thought to increase glucuronidation of thyroxine (T(4)), thus reducing serum T(4), and subsequently increasing thyroid stimulating hormone (TSH). Ugt1a1 and Ugt1a6 mediate T(4) glucuronidation. Therefore, this experiment determined the involvement of Ugt1a enzymes in increased T(4) glucuronidation, decreased serum T(4), and increased TSH after MEI treatment. Male Wistar and Ugt1a-deficient Wistar (Gunn) rats were fed a control diet or diet containing pregnenolone-16α-carbonitrile (PCN; 800 ppm), 3-methylcholanthrene (3-MC; 200 ppm), or Aroclor 1254 (PCB; 100 ppm) for 7 days. Serum T(4), triiodothyronine (T(3)), and TSH concentrations, hepatic T(4)/T(3) glucuronidation, and thyroid histology and follicular cell proliferation were investigated. PCN, 3-MC, and PCB treatments decreased serum T(4), whereas serum T(3) was maintained in both Gunn and Wistar rats (except for PCB treatment). TSH was increased in Wistar and Gunn rats after PCN (130 and 277%) or PCB treatment (72 and 60%). T(4) glucuronidation in Wistar rats was increased after PCN (298%), 3-MC (85%), and PCB (450%), but was extremely low in Gunn rats, and unchanged after MEI. T(3) glucuronidation was increased after PCN (121%) or PCB (58%) in Wistar rats, but only PCN increased T(3) glucuronidation in Gunn rats (43%). PCN treatment induced thyroid morphological changes and increased follicular cell proliferation in both strains. These data demonstrate that T(4) glucuronidation cannot be increased in Ugt1a-deficient Gunn rats. Thus, the decrease in serum T(4), increase in TSH, and increase in thyroid cell proliferation after MEI are not dependent on increased T(4) glucuronidation, and cannot be attributed to Ugt1a enzymes.
Collapse
Affiliation(s)
- Terrilyn A Richardson
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|